CINXE.COM

Search results for: medical biology and genetics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: medical biology and genetics</title> <meta name="description" content="Search results for: medical biology and genetics"> <meta name="keywords" content="medical biology and genetics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="medical biology and genetics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="medical biology and genetics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3911</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: medical biology and genetics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Blood Flow in Stenosed Arteries: Analytical and Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Sharma">Shashi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Uaday%20Singh"> Uaday Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Katiyar"> V. K. Katiyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20flow" title="blood flow">blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid" title=" Newtonian fluid"> Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics" title=" medical biology and genetics"> medical biology and genetics</a> </p> <a href="https://publications.waset.org/abstracts/25427/blood-flow-in-stenosed-arteries-analytical-and-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> Different Roles for Mentors and Mentees in an e-Learning Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Gadura">Nidhi Gadura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the increase in the number of students and administrators asking for online courses the author developed two partially online courses. One was a biology majors at genetics course while the other was a non-majors at biology course. The student body at Queensborough Community College is generally underprepared and has work and family obligations. As an educator, one has to be mindful about changing the pedagogical approach, therefore, special care was taken when designing the course material. Despite the initial concerns, both of these partially online courses were received really well by students. Lessons learnt were that student engagement is the key to success in an online course. Good practices to run a successful online course for underprepared students are discussed in this paper. Also discussed are the lessons learnt for making the eLearning environment better for all the students in the class, overachievers and underachievers alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20online%20course" title="partially online course">partially online course</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy" title=" pedagogy"> pedagogy</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20engagement" title=" student engagement"> student engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20college" title=" community college"> community college</a> </p> <a href="https://publications.waset.org/abstracts/48193/different-roles-for-mentors-and-mentees-in-an-e-learning-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Implementation of an Undergraduate Integrated Biology and Chemistry Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayson%20G.%20Balansag">Jayson G. Balansag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated biology and chemistry (iBC) course for freshmen college students was developed in University of Delaware. This course will prepare students to (1) become interdisciplinary thinkers in the field of biology and (2) collaboratively work with others from multiple disciplines in the future. This paper documents and describes the implementation of the course. The information gathered from reading literature, classroom observations, and interviews were used to carry out the purpose of this paper. The major goal of the iBC course is to align the concepts between Biology and Chemistry, so that students can draw science concepts from both disciplines which they can apply in their interdisciplinary researches. This course is offered every fall and spring semesters of each school year. Students enrolled in Biology are also enrolled in Chemistry during the same semester. The iBC is composed of lectures, laboratories, studio sessions, and workshops and is taught by the faculty from the biology and chemistry departments. In addition, the preceptors, graduate teaching assistants, and studio fellows facilitate the laboratory and studio sessions. These roles are interdependent with each other. The iBC can be used as a model for higher education institutions who wish to implement an integrated biology course. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20biology%20and%20chemistry" title="integrated biology and chemistry">integrated biology and chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20research" title=" interdisciplinary research"> interdisciplinary research</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20biology" title=" new biology"> new biology</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20science%20education" title=" undergraduate science education"> undergraduate science education</a> </p> <a href="https://publications.waset.org/abstracts/76611/implementation-of-an-undergraduate-integrated-biology-and-chemistry-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> Exploring and Evaluating the Current Style of Teaching Biology in Saudi Universities from Teachers&#039; Points of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibraheem%20Alzahrani">Ibraheem Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Saudi Arabia ministry of higher education has established 24 universities across various cities in the kingdom. The universities have the mandate of sustaining technological progress in both teaching and learning. The present study explores the statues of teaching in Saudi universities, focusing on biology, a critical curriculum. The paper explores biology teachers’ points of view is several Saudi higher education institutions through questionnaires disseminated via emails. According to the findings, the current teaching methods are traditional and the teachers believe that it is critical to change it. This study also, reviews how biology has been taught in the kingdom over the past, as well as how it is undertaken presently. In addition, some aspects of biology teaching are considered, including the biology curriculum and learning objectives in higher education biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title="higher education">higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20style" title=" teaching style"> teaching style</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20learning" title=" traditional learning"> traditional learning</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20learning" title=" electronic learning"> electronic learning</a>, <a href="https://publications.waset.org/abstracts/search?q=web%202.0%20applications" title=" web 2.0 applications"> web 2.0 applications</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title=" blended learning"> blended learning</a> </p> <a href="https://publications.waset.org/abstracts/30333/exploring-and-evaluating-the-current-style-of-teaching-biology-in-saudi-universities-from-teachers-points-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> Gender Differences in Biology Academic Performances among Foundation Students of PERMATApintar® National Gifted Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Nor%20Azman">N. Nor Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Kamarudin"> M. F. