CINXE.COM

Search results for: solar cell performance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solar cell performance</title> <meta name="description" content="Search results for: solar cell performance"> <meta name="keywords" content="solar cell performance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solar cell performance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solar cell performance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16894</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solar cell performance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16894</span> Effects of the Ambient Temperature and the Defect Density on the Performance the Solar Cell (HIT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouzaki%20Mohammed%20Moustafa">Bouzaki Mohammed Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyoucef%20Boumediene"> Benyoucef Boumediene</a>, <a href="https://publications.waset.org/abstracts/search?q=Benouaz%20Tayeb"> Benouaz Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Benhamou%20Amina"> Benhamou Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ambient temperature and the defects density in the Hetero-junction with Intrinsic Thin layers solar cells (HIT) strongly influence their performances. In first part, we presented the bands diagram on the front/back simulated solar cell based on a-Si: H / c-Si (p)/a-Si:h. In another part, we modeled the following layers structure: ZnO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p)/Ag where we studied the effect of the ambient temperature and the defects density in the gap of the crystalline silicon layer on the performance of the heterojunction solar cell with intrinsic layer (HIT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction%20solar%20cell" title="heterojunction solar cell">heterojunction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance" title=" solar cell performance"> solar cell performance</a>, <a href="https://publications.waset.org/abstracts/search?q=bands%20diagram" title=" bands diagram"> bands diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20density" title=" defect density "> defect density </a> </p> <a href="https://publications.waset.org/abstracts/21496/effects-of-the-ambient-temperature-and-the-defect-density-on-the-performance-the-solar-cell-hit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16893</span> Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chadel%20Meriem">Chadel Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensmaine%20Souhila"> Bensmaine Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Chadel%20Asma"> Chadel Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchikhi%20Chaima"> Bouchikhi Chaima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methylammonium%20lead%20Iodide" title="methylammonium lead Iodide">methylammonium lead Iodide</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=caracteristic%20J-V" title=" caracteristic J-V"> caracteristic J-V</a>, <a href="https://publications.waset.org/abstracts/search?q=effeciency" title=" effeciency"> effeciency</a> </p> <a href="https://publications.waset.org/abstracts/176389/effect-of-methylammonium-lead-iodide-layer-thickness-on-performance-of-perovskite-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16892</span> Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Ben%20Slimane">Hassane Ben Slimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmoussa%20Dennai"> Benmoussa Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Hemmani"> Abderrahman Hemmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrachid%20Helmaoui"> Abderrachid Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multijunction%20solar%20cell" title="multijunction solar cell">multijunction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a> </p> <a href="https://publications.waset.org/abstracts/20170/numerical-simulation-of-multijunction-gaascigs-solar-cell-by-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16891</span> An Approach on the Design of a Solar Cell Characterization Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Mayer">Christoph Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Holzmann"> Dominik Holzmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/39321/an-approach-on-the-design-of-a-solar-cell-characterization-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16890</span> Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Boukli%20Hacene">Souhila Boukli Hacene</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Kherbouche"> Djamila Kherbouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Chikhaoui"> Abdelhak Chikhaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cell" title="organic solar cell">organic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3APCBM" title=" P3HT:PCBM"> P3HT:PCBM</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=SCAPS" title=" SCAPS"> SCAPS</a> </p> <a href="https://publications.waset.org/abstracts/164758/modeling-and-simulation-of-organic-solar-cells-based-on-p3htpcbm-using-scaps-1-d-influence-of-defects-and-temperature-on-the-performance-of-the-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16889</span> The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chonmapat%20Torasa">Chonmapat Torasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-cell%20power%20generating%20system" title=" solar-cell power generating system"> solar-cell power generating system</a>, <a href="https://publications.waset.org/abstracts/search?q=computer" title=" computer"> computer</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/6657/the-evaluation-of-electricity-generation-and-consumption-from-solar-generator-a-case-study-at-rajabhat-suan-sunandhas-learning-center-in-samutsongkram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16888</span> Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfuzur%20Rahman">Mahfuzur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interdigitated" title="interdigitated">interdigitated</a>, <a href="https://publications.waset.org/abstracts/search?q=shading" title=" shading"> shading</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination%20loss" title=" recombination loss"> recombination loss</a>, <a href="https://publications.waset.org/abstracts/search?q=incident-plane" title=" incident-plane"> incident-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=drift-diffusion" title=" drift-diffusion"> drift-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminous" title=" luminous"> luminous</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO" title=" SILVACO"> SILVACO</a> </p> <a