CINXE.COM

Search results for: thermoplastic polymers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermoplastic polymers</title> <meta name="description" content="Search results for: thermoplastic polymers"> <meta name="keywords" content="thermoplastic polymers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermoplastic polymers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermoplastic polymers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 787</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermoplastic polymers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Rheological Modeling for Shape-Memory Thermoplastic Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini">H. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Berdyshev"> B. V. Berdyshev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iskopintsev"> I. Iskopintsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20deformation" title="elastic deformation">elastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20polymers" title=" shape-memory polymers"> shape-memory polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20behavior" title=" stress-strain behavior"> stress-strain behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20model" title=" viscoelastic model"> viscoelastic model</a> </p> <a href="https://publications.waset.org/abstracts/34080/rheological-modeling-for-shape-memory-thermoplastic-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prantasi%20Harmi%20%20Tjahjanti">Prantasi Harmi Tjahjanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iswanto%20Iswanto"> Iswanto Iswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20%20Widodo"> Edi Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholeh%20%20Pamuji"> Sholeh Pamuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers" title="thermoplastic polymers">thermoplastic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20%28PE%29" title=" polyethylene (PE)"> polyethylene (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20%28PP%29" title=" polypropylene (PP)"> polypropylene (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20gas%20welding" title=" hot gas welding"> hot gas welding</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a> </p> <a href="https://publications.waset.org/abstracts/136833/bending-test-characteristics-for-splicing-of-thermoplastic-polymer-using-hot-gas-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Development of Soft 3D Printing Materials for Textile Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20materials" title=" 3D printing materials"> 3D printing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/184118/development-of-soft-3d-printing-materials-for-textile-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattaporn%20Khanoonkon">Nattaporn Khanoonkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangrong%20Yoksan"> Rangrong Yoksan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amod%20A.%20Ogale"> Amod A. Ogale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blend" title="blend">blend</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a> </p> <a href="https://publications.waset.org/abstracts/28960/interfacial-adhesion-and-properties-improvement-of-polyethylenethermoplastic-starch-blend-compatibilized-by-stearic-acid-grafted-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Dydek">Kamil Dydek</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Demski"> Szymon Demski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Majchrowicz"> Kamil Majchrowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Kozera"> Paulina Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogna%20Sztorch"> Bogna Sztorch</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Brz%C4%85kalski"> Dariusz Brząkalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzanna%20Krawczyk"> Zuzanna Krawczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Przekop"> Robert Przekop</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Boczkowska"> Anna Boczkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title=" acrylic resin"> acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilicon%20compounds" title=" organosilicon compounds"> organosilicon compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/153127/chemical-and-physical-modification-of-carbon-fiber-reinforced-polymers-based-on-thermoplastic-acrylic-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Graded Orientation of the Linear Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levan%20Nadareishvili">Levan Nadareishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Bakuradze"> Roland Bakuradze</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Kilosanidze"> Barbara Kilosanidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nona%20Topuridze"> Nona Topuridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Liana%20Sharashidze"> Liana Sharashidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ineza%20Pavlenishvili"> Ineza Pavlenishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20graded%20stretching" title="controlled graded stretching">controlled graded stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=gradually%20oriented%20state" title=" gradually oriented state"> gradually oriented state</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20polymers" title=" linear polymers"> linear polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=zone%20stretching%20device" title=" zone stretching device"> zone stretching device</a> </p> <a href="https://publications.waset.org/abstracts/15320/graded-orientation-of-the-linear-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Recovery of Polymers from Electronic Waste - An Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20A.