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Ong"> S. I. Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Maaulot"> N. Maaulot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PERMATApintar<sup>&reg;</sup> National Gifted Center is, to the author&rsquo;s best of knowledge, the first center in Malaysia that provides a platform for Malaysian talented students with high ability in thinking. This center has built a teaching and learning biology curriculum that suits the ability of these gifted students. The level of PERMATApintar<sup>&reg;</sup> biology curriculum is basically higher than the national biology curriculum. Here, the foundation students are exposed to the PERMATApintar<sup>&reg;</sup> biology curriculum at the age of as early as 11 years old. This center practices a 4-time-a-year examination system to monitor the academic performances of the students. Generally, most of the time, male students show no or low interest towards biology subject compared to female students. This study is to investigate the association of students&rsquo; gender and their academic performances in biology examination. A total of 39 students&rsquo; scores in twelve sets of biology examinations in 3 years have been collected and analyzed by using the statistical analysis. Based on the analysis, there are no significant differences between male and female students against the biology academic performances with a significant level of p = 0.05. This indicates that gender is not associated with the scores of biology examinations among the students. Another result showed that the average score for male studenta was higher than the female students. Future research can be done by comparing the biology academic achievement in Malaysian National Examination (Sijil Pelajaran Malaysia, SPM) between the Foundation 3 students (Grade 9) and Level 2 students (Grade 11) with similar PERMATApintar<sup>&reg;</sup> biology curriculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20performances" title="academic performances">academic performances</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20differences" title=" gender differences"> gender differences</a>, <a href="https://publications.waset.org/abstracts/search?q=gifted%20students" title=" gifted students"> gifted students</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/89501/gender-differences-in-biology-academic-performances-among-foundation-students-of-permatapintar-national-gifted-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> Environmental Variables as Determinants of Students Achievement in Biology Secondary Schools in South West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayeni%20Margaret%20Foluso">Ayeni Margaret Foluso</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Omotayo"> K. A. Omotayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the impact of selected environmental variables as determinants of students’ achievements in biology in secondary schools. The selected environmental variables are class size and laboratory adequacy. The purpose was to find out whether these environmental variables can bring about improvement in the learning of biology by Senior Secondary School Students. The study design used was descriptive research of the survey type. Two instruments were used that is, Biology Achievement Test and School Environment Questionnaire .The population of the study consisted of all Biology students in both public and private Senior Secondary Schools class III (SSIII) in all the three selected states in South West Nigeria. A sample of 900 Biology students and 45 Biology Teachers from both public and private Senior Secondary Schools Class III were used. Two research hypotheses were generated for the study. The data collected were subjected to both descriptive statistics of mean and standard deviation; and the inferential statistics of regression Analyses was employed to test the hypotheses formulated. From the results, it was revealed that the selected environmental variables had influence on the students’ achievement in biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title="environmental variables">environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants" title=" determinants"> determinants</a>, <a href="https://publications.waset.org/abstracts/search?q=students%E2%80%99%20achievement" title=" students’ achievement"> students’ achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20science" title=" school science"> school science</a> </p> <a href="https://publications.waset.org/abstracts/41204/environmental-variables-as-determinants-of-students-achievement-in-biology-secondary-schools-in-south-west-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Genetics, Law and Society: Regulating New Genetic Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisling%20De%20Paor">Aisling De Paor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disability" title="disability">disability</a>, <a href="https://publications.waset.org/abstracts/search?q=gene-editing" title=" gene-editing"> gene-editing</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a> </p> <a href="https://publications.waset.org/abstracts/66469/genetics-law-and-society-regulating-new-genetic-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> Attitude towards Biology among Academic Talented Students in Term of Gender: Case Study of ASASIpintar Pre–University Programme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sy%20Ing%20Ong">Sy Ing Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Norazman"> N. Norazman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20W.