CINXE.COM
Towards Data Science
<!DOCTYPE html><html xmlns:cc="http://creativecommons.org/ns#"><head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb# medium-com: http://ogp.me/ns/fb/medium-com#"><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0, viewport-fit=contain"><title>Towards Data Science</title><link rel="canonical" href="https://towardsdatascience.com"><link id="feedLink" rel="alternate" type="application/rss+xml" title="RSS" href="https://towardsdatascience.com/feed"><meta name="robots" content="index,follow"><meta name="title" content="Towards Data Science"><meta name="referrer" content="unsafe-url"><meta name="description" content="Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="keywords" content="DATA SCIENCE, MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, DATA ENGINEERING, DATA"><meta name="theme-color" content="#000000"><meta property="og:title" content="Towards Data Science"><meta property="twitter:title" content="Towards Data Science"><meta property="og:url" content="https://towardsdatascience.com/"><meta property="og:image" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="fb:app_id" content="542599432471018"><meta property="og:description" content="Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:description" content="Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."><meta name="twitter:image:src" content="https://cdn-images-1.medium.com/max/1200/1*CJe3891yB1A1mzMdqemkdg.jpeg"><meta property="og:type" content="medium-com:collection"><meta name="twitter:card" content="summary_large_image"><meta property="medium-com:creator" content="https://towardsdatascience.com/@engineering_48478"><meta name="twitter:site" content="@TDataScience"><meta property="og:site_name" content="Towards Data Science"><meta name="twitter:app:name:iphone" content="Medium"><meta name="twitter:app:id:iphone" content="828256236"><meta name="twitter:app:url:iphone" content="medium://towards-data-science"><meta property="al:ios:app_name" content="Medium"><meta property="al:ios:app_store_id" content="828256236"><meta property="al:android:package" content="com.medium.reader"><meta property="al:android:app_name" content="Medium"><meta property="al:ios:url" content="medium://towards-data-science"><meta property="al:android:url" content="medium://towards-data-science"><meta property="al:web:url" content="https://towardsdatascience.com/"><link rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml" /><link rel="alternate" href="android-app://com.medium.reader/https/medium.com/towards-data-science" /><script type="application/ld+json">{"@context": "http://schema.org", "@graph": [{"@type": "WebSite", "url": "https:\/\/towardsdatascience.com", "name": "Towards Data Science", "alternateName": "Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals."},{"@type": "Organization", "url": "https:\/\/towardsdatascience.com", "name": "Towards Data Science"}]}</script><link rel="stylesheet" href="https://cdn-static-1.medium.com/_/fp/css/main-branding-base.ouwh4uMviI3QQWIjxRhkHA.12.css"><script>!function(n,e){var t,o,i,c=[],f={passive:!0,capture:!0},r=new Date,a="pointerup",u="pointercancel";function p(n,c){t||(t=c,o=n,i=new Date,w(e),s())}function s(){o>=0&&o<i-r&&(c.forEach(function(n){n(o,t)}),c=[])}function l(t){if(t.cancelable){var o=(t.timeStamp>1e12?new Date:performance.now())-t.timeStamp;"pointerdown"==t.type?function(t,o){function i(){p(t,o),r()}function c(){r()}function r(){e(a,i,f),e(u,c,f)}n(a,i,f),n(u,c,f)}(o,t):p(o,t)}}function w(n){["click","mousedown","keydown","touchstart","pointerdown"].forEach(function(e){n(e,l,f)})}w(n),self.perfMetrics=self.perfMetrics||{},self.perfMetrics.onFirstInputDelay=function(n){c.push(n),s()}}(addEventListener,removeEventListener);</script><script>document.domain = document.domain;</script><script>if (window.top !== window.self) window.location = 'about:blank';var OB_startTime = new Date().getTime(); var OB_loadErrors = []; function _onerror(e) { OB_loadErrors.push(e) }; if (document.addEventListener) document.addEventListener("error", _onerror, true); else if (document.attachEvent) document.attachEvent("onerror", _onerror); function _asyncScript(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("script"); s.type = "text/javascript"; s.async = true; s.src = u; f.parentNode.insertBefore(s, f);}function _asyncStyles(u) {var d = document, f = d.getElementsByTagName("script")[0], s = d.createElement("link"); s.rel = "stylesheet"; s.href = u; f.parentNode.insertBefore(s, f); return s}(new Image()).src = "/_/stat?event=pixel.load&origin=" + encodeURIComponent(location.origin);</script><script>window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga("create", "G-7JY7T788PK", "auto", {"allowLinker": true, "legacyCookieDomain": window.location.hostname});ga("send", "pageview");</script><script async src="https://www.google-analytics.com/analytics.js"></script><script>(function () {var height = window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight; var width = window.innerWidth || document.documentElement.clientWidth || document.body.clientWidth; document.write("<style>section.section-image--fullBleed.is-backgrounded {padding-top: " + Math.round(1.1 * height) + "px;}section.section-image--fullScreen.is-backgrounded, section.section-image--coverFade.is-backgrounded {min-height: " + height + "px; padding-top: " + Math.round(0.5 * height) + "px;}.u-height100vh {height: " + height + "px !important;}.u-height110vh {height: " + Math.round(1.1 * height) + "px !important;}.u-minHeight100vh {min-height: " + height + "px !important;}.u-maxHeight100vh {max-height: " + height + "px !important;}section.section-image--coverFade {height: " + height + "px;}.section-aspectRatioViewportPlaceholder, .section-aspectRatioViewportCropPlaceholder {max-height: " + height + "px;}.section-aspectRatioViewportBottomSpacer, .section-aspectRatioViewportBottomPlaceholder {max-height: " + Math.round(0.5 * height) + "px;}.zoomable:before {top: " + (-1 * height) + "px; left: " + (-1 * width) + "px; padding: " + height + "px " + width + "px;}</style>");})()</script><!--[if lt IE 9]><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js"></script><![endif]--><link rel="icon" href="https://cdn-images-1.medium.com/fit/c/256/256/1*VzTUkfeGymHP4Bvav-T-lA.png" class="js-favicon"><link rel="apple-touch-icon" sizes="152x152" href="https://cdn-images-1.medium.com/fit/c/304/304/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="120x120" href="https://cdn-images-1.medium.com/fit/c/240/240/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="76x76" href="https://cdn-images-1.medium.com/fit/c/152/152/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="apple-touch-icon" sizes="60x60" href="https://cdn-images-1.medium.com/fit/c/120/120/1*CJe3891yB1A1mzMdqemkdg.jpeg"><link rel="mask-icon" href="https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg" color="#171717"></head><body itemscope class=" browser-ie os-windows v-unbound v-glyph v-glyph--m2-unbound-source-serif-pro is-noJs"><script>document.body.className = document.body.className.replace(/(^|\s)is-noJs(\s|$)/, "$1is-js$2")</script><div class="site-main" id="container"><div class="butterBar butterBar--error"></div><div class="surface"><div id="prerendered" class="screenContent"><div class="metabar u-clearfix u-textColorTransparentWhiteDarker u-tintBgColor u-tintSpectrum js-metabar"><div class="branch-journeys-top"></div><div class="js-metabarMiddle metabar-inner u-marginAuto u-maxWidth1032 u-flexCenter u-justifyContentSpaceBetween u-height65 u-xs-height56 u-paddingHorizontal20"><div class="metabar-block u-flex1 u-flexCenter"><div class="js-metabarLogoLeft"><a href="https://medium.com/" data-log-event="home" class="siteNav-logo u-fillWhite u-flex0 u-flexCenter u-paddingTop0"><span class="svgIcon svgIcon--wordmarkMedium svgIcon--120x26px u-flex"><svg class="svgIcon-use" width="120" height="26" ><path d="M29.57 1.404l.036-.008V1.12h-7.27l-6.75 15.979-6.75-15.98H1.003v.278l.035.008c1.327.302 2 .752 2 2.374v18.993c0 1.623-.676 2.073-2.003 2.374L1 25.153v.279h5.315v-.278l-.035-.008c-1.327-.302-2-.751-2-2.374V4.88l8.67 20.552h.492l8.924-21.125V23.24c-.114 1.282-.782 1.677-1.983 1.95l-.036.009v.275h9.259V25.2l-.036-.008c-1.203-.274-1.886-.67-2-1.95l-.006-19.464h.006c0-1.622.674-2.072 2-2.374zm4.23 12.582c.15-3.412 1.367-5.875 3.41-5.918.629.01 1.157.219 1.568.62.872.852 1.282 2.634 1.219 5.298h-6.198zm-.092.962h10.85v-.046c-.03-2.61-.78-4.64-2.228-6.033-1.25-1.204-3.103-1.867-5.048-1.867h-.043c-1.01 0-2.248.246-3.13.693a7.316 7.316 0 00-2.623 2.086c-1.185 1.479-1.903 3.477-2.078 5.724a13.717 13.717 0 00-.04.755c-.004.195-.005.39-.001.587.117 5.087 2.846 9.153 7.692 9.153 4.254 0 6.73-3.132 7.348-7.336l-.312-.11c-1.085 2.259-3.034 3.628-5.252 3.461-3.028-.228-5.347-3.32-5.137-7.066m23.122 6.893c-.356.85-1.099 1.319-2.094 1.319-.995 0-1.905-.689-2.552-1.939-.694-1.342-1.06-3.24-1.06-5.487 0-4.678 1.445-7.704 3.68-7.704.937 0 1.674.468 2.026 1.284v12.527zm7.198 3.335c-1.327-.316-2-.787-2-2.492V0l-8.062 2.392v.293l.05-.004c1.111-.09 1.866.064 2.304.472.343.32.51.809.51 1.498v3.11C56.033 7.25 55.088 7 53.94 7c-2.326 0-4.453.987-5.986 2.779-1.599 1.867-2.444 4.42-2.444 7.38 0 5.287 2.584 8.84 6.43 8.84 2.25 0 4.06-1.242 4.888-3.336v2.811h7.233v-.29l-.035-.008zM70.94 3.085c0-1.65-1.236-2.896-2.875-2.896-1.632 0-2.908 1.272-2.908 2.896 0 1.624 1.278 2.896 2.908 2.896 1.64 0 2.875-1.245 2.875-2.896zm1.903 22.092c-1.327-.316-2-.787-2-2.492h-.006V7.055l-7.234 2.092v.284l.043.004c1.566.14 1.994.683 1.994 2.525v13.515h7.24v-.29l-.037-.008zm18.536 0c-1.327-.316-2-.787-2-2.492V7.055L82.49 9.078v.285l.04.004c1.28.136 1.65.71 1.65 2.56v9.88c-.426.85-1.227 1.356-2.196 1.39-1.573 0-2.439-1.07-2.439-3.012V7.055l-7.234 2.092v.284l.044.004c1.565.14 1.994.683 1.994 2.525v8.362a9.443 9.443 0 00.15 1.741l.13.57C75.243 24.845 76.848 26 79.362 26c2.129 0 3.996-1.328 4.818-3.405v2.885h7.233v-.291l-.034-.012zm28.102.298v-.291l-.035-.009c-1.44-.334-2.001-.964-2.001-2.248V12.295C117.445 