%20Ansari">Anis A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Javed%20Arif"> Syed Javed Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the last two-three decades, all countries are continuously generating huge quantities of electronic waste in the form of obsolete computers, gadgets and other discarded electronic instruments mainly due to evolution of newer technologies as a result of constant efforts in research and development in this area. This is the primary reason why waste from the electronic industry is increasing exponentially day by day. Thermoset and thermoplastic polymers, which are the major constituents in every electronic waste, may create a new business opportunity if these are recovered and recycled properly. This may reduce our directly dependency on petroleum and petro-products for polymer materials and also create a potential market for recycled polymers to improve economy. The main theme of this paper is to evolve the potential of recovery and recycling of polymers from the waste being generated globally in the form of discarded electronic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20recovery" title="polymer recovery">polymer recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title=" electronic waste"> electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title=" thermoplastics"> thermoplastics</a> </p> <a href="https://publications.waset.org/abstracts/42470/recovery-of-polymers-from-electronic-waste-an-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Korsacilar">D. Korsacilar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Atas"> C. Atas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a> </p> <a href="https://publications.waset.org/abstracts/13953/production-and-mechanical-characterization-of-ballistic-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Glass and Polypropylene Combinations for Thermoplastic Preforms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hireni%20Mankodi">Hireni Mankodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title="thermoplastic">thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=preform" title=" preform"> preform</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarn" title=" hybrid yarn"> hybrid yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a> </p> <a href="https://publications.waset.org/abstracts/27376/glass-and-polypropylene-combinations-for-thermoplastic-preforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Dydek">Kamil Dydek</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Demski"> Szymon Demski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Majchrowicz"> Kamil Majchrowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Kozera"> Paulina Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogna%20Sztorch"> Bogna Sztorch</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Brz%C4%85kalski"> Dariusz Brząkalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzanna%20Krawczyk"> Zuzanna Krawczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Przekop"> Robert Przekop</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Boczkowska"> Anna Boczkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELIUM" title=" ELIUM"> ELIUM</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=infusion" title=" infusion"> infusion</a> </p> <a href="https://publications.waset.org/abstracts/153118/carbon-fibre-reinforced-polymers-modified-with-pet-gmwcnts-nonwovens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Cheng">Peng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liqing%20Wei"> Liqing Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Chen"> Hongyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruomiao%20Wang"> Ruomiao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NO<sub>x</sub>. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discoloration" title="discoloration">discoloration</a>, <a href="https://publications.waset.org/abstracts/search?q=fire-retardant" title=" fire-retardant"> fire-retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composites" title=" thermoplastic composites"> thermoplastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=wet-lay%20process" title=" wet-lay process"> wet-lay process</a> </p> <a href="https://publications.waset.org/abstracts/111655/thermoplastic-composites-with-reduced-discoloration-and-enhanced-fire-retardant-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masato%20Nishi">Masato Nishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsushi%20Kaburagi"> Tetsushi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Kurose"> Masashi Kurose</a>, <a href="https://publications.waset.org/abstracts/search?q=Tei%20Hirashima"> Tei Hirashima</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsusei%20Kurasiki"> Tetsusei Kurasiki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20thermoplastic" title="carbon fiber reinforced thermoplastic">carbon fiber reinforced thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-impregnated%20textile%20composite" title=" pre-impregnated textile composite"> pre-impregnated textile composite</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20forming" title=" non-isothermal forming"> non-isothermal forming</a> </p> <a href="https://publications.waset.org/abstracts/12983/forming-simulation-of-thermoplastic-pre-impregnated-textile-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Enhancement of Interface Properties of Thermoplastic Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20Ozbask">Reyhan Ozbask</a>, <a href="https://publications.waset.org/abstracts/search?q=Emek%20Moroydor%20Derin"> Emek Moroydor Derin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20composite" title="carbon fiber reinforced composite">carbon fiber reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20enhancement" title=" interface enhancement"> interface enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20nitride%20nanotube" title=" boron nitride nanotube"> boron nitride nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composite" title=" thermoplastic composite"> thermoplastic composite</a> </p> <a href="https://publications.waset.org/abstracts/141518/enhancement-of-interface-properties-of-thermoplastic-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Tamele%20Jr.">L. F. Tamele Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Buonocore"> G. Buonocore</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Muiambo"> H. F. Muiambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoclay%20dellite%2043B" title=" nanoclay dellite 43B"> nanoclay dellite 43B</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20asphalt" title=" polymer modified asphalt"> polymer modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20rheological%20properties" title=" thermal and rheological properties"> thermal and rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/137904/thermomechanical-behavior-of-asphalt-modified-with-thermoplastic-polymer-and-nanoclay-dellite-43b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Prada">Jorge Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Cordes"> Christina Cordes</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Harms"> Carsten Harms</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Lang"> Walter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclo-olefin%20copolymer" title=" cyclo-olefin copolymer"> cyclo-olefin copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20embossing" title=" hot embossing"> hot embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bonding" title=" thermal bonding"> thermal bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title=" thermoplastics"> thermoplastics</a> </p> <a href="https://publications.waset.org/abstracts/90848/low-complex-high-fidelity-two-grades-cyclo-olefin-copolymer-coc-based-thermal-bonding-technique-for-sealing-a-thermoplastic-microfluidic-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ataee">Behrooz Ataee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golzar"> Mohammad Golzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20pultrusion" title="thermoplastic pultrusion">thermoplastic pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20pultrusion" title=" hybrid pultrusion"> hybrid pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side%20fibers" title=" side-by-side fibers"> side-by-side fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnation" title=" impregnation"> impregnation</a> </p> <a href="https://publications.waset.org/abstracts/57363/pultrusion-of-side-by-side-glasspolypropylene-fibers-study-of-flexural-and-shear-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Reactive Blending of Thermoplastic Starch, Ethylene-1-Butene Rubber, and Chitosan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Jantanasakulwong">Kittisak Jantanasakulwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Ougizawa"> Toshiaki Ougizawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic starch (TPS) was prepared by melt-blending of cassava starch with glycerol (70/30 wt%/wt%) at 130 ◦C for 10 min. Chitosan (CTS) was used as a compatibilizer. TPS/CTS blend was melt-blended with maleic anhydride grafted ethylene-1-butene rubber (EB-MAH) in the composition of 80/20 respectively. Addition of CTS in TPS/EB-MAH blend decreased particles size of EB-MAH rubber to 1µm in TPS matrix. Mechanical properties, solubility, swelling property, morphology, and water contact angle of TPS/EB-MAH blend were improved by CTS incorporation. FTIR confirmed a reaction had occurred between amino groups (-NH2) of CTS and the MAH groups of EB-MAH. This reaction and the enhanced miscibility between TPS and CTS improved morphology and properties of the TPS/EB-MAH/CTS blend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title="thermoplastic starch">thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20blending" title=" reactive blending"> reactive blending</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/79632/reactive-blending-of-thermoplastic-starch-ethylene-1-butene-rubber-and-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Synthesis of Telechelic Polymers for Asphalt Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20C%20Arroyo">Paula C Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20A%20S%C3%A1nchez"> Norma A Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Tlenkopatchev"> Mikhail Tlenkopatchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20polymers" title="asphalt polymers">asphalt polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=metathesis%20polymers" title=" metathesis polymers"> metathesis polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=telechelic%20polymers" title=" telechelic polymers"> telechelic polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20asphalt" title=" modified asphalt"> modified asphalt</a> </p> <a href="https://publications.waset.org/abstracts/43987/synthesis-of-telechelic-polymers-for-asphalt-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Nieto%20Simavilla">David Nieto Simavilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilco%20M.%20H.%20Verbeeten"> Wilco M. H. Verbeeten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20constitutive%20models" title=" differential constitutive models"> differential constitutive models</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20simulations%20in%20polymers" title=" flow simulations in polymers"> flow simulations in polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/76961/predictions-for-the-anisotropy-in-thermal-conductivity-in-polymers-subjected-to-model-flows-by-combination-of-the-extended-pom-pom-model-and-the-stress-thermal-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Tunay%20%C3%87etin">Merve Tunay Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever%20beam" title="cantilever beam">cantilever beam</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20stress%20analysis" title=" elastic stress analysis"> elastic stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20angle" title=" orientation angle"> orientation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic "> thermoplastic </a> </p> <a href="https://publications.waset.org/abstracts/2632/elastic-stress-analysis-of-composite-cantilever-beam-loaded-uniformly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Preparation and Properties of Polylactic Acid/MDI Modified Thermoplastic Starch Blends </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhila%20Krishnan">Sukhila Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20K.%20Nayak"> Sanjay K. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polylactide (PLA) and thermoplastic starch (TPS) are the most promising bio-based materials presently available on the market. Polylactic acid is one of the versatile biodegradable polyester showing wide range of applications in various fields and starch is a biopolymer which is renewable, cheap as well as extensively available. The usual increase in the cost of petroleum-based commodities in the next decades opens bright future for these materials. Their biodegradability and compostability was an added advantage in applications that are difficult to recycle. Currently, thermoplastic starch (TPS) has been used as a substitute for synthetic plastic in several commercial products. But, TPS shows some limitations mainly due to its brittle and hydrophilic nature, which has to be resolved to widen its application.The objective of the work we report here was to initiate chemical modifications on TPS and to build up a process to control its chemical structure using a solution process which can reduce its water sensitive properties and then blended it with PLA to improve compatibility between PLA and TPS. The method involves in cleavage of starch amylose and amylopectin chain backbone to plasticize with glycerol and water in batch mixer and then the prepared TPS was reacted in solution with diisocyanates i.e, 4,4'-Methylenediphenyl Diisocyanate (MDI).This diisocyanate was used before with great success for the chemical modification of TPS surface. The method utilized here will form an urethane-linkages between reactive isocyanate groups (–NCO) and hydroxyl groups (-OH) of starch as well as of glycerol. New polymer synthesised shows a reduced crystallinity, less hydrophilic and enhanced compatibility with other polymers. The TPS was prepared by Haake Rheomix 600 batch mixer with roller rotors operating at 50 rpm. The produced material is then refluxed for 5hrs with MDI in toluene with constant stirring. Finally, the modified TPS was melt blended with PLA in different compositions. Blends obtained shows an improved mechanical properties. These materials produced are characterized by Fourier Transform Infrared Spectra (FTIR), DSC, X-Ray diffraction and mechanical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title="polylactic acid">polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=Methylenediphenyl%20Diisocyanate" title=" Methylenediphenyl Diisocyanate"> Methylenediphenyl Diisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=Polylactide%20%28PLA%29" title=" Polylactide (PLA)"> Polylactide (PLA)</a> </p> <a href="https://publications.waset.org/abstracts/20919/preparation-and-properties-of-polylactic-acidmdi-modified-thermoplastic-starch-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevim%20Gecici">Sevim Gecici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Doganci"> Erdinc Doganci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title=" thermoplastic"> thermoplastic</a> </p> <a href="https://publications.waset.org/abstracts/193126/the-study-of-the-physical-chemical-and-mechanical-properties-of-recycled-thermoplastic-polypropylene-and-polyamide-materials-used-in-the-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Seki">Y. Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%87.%20K%C4%B1l%C4%B1%C3%A7"> A. Ç. Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Atag%C3%BCr"> M. Atagür</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%96zdemir"> O. Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20%C5%9Een"> İ. Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sever"> K. Sever</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Seydibeyo%C4%9Flu"> Ö. Seydibeyoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarikanat"> M. Sarikanat</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K%C3%BC%C3%A7%C3%BCkdo%C4%9Fan"> N. Küçükdoğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20filler" title="waste filler">waste filler</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/25185/evaluation-of-vine-stem-waste-as-a-filler-material-for-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> The Effect of Carbon Nanotubes in Copolyamide Nonwovens on the Properties of CFRP Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Dydek">Kamil Dydek</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Boczkowska"> Anna Boczkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Latko-Duralek"> Paulina Latko-Duralek</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Kozera"> Rafal Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Salacinski"> Michal Salacinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years there has been increasing interest in many industries, such as the aviation, automotive, and military industries, in Carbon Fibre Reinforced Polymers (CFRP). This is because of the excellent properties of CFRP, which are characterized by very high strength and stiffness in relation to their mass, low density (almost twice as low as aluminum and more than five times as low as steel), and corrosion resistance. However, they do not have sufficient electrical conductivity, which is required in some applications. Therefore, work is underway to improve their electrical conductivity, for example, by incorporating carbon nanotubes (CNTs) into the CFRP structure. CNTs possess excellent properties, such as high electrical conductivity, high aspect ratio, high Young’s modulus, and high tensile strength. An idea developed by our team is a modification of CFRP by the use of thermoplastic nonwovens containing CNTs. Nanocomposite fibers were made from three different masterbatches differing in the content of multi-wall carbon nanotubes, and then nonwovens that differed in areal weight were produced using a thermo-press. The out of autoclave method was used to fabricate the laminates from commercial carbon-epoxy prepreg dedicated to aviation applications - one without the nonwovens (reference) and five containing nonwovens placed between each prepreg layer. The volume of electrical conductivity of the manufactured laminates was measured in three directions. In order to investigate the adhesion between carbon fibers and nonwovens, the microstructure of the produced laminates was observed. The mechanical properties of the CFRP composites were measured in a short-beam shear test. In addition, the influence of thermoplastic nonwovens on the thermos-mechanical properties of laminates was analyzed by Dynamic Mechanical Analysis. The studies were carried out within grant no. DOB-1-3/1/PS/2014 financed by the National Centre for Research and Development in Poland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20nonwovens" title=" thermoplastic nonwovens"> thermoplastic nonwovens</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/111266/the-effect-of-carbon-nanotubes-in-copolyamide-nonwovens-on-the-properties-of-cfrp-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Horse Chestnut Starch: A Noble Inedible Feedstock Source for Producing Thermoplastic Starch (TPS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Casta%C3%B1o">J. Castaño</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rodriguez"> S. Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20L.%20Franco"> C. M. L. Franco </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starch isolated from non-edible A. hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35µm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317°C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aesculus%20hippocastanum%20L." title="Aesculus hippocastanum L.">Aesculus hippocastanum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=amylopectin%20structure" title=" amylopectin structure"> amylopectin structure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=non-edible%20source" title=" non-edible source"> non-edible source</a> </p> <a href="https://publications.waset.org/abstracts/19741/horse-chestnut-starch-a-noble-inedible-feedstock-source-for-producing-thermoplastic-starch-tps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiza%20Melo%20De%20Lima">Luiza Melo De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Tito%20Trindade"> Tito Trindade</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20M.%20Oliveira"> Jose M. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelets" title="graphene nanoplatelets">graphene nanoplatelets</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blending%20processing" title=" melt blending processing"> melt blending processing</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28propylene%29-based%20nanocomposites" title=" poly(propylene)-based nanocomposites"> poly(propylene)-based nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/136748/mechanical-properties-of-polypropylene-based-graphene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Rheological Properties of PP/EVA Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Y.%20Alothman">Othman Y. Alothman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to investigate the effects of blend ratio, VA content and temperature on the rheological properties of PPEVA blends. The results show that all pure polymers and their blends show typical shear thinning behaviour. All neat polymers exhibit power-low type flow behaviour, with the viscosity order as EVA328 > EVA206 > PP in almost all frequency ranges. As temperature increases, the viscosity of all polymers decreases as expected, and the viscosity becomes more sensitive to the addition of EVA. Two different regions can be observed on the flow curve of some of the polymers and their blends, which is thought to be due to slip-stick transition or melt fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=blends" title=" blends"> blends</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/7141/rheological-properties-of-ppeva-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Y%C4%B1lmaz">Mustafa Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Akar"> Ahmet Akar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken"> Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant">flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorous%20compound" title=" phosphorous compound"> phosphorous compound</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a> </p> <a href="https://publications.waset.org/abstracts/101411/investigation-of-the-effect-of-phosphorous-on-the-flame-retardant-polyacrylonitrile-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DuckHwan%20Bae">DuckHwan Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=YongSung%20Kwon"> YongSung Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Young%20Shon"> Min Young Shon</a>, <a href="https://publications.waset.org/abstracts/search?q=SanTaek%20Oh"> SanTaek Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=GuNi%20Kim"> GuNi Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polyurethane" title=" thermoplastic polyurethane"> thermoplastic polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loss" title=" hysteresis loss"> hysteresis loss</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20loss" title=" eddy current loss"> eddy current loss</a>, <a href="https://publications.waset.org/abstracts/search?q=curie%20temperature" title=" curie temperature"> curie temperature</a> </p> <a href="https://publications.waset.org/abstracts/46412/heating-behavior-of-ni-embedded-thermoplastic-polyurethane-adhesive-film-by-induction-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> The Application of Polymers in Enhanced Oil Recovery: Recent Trends </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20M.%20Rudd">Reza M. Rudd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Saeedi"> Ali Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Wood"> Colin Wood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EOR" title="EOR">EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=EGR" title=" EGR"> EGR</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20flooding" title=" polymer flooding"> polymer flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20modification" title=" profile modification"> profile modification</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20control" title=" mobility control"> mobility control</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20hydrogels" title=" nanocomposite hydrogels"> nanocomposite hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20flooding" title=" CO2 flooding"> CO2 flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20surfactants" title=" polymeric surfactants"> polymeric surfactants</a> </p> <a href="https://publications.waset.org/abstracts/58545/the-application-of-polymers-in-enhanced-oil-recovery-recent-trends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10