%20You"> H. W. You</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zahidi"> A. Zahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ahmad%20Faisal"> R. Ahmad Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decline in students’ involvement in the fields of Science, Technology, Engineering and Mathematics (STEM) worldwide is alarming. In Malaysia, this scenario also draws the attention of Ministry of Education due to the high demand for professionals in STEM industries and for the sake of country development. Intensive researches have been done worldwide to identify the best solution to improve the enrolment of students in science studies. Attitude is being identified as one of the key factors that will influence students’ interest and achievement in academic. Male students are always associated with negative attitudes compared to female students towards the study of Biological science. Hence, this study investigates the attitudes of students towards Biology in the setting of an academic talented institution in Malaysia namely ASASIpintar Pre-University Programme. A total of 84 students were randomly selected from 127 students as the samples of this study. The instrument of Biology Attitude Scale (BAS) from Russell and Hollander (1975) was used to identify the attitudes of samples. Based on the analysis, there was no significant difference in the students’ mean attitude towards Biology subject in this institution between genders with a significant level of p = 0.05. This indicated that gender is not a key factor that influences students’ attitude towards Biology in this study. Future research can be done on other factors that will contribute to the attitude of students towards biology in Malaysia, especially for academically talented students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20talented" title="academic talented">academic talented</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a> </p> <a href="https://publications.waset.org/abstracts/89390/attitude-towards-biology-among-academic-talented-students-in-term-of-gender-case-study-of-asasipintar-pre-university-programme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> Reproductive Biology of Chirruh Snowtrout (Schizothorax Esocinus) from River Swat, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Akhtar">Waheed Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, we aim to access the different month-wise reproductive biology of S. esocinus. Samples were collected from Rive Swat in the period of March 2022 to March 2023. Samples were collected using different gills nets of different sizes. Gonado Somatic Index and fecundity were studied using gravimetric to identify the breeding season and reproductive potential. The highest GSI was recorded in the month of April and November. Male to female ratio was in balance. The weight of the fish, size of the fish and ovary were parallel to the fecundity. This is the baseline study for the breeding biology of S. esocinus and further molecular study is required to identify the internal and external factors associated with the breeding biology of S. esocinus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=snow%20trout" title="snow trout">snow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20and%20weight%20relationship" title=" length and weight relationship"> length and weight relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=fecundity" title=" fecundity"> fecundity</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Swat" title=" river Swat"> river Swat</a> </p> <a href="https://publications.waset.org/abstracts/166732/reproductive-biology-of-chirruh-snowtrout-schizothorax-esocinus-from-river-swat-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3902</span> Effects of Practical Activities on Performance among Biology Students in Zaria Education Zone, Kaduna State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Garba">Abdullahi Garba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the effects of practical activities on performance among biology students in Zaria education zone, Kaduna State, Nigeria. The population consists of 18 public schools in the Zaria Education Zone with a total number of 4,763 students. A random sample of 115 students was selected from the population in the study area. The study design was quasi-experimental, which adopted the pre-test, post-test experimental, and control group design. The experimental group was exposed to practical activities, while the control group was taught with the lecture method. A validated instrument, a biology performance test (BPT) with a reliability coefficient of 0.82, was used to gather data which were analyzed using a t-test and paired sample t-test. Two research questions and hypotheses guided the study. The hypotheses were tested at p≤0.05 level of significance. Findings revealed that: there was a significant difference in the academic performance of students exposed to practical activities compared to their counterparts; there was no significant difference in performance between male and female Biology students exposed to practical activities. The recommendation given was that practical activities should be encouraged in the teaching and learning of Biology for better understanding. The Federal and State Ministry of Education should sponsor biology teachers for training and retraining of teachers to improve the academic performance of students in the subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biology" title="biology">biology</a>, <a href="https://publications.waset.org/abstracts/search?q=practical" title=" practical"> practical</a>, <a href="https://publications.waset.org/abstracts/search?q=activity" title=" activity"> activity</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/166945/effects-of-practical-activities-on-performance-among-biology-students-in-zaria-education-zone-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3901</span> Theoretical Approaches to Graphic and Formal Generation from Evolutionary Genetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Estrada">Luz Estrada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The currents of evolutionary materialistic thought have argued that knowledge about an object is not obtained through the abstractive method. That is, the object cannot come to be understood if founded upon itself, nor does it take place by the encounter between form and matter. According to this affirmation, the research presented here identified as a problematic situation the absence of comprehension of the formal creation as a generative operation. This has been referred to as a recurrent lack in the production of objects and corresponds to the need to conceive the configurative process from the reality of its genesis. In this case, it is of interest to explore ways of creation that consider the object as if it were a living organism, as well as responding to the object’s experience as embodied in the designer since it unfolds its genesis simultaneously to the ways of existence of those who are involved in the generative experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20graphics" title=" theoretical graphics"> theoretical graphics</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20genetics" title=" evolutionary genetics"> evolutionary genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20perception" title=" formal perception"> formal perception</a> </p> <a href="https://publications.waset.org/abstracts/158586/theoretical-approaches-to-graphic-and-formal-generation-from-evolutionary-genetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3900</span> Bioinformatics High