8.98 115.597 7 112.5 7c-2.257 0-4.16 1.314-4.893 3.36-.582-2.168-2.257-3.36-4.734-3.36-2.175 0-3.88 1.156-4.612 3.11V7.056l-7.233 2.006v.286l.043.004c1.547.138 1.994.697 1.994 2.492v13.631h6.75v-.29l-.037-.01c-1.148-.271-1.519-.767-1.519-2.04V10.95c.304-.715.917-1.562 2.127-1.562 1.504 0 2.266 1.05 2.266 3.116v12.972h6.751v-.29l-.035-.01c-1.149-.271-1.52-.767-1.52-2.04V12.294a7.107 7.107 0 00-.095-1.21c.322-.777.97-1.696 2.23-1.696 1.524 0 2.265 1.02 2.265 3.116v12.972h7.233z"/></svg></span><span class="u-textScreenReader">Homepage</span></a></div><div class="u-paddingLeft10 u-sm-show r-paddingRight10"><a href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com/towards-data-science%3F~feature=LoMobileNavBar&~channel=ShowCollectionHome&~stage=m2">Open in app</a></div></div><div class="metabar-block u-flex0 u-flexCenter"><div class="u-flexCenter u-height65 u-xs-height56"><div class="buttonSet buttonSet--wide u-lineHeightInherit"><a class="button button--primary button--light button--chromeless u-accentColor--buttonNormal is-inSiteNavBar u-xs-hide js-signInButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2F&source=--------------------------nav_reg&operation=login" data-action="sign-in-prompt" data-redirect="https://towardsdatascience.com/" data-action-source="--------------------------nav_reg">Sign in</a><a class="button button--primary button--light button--withChrome u-accentColor--buttonNormal is-inSiteNavBar js-signUpButton" href="https://medium.com/m/signin?redirect=https%3A%2F%2Ftowardsdatascience.com%2F&source=--------------------------nav_reg&operation=register" data-action="sign-up-prompt" data-redirect="https://towardsdatascience.com/" data-action-source="--------------------------nav_reg">Get started</a></div></div></div></div></div><div class="metabar metabar--spacer js-metabarSpacer u-tintBgColor u-height65 u-xs-height56"></div><div class="collectionHeader js-collectionHeaderContainer u-relative collectionHeader--layoutMedium collectionHeader--alignmentLeft collectionHeader--withLogo collectionHeader--withoutBackground collectionHeader--colorBehaviorBold collectionHeader--withNavigation collectionHeader--editorLayoutTitleAndLogo is-modeView is-whiteLabel u-tintBgColor"><div class="collectionHeader-aspectRatioTable"><div class="collectionHeader-aspectRatioContent u-backgroundSizeCover js-collectionHeaderBackground"><div class="collectionHeader-overlayBackground u-height100vh"></div><header class="collectionHeader-heroAndInlineNav u-borderBox u-maxWidth1072 u-paddingLeft20 u-paddingRight20 u-marginAuto u-foreground js-collectionHeader"><div class="collectionHeader-hero js-collectionHeaderHero u-clearfix u-tintSpectrum"><div class="collectionHeader-heroInner"><div class="collectionHeader-logo js-collectionHeaderLogo" style="max-width: 221px;"><a class="link u-baseColor--link" href="https://towardsdatascience.com" title="Go to Towards Data Science" aria-label="Go to Towards Data Science" data-collection-slug="towards-data-science"><div class="u-relative u-marginAuto"><div style="padding-bottom: 41.59848961611076%"></div><img class="collectionHeader-logoImage js-collectionHeaderLogoImage" src="https://cdn-images-1.medium.com/max/442/1*1m9fjwOZWwXIP82RWvRH5A@2x.png" data-image-id="1*1m9fjwOZWwXIP82RWvRH5A@2x.png" data-width="1589" data-height="661" /></div></a></div><div class="collectionHeader-nameAndDescription"><h2 class="collectionHeader-description js-collectionDescription u-foreground u-baseColor--textNormal u-contentSansRegular u-fontSize24 u-xs-fontSize18">The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.</h2></div></div></div></header></div><div class="collectionHeader-aspectRatioCell"><div class="collectionHeader-aspectRatioFullWidth"></div></div></div><div class="collectionHeader-blockNav"><div class="u-borderBox u-maxWidth1072 u-paddingLeft20 u-paddingRight20 u-marginAuto"><nav class="collectionHeader-nav u-clearfix js-collectionHeaderNav u-lineHeight40 u-overflowHiddenY u-tintSpectrum"><div class="buttonSet u-flex1 u-noWrap u-overflowX u-paddingBottom100 u-xs-marginRight15"><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/latest">Latest</a></li><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/editors-picks/home">Editors' Picks</a></li><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/deep-dives/home">Deep Dives</a></li><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/about-us/home">About</a></li><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0"><a class="link link--darken u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://towardsdatascience.com/questions-96667b06af5">Contribute</a></li><span class="u-borderLeft1 u-paddingLeft22 u-xs-paddingLeft12 u-baseColor--borderLight"></span><li class="collectionHeader-navItem js-collectionNavItem u-inlineBlock u-fontSize13 u-textUppercase u-letterSpacing1px u-textColorNormal u-xs-paddingRight12 u-xs-marginRight0 is-external"><a class="link link--darkenOnHover u-accentColor--textDarken link--noUnderline u-baseColor--link js-navItemLink" href="https://medium.com/towards-data-science/newsletter" rel="nofollow noopener" target="_blank">Newsletter</a></li></div><div class="buttonSet u-textAlignRight u-marginLeft18 u-flex0 u-noWrap"><label class="button button--small button--chromeless button--withIcon button--withSvgIcon inputGroup u-sm-hide metabar-predictiveSearch u-baseColor--buttonNormal u-baseColor--placeholderNormal" title="Search"><span class="svgIcon svgIcon--search svgIcon--25px u-baseColor--iconLight"><svg class="svgIcon-use" width="25" height="25" ><path d="M20.067 18.933l-4.157-4.157a6 6 0 10-.884.884l4.157 4.157a.624.624 0 10.884-.884zM6.5 11c0-2.62 2.13-4.75 4.75-4.75S16 8.38 16 11s-2.13 4.75-4.75 4.75S6.5 13.62 6.5 11z"/></svg></span><input class="js-predictiveSearchInput textInput textInput--rounded textInput--darkText u-baseColor--textNormal textInput--transparent" type="search" placeholder="Search" required="true" data-collection-id="7f60cf5620c9" /></label><a class="button button--light button--chromeless is-touchIconBlackPulse u-baseColor--buttonLight button--withIcon button--withSvgIcon button--chromeless u-verticalAlignMiddle" href="https://twitter.com/TDataScience" title="Visit “Towards Data Science” on X" aria-label="Visit “Towards Data Science” on X" rel="me" target="_blank"><span class="button-defaultState"><span class="svgIcon svgIcon--twitter svgIcon--25px"><svg class="svgIcon-use" width="25" height="25" fill="none" ><path d="M14.215 11.3l5.764-6.7h-1.366l-5.005 5.818L9.611 4.6H5l6.045 8.798L5 20.424h1.366l5.286-6.144 4.221 6.144h4.61L14.216 11.3zm-1.871 2.175l-.612-.876-4.874-6.97h2.098l3.933 5.625.613.876 5.112 7.312h-2.098l-4.172-5.966z" fill="#242424"/></svg></span></span></a><button class="button button--primary button--smallest u-noUserSelect button--withChrome u-accentColor--buttonNormal button--followCollection js-followCollectionButton" data-action="sign-up-prompt" data-sign-in-action="toggle-subscribe-collection" data-requires-token="true" data-redirect="https://medium.com/_/subscribe/collection/towards-data-science" data-action-source="header----7f60cf5620c9----------------------follow_pub"><span class="button-label button-defaultState js-buttonLabel">Follow</span><span class="button-label button-activeState">Following</span></button></div></nav></div></div></div><div class="u-marginBottom40 js-collectionStream"><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_home---4------0-----------------------" data-post-id="74f119c7e036" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/making-news-recommendations-explainable-with-large-language-models-74f119c7e036?source=collection_home---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/making-news-recommendations-explainable-with-large-language-models-74f119c7e036?source=collection_home---4------0-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/1200/1*ASOYvGGW8pU5E5fVmFfKOw.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Making News Recommendations Explainable with Large Language Models</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/making-news-recommendations-explainable-with-large-language-models-74f119c7e036?source=collection_home---4------0-----------------------" data-action-source="collection_home---4------0-----------------------" data-post-id="74f119c7e036"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Making News Recommendations Explainable with Large Language Models</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@helloheld" data-action="show-user-card" data-action-value="a085c7ebee7" data-action-type="hover" data-user-id="a085c7ebee7" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*EoRDqg2BxYlZp9PXgMnRwQ.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Alex Held"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@helloheld" data-action="show-user-card" data-action-value="a085c7ebee7" data-action-type="hover" data-user-id="a085c7ebee7" data-collection-slug="towards-data-science" dir="auto">Alex Held</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-30T16:02:23.113Z">Nov 30</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="7 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size6of12" data-source="collection_home---4------1-----------------------" data-post-id="443c07f3a717" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/grokking-behavioral-interviews-443c07f3a717?source=collection_home---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/grokking-behavioral-interviews-443c07f3a717?source=collection_home---4------1-----------------------" class="u-block u-xs-height170 u-width600 u-height272 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/1200/1*EW9SIyf1bSVfd2TAzs8vqA.