href="https://publications.waset.org/abstracts/146112/modelling-and-simulation-of-light-and-temperature-efficient-interdigitated-back-surface-contact-solar-cell-with-2881-efficiency-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16887</span> Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chavez"> M. Chavez</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Juarez"> H. Juarez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pacio"> M. Pacio</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Portillo"> O. Portillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PbS%20doped" title="PbS doped">PbS doped</a>, <a href="https://publications.waset.org/abstracts/search?q=Bismuth" title=" Bismuth"> Bismuth</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/28646/low-temperature-solution-processed-solar-cell-based-on-itopbspbsbi3-heterojunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16886</span> Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sindhu%20S%20Nair">Sindhu S Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Thakur"> Atul Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Thakur"> Preeti Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Trukhanov%20Alex"> Trukhanov Alex</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite%20materials" title="perovskite materials">perovskite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20solar%20cell" title=" inverted solar cell"> inverted solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20perovskite%20solar%20cell%20materials" title=" inorganic perovskite solar cell materials"> inorganic perovskite solar cell materials</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20efficiency" title=" cell efficiency"> cell efficiency</a> </p> <a href="https://publications.waset.org/abstracts/166962/device-modelling-and-analysis-of-eco-friendly-inverted-solar-cell-structure-using-valency-ordered-inorganic-double-perovskite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16885</span> Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Touafek">K. Touafek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Khettaf"> E. H. Khettaf</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Embarek"> A. Embarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/3010/comparative-study-of-two-new-configurations-of-solar-photovoltaic-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16884</span> Theoretical Analysis of Graded Interface CdS/CIGS Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Ben%20Slimane">Hassane Ben Slimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennai%20Benmoussa"> Dennai Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrachid%20Helmaoui"> Abderrachid Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have theoretically calculated the photovoltaic conversion efficiency of a graded interface CdS/CIGS solar cell, which can be experimentally fabricated. Because the conduction band discontinuity or spike in an abrupt heterojunction CdS/CIGS solar cell can hinder the separation of hole-electron by electric field, a graded interface layer is uses to eliminate the spike and reduces recombination in space charge region. This paper describes the role of the graded band gap interface layer in decreasing the performance of the heterojunction cell. By optimizing the thickness of the graded region, an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction" title="heterojunction">heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=graded%20interface" title=" graded interface"> graded interface</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS "> CIGS </a> </p> <a href="https://publications.waset.org/abstracts/20359/theoretical-analysis-of-graded-interface-cdscigs-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16883</span> Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Ayat">Leila Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Afak%20Meftah"> Afak Meftah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silicon%20p-i-n%20junctions" title="amorphous silicon p-i-n junctions">amorphous silicon p-i-n junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/21840/sensitivity-studies-for-a-pin-homojunction-a-sih-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16882</span> Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Nasrin">R. Nasrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title="PV module">PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20temperature" title=" cell temperature"> cell temperature</a> </p> <a href="https://publications.waset.org/abstracts/82035/power-and-efficiency-of-photovoltaic-module-effect-of-cell-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16881</span> The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Boyo">A. O. Boyo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Akinwunmi"> A. T. Akinwunmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cell" title=" dye-sensitized solar cell"> dye-sensitized solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=terminalia%20catappa%20L." title=" terminalia catappa L."> terminalia catappa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2 "> TiO2 </a> </p> <a href="https://publications.waset.org/abstracts/37893/the-stability-and-performances-of-terminalia-catappa-l-dye-sensitized-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16880</span> Studying the Effect of Silicon Substrate Intrinsic Carrier Concentration on Performance of ZnO/Si Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Sadique%20Anwer%20Askari">Syed Sadique Anwer Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukul%20Kumar%20Das"> Mukul Kumar Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Oxide (ZnO) solar cells have drawn great attention due to the enhanced efficiency and low-cost fabrication process. In this study, ZnO thin film is used as the active layer, hole blocking layer, antireflection coating (ARC) as well as transparent conductive oxide. To improve the conductivity of ZnO, top layer of ZnO is doped with aluminum, for top contact. Intrinsic carrier concentration of silicon substrate plays an important role in enhancing the power conversion efficiency (PCE) of ZnO/Si solar cell. With the increase of intrinsic carrier concentration PCE decreased due to increase in dark current in solar cell. At 80nm ZnO and 160µm Silicon substrate thickness, power conversion efficiency of 26.45% and 21.64% is achieved with intrinsic carrier concentration of 1x109/cm3, 1.4x1010/cm3 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hetero-junction%20solar%20cell" title="hetero-junction solar cell">hetero-junction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20intrinsic%20carrier%20concentration" title=" substrate intrinsic carrier concentration"> substrate intrinsic carrier concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FSi" title=" ZnO/Si"> ZnO/Si</a> </p> <a href="https://publications.waset.org/abstracts/61939/studying-the-effect-of-silicon-substrate-intrinsic-carrier-concentration-on-performance-of-znosi-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16879</span> Effect of Environmental Conditions on the Substrate Cu(In,Ga)Se2 Solar