Performance Computation and Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mohammed">Javed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance" title="high performance">high performance</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computation" title=" parallel computation"> parallel computation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20data" title=" molecular data"> molecular data</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biology" title=" computational biology"> computational biology</a> </p> <a href="https://publications.waset.org/abstracts/20931/bioinformatics-high-performance-computation-and-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3899</span> Integrative Biology Teaching and Learning Model Based on STEM Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narupot%20Putwattana">Narupot Putwattana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20approach" title=" engineering approach"> engineering approach</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20and%20learning%20model" title=" teaching and learning model"> teaching and learning model</a> </p> <a href="https://publications.waset.org/abstracts/79439/integrative-biology-teaching-and-learning-model-based-on-stem-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3898</span> The Effectiveness of Extracurricular Activities for Teaching Biology in the Modern World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukhtarkhanova%20Ainagul%20Madievna">Mukhtarkhanova Ainagul Madievna</a>, <a href="https://publications.waset.org/abstracts/search?q=Imanbek%20Karakoz"> Imanbek Karakoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development and implementation of active forms and methods of extracurricular work in biology are carried out, assistance to people in determining sustainable interests in a particular field of science, expanding pupil's knowledge and horizons during in–depth study of program issues that go beyond the curriculum where considered, but accessible to the understanding of people; the development of interest in the subject, independence, creative activity. The purpose of this study is to open interest through extracurricular activities for teaching biology. The purpose of the presented work is to arouse people's interest in biology lessons in the modern world through extracurricular activities. First, the level of people was determined in the traditional style of teaching lessons, for which special tests and evaluation criteria were compiled. The level of pupils' knowledge of biology was determined by a questionnaire. Samples of extracurricular work were presented, and practices were conducted in the educational process. At the next stage, the level of pupils after the experiment was compared. The results of the work were discussed, and recommendations were developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extracurricular%20activities" title="extracurricular activities">extracurricular activities</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20world" title=" modern world"> modern world</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching"> teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=excursions" title=" excursions"> excursions</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20experiments" title=" laboratory experiments"> laboratory experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20fairs" title=" science fairs"> science fairs</a> </p> <a href="https://publications.waset.org/abstracts/166332/the-effectiveness-of-extracurricular-activities-for-teaching-biology-in-the-modern-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3897</span> Effect of Question Answer Relationship (QARs) in Science Reading on the Academic Achievement of Students in Biology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Ngozi%20Ibe">Helen Ngozi Ibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Chimmuanya%20Ezere"> Chimmuanya Ezere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the effect of Question Answer Relationships (QARs) in science reading on secondary school students’ achievement in Biology in Owerri Education Zone II of Imo State. The study adopted a quasi-experimental design and was guided by two research questions and two hypotheses. The sample comprised of 67 SS2 Biology students. The sample was drawn using random sampling technique. One researcher made instrument titled: Biology Achievement Test (BAT) was used for collecting the data of the study. The reliability of the instrument was established using Kuder Richardson formula (KR-20) which yielded a reliability index of 0.85 and Cronbach alpha for the BSIRS with an index of 0.71. Research questions were answered using mean and standard deviation. T-test statistics was used to test the hypotheses at 0.05 level of significance. The major findings are that students exposed to QARs strategy in science reading had higher achievement mean scores in biology than students in the control group; there is no significant difference between the achievement mean scores of male and female students exposed to QARs. The researchers recommended that science teachers should teach students the Question Answer Relationship reading strategy and that science students should endeavour to use the question - answer relationship reading strategy in classroom and individual science reading in order to enhance high academic achievement in the subjects being read. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20achievement" title="academic achievement">academic achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20reading" title=" science reading"> science reading</a>, <a href="https://publications.waset.org/abstracts/search?q=question-answer%20relationship" title=" question-answer relationship"> question-answer relationship</a> </p> <a href="https://publications.waset.org/abstracts/118434/effect-of-question-answer-relationship-qars-in-science-reading-on-the-academic-achievement-of-students-in-biology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3896</span> A Set of Microsatellite Markers for Population Genetics of Copper-Winged Bat (Myotis rufoniger) Using Saliva DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junghwa%20An">Junghwa An</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkyoung%20Choi"> Sungkyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ye"> Eun Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=San%20Hoon%20Han"> San Hoon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Gun%20Choi"> Young-Gun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Oun%20Jung"> Chul Oun Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The copper-winged bat (Myotis rufoniger) is the widely distributed medium body-sized bat in Asia, including Korea. This bat population has been decreasing because of habitat loss. This study reported the isolation and characterization of ten polymorphic microsatellite loci in endangered