CINXE.COM
Search results for: metallurgy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metallurgy</title> <meta name="description" content="Search results for: metallurgy"> <meta name="keywords" content="metallurgy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metallurgy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metallurgy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 99</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metallurgy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyy%C3%BCp%20Murat%20Karakurt">Eyyüp Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang">Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya">Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Demirta%C5%9F">Hüseyin Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20%C4%B0ncesu">Alper İncesu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb%20concentration" title="Nb concentration">Nb concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20level" title=" porosity level"> porosity level</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20%CE%B2%20phase" title=" The β phase"> The β phase</a> </p> <a href="https://publications.waset.org/abstracts/143340/characterization-of-titanium-niobium-alloys-by-powder-metallurgy-as-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Ervina%20Efzan">M. N. Ervina Efzan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Kong"> H. J. Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Kok"> C. K. Kok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Si" title="Al-Si">Al-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20modifier" title=" hybrid modifier"> hybrid modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=ladle%20metallurgy" title=" ladle metallurgy"> ladle metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/10819/the-properties-of-na2co3-and-ti-hybrid-modified-lm-6-alloy-using-ladle-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yonetken">Ahmet Yonetken</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Erol"> Ayhan Erol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic-metal%20composites" title="ceramic-metal composites">ceramic-metal composites</a>, <a href="https://publications.waset.org/abstracts/search?q=proporties" title=" proporties"> proporties</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/92071/production-and-characterization-of-al-bn-composite-materials-by-using-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Production of (V-B) Reinforced Fe Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerim%20Emre%20%C3%96ks%C3%BCz">Kerim Emre Öksüz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20%C3%87evik"> Mehmet Çevik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Enbiya%20Bozda%C4%9F"> A. Enbiya Bozdağ</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20%C3%96zer"> Ali Özer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20%C5%9Eim%C5%9Fir"> Mehmet Şimşir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composite%20%28MMC%29" title=" metal matrix composite (MMC)"> metal matrix composite (MMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a> </p> <a href="https://publications.waset.org/abstracts/13850/production-of-v-b-reinforced-fe-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">799</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=factsage" title=" factsage"> factsage</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a> </p> <a href="https://publications.waset.org/abstracts/137291/development-of-a-thermodynamic-model-for-ladle-metallurgy-steel-making-processes-using-factsage-and-its-macro-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Khethier%20Abbass">Muna Khethier Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassma%20Finner%20Sultan"> Bassma Finner Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composites" title=" nano composites"> nano composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Mg%20alloy" title=" Al-Cu-Mg alloy"> Al-Cu-Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20corrosion" title=" electrochemical corrosion"> electrochemical corrosion</a> </p> <a href="https://publications.waset.org/abstracts/68464/effect-of-al2o3-nanoparticles-on-corrosion-behavior-of-aluminum-alloy-fabricated-by-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jie%20Lin"> Zih-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/62892/liquid-phase-sintering-of-boron-alloyed-powder-metallurgy-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Altunta%C5%9F">O. Altuntaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCral"> A. Güral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm<sup>3</sup> was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 <sup>°</sup>C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy%20steel" title="powder metallurgy steel">powder metallurgy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=bainite" title=" bainite"> bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=cementite" title=" cementite"> cementite</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering%20and%20spheroidization%20heat%20treatment" title=" austempering and spheroidization heat treatment"> austempering and spheroidization heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/95968/production-of-spherical-cementite-within-bainitic-matrix-microstructures-in-high-carbon-powder-metallurgy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Kuforiji">Catherine Kuforiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Nganbe"> Michel Nganbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SS316L" title="SS316L">SS316L</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20characterization" title=" wear characterization"> wear characterization</a> </p> <a href="https://publications.waset.org/abstracts/59098/wear-assessment-of-ss316l-al2o3-composites-for-heavy-wear-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Hydrometallurgical Production of Nickel Ores from Field Bugetkol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Zhakiyenova">A. T. Zhakiyenova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Zhatkanbaev"> E. E. Zhatkanbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Zh.