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Grokking Behavioral Interviews</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/grokking-behavioral-interviews-443c07f3a717?source=collection_home---4------1-----------------------" data-action-source="collection_home---4------1-----------------------" data-post-id="443c07f3a717"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Grokking Behavioral Interviews</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Master the art of behavioral interviews and land your dream job</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@mina.ghashami" data-action="show-user-card" data-action-value="c99ed9ed7b9a" data-action-type="hover" data-user-id="c99ed9ed7b9a" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*aVPYgqpzD43dLSahkkKsTw.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Mina Ghashami"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@mina.ghashami" data-action="show-user-card" data-action-value="c99ed9ed7b9a" data-action-type="hover" data-user-id="c99ed9ed7b9a" data-collection-slug="towards-data-science" dir="auto">Mina Ghashami</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-30T14:18:50.727Z">Nov 30</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="6 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div></section></div><div class="streamItem streamItem--section js-streamItem"><section class="u-marginTop30 u-xs-margin0 u-marginBottom15 u-maxWidth1032 u-sm-paddingLeft20 u-sm-paddingRight20 u-borderBox u-marginAuto"><header class="heading heading--borderedBottom u-fontSize18 u-contentSansThin" ><div class="u-clearfix"><div class="heading-content u-floatLeft"><span class="heading-title heading-title--dark heading-title--lineHeightTight u-fontSize18 u-contentSansThin">Latest</span></div></div></header><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------0-----------------------" data-post-id="eb13bbdc8f88" data-index="0"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/model-validation-techniques-explained-a-visual-guide-with-code-examples-eb13bbdc8f88?source=collection_home---4------0-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/model-validation-techniques-explained-a-visual-guide-with-code-examples-eb13bbdc8f88?source=collection_home---4------0-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*XQDe622Tw9GCKJ8N4b0QeQ.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Model Validation Techniques, Explained: A Visual Guide with Code Examples</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/model-validation-techniques-explained-a-visual-guide-with-code-examples-eb13bbdc8f88?source=collection_home---4------0-----------------------" data-action-source="collection_home---4------0-----------------------" data-post-id="eb13bbdc8f88"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Model Validation Techniques, Explained: A Visual Guide with Code Examples</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">12 must-know methods to validate your machine learning</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@samybaladram" data-action="show-user-card" data-action-value="d60bec775fa6" data-action-type="hover" data-user-id="d60bec775fa6" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*M5J7CK552m9f4z-m1F7vYg.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Samy Baladram"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@samybaladram" data-action="show-user-card" data-action-value="d60bec775fa6" data-action-type="hover" data-user-id="d60bec775fa6" data-collection-slug="towards-data-science" dir="auto">Samy Baladram</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-30T13:02:17.897Z">Nov 30</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="25 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------1-----------------------" data-post-id="a234e29b192d" data-index="1"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/dunder-methods-the-hidden-gems-of-python-a234e29b192d?source=collection_home---4------1-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/dunder-methods-the-hidden-gems-of-python-a234e29b192d?source=collection_home---4------1-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/0*_Wt6GwCNJEfYDcGi"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Dunder Methods: The Hidden Gems of Python</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/dunder-methods-the-hidden-gems-of-python-a234e29b192d?source=collection_home---4------1-----------------------" data-action-source="collection_home---4------1-----------------------" data-post-id="a234e29b192d"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Dunder Methods: The Hidden Gems of Python</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Real-world examples on how actively using special methods can simplify coding and improve readability</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@federico.zabeo29" data-action="show-user-card" data-action-value="b9f817597253" data-action-type="hover" data-user-id="b9f817597253" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*sFJYvDTOpYsTwYhn7KtXmg.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Federico Zabeo"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@federico.zabeo29" data-action="show-user-card" data-action-value="b9f817597253" data-action-type="hover" data-user-id="b9f817597253" data-collection-slug="towards-data-science" dir="auto">Federico Zabeo</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-30T11:02:10.122Z">Nov 30</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="8 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------2-----------------------" data-post-id="af06d24e011d" data-index="2"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/why-internal-company-chatbots-fail-and-how-to-use-generative-ai-in-enterprise-with-impact-af06d24e011d?source=collection_home---4------2-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/why-internal-company-chatbots-fail-and-how-to-use-generative-ai-in-enterprise-with-impact-af06d24e011d?source=collection_home---4------2-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*Z42dmszgUoF6-ztCNqo8tg.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Why Internal Company Chatbots Fail and How to Use Generative AI in Enterprise with Impact</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/why-internal-company-chatbots-fail-and-how-to-use-generative-ai-in-enterprise-with-impact-af06d24e011d?source=collection_home---4------2-----------------------" data-action-source="collection_home---4------2-----------------------" data-post-id="af06d24e011d"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Why Internal Company Chatbots Fail and How to Use Generative AI in Enterprise with Impact</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Start with the problem and not with the solution</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@marcelmueller" data-action="show-user-card" data-action-value="5f5a8adb223a" data-action-type="hover" data-user-id="5f5a8adb223a" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*O8tYeDgwh0W5DM71HMiu5w.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Dr. Marcel Müller"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@marcelmueller" data-action="show-user-card" data-action-value="5f5a8adb223a" data-action-type="hover" data-user-id="5f5a8adb223a" data-collection-slug="towards-data-science" dir="auto">Dr. Marcel Müller</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T17:41:21.652Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="10 min read"></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------3-----------------------" data-post-id="930e2267006e" data-index="3"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/think-you-know-excel-take-your-analytics-skills-to-the-next-level-with-power-query-930e2267006e?source=collection_home---4------3-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/think-you-know-excel-take-your-analytics-skills-to-the-next-level-with-power-query-930e2267006e?source=collection_home---4------3-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*qzR1tyW9-KTPpuoAjFiCtw.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Think you Know Excel? Take Your Analytics Skills to the Next Level with Power Query!</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/think-you-know-excel-take-your-analytics-skills-to-the-next-level-with-power-query-930e2267006e?source=collection_home---4------3-----------------------" data-action-source="collection_home---4------3-----------------------" data-post-id="930e2267006e"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Think you Know Excel? Take Your Analytics Skills to the Next Level with Power Query!</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">5 practical use cases that prove Power Query is worth exploring.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@ihetsevi" data-action="show-user-card" data-action-value="f44c0bb08544" data-action-type="hover" data-user-id="f44c0bb08544" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*GzsZBZVN_fq0r_mNuu87vw.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Ilona Hetsevich"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@ihetsevi" data-action="show-user-card" data-action-value="f44c0bb08544" data-action-type="hover" data-user-id="f44c0bb08544" data-collection-slug="towards-data-science" dir="auto">Ilona Hetsevich</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T16:09:48.678Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="7 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------4-----------------------" data-post-id="caf98151db0e" data-index="4"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/water-cooler-small-talk-simpsons-paradox-caf98151db0e?source=collection_home---4------4-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/water-cooler-small-talk-simpsons-paradox-caf98151db0e?source=collection_home---4------4-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*RlB5AwLS6p3jwKuM6kGJVA.