M. rufoniger. To do genetic studies, we use saliva DNA of bats during winter sleep period. The number of alleles per locus ranged from 2 to 9, and the observed and expected heterozygosities ranged from 0.063 to 0.750 and from 0.063 to 0.865, respectively. The average polymorphic information content (PIC) value of these markers was 0.37. Two loci of M. rufoniger showed departure from Hardy-Weinberg equilibrium(HWE). This demonstrated that the ten microsatellite loci can be used as genetic markers for further investigation of the copper-winged bat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper-winged%20bat" title="copper-winged bat">copper-winged bat</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellite" title=" microsatellite"> microsatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title=" population genetics"> population genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Korea" title=" South Korea"> South Korea</a> </p> <a href="https://publications.waset.org/abstracts/46642/a-set-of-microsatellite-markers-for-population-genetics-of-copper-winged-bat-myotis-rufoniger-using-saliva-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3895</span> Chromosomes Are Present in a Fixed Region on the Equatorial Plate Within the Interphase of Cell Division</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chunxiao%20Wu">Chunxiao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongyun%20Jiang"> Dongyun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Jiang"> Tao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Luxia%20Xu"> Luxia Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Xu"> Qian Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhao"> Meng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Zhu"> Qin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhigang%20Guo"> Zhigang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinlan%20Pan"> Jinlan Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suning%20Chen"> Suning Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability and evolution of human genetics depends on chromosomes (and chromosome-chromosome interactions). We wish to understand the spatial location of chromosomes in dividing cells in order to understand the relationship between chromosome-chromosome interactions and to further investigate the role of chromosomes and their impact on cell biological behavior. In this study, we explored the relative spatial positional relationships of chromosomes [t (9;22) and t (15;17)] in B-ALL cells by using the three-dimensions DNA in situ fluorescent hybridization (3D-FISH) method. The results showed that chromosomes [t (9;22) and t (15;17)] showed relatively stable spatial relationships. The relative stability of the spatial location of chromosomes in dividing cells may be relevant to disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20genetics" title=" human genetics"> human genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20territory" title=" chromosome territory"> chromosome territory</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-FISH" title=" 3D-FISH"> 3D-FISH</a> </p> <a href="https://publications.waset.org/abstracts/188219/chromosomes-are-present-in-a-fixed-region-on-the-equatorial-plate-within-the-interphase-of-cell-division" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3894</span> SciPaaS: a Scientific Execution Platform for the Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wesley%20H.%20Brewer">Wesley H. Brewer</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20C.%20Sanford"> John C. Sanford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web-based%20simulation" title="web-based simulation">web-based simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=Platform-as-a-Service%20%28PaaS%29" title=" Platform-as-a-Service (PaaS)"> Platform-as-a-Service (PaaS)</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20application%20development%20%28RAD%29" title=" rapid application development (RAD)"> rapid application development (RAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title=" population genetics"> population genetics</a> </p> <a href="https://publications.waset.org/abstracts/20920/scipaas-a-scientific-execution-platform-for-the-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3893</span> Graphic Calculator Effectiveness in Biology Teaching and Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nik%20Azmah%20Nik%20Yusuff">Nik Azmah Nik Yusuff</a>, <a href="https://publications.waset.org/abstracts/search?q=Faridah%20Hassan%20Basri"> Faridah Hassan Basri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosnidar%20Mansor"> Rosnidar Mansor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to find out the effectiveness of using Graphic calculators (GC) with Calculator Based Laboratory 2 (CBL2) in teaching and learning of form four biology for these topics: Nutrition, Respiration and Dynamic Ecosystem. Sixty form four science stream students were the participants of this study. The participants were divided equally into the treatment and control groups. The treatment group used GC with CBL2 during experiments while the control group used the ordinary conventional laboratory apparatus without using GC with CBL2. Instruments in this study were a set of pre-test and post-test and a questionnaire. T-Test was used to compare the student’s biology achievement while a descriptive statistic was used to analyze the outcome of the questionnaire. The findings of this study indicated the use of GC with CBL2 in biology had significant positive effect. The highest mean was 4.43 for item stating the use of GC with CBL2 had saved collecting experiment result’s time. The second highest mean was 4.10 for item stating GC with CBL2 had saved drawing and labelling graphs. The outcome from the questionnaire also showed that GC with CBL2 were easy to use and save time. Thus, teachers should use GC with CBL2 in support of efforts by Malaysia Ministry of Education in encouraging technology-enhanced lessons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biology%20experiments" title="biology experiments">biology experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=Calculator-Based%20Laboratory%202%20%28CBL2%29" title=" Calculator-Based Laboratory 2 (CBL2)"> Calculator-Based Laboratory 2 (CBL2)</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20calculators" title=" graphic calculators"> graphic calculators</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia%20Secondary%20School" title=" Malaysia Secondary School"> Malaysia Secondary School</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%2Flearning" title=" teaching/learning"> teaching/learning</a> </p> <a