%20K.%20Zhatkanbaeva"> Zh. K. Zhatkanbaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt" title="cobalt">cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20extraction" title=" degree of extraction"> degree of extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title=" hydrometallurgy"> hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20metallurgy" title=" igneous metallurgy"> igneous metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=matte" title=" matte"> matte</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/43141/hydrometallurgical-production-of-nickel-ores-from-field-bugetkol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Karakoc">H. Karakoc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uzun"> A. Uzun</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K%C4%B1rm%C4%B1z%C4%B1"> G. Kırmızı</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%87inici"> H. Çinici</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20%C3%87itak"> R. Çitak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aluminum%20alloy" title="Aluminum alloy">Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/30362/effect-of-rotation-speed-on-microstructure-and-microhardness-of-aa7039-rods-joined-by-friction-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyyup%20Murat%20Karakurt">Eyyup Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang"> Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya"> Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Demirtas"> Huseyin Demirtas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porosity%20effect" title="porosity effect">porosity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%20based%20alloys" title=" Ti based alloys"> Ti based alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a> </p> <a href="https://publications.waset.org/abstracts/131221/a-comprehensive-study-on-the-porosity-effect-of-ti-20zr-alloy-produced-by-powder-metallurgy-as-a-biomaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yonetken">Ahmet Yonetken</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Erol"> Ayhan Erol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic-metal" title="ceramic-metal">ceramic-metal</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/18528/production-of-chromium-matrix-composite-reinforced-by-wc-by-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liubov%20Magerramova">Liubov Magerramova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kratt"> Eugene Kratt</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Presniakov"> Pavel Presniakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20technologies" title="additive technologies">additive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20engine" title=" gas turbine engine"> gas turbine engine</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20wheel" title=" turbine wheel"> turbine wheel</a> </p> <a href="https://publications.waset.org/abstracts/66360/application-of-powder-metallurgy-technologies-for-gas-turbine-engine-wheel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Effect of Cr2O3 on Mechanical Properties of Aluminum Produced Powder Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasin%20Akgul">Yasin Akgul</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazil%20Husem"> Fazil Husem</a>, <a href="https://publications.waset.org/abstracts/search?q=Memis%20Isik"> Memis Isik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, effect of content of chromium (III) oxide on production of Al/Cr203 alloys were investigated. Experimental procedure was started with mixturing of powders in the presence of absolute ethanol, vacuum distillation technique was used for evaporation, by ultrasonic bath and mechanic stirrer. Pressing procedure was achieved by hydrolic press that has 100 tons forcing for production of 25 mm diameter compact green billets. Green bodies were sintered at 600 °C in argon atmosphere. Scanning electron microscope (SEM) analysis for characterization of microstructure, compression test for determination of strength and Vickers test for measuring of hardness of sintered billets were done. End of the study is concluded that, enhancement of physical and mechanical properties is observed by increasing content of chromium (III) oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium" title="aluminium">aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20%28III%29%20oxide" title=" chromium (III) oxide"> chromium (III) oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/56254/effect-of-cr2o3-on-mechanical-properties-of-aluminum-produced-powder-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jin%20Tsai"> Yu-Jin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Huai%20Chang"> Ching-Huai Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/73936/microstructure-and-sintering-of-boron-alloyed-martensitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Research on Eco-Sustainable Recycling of Industrial Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Cr%C4%83c">Liliana Crăc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Giorgi"> Nicolae Giorgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Fometescu"> Gheorghe Fometescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20solid%20wastes" title=" drilled solid wastes"> drilled solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/15190/research-on-eco-sustainable-recycling-of-industrial-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Amirjan">Mostafa Amirjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20sphere%20structure%20foam" title="hollow sphere structure foam">hollow sphere structure foam</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20and%20diameter%20%28t%2FD%20%29" title=" thickness and diameter (t/D )"> thickness and diameter (t/D )</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a> </p> <a href="https://publications.waset.org/abstracts/34507/the-effect-of-geometrical-ratio-and-nanoparticle-reinforcement-on-the-properties-of-al-based-nanocomposite-hollow-sphere-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Folorunso%20Omoniyi">Folorunso Omoniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olubambi">Peter Olubambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20Sadiku"> Rotimi Sadiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20oxidation" title="high-temperature oxidation">high-temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/34130/high-temperature-oxidation-resistance-of-nicral-bond-coat-produced-by-spark-plasma-sintering-as-thermal-barrier-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shivaram">M. J. Shivaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Bhushan%20Arya"> Shashi Bhushan Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Nayak"> Jagannath Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Bhooshan%20Panigrahi"> Bharat Bhooshan Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH<sub>4</sub>HCO<sub>3</sub>). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strengths" title=" compressive strengths"> compressive strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20titanium%20alloy" title=" porous titanium alloy"> porous titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/71227/influence-of-ball-milling-time-on-mechanical-properties-of-porous-ti-20nb-5ag-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenting%20Ye">Wenting Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-situ%20carbide" title="in-situ carbide">in-situ carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20behavior" title=" tribological behavior"> tribological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20entropy%20alloy%20matrix%20composite" title=" medium entropy alloy matrix composite"> medium entropy alloy matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a> </p> <a href="https://publications.waset.org/abstracts/187717/superior-wear-performance-of-cocrni-matrix-composite-reinforced-with-quasi-continuously-networked-graphene-nanosheets-and-in-situ-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> A Note on Metallurgy at Khanak: An Indus Site in Tosham Mining Area, Haryana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20N.%20Singh">Ravindra N. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dheerendra%20P.%20Singh"> Dheerendra P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent discoveries of Bronze Age artefacts, tin slag, furnaces and crucibles, together with new geological evidence on tin deposits in Tosham area of Bhiwani district in Haryana (India) provide the opportunity to survey the evidence for possible sources of tin and the use of bronze in the Harappan sites of north western India. Earlier, Afghanistan emerged as the most promising eastern source of tin utilized by Indus Civilization copper-smiths. Our excavations conducted at Khanak near Tosham mining area during 2014 and 2016 revealed ample evidence of metallurgical activities as attested by the occurrence of slag, ores and evidences of ashes and fragments of furnaces in addition to the bronze objects. We have conducted petrological, XRD, EDAX, TEM, SEM and metallography on the slag, ores, crucible fragments and bronze objects samples recovered from Khanak excavations. This has given positive indication of mining and metallurgy of poly-mettalic Tin at the site; however, it can only be ascertained after the detailed scientific examination of the materials which is underway. In view of the importance of site, we intend to excavate the site horizontally in future so as to obtain more samples for scientific studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeometallurgy" title="archaeometallurgy">archaeometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20of%20tin" title=" problem of tin"> problem of tin</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=indus%20civilization" title=" indus civilization"> indus civilization</a> </p> <a href="https://publications.waset.org/abstracts/50939/a-note-on-metallurgy-at-khanak-an-indus-site-in-tosham-mining-area-haryana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Emara">Mohamed M. Emara</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Ashraf"> Heba Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%202124%20metal%20matrix%20composite" title="aluminum 2124 metal matrix composite">aluminum 2124 metal matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC%20nano-sized%20reinforcements" title=" SiC nano-sized reinforcements"> SiC nano-sized reinforcements</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20mechanical%20ball%20mill" title=" extrusion mechanical ball mill"> extrusion mechanical ball mill</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a> </p> <a href="https://publications.waset.org/abstracts/20367/influence-of-silicon-carbide-particle-size-and-thermo-mechanical-processing-on-dimensional-stability-of-al-2124sic-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Iron Extraction from Bog Iron Ore in Early French Colonial America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yves%20Monette">Yves Monette</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Loewen"> Brad Loewen</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20Pothier"> Louise Pothier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bog%20iron%20ore" title="bog iron ore">bog iron ore</a>, <a href="https://publications.waset.org/abstracts/search?q=extractive%20metallurgy" title=" extractive metallurgy"> extractive metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=French%20colonial%20America" title=" French colonial America"> French colonial America</a>, <a href="https://publications.waset.org/abstracts/search?q=Montreal" title=" Montreal"> Montreal</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy%20%28SEM%29" title=" scanning electron microscopy (SEM)"> scanning electron microscopy (SEM)</a> </p> <a href="https://publications.waset.org/abstracts/80232/iron-extraction-from-bog-iron-ore-in-early-french-colonial-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Harshini%20Irigineni">Sai Harshini Irigineni</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar%20Reddy%20Narala"> Suresh Kumar Reddy Narala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMMCs" title="AMMCs">AMMCs</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=TiB%E2%82%82" title=" TiB₂"> TiB₂</a> </p> <a