Cell Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekhannene%20Amine">Mekhannene Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we began in the first step by two-dimensional simulation of a CIGS solar cell, in order to increase the current record efficiency of 20.48% for a single CIGS cell. Was created by utilizing a set of physical and technological parameters a solar cell of reference (such as layer thicknesses, gallium ratio, doping levels and materials properties) documented in bibliography and very known in the experimental field. This was accomplished through modeling and simulation using Atlas SILVACO-TCAD, an tool two and three dimensions very powerful and very adapted. This study has led us to determine the influence of different environmental parameters such as illumination (G) and temperature (T). In the second step, we continued our study by determining the influence of physical parameters (the acceptor of concentration NA) and geometric (thickness t) of the CIGS absorber layer, were varied to produce an optimum efficiency of 24.36%. This approach is promising to produce a CIGS classic solar cell to conduct a maximum performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cigs" title=" cigs"> cigs</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20generator" title=" photovoltaic generator"> photovoltaic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlas%20SILVACO-TCAD" title=" Atlas SILVACO-TCAD"> Atlas SILVACO-TCAD</a> </p> <a href="https://publications.waset.org/abstracts/17405/effect-of-environmental-conditions-on-the-substrate-cuingase2-solar-cell-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">645</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16878</span> Investigating the Effect of Adding the Window Layer and the Back Surface Field Layer of InₓGa₍₁₋ₓ₎P Material to GaAs Single Junction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Taghinia">Ahmad Taghinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Gholamishaker"> Negar Gholamishaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaAs (gallium arsenide) solar cells have gained significant attention for their use in space applications. These solar cells have the potential for efficient energy conversion and are being explored as potential power sources for electronic devices, satellites, and telecommunication equipment. In this study, the aim is to investigate the effect of adding a window layer and a back surface field (BSF) layer made of InₓGa₍₁₋ₓ₎P material to a GaAs single junction solar cell. In this paper, we first obtain the important electrical parameters of a single-junction GaAs solar cell by utilizing a two-dimensional simulator software for virtual investigation of the solar cell; then, we analyze the impact of adding a window layer and a back surface field layer made of InₓGa₍₁₋ₓ₎P on the solar cell. The results show that the incorporation of these layers led to enhancements in Jsc, Voc, FF, and the overall efficiency of the solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20surface%20field%20layer" title="back surface field layer">back surface field layer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%93Ga%E2%82%8D%E2%82%81%E2%82%8B%E2%82%93%E2%82%8EP" title=" InₓGa₍₁₋ₓ₎P"> InₓGa₍₁₋ₓ₎P</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20layer" title=" window layer"> window layer</a> </p> <a href="https://publications.waset.org/abstracts/170469/investigating-the-effect-of-adding-the-window-layer-and-the-back-surface-field-layer-of-inga1p-material-to-gaas-single-junction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16877</span> Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mazouz">H. Mazouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belghachi"> A. Belghachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hadjaj"> F. Hadjaj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaAs%20solar%20cell" title="gaAs solar cell">gaAs solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=MeV%20electron%20irradiation" title=" MeV electron irradiation"> MeV electron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation%20fluence" title=" irradiation fluence"> irradiation fluence</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit" title=" short circuit"> short circuit</a> </p> <a href="https://publications.waset.org/abstracts/4028/solar-cell-degradation-by-electron-irradiation-effect-of-irradiation-fluence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16876</span> Modelling of Silicon Solar Cell with Anti-reflecting Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Gaur">Ankita Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouli%20Karmakar"> Mouli Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam"> Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antireflecting%20coating" title="antireflecting coating">antireflecting coating</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/146866/modelling-of-silicon-solar-cell-with-anti-reflecting-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16875</span> Modeling of a Concentrating Photovoltaic Module with and without Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intissar%20Benrhouma">Intissar Benrhouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Victoria"> Marta Victoria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignacio%20Anton"> Ignacio Anton</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Chaouachi"> Bechir Chaouachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20improvement" title=" performance improvement"> performance improvement</a> </p> <a href="https://publications.waset.org/abstracts/62511/modeling-of-a-concentrating-photovoltaic-module-with-and-without-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16874</span> Fabrication of Silicon Solar Cells Using All Sputtering Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Hua%20Li">Ching-Hua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Hui%20Chen"> Sheng-Hui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering%20process" title=" sputtering process"> sputtering process</a>, <a href="https://publications.waset.org/abstracts/search?q=pvd" title=" pvd"> pvd</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%20target" title=" alloy target"> alloy target</a> </p> <a href="https://publications.waset.org/abstracts/30724/fabrication-of-silicon-solar-cells-using-all-sputtering-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16873</span> Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Djaafar">F. Djaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hadri"> B. Hadri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bachir"> G. Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design parameters for a thin film 3J <em>InGaP/GaAs/Ge </em>solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers&rsquo; thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell&rsquo;s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction <em>InGaP/GaAs/Ge </em>cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP&nbsp;/GaAs tunnel junction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction" title="heterojunction">heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=Tcad%20Silvaco" title=" Tcad Silvaco"> Tcad Silvaco</a> </p> <a href="https://publications.waset.org/abstracts/66258/comparison-between-the-efficiency-of-heterojunction-thin-film-ingapgaasge-and-ingapgaas-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16872</span> Connected Objects with Optical Rectenna for Wireless Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayma%20Bahar">Chayma Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Baccouch"> Chokri Baccouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Sakli"> Hedi Sakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Sakli"> Nizar Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20rectenna" title=" optical rectenna"> optical rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/129451/connected-objects-with-optical-rectenna-for-wireless-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16871</span> First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Seboui">Zeineb Seboui</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20Dabbabi"> Samar Dabbabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CZTS%20solar%20cell" title="CZTS solar cell">CZTS solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20affinity" title=" electron affinity"> electron affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO-atlas%202D%20simulation" title=" SILVACO-atlas 2D simulation"> SILVACO-atlas 2D simulation</a> </p> <a href="https://publications.waset.org/abstracts/166352/first-investigation-on-czts-electron-affinity-and-thickness-optimization-using-silvaco-atlas-2d-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16870</span> Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazouz%20Halima">Mazouz Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Belghachi%20Abdrahmane"> Belghachi Abdrahmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InP%20solar%20cell" title="InP solar cell">InP solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=p%2Fn%20and%20n%2Fp%20structure" title=" p/n and n/p structure"> p/n and n/p structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20irradiation" title=" electron irradiation"> electron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20parameters" title=" output parameters"> output parameters</a> </p> <a href="https://publications.waset.org/abstracts/7526/comparison-between-the-radiation-resistance-of-np-and-pn-inp-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16869</span> Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Stephen%20Joe">F. Stephen Joe</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sathya%20Narayanan"> V. Sathya Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BHJ%20polymer%20solar%20cell" title="BHJ polymer solar cell">BHJ polymer solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title=" photovoltaic cell"> photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Joe%20technique" title=" Stephen Joe technique"> Stephen Joe technique</a> </p> <a href="https://publications.waset.org/abstracts/16804/design-of-a-controlled-bhj-solar-cell-using-modified-organic-vapor-spray-deposition-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16868</span> Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Chavez%20Portillo">Melissa Chavez Portillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Pacio%20Castillo"> Mauricio Pacio Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Juarez%20Santiesteban"> Hector Juarez Santiesteban</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Portillo%20Moreno"> Oscar Portillo Moreno </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20doping" title="Bi doping">Bi doping</a>, <a href="https://publications.waset.org/abstracts/search?q=PbS" title=" PbS"> PbS</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/27244/solar-cell-using-chemical-bath-deposited-pbsbi3-films-as-electron-collecting-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16867</span> Optimal Design of InGaP/GaAs Heterojonction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djaafar%20F.">Djaafar F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadri%20B."> Hadri B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20G."> Bachir G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multijunction" title=" multijunction"> multijunction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silvaco%20ATLAS" title=" silvaco ATLAS"> silvaco ATLAS</a> </p> <a href="https://publications.waset.org/abstracts/35670/optimal-design-of-ingapgaas-heterojonction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16866</span> The Choicest Design of InGaP/GaAs Heterojunction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djaafar%20Fatiha">Djaafar Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalem%20Bachir"> Ghalem Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadri%20Bagdad"> Hadri Bagdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multijunction" title=" multijunction"> multijunction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco%20ATLAS" title=" Silvaco ATLAS"> Silvaco ATLAS</a> </p> <a href="https://publications.waset.org/abstracts/37022/the-choicest-design-of-ingapgaas-heterojunction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16865</span> Modeling and Simulation of InAs/GaAs and GaSb/GaAS Quantum Dot Solar Cells in SILVACO TCAD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Benyettou">Fethi Benyettou</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Aissat"> Abdelkader Aissat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Benammar"> M. A. Benammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we use Silvaco TCAD software for modeling and simulations of standard GaAs solar cell, InAs/GaAs and GaSb/GaAs p-i-n quantum dot solar cell. When comparing 20-layer InAs/GaAs, GaSb/GaAs quantum dots solar cells with standard GaAs solar cell, the conversion efficiency in simulation results increased from 16.48 % to 22.6% and 16.48% to 22.42% respectively. Also, the absorption range edge of photons with low energies extended from 900 nm to 1200 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SILVACO%20TCAD" title="SILVACO TCAD">SILVACO TCAD</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20quantum%20dot" title=" the quantum dot"> the quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/20994/modeling-and-simulation-of-inasgaas-and-gasbgaas-quantum-dot-solar-cells-in-silvaco-tcad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=563">563</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=564">564</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cell%20performance&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10