href="https://publications.waset.org/abstracts/4230/graphic-calculator-effectiveness-in-biology-teaching-and-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3892</span> Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Estrella">D. Estrella</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Silva"> A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zapata"> R. Zapata</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Rubio"> H. Rubio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deafness" title="deafness">deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20support" title=" psychological support"> psychological support</a>, <a href="https://publications.waset.org/abstracts/search?q=family" title=" family"> family</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20to%20disability" title=" adaptation to disability"> adaptation to disability</a> </p> <a href="https://publications.waset.org/abstracts/67892/family-functionality-in-mexican-children-with-congenital-and-non-congenital-deafness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3891</span> Evaluation and Assessment of Bioinformatics Methods and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Nokhodchi%20Bonab">Fatemeh Nokhodchi Bonab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioinformatics, in its broad sense, involves application of computer processes to solve biological problems. A wide range of computational tools are needed to effectively and efficiently process large amounts of data being generated as a result of recent technological innovations in biology and medicine. A number of computational tools have been developed or adapted to deal with the experimental riches of complex and multivariate data and transition from data collection to information or knowledge. These bioinformatics tools are being evaluated and applied in various medical areas including early detection, risk assessment, classification, and prognosis of cancer. The goal of these efforts is to develop and identify bioinformatics methods with optimal sensitivity, specificity, and predictive capabilities. The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methods" title="methods">methods</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptional%20regulatory%20systems" title=" transcriptional regulatory systems"> transcriptional regulatory systems</a>, <a href="https://publications.waset.org/abstracts/search?q=techniques" title=" techniques"> techniques</a> </p> <a href="https://publications.waset.org/abstracts/160693/evaluation-and-assessment-of-bioinformatics-methods-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3890</span> Social Ties and Integration of the Offenders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Chaillou">C. Chaillou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dominant theoretical approaches in Criminology are interested in the phenomenon of delinquency from the question of the management of the risks incurred by the population. Thus, this research advocate prevention of this phenomenon by a tracking of early disorders in children. Treatments offered to rely on medical research (genetics and biology are cited as a reference) and assuming a high naturalization of delinquent behaviour. Programs that are offered also reduce to a recovery of the deviant behaviour, and rely readily on behavioral guidelines, with an educational grant. Public policy then rely on these programs to prevent unwanted behaviour within a given population and to reduce the risk for the company. This is the case in France, with national institutes making (juvenile) violence a public health problem. We consider that other approaches, issues of sociology, are more relevant to the treatment of offenders. These approaches are moving, not on its prevention, but from its inputs and its outputs. Several modalities of entries and exits of delinquency can find and analyze in terms of process. We assume that there is a dynamic inherent in the individual and it is important to take into account the environment of the offender. These different types of processes can illuminate from the derived work of the Psychoanalytical psychopathology and lead to more effective treatment of delinquent acts. Psychoanalytic concepts have enabled us to offer a new look means to treat delinquency, placing several types of relationship with the other and relating to the clinical structure and the uniqueness of the case, we have been able to enter subjective and unconscious logics at work in delinquent acts. This research has facilitated the reduction of these types of subjective responses and proposed others, opening to a reintegration of offenders in a social link them being more favourable and in a longer term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delinquency" title="delinquency">delinquency</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion" title=" insertion"> insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20link" title=" social link"> social link</a>, <a href="https://publications.waset.org/abstracts/search?q=unconscious" title=" unconscious"> unconscious</a> </p> <a href="https://publications.waset.org/abstracts/27340/social-ties-and-integration-of-the-offenders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3889</span> Habitat Suitability, Genetic Diversity and Population Structure of Two Sympatric Fruit Bat Species Reveal the Need of an Urgent Conservation Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Thani%20Ibouroi">Mohamed Thani Ibouroi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Cheha"> Ali Cheha</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudine%20Montgelard"> Claudine Montgelard</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Arnal"> Veronique Arnal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawiyat%20Massoudi"> Dawiyat Massoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillelme%20Astruc"> Guillelme Astruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Ousseni%20Dhurham"> Said Ali Ousseni Dhurham</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelien%20Besnard"> Aurelien Besnard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Livingstone's flying fox (Pteropus livingstonii) and the Comorian fruit bat (P.seychellensis comorensis) are two endemic fruit bat species among the mostly threatened animals of the Comoros archipelagos. Despite their role as important ecosystem service providers like all flying fox species as pollinators and seed dispersers, little is known about their ecologies, population genetics and structures making difficult the development of evidence-based conservation strategies. In this study, we assess spatial distribution and ecological niche of both species using Species Distribution Modeling (SDM) based on the recent Ensemble of Small Models (ESMs) approach using presence-only data. Population structure and genetic diversity of the two species were assessed using both mitochondrial and microsatellite markers based on non-invasive genetic samples. Our ESMs highlight a clear niche partitioning of the two sympatric species. Livingstone’s flying fox has a very limited distribution, restricted on steep slope of natural