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Water Cooler Small Talk: Simpson’s Paradox</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/water-cooler-small-talk-simpsons-paradox-caf98151db0e?source=collection_home---4------4-----------------------" data-action-source="collection_home---4------4-----------------------" data-post-id="caf98151db0e"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Water Cooler Small Talk: Simpson’s Paradox</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Is your data tricking you? What can you do about it?</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@m.mouschoutzi" data-action="show-user-card" data-action-value="dce3cb684eae" data-action-type="hover" data-user-id="dce3cb684eae" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*J2wEIjBYYebYh86Z6Wt3sA@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Maria Mouschoutzi, PhD"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@m.mouschoutzi" data-action="show-user-card" data-action-value="dce3cb684eae" data-action-type="hover" data-user-id="dce3cb684eae" data-collection-slug="towards-data-science" dir="auto">Maria Mouschoutzi, PhD</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T16:02:09.346Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="9 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------5-----------------------" data-post-id="5dc36975966f" data-index="5"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/multimodal-embeddings-an-introduction-5dc36975966f?source=collection_home---4------5-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/multimodal-embeddings-an-introduction-5dc36975966f?source=collection_home---4------5-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*a6BF-kEeo8rd7OW2a3JYGA.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Multimodal Embeddings: An Introduction</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/multimodal-embeddings-an-introduction-5dc36975966f?source=collection_home---4------5-----------------------" data-action-source="collection_home---4------5-----------------------" data-post-id="5dc36975966f"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Multimodal Embeddings: An Introduction</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Mapping text and images into a common space</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@shawhin" data-action="show-user-card" data-action-value="f3998e1cd186" data-action-type="hover" data-user-id="f3998e1cd186" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*mhVX2L2LGQM4XZNwvU7H5A.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Shaw Talebi"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@shawhin" data-action="show-user-card" data-action-value="f3998e1cd186" data-action-type="hover" data-user-id="f3998e1cd186" data-collection-slug="towards-data-science" dir="auto">Shaw Talebi</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T15:02:12.635Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="8 min read"></span></div></div></div></div></div></div></div><div class="row u-marginTop30 u-marginLeftNegative12 u-marginRightNegative12"><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------6-----------------------" data-post-id="e444f80053dd" data-index="6"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/ai-math-the-bias-variance-trade-off-in-deep-learning-e444f80053dd?source=collection_home---4------6-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/ai-math-the-bias-variance-trade-off-in-deep-learning-e444f80053dd?source=collection_home---4------6-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*BeQ2h3qftp--CFxKY2rW8w@2x.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">AI Math: The Bias-Variance Trade-off in Deep Learning</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/ai-math-the-bias-variance-trade-off-in-deep-learning-e444f80053dd?source=collection_home---4------6-----------------------" data-action-source="collection_home---4------6-----------------------" data-post-id="e444f80053dd"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">AI Math: The Bias-Variance Trade-off in Deep Learning</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">A visual tour from classical statistics to the nuances of deep learning</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@TarikDzekman" data-action="show-user-card" data-action-value="752038078741" data-action-type="hover" data-user-id="752038078741" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/2*89BjkQMI4MLzZQvGJu4k3Q.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Tarik Dzekman"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@TarikDzekman" data-action="show-user-card" data-action-value="752038078741" data-action-type="hover" data-user-id="752038078741" data-collection-slug="towards-data-science" dir="auto">Tarik Dzekman</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T14:02:16.600Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="47 min read"></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------7-----------------------" data-post-id="c65dc602e809" data-index="7"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/porting-twitters-anomaly-detection-algorithm-to-swift-c65dc602e809?source=collection_home---4------7-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/porting-twitters-anomaly-detection-algorithm-to-swift-c65dc602e809?source=collection_home---4------7-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*9R0wZJbmGQSTxG4nLcWmxQ.png"); background-position: 50% 50% !important;"><span class="u-textScreenReader">Porting Twitter’s Anomaly Detection Algorithm To Swift</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/porting-twitters-anomaly-detection-algorithm-to-swift-c65dc602e809?source=collection_home---4------7-----------------------" data-action-source="collection_home---4------7-----------------------" data-post-id="c65dc602e809"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">Porting Twitter’s Anomaly Detection Algorithm To Swift</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">From Twitter to Swift: Building Anomaly Detection.</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@aaronbeckley" data-action="show-user-card" data-action-value="7272e5ea3be1" data-action-type="hover" data-user-id="7272e5ea3be1" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*wntVrmpk3dyO_VPjmL-v4A.png" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Aaron Beckley"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@aaronbeckley" data-action="show-user-card" data-action-value="7272e5ea3be1" data-action-type="hover" data-user-id="7272e5ea3be1" data-collection-slug="towards-data-science" dir="auto">Aaron Beckley</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T13:02:14.386Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="12 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div><div class="col u-xs-size12of12 js-trackPostPresentation u-paddingLeft12 u-marginBottom15 u-paddingRight12 u-size4of12" data-source="collection_home---4------8-----------------------" data-post-id="64b4a868f91a" data-index="8"><div class="u-lineHeightBase postItem"><a href="https://towardsdatascience.com/so-its-your-first-year-in-ai-here-s-what-to-expect-64b4a868f91a?source=collection_home---4------8-----------------------" data-action="open-post" data-action-value="https://towardsdatascience.com/so-its-your-first-year-in-ai-here-s-what-to-expect-64b4a868f91a?source=collection_home---4------8-----------------------" class="u-block u-xs-height170 u-height172 u-backgroundSizeCover u-backgroundOriginBorderBox u-backgroundColorGrayLight u-borderLighter" style="background-image: url("https://cdn-images-1.medium.com/max/800/1*NEqNt6OXJiZhVuaYvphsAA@2x.jpeg"); background-position: 50% 50% !important;"><span class="u-textScreenReader">So It’s Your First Year in AI; Here’s What to Expect</span></a></div><div class="col u-xs-marginBottom10 u-paddingLeft0 u-paddingRight0 u-paddingTop15 u-marginBottom30"><a class="" href="https://towardsdatascience.com/so-its-your-first-year-in-ai-here-s-what-to-expect-64b4a868f91a?source=collection_home---4------8-----------------------" data-action-source="collection_home---4------8-----------------------" data-post-id="64b4a868f91a"><h3 class="u-contentSansBold u-lineHeightTightest u-xs-fontSize24 u-paddingBottom2 u-paddingTop5 u-fontSize32"><div class="u-letterSpacingTight u-lineHeightTighter u-breakWord u-textOverflowEllipsis u-lineClamp3 u-fontSize24">So It’s Your First Year in AI; Here’s What to Expect</div></h3><div class="u-contentSansThin u-lineHeightBaseSans u-fontSize24 u-xs-fontSize18 u-textColorNormal u-baseColor--textNormal"><div class="u-fontSize18 u-letterSpacingTight u-lineHeightTight u-marginTop7 u-textColorNormal u-baseColor--textNormal">Sharing my experience from both AI startups and large corporates</div></div></a><div class="u-clearfix u-marginTop20"><div class="u-flexCenter"><div class="postMetaInline-avatar u-flex0"><a class="link u-baseColor--link avatar" href="https://towardsdatascience.com/@zakharymg" data-action="show-user-card" data-action-value="10e58cd8f016" data-action-type="hover" data-user-id="10e58cd8f016" data-collection-slug="towards-data-science" dir="auto"><img src="https://cdn-images-1.medium.com/fit/c/72/72/1*IjgZHdotSStn8YBgoY17zw@2x.jpeg" class="avatar-image u-size36x36 u-xs-size32x32" alt="Go to the profile of Michael Zakhary"></a></div><div class="postMetaInline postMetaInline-authorLockup ui-captionStrong u-flex1 u-noWrapWithEllipsis"><a class="ds-link ds-link--styleSubtle link link--darken link--accent u-accentColor--textNormal u-accentColor--textDarken" href="https://towardsdatascience.com/@zakharymg" data-action="show-user-card" data-action-value="10e58cd8f016" data-action-type="hover" data-user-id="10e58cd8f016" data-collection-slug="towards-data-science" dir="auto">Michael Zakhary</a><div class="ui-caption u-fontSize12 u-baseColor--textNormal u-textColorNormal js-postMetaInlineSupplemental"><time datetime="2024-11-29T12:02:19.565Z">Nov 29</time><span class="middotDivider u-fontSize12"></span><span class="readingTime" title="8 min read"></span><span class="u-paddingLeft4"><span class="svgIcon svgIcon--star svgIcon--15px"><svg class="svgIcon-use" width="15" height="15" ><path d="M7.438 2.324c.034-.099.09-.099.123 0l1.2 3.53a.29.29 0 00.26.19h3.884c.11 0 .127.049.038.111L9.8 8.327a.271.271 0 00-.099.291l1.2 3.53c.034.1-.011.131-.098.069l-3.142-2.18a.303.303 0 00-.32 0l-3.145 2.182c-.087.06-.132.03-.099-.068l1.2-3.53a.271.271 0 00-.098-.292L2.056 6.146c-.087-.06-.071-.112.038-.112h3.884a.29.29 0 00.26-.19l1.2-3.52z"/></svg></span></span></div></div></div></div></div></div></div></section></div></div><style class="js-collectionStyle"> .u-accentColor--borderLight {border-color: #668AAA !important;} .u-accentColor--borderNormal {border-color: #668AAA !important;} .u-accentColor--borderDark {border-color: #5A7690 !important;} .u-accentColor--iconLight .svgIcon,.u-accentColor--iconLight.svgIcon {fill: #668AAA !important;} .u-accentColor--iconNormal .svgIcon,.u-accentColor--iconNormal.svgIcon {fill: #668AAA !important;} .u-accentColor--iconDark .svgIcon,.u-accentColor--iconDark.svgIcon {fill: #5A7690 !important;} .u-accentColor--textNormal {color: #5A7690 !important;} .u-accentColor--hoverTextNormal:hover {color: #5A7690 !important;} .