CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 75 results for author: <span class="mathjax">Leblanc, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Leblanc, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Leblanc%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Leblanc, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.08444">arXiv:2503.08444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.08444">pdf</a>, <a href="https://arxiv.org/format/2503.08444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Computation Kernel for Feynman Diagrams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gazizova%2C+D">Daria Gazizova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farid%2C+R">Rayan Farid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assi%2C+I">I. Assi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armstrong%2C+E+G">Ethan G. Armstrong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.08444v1-abstract-short" style="display: inline;"> We present a general representation for solving problems in many-body perturbation theory. By defining an overcomplete representation for the single-particle Green&#39;s function we show how one can convert an arbitrary Feynman graph to a universal kernel representation. Once constructed, the computation kernel contains no problem specific information yet contains all explicit temperature and frequenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08444v1-abstract-full').style.display = 'inline'; document.getElementById('2503.08444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.08444v1-abstract-full" style="display: none;"> We present a general representation for solving problems in many-body perturbation theory. By defining an overcomplete representation for the single-particle Green&#39;s function we show how one can convert an arbitrary Feynman graph to a universal kernel representation. Once constructed, the computation kernel contains no problem specific information yet contains all explicit temperature and frequency dependence of the diagram. This computation kernel is problem agnostic, and valid for any physical problem that would normally leverage the Matsubara formalism of many-body perturbation theory. The result of any diagram can be written as a linear combination of these computation kernel elements with coefficients given by a sum over products of known tensor elements that are themselves problem specific and represent spatial degrees of freedom. We probe the efficacy of this approach by generating the computation kernel for a low order self-energy diagram which we then use to construct solutions to distinct problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08444v1-abstract-full').style.display = 'none'; document.getElementById('2503.08444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04915">arXiv:2501.04915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04915">pdf</a>, <a href="https://arxiv.org/format/2501.04915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Lifshitz transition and triplet $p$-wave pairing from the induced ferromagnetic plaquette via spin differentiated nonlocal interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Farid%2C+R">Rayan Farid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gazizova%2C+D">Daria Gazizova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04915v1-abstract-short" style="display: inline;"> We study the two-dimensional extended Hubbard model on a square lattice and incorporate spin-differentiated nearest neighbor (NN) interactions where the equal-spin ($V_{uu}$) and unequal-spin ($V_{ud}$) terms are independently tuned parameters. We compute single-particle excitations as well as static spin and pairing susceptibilities perturbatively up to the fourth order within the thermodynamic l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04915v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04915v1-abstract-full" style="display: none;"> We study the two-dimensional extended Hubbard model on a square lattice and incorporate spin-differentiated nearest neighbor (NN) interactions where the equal-spin ($V_{uu}$) and unequal-spin ($V_{ud}$) terms are independently tuned parameters. We compute single-particle excitations as well as static spin and pairing susceptibilities perturbatively up to the fourth order within the thermodynamic limit and at a finite fixed temperature. By explicitly encoding a ferromagnetic-like NN interaction ($V_{uu} &lt; V_{ud}$), we induce a competition among the uniform $q = (0,0)$, collinear $q = (蟺,0)$, and staggered $q = (蟺,蟺)$ spin excitations. This results in the formation of short-ranged $2\times 2$ ferromagnetic plaquettes arranged in staggered or striped patterns. Kinetic frustration in hopping, both within and between these plaquettes, manifests in single-particle properties, resulting in a reduction of bandwidth and ultimately triggering a Lifshitz transition to quasi-one-dimensional bands. Furthermore, an attractive effective interaction within the localized ferromagnetic plaquette results in the emergence of equal-spin triplet $p$-wave pairing. We demonstrate that sufficiently strong magnetic fluctuations, even at finite length scales, can significantly influence single-particle and pairing properties without breaking translational symmetry. Our approach provides a novel pathway to realize a variety of rich magnetic phases and Fermi surface reconstruction driven by interactions in the absence of explicit geometric frustration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04915v1-abstract-full').style.display = 'none'; document.getElementById('2501.04915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01389">arXiv:2407.01389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01389">pdf</a>, <a href="https://arxiv.org/format/2407.01389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Feynman diagrammatics based on discrete pole representations: A path to renormalized perturbation theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gazizova%2C+D">Daria Gazizova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01389v1-abstract-short" style="display: inline;"> By merging algorithmic Matsubara integration with discrete pole representations we present a procedure to generate fully analytic closed form results for impurity problems at fixed perturbation order. To demonstrate the utility of this approach we study the Bethe lattice and evaluate the second order self-energy for which reliable benchmarks exist. We show that, when evaluating diagrams on the Mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01389v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01389v1-abstract-full" style="display: none;"> By merging algorithmic Matsubara integration with discrete pole representations we present a procedure to generate fully analytic closed form results for impurity problems at fixed perturbation order. To demonstrate the utility of this approach we study the Bethe lattice and evaluate the second order self-energy for which reliable benchmarks exist. We show that, when evaluating diagrams on the Matsubara axis, the analytic sums of pole representations are extremely precise. We point out the absence of a numerical sign problem in the evaluation, and explore the application of the same procedure for real-frequency evaluation of diagrams. We find that real-frequency results are subject to noise that is controlled at low temperatures and can be mitigated at additional computational expense. We further demonstrate the utility of this approach by evaluating dynamical mean-field and bold diagrammatic self-consistency schemes at both second and fourth order and compare to benchmarks where available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01389v1-abstract-full').style.display = 'none'; document.getElementById('2407.01389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02656">arXiv:2406.02656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02656">pdf</a>, <a href="https://arxiv.org/format/2406.02656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.144511">10.1103/PhysRevB.110.144511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pairing susceptibility in the weakly interacting multilayer Hubbard model evaluated by direct perturbative expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Farid%2C+R">Rayan Farid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02656v2-abstract-short" style="display: inline;"> We present a systematic study of the interaction, doping, and layer dependence of the $d_{x^2-y^2}$-wave pairing susceptibility of the Hubbard model for a stacked 2D square lattice. We perform a multi-index perturbative expansion up to fourth-order to obtain coefficients in powers of the Hubbard $U$, the inter-layer $V$, and the pair-hopping $J$ interactions. We evaluate the vertex diagrams that c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02656v2-abstract-full').style.display = 'inline'; document.getElementById('2406.02656v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02656v2-abstract-full" style="display: none;"> We present a systematic study of the interaction, doping, and layer dependence of the $d_{x^2-y^2}$-wave pairing susceptibility of the Hubbard model for a stacked 2D square lattice. We perform a multi-index perturbative expansion up to fourth-order to obtain coefficients in powers of the Hubbard $U$, the inter-layer $V$, and the pair-hopping $J$ interactions. We evaluate the vertex diagrams that contribute to the pairing susceptibility for $\ell= 2,3, 4$ layered models in the $U$-$V$-$J$ interaction space. This provides unprecedented access to the pairing amplitudes, allowing us to identify the processes that enhance or reduce pairing. We distinguish pairing within the diagonal channel, $P^{\parallel}_{d}$, and off-diagonal channel, $P^{\perp}_{d}$, and find that, in the absence of $J$, the qualitative behavior of the layered system is equivalent to the single-layer model. In the presence of $J$, we show that pairing is enhanced sublinearly with increasing $\ell$ and is primarily mediated by the $P^{\perp}_{d}$ component and find which coefficients and diagram sets are responsible. Finally, we construct a generalized $\ell$-dependent equation for $ P^{\perp}_{d}$ to speculate pairing beyond $\ell=4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02656v2-abstract-full').style.display = 'none'; document.getElementById('2406.02656v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures in the main text, 10 figures in the supplemental material (appended)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 144511 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17189">arXiv:2311.17189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17189">pdf</a>, <a href="https://arxiv.org/format/2311.17189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> TorchAmi: Generalized CPU/GPU Implementation of Algorithmic Matsubara Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+M+D">M. D. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17189v1-abstract-short" style="display: inline;"> We present torchami, an advanced implementation of algorithmic Matsubara integration (AMI) that utilizes pytorch as a backend to provide easy parallelization and GPU support. AMI is a tool for analytically resolving the sequence of nested Matsubara integrals that arise in virtually all Feynman perturbative expansions. In this implementation we present a new AMI algorithm that creates a more natura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17189v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17189v1-abstract-full" style="display: none;"> We present torchami, an advanced implementation of algorithmic Matsubara integration (AMI) that utilizes pytorch as a backend to provide easy parallelization and GPU support. AMI is a tool for analytically resolving the sequence of nested Matsubara integrals that arise in virtually all Feynman perturbative expansions. In this implementation we present a new AMI algorithm that creates a more natural symbolic representation of the Feynman integrands. In addition, we include peripheral tools that allow for import and labelling of simple graph structures and conversion to torchami input. The code is written in c++ with python bindings provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17189v1-abstract-full').style.display = 'none'; document.getElementById('2311.17189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23pg, 5 figs. Code reference included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14091">arXiv:2308.14091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14091">pdf</a>, <a href="https://arxiv.org/format/2308.14091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The Two-Particle Self-Consistent Approach for Multiorbital models: application to the Emery model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gauvin-Ndiaye%2C+C">C. Gauvin-Ndiaye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leblanc%2C+J">J. Leblanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marin%2C+S">S. Marin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+N">N. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lessnich%2C+D">D. Lessnich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tremblay%2C+A+-+S">A. -M. S. Tremblay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14091v1-abstract-short" style="display: inline;"> The Emery model, or three-band Hubbard model, is a Hamiltonian that is thought to contain much of the physics of cuprate superconductors. This model includes two noninteracting $p$ orbitals and one interacting $d$ orbital per unit cell. Few methods that can solve multiorbital interacting Hamiltonians reliably and efficiently exist. Here, we introduce an application of the two particle self-consist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14091v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14091v1-abstract-full" style="display: none;"> The Emery model, or three-band Hubbard model, is a Hamiltonian that is thought to contain much of the physics of cuprate superconductors. This model includes two noninteracting $p$ orbitals and one interacting $d$ orbital per unit cell. Few methods that can solve multiorbital interacting Hamiltonians reliably and efficiently exist. Here, we introduce an application of the two particle self-consistent (TPSC) approach to the Emery model. We construct this method within the framework of the TPSC+DMFT method, which can be seen as a way to introduce nonlocal corrections to dynamical mean-field theory (DMFT). We show that interacting orbital densities, rather than the noninteracting ones, must be used in the calculations. For the Emery model, we find that at constant bare interaction $U$, the vertex for spin fluctuations, $U_{sp}$, decreases rapidly with filling. This may be one of the factors that contributes to electron-doped cuprates appearing less correlated than hole-doped ones. More generally, our work opens the road to the application of the TPSC approach to spin fluctuations in multiorbital models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14091v1-abstract-full').style.display = 'none'; document.getElementById('2308.14091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05216">arXiv:2308.05216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05216">pdf</a>, <a href="https://arxiv.org/format/2308.05216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ad1437">10.1088/2632-2153/ad1437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-dimensional reinforcement learning for optimization and control of ultracold quantum gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Milson%2C+N">Nicholas Milson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tashchilina%2C+A">Arina Tashchilina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ooi%2C+T">Tian Ooi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Czarnecka%2C+A">Anna Czarnecka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahmad%2C+Z+F">Zaheen F. Ahmad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05216v2-abstract-short" style="display: inline;"> Machine-learning techniques are emerging as a valuable tool in experimental physics, and among them, reinforcement learning offers the potential to control high-dimensional, multistage processes in the presence of fluctuating environments. In this experimental work, we apply reinforcement learning to the preparation of an ultracold quantum gas to realize a consistent and large number of atoms at m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05216v2-abstract-full').style.display = 'inline'; document.getElementById('2308.05216v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05216v2-abstract-full" style="display: none;"> Machine-learning techniques are emerging as a valuable tool in experimental physics, and among them, reinforcement learning offers the potential to control high-dimensional, multistage processes in the presence of fluctuating environments. In this experimental work, we apply reinforcement learning to the preparation of an ultracold quantum gas to realize a consistent and large number of atoms at microkelvin temperatures. This reinforcement learning agent determines an optimal set of thirty control parameters in a dynamically changing environment that is characterized by thirty sensed parameters. By comparing this method to that of training supervised-learning regression models, as well as to human-driven control schemes, we find that both machine learning approaches accurately predict the number of cooled atoms and both result in occasional superhuman control schemes. However, only the reinforcement learning method achieves consistent outcomes, even in the presence of a dynamic environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05216v2-abstract-full').style.display = 'none'; document.getElementById('2308.05216v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mach. Learn.: Sci. Technol. 4 045057 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12957">arXiv:2307.12957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12957">pdf</a>, <a href="https://arxiv.org/format/2307.12957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.013057">10.1103/PhysRevResearch.6.013057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cooke%2C+L+W">Logan W. Cooke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tashchilina%2C+A">Arina Tashchilina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Protter%2C+M">Mason Protter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindon%2C+J">Joseph Lindon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ooi%2C+T">Tian Ooi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marsiglio%2C+F">Frank Marsiglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maciejko%2C+J">Joseph Maciejko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12957v2-abstract-short" style="display: inline;"> Holonomic quantum computing (HQC) functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging, and typically requires auxiliary levels or intermediate-level coupling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12957v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12957v2-abstract-full" style="display: none;"> Holonomic quantum computing (HQC) functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging, and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in ultracold $^{87}$Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in $SU(2)$, characterized by a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12957v2-abstract-full').style.display = 'none'; document.getElementById('2307.12957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 013057 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02360">arXiv:2307.02360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02360">pdf</a>, <a href="https://arxiv.org/format/2307.02360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Emergent nearest-neighbor attraction in the fully renormalized interactions of the single-band repulsive Hubbard model at weak coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gazizova%2C+D">Daria Gazizova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02360v1-abstract-short" style="display: inline;"> We compute the perturbative expansion for the effective interaction $W$ of the half-filled 2-dimensional Hubbard model. We derive extensions of standard RPA resummations that include arbitrarily high order contributions in the $W_{\uparrow\uparrow}$ and $W_{\uparrow\downarrow}$ basis. Using algorithmic tools we explore the static $Q$-dependent interaction as well as the same-time quantity both in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02360v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02360v1-abstract-full" style="display: none;"> We compute the perturbative expansion for the effective interaction $W$ of the half-filled 2-dimensional Hubbard model. We derive extensions of standard RPA resummations that include arbitrarily high order contributions in the $W_{\uparrow\uparrow}$ and $W_{\uparrow\downarrow}$ basis. Using algorithmic tools we explore the static $Q$-dependent interaction as well as the same-time quantity both in momentum- and real-space. We emphasize the absence of screening in the Hubbard interaction where we find an enhanced repulsive local $W_{\uparrow\downarrow}$ with a non-zero attractive $W_{\uparrow\uparrow}$. Finally, starting from only a locally repulsive bare interaction find an emergent non-local nearest-neighbor attraction for low temperatures at sufficiently large values of $U/t$ which may be key to understanding pairing processes in the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02360v1-abstract-full').style.display = 'none'; document.getElementById('2307.02360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09103">arXiv:2305.09103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.09103">pdf</a>, <a href="https://arxiv.org/format/2305.09103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Symbolic determinant construction of perturbative expansions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Assi%2C+I">Ibsal Assi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09103v1-abstract-short" style="display: inline;"> We present a symbolic algorithm for treating perturbative expansions of Hamiltonians with general two-body interactions. The method, formally equivalent to determinant Monte Carlo methods, merges well-known analytics with the recently developed symbolic integration tool, algorithmic Matsubara integration (AMI) that allows for the evaluation of the imaginary frequency/time integrals. By explicitly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09103v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09103v1-abstract-full" style="display: none;"> We present a symbolic algorithm for treating perturbative expansions of Hamiltonians with general two-body interactions. The method, formally equivalent to determinant Monte Carlo methods, merges well-known analytics with the recently developed symbolic integration tool, algorithmic Matsubara integration (AMI) that allows for the evaluation of the imaginary frequency/time integrals. By explicitly performing Wick contractions at each order of the perturbative expansion we order-by-order construct the fully analytic solution of the Green&#39;s function and self energy expansions. A key component of this process is the assignment of momentum/frequency conserving labels for each contraction that motivates us to present a fully symbolic Fourier transform procedure which accomplishes this feat. These solutions can be applied to a broad class of quantum chemistry problems and are valid at arbitrary temperatures and on both the real- and Matsubara-frequency axis. To demonstrate the utility of this approach, we present results for simple molecular systems as well as model lattice Hamiltonians. We highlight the case of molecular problems where our results at each order are numerically exact with no stochastic uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09103v1-abstract-full').style.display = 'none'; document.getElementById('2305.09103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04964">arXiv:2303.04964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04964">pdf</a>, <a href="https://arxiv.org/format/2303.04964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Planckian behaviour in the optical conductivity of the weakly coupled Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grandadam%2C+M">M. Grandadam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04964v1-abstract-short" style="display: inline;"> We study the frequency and temperature dependence of the optical conductivity in the weakly coupled two-dimensional Hubbard model using a renormalized perturbative expansion. The perturbative expansion is based on the skeleton series for the current-current correlation function with a dressed Green`s function and the results are obtained directly on the real frequency axis using Algorithmic Matsub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04964v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04964v1-abstract-full" style="display: none;"> We study the frequency and temperature dependence of the optical conductivity in the weakly coupled two-dimensional Hubbard model using a renormalized perturbative expansion. The perturbative expansion is based on the skeleton series for the current-current correlation function with a dressed Green`s function and the results are obtained directly on the real frequency axis using Algorithmic Matsubara Integration (AMI). The resulting conductivity shows a temperature-independent power law behaviour in the intermediate frequency regime. Moreover, the associated transport scattering time and renormalized mass exhibit a Planckian behaviour. We show that the self-energy of the Hubbard model, however, is distinct from existing Planckian models. The Planckian behaviour of the conductivity, observed in optimally doped cuprates for example, can thus be obtained from a different form of self-energy than the Planckian model, such as the weakly coupled Hubbard model at half-filling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04964v1-abstract-full').style.display = 'none'; document.getElementById('2303.04964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08176">arXiv:2301.08176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08176">pdf</a>, <a href="https://arxiv.org/format/2301.08176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.195138">10.1103/PhysRevB.107.195138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pairing susceptibility of the two-dimensional Hubbard model in the thermodynamic limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Farid%2C+R">Rayan Farid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grandadam%2C+M">Maxence Grandadam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08176v2-abstract-short" style="display: inline;"> We compute the diagrammatic expansion of the particle-particle susceptibility via algorithmic Matsubara integration and compute the correlated pairing susceptibility in the thermodynamic limit of the 2D Hubbard Model. We study the static susceptibility and its dependence on the pair momentum $\mathbf{q}$ for a range of temperature, interaction strength, and chemical potential. We show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08176v2-abstract-full').style.display = 'inline'; document.getElementById('2301.08176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08176v2-abstract-full" style="display: none;"> We compute the diagrammatic expansion of the particle-particle susceptibility via algorithmic Matsubara integration and compute the correlated pairing susceptibility in the thermodynamic limit of the 2D Hubbard Model. We study the static susceptibility and its dependence on the pair momentum $\mathbf{q}$ for a range of temperature, interaction strength, and chemical potential. We show that $d_{x^2-y^2}$-wave pairing is expected in the model in the $U/t\to 0^+ $ limit from direct perturbation theory. From this, we identify key second and third-order diagrams that support pairing processes and note that the diagrams responsible are not a part of charge or spin susceptibility expansions. We find two key components for pairing at momenta $(0,0)$ and $(蟺,蟺)$ that can be well fit as separate bosonic modes. We extract amplitudes and correlation length scales where we find a predominantly local $(蟺,蟺)$ pairing and non-local $\mathbf{q}=(0,0)$ pairs and present the relative weights of these modes for variation in temperature, doping, and interaction strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08176v2-abstract-full').style.display = 'none'; document.getElementById('2301.08176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages - 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 195138 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02453">arXiv:2211.02453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02453">pdf</a>, <a href="https://arxiv.org/format/2211.02453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.115151">10.1103/PhysRevB.107.115151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalized Perturbation Theory for Fast Evaluation of Feynman Diagrams on the Real Frequency Axis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+M+D">M. D. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grandadam%2C+M">Maxence Grandadam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02453v1-abstract-short" style="display: inline;"> We present a method to accelerate the numerical evaluation of spatial integrals of Feynman diagrams when expressed on the real frequency axis. This can be realized through use of a renormalized perturbation expansion with a constant but complex renormalization shift. The complex shift acts as a regularization parameter for the numerical integration of otherwise sharp functions. This results in an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02453v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02453v1-abstract-full" style="display: none;"> We present a method to accelerate the numerical evaluation of spatial integrals of Feynman diagrams when expressed on the real frequency axis. This can be realized through use of a renormalized perturbation expansion with a constant but complex renormalization shift. The complex shift acts as a regularization parameter for the numerical integration of otherwise sharp functions. This results in an exponential speed up of stochastic numerical integration at the expense of evaluating additional counter-term diagrams. We provide proof of concept calculations within a difficult limit of the half-filled 2D Hubbard model on a square lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02453v1-abstract-full').style.display = 'none'; document.getElementById('2211.02453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11738">arXiv:2209.11738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11738">pdf</a>, <a href="https://arxiv.org/format/2209.11738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Influence of incommensurate structure on the elastic constants of crystalline Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ by Brillouin light scattering spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+G+T">G. T. Andrews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11738v1-abstract-short" style="display: inline;"> Brillouin light scattering spectroscopy was used to probe the room-temperature elasticity of crystalline high-$T_c$ superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$. A complete set of best-estimate elastic constants was obtained using established relationships between acoustic phonon velocities and elastic constants along with a simple expression relating crystal elastic constant $C_{22}$ to the corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11738v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11738v1-abstract-full" style="display: none;"> Brillouin light scattering spectroscopy was used to probe the room-temperature elasticity of crystalline high-$T_c$ superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$. A complete set of best-estimate elastic constants was obtained using established relationships between acoustic phonon velocities and elastic constants along with a simple expression relating crystal elastic constant $C_{22}$ to the corresponding constants of the constituent incommensurate sublattices. This latter relationship, which was derived and validated in the present work, has important implications for those studying incommensurate systems as it appears that it may be applied in its general form to any composite incommensurate crystal. The results obtained in this work are also consistent with sublattice assignments of Bi$_2$Sr$_2$O$_4$ and CaCu$_2$O$_4$ reported in a previous Brillouin scattering study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11738v1-abstract-full').style.display = 'none'; document.getElementById('2209.11738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00045">arXiv:2208.00045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00045">pdf</a>, <a href="https://arxiv.org/format/2208.00045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.034089">10.1103/PhysRevApplied.19.034089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete unitary qutrit control in ultracold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lindon%2C+J">Joseph Lindon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tashchilina%2C+A">Arina Tashchilina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooke%2C+L+W">Logan W. Cooke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00045v2-abstract-short" style="display: inline;"> Physical quantum systems are commonly composed of more than two levels and offer the capacity to encode information in higher-dimensional spaces beyond the qubit, starting with the three-level qutrit. Here, we encode neutral-atom qutrits in an ensemble of ultracold $^{87}$Rb and demonstrate arbitrary single-qutrit SU(3) gates. We generate a full set of gates using only two resonant microwave tones&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00045v2-abstract-full').style.display = 'inline'; document.getElementById('2208.00045v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00045v2-abstract-full" style="display: none;"> Physical quantum systems are commonly composed of more than two levels and offer the capacity to encode information in higher-dimensional spaces beyond the qubit, starting with the three-level qutrit. Here, we encode neutral-atom qutrits in an ensemble of ultracold $^{87}$Rb and demonstrate arbitrary single-qutrit SU(3) gates. We generate a full set of gates using only two resonant microwave tones, including synthesizing a gate that effects a direct coupling between the two disconnected levels in the three-level $螞$-scheme. Using two different gate sets, we implement and characterize the Walsh-Hadamard Fourier transform, and find similar final-state fidelity and purity from both approaches. This work establishes the ultracold neutral-atom qutrit as a promising platform for qutrit-based quantum information processing, extensions to $d$-dimensional qudits, and explorations in multilevel quantum state manipulations with nontrivial geometric phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00045v2-abstract-full').style.display = 'none'; document.getElementById('2208.00045v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages and 4 figures, plus 7 pages supplementary material. Updated to published version, journal reference now included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 034089 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13595">arXiv:2205.13595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13595">pdf</a>, <a href="https://arxiv.org/format/2205.13595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.246401">10.1103/PhysRevLett.129.246401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Response of an Electron Gas: Towards the Exact Exchange-Correlation Kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haule%2C+K">Kristjan Haule</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokof%27ev%2C+N+V">Nikolay V. Prokof&#39;ev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tupitsyn%2C+I+S">Igor S. Tupitsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13595v2-abstract-short" style="display: inline;"> Precise calculations of dynamics in the homogeneous electron gas (jellium model) are of fundamental importance for design and characterization of new materials. We introduce a diagrammatic Monte Carlo technique based on algorithmic Matsubara integration that allows us to compute frequency and momentum resolved finite temperature response directly in the real frequency domain using series of connec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13595v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13595v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13595v2-abstract-full" style="display: none;"> Precise calculations of dynamics in the homogeneous electron gas (jellium model) are of fundamental importance for design and characterization of new materials. We introduce a diagrammatic Monte Carlo technique based on algorithmic Matsubara integration that allows us to compute frequency and momentum resolved finite temperature response directly in the real frequency domain using series of connected Feynman diagrams. The data for charge response at moderate electron density are used to extract the frequency dependence of the exchange-correlation kernel at finite momenta and temperature. These results are as important for development of the time-dependent density functional theory for materials dynamics as ground state energies are for the density functional theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13595v2-abstract-full').style.display = 'none'; document.getElementById('2205.13595v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 5 pages, 5 figures; Supplemental: 2 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09657">arXiv:2203.09657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09657">pdf</a>, <a href="https://arxiv.org/format/2203.09657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.035145">10.1103/PhysRevB.106.035145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One- and two-particle properties of the weakly interacting two-dimensional Hubbard model in proximity to the van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terletska%2C+H">Hanna Terletska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+G+T">G. T. Andrews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09657v1-abstract-short" style="display: inline;"> We study the weak-coupling limit of the $t-t^\prime-U$ Hubbard model on a two-dimensional square lattice using a direct perturbative approach. Aided by symbolic computational tools, we compute the longitudinal density-density correlation functions in the $蠂_{\uparrow \uparrow}$ and $蠂_{\uparrow \downarrow}$ basis from which we can obtain the dynamical spin and charge susceptibilities at arbitrary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09657v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09657v1-abstract-full" style="display: none;"> We study the weak-coupling limit of the $t-t^\prime-U$ Hubbard model on a two-dimensional square lattice using a direct perturbative approach. Aided by symbolic computational tools, we compute the longitudinal density-density correlation functions in the $蠂_{\uparrow \uparrow}$ and $蠂_{\uparrow \downarrow}$ basis from which we can obtain the dynamical spin and charge susceptibilities at arbitrary doping and temperature. We find that for non-zero $t^\prime$, the zero frequency commensurate $\mathbf{q} = (蟺, 蟺)$ spin and charge excitations are each strongest at different densities and we observe a clear behavioral change that appears tied to the van Hove singularity of the non-interacting dispersion upon which the perturbative expansion is built. We find a strongly reduced compressibility in the vicinity of the van Hove singularity as well as a behavioral change in the double occupancy. For finite $t^\prime$, the observed van Hove singularity occurs away from half-filling leading us to conclude that that this reduction in compressibility is distinct from Mott insulating physics that one expects in the strong-coupling regime. We compute the full dynamical spin and charge excitations and observe distinct structure for electron and hole doped scenarios in agreement with experiments on cuprate materials. Finally, we observe a peculiar splitting in spin and charge excitations in the vicinity of the van Hove singularity, the origin of which is traced to a splitting near the bottom of the band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09657v1-abstract-full').style.display = 'none'; document.getElementById('2203.09657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental PDF supplied</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02577">arXiv:2202.02577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02577">pdf</a>, <a href="https://arxiv.org/format/2202.02577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.054113">10.1103/PhysRevB.106.054113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-wavelength phonon dynamics in incommensurate Bi2Sr2CaCu2O(8+delta) crystals by Brillouin light scattering spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">Bradley D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+G+T">Gordon T. Andrews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02577v1-abstract-short" style="display: inline;"> Room temperature phonon dynamics in crystals of the high-Tc superconductor Bi2Sr2CaCu2O(8+delta) were probed using Brillouin light scattering spectroscopy. Eight distinct acoustic modes were observed and identified, including two quasi-longitudinal bulk modes and four quasi-transverse bulk modes. A peak at a frequency shift of ~95 GHz with behaviour reminiscent of an optic phonon was also observed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02577v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02577v1-abstract-full" style="display: none;"> Room temperature phonon dynamics in crystals of the high-Tc superconductor Bi2Sr2CaCu2O(8+delta) were probed using Brillouin light scattering spectroscopy. Eight distinct acoustic modes were observed and identified, including two quasi-longitudinal bulk modes and four quasi-transverse bulk modes. A peak at a frequency shift of ~95 GHz with behaviour reminiscent of an optic phonon was also observed in the spectra. The existence and nature of these modes is a manifestation of the incommensurate structure of Bi2Sr2CaCu2O(8+delta) and suggests that it may be categorized as a so-called composite incommensurate crystal comprised of two weakly interacting sublattices. A mass ratio of m1/m2=0.36 obtained from the two measured quasi-longitudinal acoustic velocities led to sublattice assignments of Bi2Sr2O4 and CaCu2O4. The Brillouin data also places an upper limit of ~10 GHz on the crossover frequency between commensurate and incommensurate phonon dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02577v1-abstract-full').style.display = 'none'; document.getElementById('2202.02577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09868">arXiv:2201.09868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09868">pdf</a>, <a href="https://arxiv.org/format/2201.09868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2022.108469">10.1016/j.cpc.2022.108469 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LIBAMI: Implementation of Algorithmic Matsubara Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Elazab%2C+H">Hossam Elazab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09868v1-abstract-short" style="display: inline;"> We present libami, a lightweight implementation of algorithmic Matsubara integration (AMI) written in C++. AMI is a tool for analytically resolving the sequence of nested Matsubara integrals that arise in virtually all Feynman perturbative expansions. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09868v1-abstract-full" style="display: none;"> We present libami, a lightweight implementation of algorithmic Matsubara integration (AMI) written in C++. AMI is a tool for analytically resolving the sequence of nested Matsubara integrals that arise in virtually all Feynman perturbative expansions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09868v1-abstract-full').style.display = 'none'; document.getElementById('2201.09868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code available at: https://github.com/jpfleblanc/libami</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12616">arXiv:2106.12616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12616">pdf</a>, <a href="https://arxiv.org/format/2106.12616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.195429">10.1103/PhysRevB.104.195429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet engineering and non-equilibrium topological maps in twisted trilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Assi%2C+I+A">I. A. Assi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez-Vega%2C+M">Martin Rodriguez-Vega</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahlouli%2C+H">Hocine Bahlouli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vogl%2C+M">Michael Vogl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12616v2-abstract-short" style="display: inline;"> Motivated by the recent experimental realization of twisted trilayer graphene and the observed superconductivity that is associated with its flat bands at specific angles, we study trilayer graphene under the influence of different forms of light in the non-interacting limit. Specifically, we study four different types of stacking configurations with a single twisted layer. In all four cases, we s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12616v2-abstract-full').style.display = 'inline'; document.getElementById('2106.12616v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12616v2-abstract-full" style="display: none;"> Motivated by the recent experimental realization of twisted trilayer graphene and the observed superconductivity that is associated with its flat bands at specific angles, we study trilayer graphene under the influence of different forms of light in the non-interacting limit. Specifically, we study four different types of stacking configurations with a single twisted layer. In all four cases, we study the impact of circularly polarized light and longitudinal light coming from a waveguide. We derive effective time-independent Floquet Hamiltonians and review light-induced changes to the band structure. For circularly polarized light, we find band flattening effects as well as band gap openings. We emphasize that there is a rich band topology, which we summarize in Chern number maps that are different for all four studied lattice configurations. The case of a so-called ABC stacking with top layer twist is especially rich and shows a different phase diagram depending on the handedness of the circularly polarized light. Consequently, we propose an experiment where this difference in typologies could be captured via optical conductivity measurements. In contrast for the case of longitudinal light that is coming from a waveguide, we find that the band structure is very closely related to the equilibrium one but the magic angles can be tuned in-situ by varying the intensity of the incident beam of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12616v2-abstract-full').style.display = 'none'; document.getElementById('2106.12616v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05357">arXiv:2105.05357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.05357">pdf</a>, <a href="https://arxiv.org/format/2105.05357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.125114">10.1103/PhysRevB.104.125114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single particle properties of the 2D Hubbard model for real frequencies at weak coupling: Breakdown of the Dyson series for partial self-energy expansions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">Bradley D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+G+T">G. Todd Andrews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05357v3-abstract-short" style="display: inline;"> We generate the perturbative expansion of the single-particle Green&#39;s function and related self-energy for a half-filled single-band Hubbard model on a square lattice. We invoke algorithmic Matsubara integration to evaluate single-particle quantities for real and Matsubara frequencies and verify results through comparison to existing data on the Matsubara axis. With low order expansions at weak-co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05357v3-abstract-full').style.display = 'inline'; document.getElementById('2105.05357v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05357v3-abstract-full" style="display: none;"> We generate the perturbative expansion of the single-particle Green&#39;s function and related self-energy for a half-filled single-band Hubbard model on a square lattice. We invoke algorithmic Matsubara integration to evaluate single-particle quantities for real and Matsubara frequencies and verify results through comparison to existing data on the Matsubara axis. With low order expansions at weak-coupling we observe a number of outcomes expected at higher orders: the opening of a gap, pseudogap behavior, and Fermi-surface reconstruction. Based on low-order perturbations we consider the phase diagram that arises from truncated expansions of the self-energy and Green&#39;s function and their relation via the Dyson equation. From Matsubara axis data we observe insulating behavior in direct expansions of the Green&#39;s function, while the same order of truncation of the self-energy produces metallic behavior. This observation is supported by additional calculations for real frequencies. We attribute this difference to the order in which diagrams are implicitly summed in the Dyson series. By separating the reducible and irreducible contributions at each order we show that the reducible diagrams implicitly summed in the Dyson equation lead to incorrect physics in the half-filled Hubbard model. Our observations for this particular case lead us to question the utility of the Dyson equation for any problem that shows a disparity between reducible and irreducible contributions to the expansion of the Green&#39;s function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05357v3-abstract-full').style.display = 'none'; document.getElementById('2105.05357v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 125114 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10237">arXiv:2104.10237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10237">pdf</a>, <a href="https://arxiv.org/format/2104.10237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2399-6528/ac3cff">10.1088/2399-6528/ac3cff <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polymer-loaded three dimensional microwave cavities for hybrid quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruether%2C+M">Myles Ruether</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potts%2C+C+A">Clinton A. Potts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+P">John P. Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10237v1-abstract-short" style="display: inline;"> Microwave cavity resonators are crucial components of many quantum technologies and are a promising platform for hybrid quantum systems, as their open architecture enables the integration of multiple subsystems inside the cavity volume. To support these subsystems within the cavity, auxiliary structures are often required, but the effects of these structures on the microwave cavity mode are diffic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10237v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10237v1-abstract-full" style="display: none;"> Microwave cavity resonators are crucial components of many quantum technologies and are a promising platform for hybrid quantum systems, as their open architecture enables the integration of multiple subsystems inside the cavity volume. To support these subsystems within the cavity, auxiliary structures are often required, but the effects of these structures on the microwave cavity mode are difficult to predict due to a lack of a priori knowledge of the materials&#39; response in the microwave regime. Understanding these effects becomes even more important when frequency matching is critical and tuning is limited, for example, when matching microwave modes to atomic resonances. Here, we study the microwave cavity mode in the presence of three commonly-used machinable polymers, paying particular attention to the change in resonance and the dissipation of energy. We demonstrate how to use the derived dielectric coefficient and loss tangent parameters for cavity design in a test case, wherein we match a polymer-filled 3D microwave cavity to a hyperfine transition in rubidium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10237v1-abstract-full').style.display = 'none'; document.getElementById('2104.10237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Commun. 5 121001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15780">arXiv:2010.15780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15780">pdf</a>, <a href="https://arxiv.org/format/2010.15780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/abf1d9">10.1088/1367-2630/abf1d9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Storing short single-photon-level optical pulses in Bose-Einstein condensates for high-performance quantum memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saglamyurek%2C+E">Erhan Saglamyurek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrushevskyi%2C+T">Taras Hrushevskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rastogi%2C+A">Anindya Rastogi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooke%2C+L+W">Logan W. Cooke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+B+D">Benjamin D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15780v1-abstract-short" style="display: inline;"> Large-scale quantum networks require quantum memories featuring long-lived storage of non-classical light together with efficient, high-speed and reliable operation. The concurrent realization of these features is challenging due to inherent limitations of matter platforms and light-matter interaction protocols. Here, we propose an approach to overcome this obstacle, based on the implementation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15780v1-abstract-full').style.display = 'inline'; document.getElementById('2010.15780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15780v1-abstract-full" style="display: none;"> Large-scale quantum networks require quantum memories featuring long-lived storage of non-classical light together with efficient, high-speed and reliable operation. The concurrent realization of these features is challenging due to inherent limitations of matter platforms and light-matter interaction protocols. Here, we propose an approach to overcome this obstacle, based on the implementation of the Autler-Townes-splitting (ATS) quantum-memory protocol on a Bose-Einstein condensate (BEC) platform. We demonstrate a proof-of-principle of this approach by storing short pulses of single-photon-level light as a collective spin-excitation in a rubidium BEC. For 20 ns long-pulses, we achieve an ultra-low-noise memory with an efficiency of 30% and lifetime of 15 $渭$s. The non-adiabatic character of the ATS protocol (leading to high-speed and low-noise operation) in combination with the intrinsically large atomic densities and ultra-low temperatures of the BEC platform (offering highly efficient and long-lived storage) opens up a new avenue towards high-performance quantum memories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15780v1-abstract-full').style.display = 'none'; document.getElementById('2010.15780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 7 figures, include Supplementary Info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15069">arXiv:2010.15069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15069">pdf</a>, <a href="https://arxiv.org/format/2010.15069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2022.108314">10.1016/j.cpc.2022.108314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GPU-accelerated solutions of the nonlinear Schr枚dinger equation for simulating 2D spinor BECs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+B+D">Benjamin D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooke%2C+L+W">Logan W. Cooke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">Lindsay J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15069v2-abstract-short" style="display: inline;"> As a first approximation beyond linearity, the nonlinear Schr枚dinger equation (NLSE) reliably describes a broad class of physical systems. Though numerical solutions of this model are well-established, these methods can be computationally complex. In this paper, we showcase a code development approach, demonstrating how computational time can be significantly reduced with readily available graphic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15069v2-abstract-full').style.display = 'inline'; document.getElementById('2010.15069v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15069v2-abstract-full" style="display: none;"> As a first approximation beyond linearity, the nonlinear Schr枚dinger equation (NLSE) reliably describes a broad class of physical systems. Though numerical solutions of this model are well-established, these methods can be computationally complex. In this paper, we showcase a code development approach, demonstrating how computational time can be significantly reduced with readily available graphics processing unit (GPU) hardware and a straightforward code migration using open-source libraries. This process shows how CPU computations with power-law scaling in computation time with grid size can be made linear using GPUs. As a specific case study, we investigate the Gross-Pitaevskii equation, a specific version of the nonlinear Schr枚dinger model, as it describes in two dimensions a trapped, interacting, two-component Bose-Einstein condensate (BEC) subject to a spatially dependent interspin coupling, resulting in an analog to a spin-Hall system. This computational approach lets us probe high-resolution spatial features - revealing an interaction-dependent phase transition - all in a reasonable amount of time. Our computational approach is particularly relevant for research groups looking to easily accelerate straightforward numerical simulation of physical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15069v2-abstract-full').style.display = 'none'; document.getElementById('2010.15069v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput. Phys. Commun. 275, 108314 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05938">arXiv:2010.05938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.05938">pdf</a>, <a href="https://arxiv.org/format/2010.05938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/abf54f">10.1088/1361-6668/abf54f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Constants of Crystalline Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ by Brillouin Light Scattering Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNiven%2C+B+D+E">B. D. E. McNiven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+G+T">G. T. Andrews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05938v2-abstract-short" style="display: inline;"> Room-temperature optical constants of crystalline Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ were determined using data extracted from Brillouin light scattering spectra. Optical extinction coefficient-to-refractive index ratios at a wavelength of 532 nm were obtained from bulk phonon peak linewidth and frequency shift measurements and range from $0.19 \leq 2魏/n \leq 0.29$ for directions close to the crystallo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05938v2-abstract-full').style.display = 'inline'; document.getElementById('2010.05938v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05938v2-abstract-full" style="display: none;"> Room-temperature optical constants of crystalline Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ were determined using data extracted from Brillouin light scattering spectra. Optical extinction coefficient-to-refractive index ratios at a wavelength of 532 nm were obtained from bulk phonon peak linewidth and frequency shift measurements and range from $0.19 \leq 2魏/n \leq 0.29$ for directions close to the crystallographic $c$-axis. These ratios, and optical extinction coefficients, absorption coefficients, and imaginary parts of the dielectric function determined from these ratios and known refractive index, are in general agreement with values found in optical reflectance studies, but are 5-7 times larger than those extracted from optical interference measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05938v2-abstract-full').style.display = 'none'; document.getElementById('2010.05938v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08235">arXiv:2008.08235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.08235">pdf</a>, <a href="https://arxiv.org/format/2008.08235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0048836">10.1063/5.0048836 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-Optical Properties of InSb for Infrared Spectral Filtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peard%2C+N">Nolan Peard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Callahan%2C+D">Dennis Callahan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perkinson%2C+J+C">Joy C. Perkinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Q">Qingyang Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+N+S">Neil S. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fakhrul%2C+T">Takian Fakhrul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J">John LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+C+A">Caroline A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Juejun Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C+Y">Christine Y. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08235v2-abstract-short" style="display: inline;"> We present measurements of the Faraday effect in n-type InSb. The Verdet coefficient was determined for a range of carrier concentrations near $10^{17}$ $\text{cm}^{-3}$ in the $位$ = 8 $渭$m - 12 $渭$m long-wave infrared regime. The absorption coefficient was measured and a figure of merit calculated for each sample. From these measurements, we calculated the carrier effective mass and illustrate th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08235v2-abstract-full').style.display = 'inline'; document.getElementById('2008.08235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08235v2-abstract-full" style="display: none;"> We present measurements of the Faraday effect in n-type InSb. The Verdet coefficient was determined for a range of carrier concentrations near $10^{17}$ $\text{cm}^{-3}$ in the $位$ = 8 $渭$m - 12 $渭$m long-wave infrared regime. The absorption coefficient was measured and a figure of merit calculated for each sample. From these measurements, we calculated the carrier effective mass and illustrate the variation of the figure of merit with wavelength. A method for creating a tunable bandpass filter via the Faraday rotation is discussed along with preliminary results from a prototype device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08235v2-abstract-full').style.display = 'none'; document.getElementById('2008.08235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10769">arXiv:2006.10769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10769">pdf</a>, <a href="https://arxiv.org/format/2006.10769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.011058">10.1103/PhysRevX.11.011058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer%2C+T">Thomas Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wentzell%2C+N">Nils Wentzell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0imkovic%2C+F">Fedor 艩imkovic IV</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yuan-Yao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hille%2C+C">Cornelia Hille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klett%2C+M">Marcel Klett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckhardt%2C+C+J">Christian J. Eckhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arzhang%2C+B">Behnam Arzhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harkov%2C+V">Viktor Harkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%A9gent%2C+F+L">Fran莽ois-Marie Le R茅gent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirsch%2C+A">Alfred Kirsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+A+J">Aaram J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozik%2C+E">Evgeny Kozik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+E+A">Evgeny A. Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kauch%2C+A">Anna Kauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andergassen%2C+S">Sabine Andergassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansmann%2C+P">Philipp Hansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rohe%2C+D">Daniel Rohe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vilk%2C+Y+M">Yuri M. Vilk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tremblay%2C+A+-+S">A. -M. S. Tremblay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrero%2C+M">Michel Ferrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">Olivier Parcollet</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10769v3-abstract-short" style="display: inline;"> The Hubbard model represents the fundamental model for interacting quantum systems and electronic correlations. Using the two-dimensional half-filled Hubbard model at weak coupling as a testing ground, we perform a comparative study of a comprehensive set of state of the art quantum many-body methods. Upon cooling into its insulating antiferromagnetic ground-state, the model hosts a rich sequence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10769v3-abstract-full').style.display = 'inline'; document.getElementById('2006.10769v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10769v3-abstract-full" style="display: none;"> The Hubbard model represents the fundamental model for interacting quantum systems and electronic correlations. Using the two-dimensional half-filled Hubbard model at weak coupling as a testing ground, we perform a comparative study of a comprehensive set of state of the art quantum many-body methods. Upon cooling into its insulating antiferromagnetic ground-state, the model hosts a rich sequence of distinct physical regimes with crossovers between a high-temperature incoherent regime, an intermediate temperature metallic regime and a low-temperature insulating regime with a pseudogap created by antiferromagnetic fluctuations. We assess the ability of each method to properly address these physical regimes and crossovers through the computation of several observables probing both quasiparticle properties and magnetic correlations, with two numerically exact methods (diagrammatic and determinantal quantum Monte Carlo) serving as a benchmark. By combining computational results and analytical insights, we elucidate the nature and role of spin fluctuations in each of these regimes. Based on this analysis, we explain how quasiparticles can coexist with increasingly long-range antiferromagnetic correlations, and why dynamical mean-field theory is found to provide a remarkably accurate approximation of local quantities in the metallic regime. We also critically discuss whether imaginary time methods are able to capture the non-Fermi liquid singularities of this fully nested system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10769v3-abstract-full').style.display = 'none'; document.getElementById('2006.10769v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 39 figures, 288 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 011058 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11091">arXiv:2004.11091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11091">pdf</a>, <a href="https://arxiv.org/format/2004.11091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.045115">10.1103/PhysRevB.102.045115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Algorithmic approach to diagrammatic expansions for real-frequency evaluation of susceptibility functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Taheridehkordi%2C+A">Amir Taheridehkordi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11091v1-abstract-short" style="display: inline;"> We systematically generate the perturbative expansion for the two-particle spin susceptibility in the Feynman diagrammatic formalism and apply this expansion to a model system - the single-band Hubbard model on a square lattice. We make use of algorithmic Matsubara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 99, 035120 (2019)] to analytically evaluate Mat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11091v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11091v1-abstract-full" style="display: none;"> We systematically generate the perturbative expansion for the two-particle spin susceptibility in the Feynman diagrammatic formalism and apply this expansion to a model system - the single-band Hubbard model on a square lattice. We make use of algorithmic Matsubara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 99, 035120 (2019)] to analytically evaluate Matsubara frequency summations, allowing us to symbolically impose analytic continuation to the real frequency axis. We minimize our computational expense by applying graph invariant transformations [Amir Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 101, 125109 (2020)]. We highlight extensions of the random-phase approximation and T-matrix methods that, due to AMI, become tractable. We present results for weak interaction strength where the direct perturbative expansion is convergent, and verify our results on the Matsubara axis by comparison to other numerical methods. By examining the spin susceptibility as a function of real-frequency via an order-by-order expansion we can identify precisely what role higher order corrections play on spin susceptibility and demonstrate the utility and limitations of our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11091v1-abstract-full').style.display = 'none'; document.getElementById('2004.11091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 045115 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11129">arXiv:1911.11129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11129">pdf</a>, <a href="https://arxiv.org/format/1911.11129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.125109">10.1103/PhysRevB.101.125109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal grouping of arbitrary diagrammatic expansions via analytic pole structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Taheridehkordi%2C+A">Amir Taheridehkordi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11129v1-abstract-short" style="display: inline;"> We present a general method to optimize the evaluation of Feynman diagrammatic expansions, which requires the automated symbolic assignment of momentum/energy conserving variables to each diagram. With this symbolic representation, we utilize the pole structure of each diagram to automatically sort the Feynman diagrams into groups that are likely to contain nearly equal or nearly cancelling diagra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11129v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11129v1-abstract-full" style="display: none;"> We present a general method to optimize the evaluation of Feynman diagrammatic expansions, which requires the automated symbolic assignment of momentum/energy conserving variables to each diagram. With this symbolic representation, we utilize the pole structure of each diagram to automatically sort the Feynman diagrams into groups that are likely to contain nearly equal or nearly cancelling diagrams, and we show that for some systems this cancellation is exact. This allows for a potentially massive cancellation during the numerical integration of internal momenta variables, leading to an optimal suppression of the `sign problem&#39; and hence reducing the computational cost. Although we define these groups using a frequency space representation, the equality or cancellation of diagrams within the group remains valid in other representations such as imaginary time used in standard diagrammatic Monte Carlo. As an application of the approach we apply this method, combined with algorithmic Matsubara integration (AMI) [Phys. Rev. B 99, 035120 (2019)] and Monte Carlo methods, to the Hubbard model self-energy expansion on a 2D square lattice up to sixth order which we evaluate and compare with existing benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11129v1-abstract-full').style.display = 'none'; document.getElementById('1911.11129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 125109 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.07462">arXiv:1905.07462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.07462">pdf</a>, <a href="https://arxiv.org/format/1905.07462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.014430">10.1103/PhysRevB.101.014430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation diagnostics of the finite temperature quasi-antiferromagnetic regime of the 2D Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arzhang%2C+B">Behnam Arzhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">A. E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.07462v1-abstract-short" style="display: inline;"> We study the finite temperature Fermi-liquid to non-Fermi-liquid crossover in the 2D Hubbard model for a range of dopings using the self-consistent ladder dual fermion method. We consider relatively high temperatures where we identify a suppression of the density of states near the Fermi level caused by a quasi-antiferromagnetic behaviour that is itself characterized by a long, but finite, correla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.07462v1-abstract-full').style.display = 'inline'; document.getElementById('1905.07462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.07462v1-abstract-full" style="display: none;"> We study the finite temperature Fermi-liquid to non-Fermi-liquid crossover in the 2D Hubbard model for a range of dopings using the self-consistent ladder dual fermion method. We consider relatively high temperatures where we identify a suppression of the density of states near the Fermi level caused by a quasi-antiferromagnetic behaviour that is itself characterized by a long, but finite, correlation length scale. We perform fluctuation diagnostics to decompose the single-particle self energy into scattering $q$-vector and bosonic frequency contributions. Within this framework we find that the key contributions to the single-particle self energy that give non-Fermi-liquid character, even at weak coupling, are caused by relatively sharp $q=(蟺,蟺)$ spin fluctuations, while the decomposition in the bosonic frequency channel shows a complicated dependence on the relative strengths of zero, positive and negative frequency contributions. Finally, variation in density suggests that the tendency towards non-Fermi-liquid behavior is not substantially different for electron or hole doped systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.07462v1-abstract-full').style.display = 'none'; document.getElementById('1905.07462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10782">arXiv:1904.10782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10782">pdf</a>, <a href="https://arxiv.org/ps/1904.10782">ps</a>, <a href="https://arxiv.org/format/1904.10782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.075123">10.1103/PhysRevB.100.075123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Susceptibility and Simulated Neutron Signal in the 2D Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shaozhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+R">Ryan Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">A. E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10782v1-abstract-short" style="display: inline;"> We compute dynamic spin susceptibilities in the two-dimensional Hubbard model using the method of Dual Fermions and provide comparison to lattice Monte Carlo and cluster dynamical mean field theory. We examine the energy dispersion identified by peaks in ${\rm Im}蠂(蠅,q)$ which define spin modes and compare the exchange scale and magnon dispersion to neutron experiments on the parent La$_2$CuO$_4$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10782v1-abstract-full').style.display = 'inline'; document.getElementById('1904.10782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10782v1-abstract-full" style="display: none;"> We compute dynamic spin susceptibilities in the two-dimensional Hubbard model using the method of Dual Fermions and provide comparison to lattice Monte Carlo and cluster dynamical mean field theory. We examine the energy dispersion identified by peaks in ${\rm Im}蠂(蠅,q)$ which define spin modes and compare the exchange scale and magnon dispersion to neutron experiments on the parent La$_2$CuO$_4$ cuprate. We present the evolution of the spin excitations as a function of Hubbard interaction strengths and doping and explore the particle-hole asymmetry of the spin excitations. We also study the correlation lengths and the spin excitation dispersion peak structure and find a `Y&#39;-shaped dispersion similar to neutron results on doped HgBa$_2$CuO$_{4+未}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10782v1-abstract-full').style.display = 'none'; document.getElementById('1904.10782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 075123 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.11503">arXiv:1812.11503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.11503">pdf</a>, <a href="https://arxiv.org/format/1812.11503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.017003">10.1103/PhysRevLett.124.017003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extended crossover from Fermi liquid to quasi-antiferromagnet in the half-filled 2D Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0imkovic%2C+F">Fedor 艩imkovic IV</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+A+J">Aaram J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokof%27ev%2C+N+V">N. V. Prokof&#39;ev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svistunov%2C+B+V">B. V. Svistunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozik%2C+E">Evgeny Kozik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.11503v2-abstract-short" style="display: inline;"> The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermody&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11503v2-abstract-full').style.display = 'inline'; document.getElementById('1812.11503v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.11503v2-abstract-full" style="display: none;"> The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11503v2-abstract-full').style.display = 'none'; document.getElementById('1812.11503v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, with supplemental material: 2 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 017003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08331">arXiv:1811.08331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08331">pdf</a>, <a href="https://arxiv.org/format/1811.08331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Updated Core Libraries of the ALPS Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wallerberger%2C+M">Markus Wallerberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iskakov%2C+S">Sergei Iskakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaenko%2C+A">Alexander Gaenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleinhenz%2C+J">Joseph Kleinhenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivenko%2C+I">Igor Krivenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+R">Ryan Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jia Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shinaoka%2C+H">Hiroshi Shinaoka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Todo%2C+S">Synge Todo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tianran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paki%2C+J+E">Joseph E. Paki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terletska%2C+H">Hanna Terletska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troyer%2C+M">Matthias Troyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08331v1-abstract-short" style="display: inline;"> The open source ALPS (Algorithms and Libraries for Physics Simulations) project provides a collection of physics libraries and applications, with a focus on simulations of lattice models and strongly correlated electron systems. The libraries provide a convenient set of well-documented and reusable components for developing condensed matter physics simulation codes, and the applications strive to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08331v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08331v1-abstract-full" style="display: none;"> The open source ALPS (Algorithms and Libraries for Physics Simulations) project provides a collection of physics libraries and applications, with a focus on simulations of lattice models and strongly correlated electron systems. The libraries provide a convenient set of well-documented and reusable components for developing condensed matter physics simulation codes, and the applications strive to make commonly used and proven computational algorithms available to a non-expert community. In this paper we present an update of the core ALPS libraries. We present in particular new Monte Carlo libraries and new Green&#39;s function libraries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08331v1-abstract-full').style.display = 'none'; document.getElementById('1811.08331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, 4 tables; submitted to Comput. Phys. Commun. arXiv admin note: text overlap with arXiv:1609.03930</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05188">arXiv:1808.05188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05188">pdf</a>, <a href="https://arxiv.org/ps/1808.05188">ps</a>, <a href="https://arxiv.org/format/1808.05188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.035120">10.1103/PhysRevB.99.035120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Algorithmic Matsubara Integration for Hubbard-like models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Taheridehkordi%2C+A">Amir Taheridehkordi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05188v1-abstract-short" style="display: inline;"> We present an algorithm to evaluate Matsubara sums for Feynman diagrams comprised of bare Green&#39;s functions with single-band dispersions with local U Hubbard interaction vertices. The algorithm provides an exact construction of the analytic result for the frequency integrals of a diagram that can then be evaluated for all parameters $U$, temperature $T$, chemical potential $渭$, external frequencie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05188v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05188v1-abstract-full" style="display: none;"> We present an algorithm to evaluate Matsubara sums for Feynman diagrams comprised of bare Green&#39;s functions with single-band dispersions with local U Hubbard interaction vertices. The algorithm provides an exact construction of the analytic result for the frequency integrals of a diagram that can then be evaluated for all parameters $U$, temperature $T$, chemical potential $渭$, external frequencies and internal/external momenta. This method allows for symbolic analytic continuation of results to the real frequency axis, avoiding any ill-posed numerical procedure. When combined with diagrammatic Monte-Carlo, this method can be used to simultaneously evaluate diagrams throughout the entire $T-U-渭$ phase space of Hubbard-like models at minimal computational expense. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05188v1-abstract-full').style.display = 'none'; document.getElementById('1808.05188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 035120 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03930">arXiv:1609.03930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03930">pdf</a>, <a href="https://arxiv.org/format/1609.03930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2016.12.009">10.1016/j.cpc.2016.12.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated Core Libraries of the ALPS Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gaenko%2C+A">A. Gaenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">A. E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carcassi%2C+G">G. Carcassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Q">Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gamper%2C+L">L. Gamper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gukelberger%2C+J">J. Gukelberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Igarashi%2C+R">R. Igarashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iskakov%2C+S">S. Iskakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nz%2C+M">M. K枚nz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+R">R. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+P+N">P. N. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paki%2C+J+E">J. E. Paki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shinaoka%2C+H">H. Shinaoka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Todo%2C+S">S. Todo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troyer%2C+M">M. Troyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">E. Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03930v2-abstract-short" style="display: inline;"> The open source ALPS (Algorithms and Libraries for Physics Simulations) project provides a collection of physics libraries and applications, with a focus on simulations of lattice models and strongly correlated systems. The libraries provide a convenient set of well-documented and reusable components for developing condensed matter physics simulation code, and the applications strive to make commo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03930v2-abstract-full').style.display = 'inline'; document.getElementById('1609.03930v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03930v2-abstract-full" style="display: none;"> The open source ALPS (Algorithms and Libraries for Physics Simulations) project provides a collection of physics libraries and applications, with a focus on simulations of lattice models and strongly correlated systems. The libraries provide a convenient set of well-documented and reusable components for developing condensed matter physics simulation code, and the applications strive to make commonly used and proven computational algorithms available to a non-expert community. In this paper we present an updated and refactored version of the core ALPS libraries geared at the computational physics software development community, rewritten with focus on documentation, ease of installation, and software maintainability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03930v2-abstract-full').style.display = 'none'; document.getElementById('1609.03930v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 2 figures, 15 code listings</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput. Phys. Comm. 213 (2017) 235-251 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05655">arXiv:1607.05655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05655">pdf</a>, <a href="https://arxiv.org/ps/1607.05655">ps</a>, <a href="https://arxiv.org/format/1607.05655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms14986">10.1038/ncomms14986 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Knight shifts, nuclear spin-relaxation rates, and spin echo decay times in the pseudogap regime of the cuprates: Simulation and relation to experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05655v1-abstract-short" style="display: inline;"> We study the temperature and doping evolution of the NMR Knight shift, spin relaxation rate, and spin echo decay time in the pseudogap regime of the two-dimensional Hubbard model for parameters believed to be relevant to cuprate superconductors using cluster dynamical mean field theory. We recover the suppression of the Knight shift seen in experiment upon entering the pseudogap regime and find ag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05655v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05655v1-abstract-full" style="display: none;"> We study the temperature and doping evolution of the NMR Knight shift, spin relaxation rate, and spin echo decay time in the pseudogap regime of the two-dimensional Hubbard model for parameters believed to be relevant to cuprate superconductors using cluster dynamical mean field theory. We recover the suppression of the Knight shift seen in experiment upon entering the pseudogap regime and find agreement between single and two-particle measures of the pseudogap onset temperature. The simulated spin-echo decay time shows a linear in T behavior at high T which flattens off as T is lowered, and increases as doping is increased. The relaxation rate shows a marked increase as T is lowered but no indication of a pseudogap on the Cu site, and a clear downturn on the O site, consistent with experimental results on single layer materials but different from double layer materials. The consistency of the simulated susceptibilities with experiment, along with similar agreement on the single-particle level and the absence of long-range order and symmetry breaking suggests that the pseudogap is well described by strong short-range correlation effects and that long-range order and multi-orbital effects are not required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05655v1-abstract-full').style.display = 'none'; document.getElementById('1607.05655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00368">arXiv:1606.00368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00368">pdf</a>, <a href="https://arxiv.org/format/1606.00368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2017.01.018">10.1016/j.cpc.2017.01.