forests at high elevation. On the contrary, the Comorian fruit bat has a relatively large geographic range spread over low elevations in farmlands and villages. Our genetic analysis shows a low genetic diversity for both fruit bats species. They also show that the Livingstone’s flying fox population of the two islands were genetically isolated while no evidence of genetic differentiation was detected for the Comorian fruit bats between islands. Our results support the idea that natural habitat loss, especially the natural forest loss and fragmentation are the important factors impacting the distribution of the Livingstone’s flying fox by limiting its foraging area and reducing its potential roosting sites. On the contrary, the Comorian fruit bats seem to be favored by human activities probably because its diets are less specialized. By this study, we concluded that the Livingstone’s flying fox species and its habitat are of high priority in term of conservation at the Comoros archipelagos scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Comoros%20islands" title="Comoros islands">Comoros islands</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20niche" title=" ecological niche"> ecological niche</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20loss" title=" habitat loss"> habitat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title=" population genetics"> population genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20bats" title=" fruit bats"> fruit bats</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20biology" title=" conservation biology"> conservation biology</a> </p> <a href="https://publications.waset.org/abstracts/62161/habitat-suitability-genetic-diversity-and-population-structure-of-two-sympatric-fruit-bat-species-reveal-the-need-of-an-urgent-conservation-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3888</span> Efficient Sampling of Probabilistic Program for Biological Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keerthi%20S.%20Shetty">Keerthi S. Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Annappa%20Basava"> Annappa Basava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=systems%20biology" title="systems biology">systems biology</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20model" title=" probabilistic model"> probabilistic model</a>, <a href="https://publications.waset.org/abstracts/search?q=inference" title=" inference"> inference</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a> </p> <a href="https://publications.waset.org/abstracts/47189/efficient-sampling-of-probabilistic-program-for-biological-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3887</span> Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Libata">I. A. Libata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitudes" title="attitudes">attitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=Birnin-Kebbi" title=" Birnin-Kebbi"> Birnin-Kebbi</a>, <a href="https://publications.waset.org/abstracts/search?q=metropolis" title=" metropolis"> metropolis</a> </p> <a href="https://publications.waset.org/abstracts/19224/attitudes-of-secondary-school-students-towards-biology-in-birnin-kebbi-metropolis-kebbi-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3886</span> Factors Affecting Physical Activity among University Students of Different Fields of Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Dutkiewicz">Robert Dutkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Szpringer"> Monika Szpringer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariola%20Wojciechowska"> Mariola Wojciechowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity is one of the factors greatly influencing healthy lifestyle. The recent research into physical activity of the Polish society reveals that contribution of physical culture to healthy lifestyle is insufficient. Students, regardless of age, spend most of free-time in front of a TV or computer. The research attempted to identify the level of physical activity and healthy lifestyle among students of medical sciences and other students doing their teaching degrees. The findings of physical activity research conducted in 2014, which covered 364 students of medical sciences and future teachers from the University of Jan Kochanowski in Kielce were analysed. The research involved the method of diagnostic survey based on a questionnaire. It attempted to establish to what extent such factors as the field of studies, the place of residence and BMI affect students’ physical activity. Empirical material was analysed by means of SPSS/PC, the leading statistical software. The field of study significantly influences physical activity of the respondents. The students of physiotherapy and public health tend to be more physically active than students of biology and geography: 46.8% students of geography and 51.8 % biology students seldom take up physical activity. Obesity and overweight are currently serious problems of university students: 6.6% of them are obese and 19% overweight. It is alarming that these students are not willing to find ways to be more physically active. Most of the obese and overweight respondents study biology or geography and live in a rural area. Unequal chances in terms of youth physical culture are determined by the differences between rural and urban environments. Young people living in rural areas are less physically active, particularly in terms of the frequency and the amount of time devoted to physical activity. This is caused by poor infrastructure to perform physical activity, the lack of or limited number of sports clubs and centres. It is thought-provoking that most of the students claim that they do not have enough time to do sports or other activities, but at the same time they spend a lot of time at a computer or watching TV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20lifestyle" title=" healthy lifestyle"> healthy lifestyle</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20activity" title=" sports activity"> sports activity</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a> </p> <a href="https://publications.waset.org/abstracts/21219/factors-affecting-physical-activity-among-university-students-of-different-fields-of-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3885</span> Facilitating Written Biology Assessment in Large-Enrollment Courses Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luanna%20B.