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #546C83 !important;} .u-accentColor--textDark {color: #546C83 !important;} .u-accentColor--backgroundLight {background-color: #668AAA !important;} .u-accentColor--backgroundNormal {background-color: #668AAA !important;} .u-accentColor--backgroundDark {background-color: #5A7690 !important;} .u-accentColor--buttonDark {border-color: #5A7690 !important; color: #546C83 !important;} .u-accentColor--buttonDark:hover {border-color: #546C83 !important;} .u-accentColor--buttonDark .icon:before,.u-accentColor--buttonDark .svgIcon{color: #5A7690 !important; fill: #5A7690 !important;} .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #668AAA !important; color: #5A7690 !important;} .u-accentColor--buttonNormal:hover {border-color: #5A7690 !important;} .u-accentColor--buttonNormal .icon:before,.u-accentColor--buttonNormal .svgIcon{color: #668AAA !important; fill: #668AAA !important;} .u-accentColor--buttonNormal.button--filled .icon:before,.u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonDark.button--filled,.u-accentColor--buttonDark.button--withChrome.is-active,.u-accentColor--fillWhenActive.is-active {background-color: #5A7690 !important; border-color: #5A7690 !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #668AAA !important; border-color: #668AAA !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .postArticle.is-withAccentColors .markup--user,.postArticle.is-withAccentColors .markup--query {color: #5A7690 !important;}.u-tintBgColor {background-color: rgba(53, 88, 118, 1) !important;}.u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(53, 88, 118, 1) 0%, rgba(53, 88, 118, 0) 100%) !important;}.u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(53, 88, 118, 0) 0%, rgba(53, 88, 118, 1) 100%) !important;} .u-tintSpectrum .u-baseColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--iconLight .svgIcon,.u-tintSpectrum .u-baseColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--iconNormal .svgIcon,.u-tintSpectrum .u-baseColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--iconDark .svgIcon,.u-tintSpectrum .u-baseColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--textDarker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonLight {border-color: #9FB3C6 !important; color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight:hover {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonLight .icon:before,.u-tintSpectrum .u-baseColor--buttonLight .svgIcon {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-baseColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--buttonDark .icon:before,.u-tintSpectrum .u-baseColor--buttonDark .svgIcon {color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-baseColor--buttonNormal .icon:before,.u-tintSpectrum .u-baseColor--buttonNormal .svgIcon {color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--buttonDark.button--filled,.u-tintSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--buttonNormal.button--filled,.u-tintSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-baseColor--link {color: #C5D2E1 !important;} .u-tintSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-tintSpectrum .u-baseColor--link.link--dark.link--darken:active {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--link.link--darker {color: #FBFFFF !important;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: #9FB3C6;} .u-tintSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: #9FB3C6;} .u-tintSpectrum .ui-h1,.u-tintSpectrum .ui-h2,.u-tintSpectrum .ui-h3,.u-tintSpectrum .ui-h4,.u-tintSpectrum .ui-brand1,.u-tintSpectrum .ui-brand2,.u-tintSpectrum .ui-captionStrong {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-body,.u-tintSpectrum .ui-caps {color: #FBFFFF !important; fill: #FBFFFF !important;} .u-tintSpectrum .ui-summary,.u-tintSpectrum .ui-caption {color: #9FB3C6 !important; fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderLight {border-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--borderNormal {border-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--borderDark {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--iconLight .svgIcon,.u-tintSpectrum .u-accentColor--iconLight.svgIcon {fill: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--iconNormal .svgIcon,.u-tintSpectrum .u-accentColor--iconNormal.svgIcon {fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--iconDark .svgIcon,.u-tintSpectrum .u-accentColor--iconDark.svgIcon {fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--textNormal {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--hoverTextNormal:hover {color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--textDark {color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--backgroundLight {background-color: #9FB3C6 !important;} .u-tintSpectrum .u-accentColor--backgroundNormal {background-color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--backgroundDark {background-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonDark {border-color: #E9F1FA !important; color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark:hover {border-color: #FBFFFF !important;} .u-tintSpectrum .u-accentColor--buttonDark .icon:before,.u-tintSpectrum .u-accentColor--buttonDark .svgIcon{color: #E9F1FA !important; fill: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: #C5D2E1 !important; color: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal:hover {border-color: #E9F1FA !important;} .u-tintSpectrum .u-accentColor--buttonNormal .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal .svgIcon{color: #C5D2E1 !important; fill: #C5D2E1 !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-tintSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonDark.button--filled,.u-tintSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-tintSpectrum .u-accentColor--fillWhenActive.is-active {background-color: #E9F1FA !important; border-color: #E9F1FA !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-tintSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: #C5D2E1 !important; border-color: #C5D2E1 !important; color: rgba(53, 88, 118, 1) !important; fill: rgba(53, 88, 118, 1) !important;} .u-tintSpectrum .postArticle.is-withAccentColors .markup--user,.u-tintSpectrum .postArticle.is-withAccentColors .markup--query {color: #C5D2E1 !important;} .u-accentColor--highlightFaint {background-color: rgba(233, 242, 253, 1) !important;} .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(200, 228, 255, 1) !important;} .postArticle.is-withAccentColors .markup--quote.is-other {background-color: rgba(233, 242, 253, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(233, 242, 253, 1), rgba(233, 242, 253, 1));} .postArticle.is-withAccentColors .markup--quote.is-me {background-color: rgba(215, 235, 254, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(215, 235, 254, 1), rgba(215, 235, 254, 1));} .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));} .postArticle.is-withAccentColors .markup--highlight {background-color: rgba(200, 228, 255, 1) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(200, 228, 255, 1), rgba(200, 228, 255, 1));}</style><style class="js-collectionStyleConstant">.u-imageBgColor {background-color: rgba(0, 0, 0, 0.24705882352941178);} .u-imageSpectrum .u-baseColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconLight .svgIcon,.u-imageSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--iconNormal .svgIcon,.u-imageSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--iconDark .svgIcon,.u-imageSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--textDarker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-baseColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important; color: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-baseColor--buttonLight .icon:before,.u-imageSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-baseColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonDark .icon:before,.u-imageSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--buttonNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonNormal .icon:before,.u-imageSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--buttonDark.button--filled,.u-imageSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--buttonNormal.button--filled,.u-imageSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-baseColor--link {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-imageSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--link.link--darker {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(255, 255, 255, 0.8);} .u-imageSpectrum .ui-h1,.u-imageSpectrum .ui-h2,.u-imageSpectrum .ui-h3,.u-imageSpectrum .ui-h4,.u-imageSpectrum .ui-brand1,.u-imageSpectrum .ui-brand2,.u-imageSpectrum .ui-captionStrong {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-body,.u-imageSpectrum .ui-caps {color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .ui-summary,.u-imageSpectrum .ui-caption {color: rgba(255, 255, 255, 0.8) !important; fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--borderLight {border-color: rgba(255, 255, 255, 0.6980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderNormal {border-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--borderDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconLight .svgIcon,.u-imageSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(255, 255, 255, 0.8) !important;} .u-imageSpectrum .u-accentColor--iconNormal .svgIcon,.u-imageSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--iconDark .svgIcon,.u-imageSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textNormal {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--textDark {color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--backgroundLight {background-color: rgba(255, 255, 255, 0.8980392156862745) !important;} .u-imageSpectrum .u-accentColor--backgroundNormal {background-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--backgroundDark {background-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark {border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonDark .icon:before,.u-imageSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(255, 255, 255, 0.8980392156862745) !important; color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(255, 255, 255, 0.9490196078431372) !important; fill: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-imageSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonDark.button--filled,.u-imageSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-imageSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(255, 255, 255, 1) !important; border-color: rgba(255, 255, 255, 1) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-imageSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(255, 255, 255, 0.9490196078431372) !important; border-color: rgba(255, 255, 255, 0.9490196078431372) !important; color: rgba(0, 0, 0, 0.24705882352941178) !important; fill: rgba(0, 0, 0, 0.24705882352941178) !important;} .u-imageSpectrum .postArticle.is-withAccentColors .markup--user,.u-imageSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(255, 255, 255, 0.9490196078431372) !important;} .u-imageSpectrum .u-accentColor--highlightFaint {background-color: rgba(255, 255, 255, 0.2) !important;} .u-imageSpectrum .u-accentColor--highlightStrong.is-active .svgIcon {fill: rgba(255, 255, 255, 0.6) !important;} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: rgba(255, 255, 255, 0.2) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-other {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 0.2));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: rgba(255, 255, 255, 0.4) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-me {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.4), rgba(255, 255, 255, 0.4));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-targeted {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--quote.is-selected {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));} .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: rgba(255, 255, 255, 0.6) !important;} body.is-withMagicUnderlines .postArticle.is-withAccentColors .u-imageSpectrum .markup--highlight {background-color: transparent !important; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 0.6), rgba(255, 255, 255, 0.6));}.u-resetSpectrum .u-tintBgColor {background-color: rgba(255, 255, 255, 1) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeLeft:before {background-image: linear-gradient(to right, rgba(255, 255, 255, 1) 0%, rgba(255, 255, 255, 0) 100%) !important;}.u-resetSpectrum .u-tintBgColor .u-fadeRight:after {background-image: linear-gradient(to right, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 1) 100%) !important;} .u-resetSpectrum .u-baseColor--borderLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--borderDark {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--iconLight .svgIcon,.u-resetSpectrum .u-baseColor--iconLight.svgIcon {fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconNormal .svgIcon,.u-resetSpectrum .u-baseColor--iconNormal.svgIcon {fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--iconDark .svgIcon,.u-resetSpectrum .u-baseColor--iconDark.svgIcon {fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textNormal {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--textNormal.u-baseColor--textDarken:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--textDarker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--backgroundLight {background-color: rgba(0, 0, 0, 0.09803921568627451) !important;} .u-resetSpectrum .u-baseColor--backgroundNormal {background-color: rgba(0, 0, 0, 0.2) !important;} .u-resetSpectrum .u-baseColor--backgroundDark {background-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight {border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight:hover {border-color: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonLight .icon:before,.u-resetSpectrum .u-baseColor--buttonLight .svgIcon {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark {border-color: rgba(0, 0, 0, 0.6) !important; color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonDark:hover {border-color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--buttonDark .icon:before,.u-resetSpectrum .u-baseColor--buttonDark .svgIcon {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal {border-color: rgba(0, 0, 0, 0.4980392156862745) !important; color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonNormal:hover {border-color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--buttonNormal .icon:before,.u-resetSpectrum .u-baseColor--buttonNormal .svgIcon {color: rgba(0, 0, 0, 0.4980392156862745) !important; fill: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--buttonDark.button--filled,.u-resetSpectrum .u-baseColor--buttonDark.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2980392156862745) !important; border-color: rgba(0, 0, 0, 0.2980392156862745) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--buttonNormal.button--filled,.u-resetSpectrum .u-baseColor--buttonNormal.button--withChrome.is-active {background-color: rgba(0, 0, 0, 0.2) !important; border-color: rgba(0, 0, 0, 0.2) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-baseColor--link {color: rgba(0, 0, 0, 0.4980392156862745) !important;} .u-resetSpectrum .u-baseColor--link.link--darkenOnHover:hover {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--darken:active {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark {color: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .u-baseColor--link.link--dark.link--darken:hover,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:focus,.u-resetSpectrum .u-baseColor--link.link--dark.link--darken:active {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--link.link--darker {color: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .u-baseColor--placeholderNormal ::-webkit-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal ::-moz-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .u-baseColor--placeholderNormal :-ms-input-placeholder {color: rgba(0, 0, 0, 0.2980392156862745);} .u-resetSpectrum .ui-h1,.u-resetSpectrum .ui-h2,.u-resetSpectrum .ui-h3,.u-resetSpectrum .ui-h4,.u-resetSpectrum .ui-brand1,.u-resetSpectrum .ui-brand2,.u-resetSpectrum .ui-captionStrong {color: rgba(0, 0, 0, 0.8) !important; fill: rgba(0, 0, 0, 0.8) !important;} .u-resetSpectrum .ui-body,.u-resetSpectrum .ui-caps {color: rgba(0, 0, 0, 0.6) !important; fill: rgba(0, 0, 0, 0.6) !important;} .u-resetSpectrum .ui-summary,.u-resetSpectrum .ui-caption {color: rgba(0, 0, 0, 0.2980392156862745) !important; fill: rgba(0, 0, 0, 0.2980392156862745) !important;} .u-resetSpectrum .u-accentColor--borderLight {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderNormal {border-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--borderDark {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconLight .svgIcon,.u-resetSpectrum .u-accentColor--iconLight.svgIcon {fill: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--iconNormal .svgIcon,.u-resetSpectrum .u-accentColor--iconNormal.svgIcon {fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--iconDark .svgIcon,.u-resetSpectrum .u-accentColor--iconDark.svgIcon {fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--hoverTextNormal:hover {color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--textNormal.u-accentColor--textDarken:hover {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--textDark {color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundLight {background-color: rgba(26, 137, 23, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundNormal {background-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--backgroundDark {background-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark {border-color: rgba(17, 128, 14, 1) !important; color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark:hover {border-color: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark .icon:before,.u-resetSpectrum .u-accentColor--buttonDark .svgIcon{color: rgba(15, 115, 12, 1) !important; fill: rgba(15, 115, 12, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:not(.clapButton--largePill) {border-color: rgba(26, 137, 23, 1) !important; color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal:hover {border-color: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal .svgIcon{color: rgba(17, 128, 14, 1) !important; fill: rgba(17, 128, 14, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled .icon:before,.u-resetSpectrum .u-accentColor--buttonNormal.button--filled .svgIcon{color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonDark.button--filled,.u-resetSpectrum .u-accentColor--buttonDark.button--withChrome.is-active,.u-resetSpectrum .u-accentColor--fillWhenActive.is-active {background-color: rgba(15, 115, 12, 1) !important; border-color: rgba(15, 115, 12, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .u-accentColor--buttonNormal.button--filled:not(.clapButton--largePill),.u-resetSpectrum .u-accentColor--buttonNormal.button--withChrome.is-active:not(.clapButton--largePill) {background-color: rgba(17, 128, 14, 1) !important; border-color: rgba(17, 128, 14, 1) !important; color: rgba(255, 255, 255, 1) !important; fill: rgba(255, 255, 255, 1) !important;} .u-resetSpectrum .postArticle.is-withAccentColors .markup--user,.u-resetSpectrum .postArticle.is-withAccentColors .markup--query {color: rgba(17, 128, 14, 1) !important;}</style><div class="js-collectionFooter u-tintBgColor u-hide"><div class="container u-maxWidth1040"><div class="u-marginTop10 u-paddingTop10 u-paddingBottom30 u-tintSpectrum"><div class="linkSet u-clearfix"><div class="u-floatRight u-textColorNormal u-baseColor--textNormal u-xs-floatLeft"><a class="button button--chromeless u-baseColor--buttonNormal u-marginLeft15 u-lineHeight35 u-xs-block u-xs-marginLeft0" href="https://towardsdatascience.com/about" title="About Towards Data Science" aria-label="About Towards Data Science" data-collection-slug="towards-data-science">About Towards Data Science</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/latest" title="Latest Stories for Towards Data Science" aria-label="Latest Stories for Towards Data Science" data-collection-slug="towards-data-science">Latest Stories</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://towardsdatascience.com/archive" title="Archive for Towards Data Science" aria-label="Archive for Towards Data Science" data-collection-slug="towards-data-science">Archive</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/about">About Medium</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f">Terms</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9">Privacy</a><span class="middotDivider u-xs-hide"></span><a class="button button--chromeless u-baseColor--buttonNormal u-lineHeight35 u-xs-block" href="https://medium.com/business">Teams</a></div></div></div></div></div></div></div></div><div class="loadingBar"></div><script>// <![CDATA[ window["obvInit"] = function (opt_embedded) {window["obvInit"]["embedded"] = opt_embedded; window["obvInit"]["ready"] = true;} // ]]></script><script>// <![CDATA[ var GLOBALS = {"audioUrl":"https://d1fcbxp97j4nb2.cloudfront.net","baseUrl":"https://towardsdatascience.com","buildLabel":"20241126-1740-root","currentUser":{"userId":"lo_2404d5712084","isVerified":false,"subscriberEmail":"","hasPastMemberships":false,"isEnrolledInHightower":false,"isEligibleForHightower":true,"hightowerLastLockedAt":0,"isWriterProgramEnrolled":true,"isWriterProgramInvited":false,"isWriterProgramOptedOut":false,"writerProgramVersion":0,"writerProgramEnrolledAt":0,"friendLinkOnboarding":0,"hasAdditionalUnlocks":false,"hasApiAccess":false,"writerProgramDistributionSettingOptedIn":false,"isSuspended":false,"collectionOnboardingSeen":0,"atsQualifiedAt":0},"currentUserHasUnverifiedEmail":false,"isAuthenticated":false,"isCurrentUserVerified":false,"miroUrl":"https://cdn-images-1.medium.com","moduleUrls":{"base":"https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js","common-async":"https://cdn-static-1.medium.com/_/fp/gen-js/main-common-async.bundle.zqOu8dxaQRtqDyChHdOWlQ.12.js","hightower":"https://cdn-static-1.medium.com/_/fp/gen-js/main-hightower.bundle.y0UkxCxPBUbLlduk5XbwLQ.12.js","home-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-home-screens.bundle.eZhPgaD8AglnbC5Rzxqvhg.12.js","misc-screens":"https://cdn-static-1.medium.com/_/fp/gen-js/main-misc-screens.bundle.XeRjm4FlHTBOsUvoOQ6Ppg.12.js","notes":"https://cdn-static-1.medium.com/_/fp/gen-js/main-notes.bundle.r9MSvtAmj0CMkyIC0CCCbA.12.js","payments":"https://cdn-static-1.medium.com/_/fp/gen-js/main-payments.bundle.AiXyuYj3AvxRA1-7HEyP9Q.12.js","posters":"https://cdn-static-1.medium.com/_/fp/gen-js/main-posters.bundle.fsLyLvZO4VZXL_zb4RXgeg.12.js","power-readers":"https://cdn-static-1.medium.com/_/fp/gen-js/main-power-readers.bundle.6Dyc-nVN2MDV_AM9XDAZug.12.js","pubs":"https://cdn-static-1.medium.com/_/fp/gen-js/main-pubs.bundle.rUyrVjlTpUj61voxnZosQw.12.js","stats":"https://cdn-static-1.medium.com/_/fp/gen-js/main-stats.bundle.2I2tXSo7-rbez_WYXfga0Q.12.js"},"previewConfig":{"weightThreshold":1,"weightImageParagraph":0.51,"weightIframeParagraph":0.8,"weightTextParagraph":0.08,"weightEmptyParagraph":0,"weightP":0.003,"weightH":0.005,"weightBq":0.003,"minPTextLength":60,"truncateBoundaryChars":20,"detectTitle":true,"detectTitleLevThreshold":0.15},"productName":"Medium","supportsEdit":false,"termsUrl":"//policy.medium.com/medium-terms-of-service-9db0094a1e0f","textshotHost":"textshot.textshot-production.svc.cluster.local","transactionId":"1732995396176:23630190ecc0","useragent":{"browser":"ie","family":"ie","os":"windows","version":7,"supportsDesktopEdit":false,"supportsInteract":false,"supportsView":true,"isMobile":false,"isTablet":false,"isNative":false,"supportsFileAPI":false,"isTier1":false,"clientVersion":"","clientChannel":"","supportsRealScrollEvents":false,"supportsVhUnits":false,"ruinsViewportSections":false,"supportsHtml5Video":false,"supportsMagicUnderlines":false,"isWebView":false,"isFacebookWebView":false,"supportsProgressiveMedia":false,"supportsPromotedPosts":true,"isBot":false,"isNativeIphone":false,"supportsCssVariables":false,"supportsVideoSections":true,"emojiSupportLevel":1,"isSearchBot":false,"isSyndicationBot":false,"isNativeAndroid":false,"isNativeIos":false,"isSeoAuditBot":false,"isInternalApp":false,"supportsApplePay":false,"supportsScrollableMetabar":false},"variants":{"allow_access":true,"allow_signup":true,"allow_test_auth":"disallow","android_enable_editor_new_publishing_flow":true,"android_enable_friend_links_creation":true,"android_enable_friend_links_postpage_banners":true,"android_enable_image_sharer":true,"android_enable_lists_v2":true,"android_enable_syntax_highlight":true,"android_enable_topic_portals":true,"android_rating_prompt_stories_read_threshold":2,"android_two_hour_refresh":true,"available_annual_plan":"2c754bcc2995","available_annual_premium_plan":"4a442ace1476","available_monthly_plan":"60e220181034","available_monthly_premium_plan":"12a660186432","browsable_stream_config_bucket":"curated-topics","can_receive_tips_v0":true,"can_send_tips_v0":true,"coronavirus_topic_recirc":true,"disable_partner_program_enrollment":true,"enable_abandoned_cart_promotion_email":true,"enable_android_dynamic_aspirational_paywall":true,"enable_android_dynamic_programming_paywall":true,"enable_android_miro_v2":true,"enable_android_offline_reading":true,"enable_android_verified_author":true,"enable_app_flirty_thirty":true,"enable_apple_sign_in":true,"enable_apple_webhook":true,"enable_aurora_pub_follower_page":true,"enable_author_cards":true,"enable_author_cards_byline":true,"enable_auto_follow_on_subscribe":true,"enable_automod":true,"enable_bayesian_average_pub_search":true,"enable_bg_post_post":true,"enable_billing_frequency_on_step2":"group_1","enable_boost_nia_v01":true,"enable_braintree_apple_pay":true,"enable_braintree_client":true,"enable_braintree_google_pay":true,"enable_braintree_integration":true,"enable_braintree_paypal":true,"enable_braintree_trial_membership":true,"enable_braintree_webhook":true,"enable_branch_io":true,"enable_cache_less_following_feed":true,"enable_configure_pronouns":true,"enable_conversion_model_v2":"group_2","enable_conversion_ranker_v2":"control","enable_creator_welcome_email":true,"enable_deprecate_legacy_providers_v3":true,"enable_diversification_rex":true,"enable_entities_to_follow_v2":true,"enable_eventstats_event_processing":true,"enable_explicit_signals":true,"enable_explicit_signals_updated_post_previews":true,"enable_footer_app_buttons":true,"enable_google_one_tap":true,"enable_google_webhook":true,"enable_group_gifting":true,"enable_iceland_forced_android":true,"enable_import":true,"enable_intrinsic_automatic_actions":true,"enable_ios_autorefresh":true,"enable_ios_dynamic_paywall_aspiriational":true,"enable_ios_dynamic_paywall_programming":true,"enable_ios_easy_resubscribe":true,"enable_ios_offline_reading":true,"enable_legacy_feed_in_iceland":true,"enable_lite_archive_page":true,"enable_lite_continue_this_thread":true,"enable_lite_homepage":true,"enable_lite_response_markup":true,"enable_lite_server_upstream_deadlines":true,"enable_lo_homepage":"control","enable_maim_the_meter":true,"enable_marketing_emails":true,"enable_mastodon_avatar_upload":true,"enable_mastodon_for_members":true,"enable_mastodon_for_members_username_selection":true,"enable_medium2_kbfd":true,"enable_members_only_audio":true,"enable_ml_rank_rex_anno":true,"enable_moc_load_processor_all_recs_surfaces":true,"enable_moc_load_processor_c":true,"enable_moc_load_processor_first_story":true,"enable_new_manage_membership_flow":true,"enable_new_stripe_customers":true,"enable_newsletter_lo_flow_custom_domains":true,"enable_pill_based_home_feed":true,"enable_pp_country_expansion":true,"enable_pp_v4":true,"enable_pre_pp_v4":true,"enable_premium_tier":true,"enable_premium_tier_badge":true,"enable_publication_hierarchy_web":true,"enable_ranker_v10":"control","enable_recaptcha_enterprise":true,"enable_recirc_model":true,"enable_recommended_publishers_query":true,"enable_rex_aggregator_v2":true,"enable_rex_new_push_notification_endpoint":true,"enable_rex_reading_history":true,"enable_rito_upstream_deadlines":true,"enable_seamless_social_sharing":true,"enable_see_pronouns":true,"enable_sharer_create_post_share_key":true,"enable_sharer_validate_post_share_key":true,"enable_simplified_digest_v2_b":true,"enable_speechify_ios":true,"enable_speechify_widget":true,"enable_sprig":true,"enable_starspace":true,"enable_susi_redesign_android":true,"enable_susi_redesign_ios":true,"enable