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implementation of the Maximum Entropy Method for Analytic Continuation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+R">Ryan Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00368v1-abstract-short" style="display: inline;"> We present $\texttt{Maxent}$, a tool for performing analytic continuation of spectral functions using the maximum entropy method. The code operates on discrete imaginary axis datasets (values with uncertainties) and transforms this input to the real axis. The code works for imaginary time and Matsubara frequency data and implements the &#39;Legendre&#39; representation of finite temperature Green&#39;s functi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00368v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00368v1-abstract-full" style="display: none;"> We present $\texttt{Maxent}$, a tool for performing analytic continuation of spectral functions using the maximum entropy method. The code operates on discrete imaginary axis datasets (values with uncertainties) and transforms this input to the real axis. The code works for imaginary time and Matsubara frequency data and implements the &#39;Legendre&#39; representation of finite temperature Green&#39;s functions. It implements a variety of kernels, default models, and grids for continuing bosonic, fermionic, anomalous, and other data. Our implementation is licensed under GPLv2 and extensively documented. This paper shows the use of the programs in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00368v1-abstract-full').style.display = 'none'; document.getElementById('1606.00368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code can be found at https://github.com/CQMP/Maxent</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.03126">arXiv:1605.03126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.03126">pdf</a>, <a href="https://arxiv.org/format/1605.03126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.043802">10.1103/PhysRevA.94.043802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tretiakov%2C+A">A. Tretiakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">L. J. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.03126v1-abstract-short" style="display: inline;"> Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonator&#39;s mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03126v1-abstract-full').style.display = 'inline'; document.getElementById('1605.03126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.03126v1-abstract-full" style="display: none;"> Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonator&#39;s mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.03126v1-abstract-full').style.display = 'none'; document.getElementById('1605.03126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + 3 pages, 3 figures supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 043802 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01614">arXiv:1604.01614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.01614">pdf</a>, <a href="https://arxiv.org/ps/1604.01614">ps</a>, <a href="https://arxiv.org/format/1604.01614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.245102">10.1103/PhysRevB.93.245102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parquet decomposition calculations of the electronic self-energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gunnarsson%2C+O">O. Gunnarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer%2C+T">T. Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merino%2C+J">J. Merino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">G. Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rohringer%2C+G">G. Rohringer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toschi%2C+A">A. Toschi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01614v1-abstract-short" style="display: inline;"> The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the underlying physics of non-perturbative numerical calculations. We show the specific example of dynamical mean field theory (DMFT) and its cluster extensions (DCA) applied to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01614v1-abstract-full').style.display = 'inline'; document.getElementById('1604.01614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01614v1-abstract-full" style="display: none;"> The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the underlying physics of non-perturbative numerical calculations. We show the specific example of dynamical mean field theory (DMFT) and its cluster extensions (DCA) applied to the Hubbard model at half-filling and with hole doping: These techniques allow for a simultaneous determination of two-particle vertex functions and self-energies, and hence, for an essentially &#34;exact&#34; parquet decomposition at the single-site or at the cluster level. Our calculations show that the self-energies in the underdoped regime are dominated by spin scattering processes, consistent with the conclusions obtained by means of the fluctuation diagnostics approach [Phys. Rev. Lett. 114, 236402 (2015)]. However, differently from the latter approach, the parquet procedure displays important changes with increasing interaction: Even for relatively moderate couplings, well before the Mott transition, singularities appear in different terms, with the notable exception of the predominant spin-channel. We explain precisely how these singularities, which partly limit the utility of the parquet decomposition, and - more generally - of parquet-based algorithms, are never found in the fluctuation diagnostics procedure. Finally, by a more refined analysis, we link the occurrence of the parquet singularities in our calculations to a progressive suppression of charge fluctuations and the formation of an RVB state, which are typical hallmarks of a pseudogap state in DCA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01614v1-abstract-full').style.display = 'none'; document.getElementById('1604.01614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 245102 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.03344">arXiv:1601.03344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.03344">pdf</a>, <a href="https://arxiv.org/format/1601.03344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4940715">10.1063/1.4940715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable open-access microcavities for on-chip cQED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Potts%2C+C+A">C. A. Potts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Melnyk%2C+A">A. Melnyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramp%2C+H">H. Ramp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bitarafan%2C+M+H">M. H. Bitarafan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vick%2C+D">D. Vick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">L. J. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+P">J. P. Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeCorby%2C+R+G">R. G. DeCorby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.03344v1-abstract-short" style="display: inline;"> We report on the development of on-chip microcavities and show their potential as a platform for cavity quantum electrodynamics experiments. Microcavity arrays were formed by the controlled buckling of SiO2/Ta2O5 Bragg mirrors, and exhibit a reflectance-limited finesse of 3500 and mode volumes as small as 35lambda^3. We show that the cavity resonance can be thermally tuned into alignment with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03344v1-abstract-full').style.display = 'inline'; document.getElementById('1601.03344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.03344v1-abstract-full" style="display: none;"> We report on the development of on-chip microcavities and show their potential as a platform for cavity quantum electrodynamics experiments. Microcavity arrays were formed by the controlled buckling of SiO2/Ta2O5 Bragg mirrors, and exhibit a reflectance-limited finesse of 3500 and mode volumes as small as 35lambda^3. We show that the cavity resonance can be thermally tuned into alignment with the D2 transition of 87Rb, and outline two methods for providing atom access to the cavity. Owing to their small mode volume and high finesse, these cavities exhibit single-atom cooperativities as high as C1 = 65. A unique feature of the buckled-dome architecture is that the strong-coupling parameter g0/kappa is nearly independent of the cavity size. Furthermore, strong coupling should be achievable with only modest improvements in mirror reflectance, suggesting that these monolithic devices could provide a robust and scalable solution to the engineering of light-matter interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03344v1-abstract-full').style.display = 'none'; document.getElementById('1601.03344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to APL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 108, 041103 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04475">arXiv:1507.04475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.04475">pdf</a>, <a href="https://arxiv.org/ps/1507.04475">ps</a>, <a href="https://arxiv.org/format/1507.04475">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.116402">10.1103/PhysRevLett.115.116402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Fluctuations in the Normal State of the Two-Dimensional Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04475v2-abstract-short" style="display: inline;"> We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the $d_{x^2-y^2}$ superconducting transition temperature. We find in all cases that the optimal tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04475v2-abstract-full').style.display = 'inline'; document.getElementById('1507.04475v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04475v2-abstract-full" style="display: none;"> We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the $d_{x^2-y^2}$ superconducting transition temperature. We find in all cases that the optimal transition temperature occurs at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly, superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and half-filling. We find a change in sign of the vertex contributions to $d_{xy}$ superconductivity from repulsive near half filling to attractive at large doping. $p$-wave superconductivity is not found at the parameters we study, and $s$-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove singularity which moves towards hole doping. We surmise that an increase of the local interaction of the electron-doped compounds would increase $T_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04475v2-abstract-full').style.display = 'none'; document.getElementById('1507.04475v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages - 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 116402 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00895">arXiv:1507.00895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.00895">pdf</a>, <a href="https://arxiv.org/format/1507.00895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.phpro.2015.07.107">10.1016/j.phpro.2015.07.107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> opendf - an implementation of the dual fermion method for strongly correlated systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">Andrey E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00895v1-abstract-short" style="display: inline;"> The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the \texttt{opendf} code, an open-source implementation of the dual fermion method applicable to fermionic single-orbital lattice models in dimensions $D=1,2,3$ and $4$. The method is built on a dynamical mean field starting point, which neglects all l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00895v1-abstract-full').style.display = 'inline'; document.getElementById('1507.00895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00895v1-abstract-full" style="display: none;"> The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the \texttt{opendf} code, an open-source implementation of the dual fermion method applicable to fermionic single-orbital lattice models in dimensions $D=1,2,3$ and $4$. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00895v1-abstract-full').style.display = 'none'; document.getElementById('1507.00895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 28th Annual CSP Workshop proceedings</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Procedia 68, 43 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02290">arXiv:1505.02290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02290">pdf</a>, <a href="https://arxiv.org/format/1505.02290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.5.041041">10.1103/PhysRevX.5.041041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solutions of the Two Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A+E">Andrey E. Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becca%2C+F">Federico Becca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bulik%2C+I+W">Ireneusz W. Bulik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+C">Chia-Min Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrero%2C+M">Michel Ferrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henderson%2C+T+M">Thomas M. Henderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez-Hoyos%2C+C+A">Carlos A. Jim茅nez-Hoyos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozik%2C+E">E. Kozik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xuan-Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokof%27ev%2C+N+V">N. V. Prokof&#39;ev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuseria%2C+G+E">Gustavo E. Scuseria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+H">Hao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svistunov%2C+B+V">B. V. Svistunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tocchio%2C+L+F">Luca F. Tocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tupitsyn%2C+I+S">I. S. Tupitsyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=White%2C+S+R">Steven R. White</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Bo-Xiao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhenyue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">Emanuel Gull</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02290v2-abstract-short" style="display: inline;"> Numerical results for ground state and excited state properties (energies, double occupancies, and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary field quantum Monte Carlo, bare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02290v2-abstract-full').style.display = 'inline'; document.getElementById('1505.02290v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02290v2-abstract-full" style="display: none;"> Numerical results for ground state and excited state properties (energies, double occupancies, and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed node approximation, unrestricted coupled cluster theory, and multi-reference projected Hartree-Fock. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02290v2-abstract-full').style.display = 'none'; document.getElementById('1505.02290v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 5, 041041 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07443">arXiv:1502.07443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.07443">pdf</a>, <a href="https://arxiv.org/format/1502.07443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/6/065016">10.1088/1367-2630/17/6/065016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gauge matters: Observing the vortex-nucleation transition in a Bose condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">L. J. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez-Garc%C3%ADa%2C+K">K. Jim茅nez-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+R+A">R. A. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beeler%2C+M+C">M. C. Beeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+W+D">W. D. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spielman%2C+I+B">I. B. Spielman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07443v1-abstract-short" style="display: inline;"> The order parameter of a quantum-coherent many-body system can include a phase degree of freedom, which, in the presence of an electromagnetic field, depends on the choice of gauge. Because of the relationship between the phase gradient and the velocity, time-of-flight measurements reveal this gradient. Here, we make such measurements using initially trapped Bose-Einstein condensates (BECs) subjec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07443v1-abstract-full').style.display = 'inline'; document.getElementById('1502.07443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07443v1-abstract-full" style="display: none;"> The order parameter of a quantum-coherent many-body system can include a phase degree of freedom, which, in the presence of an electromagnetic field, depends on the choice of gauge. Because of the relationship between the phase gradient and the velocity, time-of-flight measurements reveal this gradient. Here, we make such measurements using initially trapped Bose-Einstein condensates (BECs) subject to an artificial magnetic field. Vortices are nucleated in the BEC for artificial field strengths above a critical value, which represents a structural phase transition. By comparing to superfluid-hydrodynamic and Gross-Pitaevskii calculations, we confirmed that the transition from the vortex-free state gives rise to a shear in the released BEC&#39;s spatial distribution, representing a macroscopic method to measure this transition, distinct from direct measurements of vortex entry. Shear is also affected by an artificial electric field accompanying the artificial magnetic field turn-off, which depends on the details of the physical mechanism creating the artificial fields, and implies a natural choice of gauge. Measurements of this kind offer opportunities for studying phase in less-well-understood quantum gas systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07443v1-abstract-full').style.display = 'none'; document.getElementById('1502.07443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + 2 pages supplementary data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17, 065016 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4064">arXiv:1412.4064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4064">pdf</a>, <a href="https://arxiv.org/format/1412.4064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.125301">10.1103/PhysRevLett.114.125301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Spin-Orbit Coupling via Strong Driving in Ultracold Atom Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez-Garc%C3%ADa%2C+K">K. Jim茅nez-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">L. J. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+R+A">R. A. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beeler%2C+M+C">M. C. Beeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+C">C. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+M">M. Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spielman%2C+I+B">I. B. Spielman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4064v1-abstract-short" style="display: inline;"> Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- provides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a techni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4064v1-abstract-full').style.display = 'inline'; document.getElementById('1412.4064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4064v1-abstract-full" style="display: none;"> Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- provides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a technique for controlling SOC in a two component Bose-Einstein condensate using amplitude-modulated Raman coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4064v1-abstract-full').style.display = 'none'; document.getElementById('1412.4064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figues</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 125301 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.6947">arXiv:1411.6947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.6947">pdf</a>, <a href="https://arxiv.org/ps/1411.6947">ps</a>, <a href="https://arxiv.org/format/1411.6947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.236402">10.1103/PhysRevLett.114.236402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gunnarsson%2C+O">O. Gunnarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer%2C+T">T. Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gull%2C+E">E. Gull</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merino%2C+J">J. Merino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">G. Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rohringer%2C+G">G. Rohringer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toschi%2C+A">A. Toschi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.6947v1-abstract-short" style="display: inline;"> We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appeara&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6947v1-abstract-full').style.display = 'inline'; document.getElementById('1411.6947v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.6947v1-abstract-full" style="display: none;"> We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appearance of the pseudogap in correlated systems. We illustrate our method by examining the attractive and repulsive Hubbard model in two-dimensions. In the latter, spin fluctuations are identified as the origin of the pseudogap, and we also explain why $d-$wave pairing fluctuations play a marginal role in suppressing the low-energy spectral weight, independent of their actual strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6947v1-abstract-full').style.display = 'none'; document.getElementById('1411.6947v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures + 4 pages supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 236402 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3641">arXiv:1411.3641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3641">pdf</a>, <a href="https://arxiv.org/ps/1411.3641">ps</a>, <a href="https://arxiv.org/format/1411.3641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/16/11/113034">10.1088/1367-2630/16/11/113034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of a momentum independent pseudogap in the electronic density of states and Raman spectroscopy of the underdoped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3641v1-abstract-short" style="display: inline;"> We propose a hybridization phenomenology to describe the pseudogap state of the underdoped cuprates. We show how a momentum independent pseudogap opens asymmetrically from the Fermi-surface but symmetric to the zeroes of the hybridized bonding dispersion, which results in false d-wave characteristics of the pseudogap at the Fermi level. By comparing against a d-wave form factor we illustrate the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3641v1-abstract-full').style.display = 'inline'; document.getElementById('1411.3641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3641v1-abstract-full" style="display: none;"> We propose a hybridization phenomenology to describe the pseudogap state of the underdoped cuprates. We show how a momentum independent pseudogap opens asymmetrically from the Fermi-surface but symmetric to the zeroes of the hybridized bonding dispersion, which results in false d-wave characteristics of the pseudogap at the Fermi level. By comparing against a d-wave form factor we illustrate the difficulty in identifying a momentum independent order in momentum averaged quantities such as the electronic Raman response. We identify a suppression in the single-particle density of states which produces a hump feature which should be observable experimentally in tunnelling $dI/dV$ spectra and distinguishes the s-wave and d-wave ordering scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3641v1-abstract-full').style.display = 'none'; document.getElementById('1411.3641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.8492">arXiv:1407.8492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.8492">pdf</a>, <a href="https://arxiv.org/format/1407.8492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/3/033039">10.1088/1367-2630/17/3/033039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unparticle mediated superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">James P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grushin%2C+A+G">Adolfo G. Grushin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.8492v3-abstract-short" style="display: inline;"> In this work we introduce the possibility of unparticle mediated superconductivity. We discuss a theoretical scenario where it can emerge and show that a superconducting state is allowed by deriving and solving the gap equation for $s$-wave pairing of electrons interacting through the unparticle generalization of the Coulomb interaction. The dependence of the gap equation on the unparticle energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8492v3-abstract-full').style.display = 'inline'; document.getElementById('1407.8492v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.8492v3-abstract-full" style="display: none;"> In this work we introduce the possibility of unparticle mediated superconductivity. We discuss a theoretical scenario where it can emerge and show that a superconducting state is allowed by deriving and solving the gap equation for $s$-wave pairing of electrons interacting through the unparticle generalization of the Coulomb interaction. The dependence of the gap equation on the unparticle energy scale $螞_{U}$ and the unparticle scaling dimension $d_{U}$ enables us to find a richer set of solutions compared to those of the conventional BCS paradigm. We discuss unconventional features within this construction, including the resulting insensitivity of pairing to the density of states at the Fermi energy for $d_{U}=3/2$ of the superconducting gap and suggest possible experimental scenarios for this mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8492v3-abstract-full').style.display = 'none'; document.getElementById('1407.8492v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 17 033039 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2340">arXiv:1401.2340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.2340">pdf</a>, <a href="https://arxiv.org/ps/1401.2340">ps</a>, <a href="https://arxiv.org/format/1401.2340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.035419">10.1103/PhysRevB.89.035419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dielectric screening of surface states in a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+J+P+F">J. P. F. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbotte%2C+J+P">J. P. Carbotte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2340v1-abstract-short" style="display: inline;"> Hexagonal warping provides an anisotropy to the dispersion curves of the helical Dirac fermions that exist at the surface of a topological insulator. A sub-dominant quadratic in momentum term leads to an asymmetry between conduction and valence band. A gap can also be opened through magnetic doping. We show how these various modifications to the Dirac spectrum change the polarization function of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2340v1-abstract-full').style.display = 'inline'; document.getElementById('1401.2340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2340v1-abstract-full" style="display: none;"> Hexagonal warping provides an anisotropy to the dispersion curves of the helical Dirac fermions that exist at the surface of a topological insulator. A sub-dominant quadratic in momentum term leads to an asymmetry between conduction and valence band. A gap can also be opened through magnetic doping. We show how these various modifications to the Dirac spectrum change the polarization function of the surface states and employ our results to discuss their effect on the plasmons. In the long wavelength limit, the plasmon dispersion retains its square root dependence on its momentum, $\boldsymbol{q}$, but its slope is modified and it can acquire a weak dependence on the direction of $\boldsymbol{q}$. Further, we find the existence of several plasmon branches, one which is damped for all values of $\boldsymbol{q}$, and extract the plasmon scattering rate for a representative case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2340v1-abstract-full').style.display = 'none'; document.getElementById('1401.2340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 035419 (2014) [10 pages] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.3579">arXiv:1306.3579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.3579">pdf</a>, <a href="https://arxiv.org/format/1306.3579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature12185">10.1038/nature12185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The spin Hall effect in a quantum gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beeler%2C+M+C">M. C. Beeler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+R+A">R. A. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jim%C3%A9nez-Garc%C3%ADa%2C+K">K. Jim茅nez-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBlanc%2C+L+J">L. J. LeBlanc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perry%2C+A+R">A. R. Perry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spielman%2C+I+B">I. B. Spielman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.3579v2-abstract-short" style="display: inline;"> Electronic properties like current flow are generally independent of the electron&#39;s spin angular momentum, an internal degree of freedom present in quantum particles. The spin Hall effects (SHEs), first proposed 40 years ago, are an unusual class of phenomena where flowing particles experience orthogonally directed spin-dependent Lorentz-like forces, analogous to the conventional Lorentz force for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3579v2-abstract-full').style.display = 'inline'; document.getElementById('1306.3579v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.3579v2-abstract-full" style="display: none;"> Electronic properties like current flow are generally independent of the electron&#39;s spin angular momentum, an internal degree of freedom present in quantum particles. The spin Hall effects (SHEs), first proposed 40 years ago, are an unusual class of phenomena where flowing particles experience orthogonally directed spin-dependent Lorentz-like forces, analogous to the conventional Lorentz force for the Hall effect, but opposite in sign for two spin states. Such spin Hall effects have been observed for electrons flowing in spin-orbit coupled materials such as GaAs or InGaAs and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, in excellent agreement with our calculations. This atomtronic circuit element behaves as a new type of velocity-insensitive adiabatic spin-selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques --- for both creating and measuring the SHE --- are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realized a laser-actuated analog to the Datta-Das spin transistor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3579v2-abstract-full').style.display = 'none'; document.getElementById('1306.3579v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 498, 201-204 (2013) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Leblanc%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10