%20Prevost">Luanna B. Prevost</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelli%20Carter"> Kelli Carter</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaurete%20Romero"> Margaurete Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirsti%20Martinez"> Kirsti Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Writing is an essential scientific practice, yet, in several countries, the increasing university science class-size limits the use of written assessments. Written assessments allow students to demonstrate their learning in their own words and permit the faculty to evaluate students’ understanding. However, the time and resources required to grade written assessments prohibit their use in large-enrollment science courses. This study examined the use of machine learning algorithms to automatically analyze student writing and provide timely feedback to the faculty about students' writing in biology. Written responses to questions about matter and energy transformation were collected from large-enrollment undergraduate introductory biology classrooms. Responses were analyzed using the LightSide text mining and classification software. Cohen’s Kappa was used to measure agreement between the LightSide models and human raters. Predictive models achieved agreement with human coding of 0.7 Cohen’s Kappa or greater. Models captured that when writing about matter-energy transformation at the ecosystem level, students focused on primarily on the concepts of heat loss, recycling of matter, and conservation of matter and energy. Models were also produced to capture writing about processes such as decomposition and biochemical cycling. The models created in this study can be used to provide automatic feedback about students understanding of these concepts to biology faculty who desire to use formative written assessments in larger enrollment biology classes, but do not have the time or personnel for manual grading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=written%20assessment" title=" written assessment"> written assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=biology%20education" title=" biology education"> biology education</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/46679/facilitating-written-biology-assessment-in-large-enrollment-courses-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3884</span> Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruque%20Miah">Faruque Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafij%20Ali"> Hafij Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Enaya%20Jannat"> Enaya Jannat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Modok%20Shuvra"> Tanmoy Modok Shuvra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Niamul%20Naser"> M. Niamul Naser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding%20biology" title="breeding biology">breeding biology</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20breeding" title=" induced breeding"> induced breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=Monopterus%20cuchia" title=" Monopterus cuchia"> Monopterus cuchia</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20chorionic%20gonadotropin" title=" human chorionic gonadotropin"> human chorionic gonadotropin</a> </p> <a href="https://publications.waset.org/abstracts/22005/breeding-biology-and-induced-breeding-status-of-freshwater-mud-eel-monopterus-cuchia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">774</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3883</span> A Basic Understanding of Viral Disease and Education Level Influences Disease Risk Perception, Disease Severity Perception, and Mask Wearing Behavior During the COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilse%20Kreme">Ilse Kreme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To the best of this author’s knowledge, no studies have been identified on the connection between a refusal to engage in health-protective behaviors and a basic understanding of viral biology among community college students, faculty, and staff during the COVID-19 pandemic. Lack of scientific knowledge could prevent understanding of why these behaviors are important to prevent the community spread of COVID-19, even when they are not shown to offer much individual protection. In this study, a possible correlation was examined between a basic knowledge level of viral disease that comes from having taken a college biology course and disease perceptions of COVID-19. In particular, disease risk perception, disease severity percept and mask-wearing behaviors were examined as they correlated with having taken an undergraduate biology course. The effect of covariates of age, gender, and education level were investigated along with the main dependent variables. A representative sample of the population included students, faculty, and staff at Paradise Valley Community College (PVCC) in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5 (BIP-Q5), which was modified to include questions measuring participant age, education level, and whether they took or ever took a college biology course. Two additional questions measured compliance of willingness to wear a face mask. The results showed an effect of gender on mask-wearing behavior and a correlation between having taken a biology course and disease severity perception. No differences were seen in mask-wearing behavior and disease risk perception as a result of having taken a biology course. These findings suggest that taking an undergraduate biology course leads to a greater awareness of COVID-19 disease severity through an understanding of the basic biological principles of viral disease transmission. The results can be used to modify existing health education strategies. Further research is needed on how to best reach target audiences in all education brackets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20wearing" title=" mask wearing"> mask wearing</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20risk%20perception" title=" disease risk perception"> disease risk perception</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20severity%20perception" title=" disease severity perception"> disease severity perception</a> </p> <a href="https://publications.waset.org/abstracts/148339/a-basic-understanding-of-viral-disease-and-education-level-influences-disease-risk-perception-disease-severity-perception-and-mask-wearing-behavior-during-the-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3882</span> The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Sharma">Shivani Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Saxena"> Prashant Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Inamul%20Hasan%20Madar"> Inamul Hasan Madar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolution" title="evolution">evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypes" title=" phenotypes"> phenotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title=" epigenetics"> epigenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=LWS%20gene" title=" LWS gene"> LWS gene</a>, <a href="https://publications.waset.org/abstracts/search?q=G-P%20map" title=" G-P map"> G-P map</a> </p> <a href="https://publications.waset.org/abstracts/15624/the-prediction-of-evolutionary-process-of-coloured-vision-in-mammals-a-system-biology-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20biology%20and%20genetics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10