href="https://publications.waset.org/abstracts/103394/mechanical-characterization-and-metallography-of-sintered-aluminium-titanium-diboride-metal-matrix-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hisashi%20Imai">Hisashi Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Yu%20Chen"> Kuan-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuyoshi%20Kondoh"> Katsuyoshi Kondoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Yin%20Tsai"> Hung-Yin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Junko%20Umeda"> Junko Umeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy%20Cu-Cr%20alloy%20powder" title="powder metallurgy Cu-Cr alloy powder">powder metallurgy Cu-Cr alloy powder</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor-grown%20carbon%20fiber" title=" vapor-grown carbon fiber"> vapor-grown carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/24251/effect-of-chromium-behavior-on-mechanical-and-electrical-properties-of-pm-copper-chromium-alloy-dispersed-with-vgcf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> An Archaeological Approach to Dating Polities and Architectural Ingenuity in Ijebu, South Western Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olanrewaju%20B.%20Lasisi">Olanrewaju B. Lasisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The position of Ijebu-Ode, the historical capital of the Ijebu Kingdom, at the center of gravity of Ijebu land is enclosed by the 180-km-long earthwork and suggests a centrally controlled project. This paper reflects on the first stratigraphic drawing of the banks and ditches of this earthwork, and place its construction mechanism in a chronological framework. Nine radiocarbon dates obtained at the site suggest that the earthwork was built in the late 14th or early 15th century. This suggests a relationship with the Ijebu Kingdom, which pre-existed the opening of the Atlantic trade but first became visible only in the Portuguese records in the 1480s. In June 2017, more earthworks were found but within the core of Ijebu Land. This most recent finding points to an extension of territory from the center to the outlying villages. One central question about this discovery of monumental architectures that was functional around the 14th century or before is in its mode of construction. Apparently, iron tools must have been used in the construction of ‘a 20m deep ditch that runs 180km in circumference.’ Thus, the discovery of iron-working sites around the vicinity of the earthwork is a pointer to this building process that is up till now shrouded in mystery. By comparing the chronology of Ijebu earthworks with the evidence of Iron working in south western Nigeria around the first half of the first millennium AD, it can be thought that the rise in polity triggered the knowledge of metallurgy in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeology" title="archaeology">archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=earthworks" title=" earthworks"> earthworks</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijebu" title=" Ijebu"> Ijebu</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgy" title=" metallurgy"> metallurgy</a> </p> <a href="https://publications.waset.org/abstracts/79431/an-archaeological-approach-to-dating-polities-and-architectural-ingenuity-in-ijebu-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maruf%20Yinka%20Kolawole">Maruf Yinka Kolawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Olayiwola%20Aweda"> Jacob Olayiwola Aweda</a>, <a href="https://publications.waset.org/abstracts/search?q=Farasat%20Iqbal"> Farasat Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ali"> Asif Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Abdulkareem"> Sulaiman Abdulkareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biodegradable%20metal" title="Biodegradable metal">Biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomedical%20application" title=" Biomedical application"> Biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties"> Mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Powder%20Metallurgy" title=" Powder Metallurgy"> Powder Metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc" title=" Zinc"> Zinc</a> </p> <a href="https://publications.waset.org/abstracts/115000/mechanical-properties-of-powder-metallurgy-processed-biodegradable-zn-based-alloy-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Gupta">Jyotsna Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghosh"> S. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aravindan"> S. Aravindan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20implant" title="bone implant">bone implant</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20time" title=" sintering time"> sintering time</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-15Mo" title=" Ti-6Al-15Mo"> Ti-6Al-15Mo</a> </p> <a href="https://publications.waset.org/abstracts/135755/effect-of-sintering-time-and-porosity-on-microstructure-mechanical-and-corrosion-properties-of-ti6al15mo-alloy-for-implant-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20El%20Wakil">S. D. El Wakil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 <sup>o</sup>C in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20of%20friction-welded%20joints" title="fracture of friction-welded joints">fracture of friction-welded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgy%20of%20friction%20welding" title=" metallurgy of friction welding"> metallurgy of friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-porous%20structures" title=" solid-porous structures"> solid-porous structures</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20of%20joints" title=" strength of joints"> strength of joints</a> </p> <a href="https://publications.waset.org/abstracts/56897/metallurgy-of-friction-welding-of-porous-stainless-steel-solid-iron-billets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metallurgy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metallurgy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metallurgy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metallurgy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>