_switch_plan_premium_tier":true,"enable_tag_recs":true,"enable_tick_landing_page":true,"enable_tipping_v0_android":true,"enable_tipping_v0_ios":true,"enable_tribute_landing_page":true,"enable_update_explore_wtf":true,"enable_update_topic_portals_wtf":true,"enable_updated_pub_recs_ui":true,"enable_verifications_service":true,"glyph_font_set":"m2-unbound-source-serif-pro","goliath_externalsearch_enable_comment_deindexation":true,"ios_display_paywall_after_onboarding":true,"ios_enable_friend_links_creation":true,"ios_enable_friend_links_postpage_banners":true,"ios_enable_home_post_menu":true,"ios_enable_lock_responses":true,"ios_enable_verified_book_author":true,"ios_iceland_nux":true,"ios_in_app_free_trial":true,"ios_remove_twitter_onboarding_step":true,"ios_social_share_sheet":true,"limit_post_referrers":true,"limit_user_follows":true,"mobile_custom_app_icon":true,"num_post_bottom_responses_to_show":1,"onboarding_tags_from_top_views":true,"reader_fair_distribution_non_qp":true,"redefined_top_posts":true,"reengagement_notification_duration":3,"rex_generator_max_candidates":1000,"signin_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","signup_services":"twitter,facebook,google,email,google-fastidv,google-one-tap,apple","skip_fs_cache_user_vals":true},"xsrfToken":"","iosAppId":"828256236","supportEmail":"yourfriends@medium.com","fp":{"/icons/monogram-mask.svg":"https://cdn-static-1.medium.com/_/fp/icons/monogram-mask.KPLCSFEZviQN0jQ7veN2RQ.12.svg","/icons/favicon-medium-editor.ico":"https://cdn-static-1.medium.com/_/fp/icons/favicon-medium-editor.PiakrZWB7Yb80quUVQWM6g.12.ico"},"authBaseUrl":"https://medium.com","imageUploadSizeMb":25,"isAuthDomainRequest":false,"domainCollectionSlug":"towards-data-science","algoliaApiEndpoint":"https://MQ57UUUQZ2-dsn.algolia.net","algoliaAppId":"MQ57UUUQZ2","algoliaSearchOnlyApiKey":"394474ced050e3911ae2249ecc774921","iosAppStoreUrl":"https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8","iosAppLinkBaseUrl":"medium:","algoliaIndexPrefix":"medium_","androidPlayStoreUrl":"https://play.google.com/store/apps/details?id=com.medium.reader","googleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","androidPackage":"com.medium.reader","androidPlayStoreMarketScheme":"market://details?id=com.medium.reader","googleAuthUri":"https://accounts.google.com/o/oauth2/auth","androidScheme":"medium","layoutData":{"useDynamicScripts":false,"googleAnalyticsTrackingCode":"G-7JY7T788PK","jsShivUrl":"https://cdn-static-1.medium.com/_/fp/js/shiv.RI2ePTZ5gFmMgLzG5bEVAA.12.js","useDynamicCss":false,"faviconUrl":"https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","faviconImageId":"5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19","fontSets":[{"id":8,"url":"https://glyph.medium.com/css/e/sr/latin/e/ssr/latin/e/ssb/latin/m2-unbound-source-serif-pro.css"},{"id":11,"url":"https://glyph.medium.com/css/m2-unbound-source-serif-pro.css"},{"id":9,"url":"https://glyph.medium.com/css/mkt.css"}],"glyphUrl":"https://glyph.medium.com"},"authBaseUrlRev":"moc.muidem//:sptth","stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","archiveUploadSizeMb":100,"previewConfig2":{"weightThreshold":1,"weightImageParagraph":0.05,"raiseImage":true,"enforceHeaderHierarchy":true,"isImageInsetRight":true},"isAmp":false,"iosScheme":"medium","facebook":{"key":"542599432471018","namespace":"medium-com","scope":{"default":["public_profile","email"],"connect":["public_profile","email"],"login":["public_profile","email"],"share":["public_profile","email"]}},"memberContentTopicId":"13d7efd82fb2","audioContentTopicId":"3792abbd134","isDoNotAuth":false,"buggle":{"videoUrl":"https://cdn-videos-1.medium.com","audioUrl":"https://cdn-audio-1.medium.com"},"referrerType":5,"partnerProgramEmail":"partnerprogram@medium.com","recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","countryCode":"SG","bypassMeter":false,"branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","paypal":{"clientMode":"production","oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com/redeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"}},"collectionConfig":{"mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"]},"bypassMeterWithShareKey":false,"recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","cdcMessaging":[{"text":"For more information on the novel coronavirus and Covid-19, visit ","href":"","type":"text","start":0,"end":0},{"text":"cdc.gov","href":"https://www.cdc.gov/coronavirus/2019-nCoV","type":"link","start":66,"end":73},{"text":".","href":"","type":"text","start":0,"end":0}],"braintree":{"merchantId":"m56f8fqpf7ngnrd4"},"diagnostics":{},"domain":"medium.com"} // ]]></script><script charset="UTF-8" src="https://cdn-static-1.medium.com/_/fp/gen-js/main-base.bundle.95z8xpkUEidhPbIWsh2BVw.12.js" async></script><script>// <![CDATA[ window["obvInit"]({"references":{"Collection":{"7f60cf5620c9":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":770193,"activeAt":1732982545174},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":[]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":[],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["e602d27ec876","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":770193,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52140,"subscribersCount":131884,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"}},"User":{"a085c7ebee7":{"userId":"a085c7ebee7","name":"Alex Held","username":"helloheld","createdAt":1500365864822,"imageId":"1*EoRDqg2BxYlZp9PXgMnRwQ.jpeg","backgroundImageId":"","bio":"Data Scientist @ Der Spiegel. All views are my own. Data Analysis & Viz. Machine Learning. Open Data. Open Source. Citizen Science. twitter.com/helloheld","twitterScreenName":"helloheld","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1644589109780,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[32,47,29,12,8,21,3,19,2,18,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"de-de","type":"User"},"c99ed9ed7b9a":{"userId":"c99ed9ed7b9a","name":"Mina Ghashami","username":"mina.ghashami","createdAt":1478885555743,"imageId":"1*aVPYgqpzD43dLSahkkKsTw.jpeg","backgroundImageId":"","bio":"Applied Scientist @Amazon AWS | Adjunct lecturer@NYU | Previously, Adjunct lecturer@Stanford","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1693886030000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1694177910599,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,44,8,36,19,20],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"d60bec775fa6":{"userId":"d60bec775fa6","name":"Samy Baladram","username":"samybaladram","createdAt":1544164861855,"imageId":"1*M5J7CK552m9f4z-m1F7vYg.png","backgroundImageId":"","bio":"Assistant Professor at Tohoku University. Turning data science into visual wonders 🎨","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1723986402000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"Samy Baladram","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29,37,36,19],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"b9f817597253":{"userId":"b9f817597253","name":"Federico Zabeo","username":"federico.zabeo29","createdAt":1650458405459,"imageId":"1*sFJYvDTOpYsTwYhn7KtXmg.jpeg","backgroundImageId":"","bio":"Data Scientist @ Var Group Data Science","twitterScreenName":"","allowNotes":1,"mediumMemberAt":0,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedAndroidApp":1732919262363,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[50,29,49],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"it-it","type":"User"},"5f5a8adb223a":{"userId":"5f5a8adb223a","name":"Dr. Marcel Müller","username":"marcelmueller","createdAt":1514567763569,"imageId":"1*O8tYeDgwh0W5DM71HMiu5w.jpeg","backgroundImageId":"","bio":"Entrepreneur into Process Innovation with Deep Tech. AI. Founder of entAIngine","twitterScreenName":"onlyMarcelM","allowNotes":1,"mediumMemberAt":1595442095000,"isWriterProgramEnrolled":true,"isSuspended":false,"isMembershipTrialEligible":true,"facebookDisplayName":"Marcel Müller","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[29,12,8,5,21,3,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"de-de","type":"User"},"f44c0bb08544":{"userId":"f44c0bb08544","name":"Ilona Hetsevich","username":"ihetsevi","createdAt":1705330498980,"imageId":"1*GzsZBZVN_fq0r_mNuu87vw.jpeg","backgroundImageId":"","bio":"A former marketer turned data analyst https://www.linkedin.com/in/ilonahetsevich/","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1724148354000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1706383549566,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[47,29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"dce3cb684eae":{"userId":"dce3cb684eae","name":"Maria Mouschoutzi, PhD","username":"m.mouschoutzi","createdAt":1645018303740,"imageId":"1*J2wEIjBYYebYh86Z6Wt3sA@2x.jpeg","backgroundImageId":"","bio":"data, AI/ML, tech, essays 💌 https://datacream.substack.com/ https://www.linkedin.com/in/mariamouschoutzi/","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1687850521000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1678297651621,"isMembershipTrialEligible":false,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[29,12,44,8,21,2,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"f3998e1cd186":{"userId":"f3998e1cd186","name":"Shaw Talebi","username":"shawhin","createdAt":1558371601329,"imageId":"1*mhVX2L2LGQM4XZNwvU7H5A.jpeg","backgroundImageId":"","bio":"Data Scientist | PhD, Physics","twitterScreenName":"ShawhinT","allowNotes":1,"mediumMemberAt":1627260337000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1605473874270,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"subdomainCreatedAt":1607045072279,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[32,29,21,19,18,47,14,12,11,9,8,5,2,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"752038078741":{"userId":"752038078741","name":"Tarik Dzekman","username":"TarikDzekman","createdAt":1406779507882,"imageId":"2*89BjkQMI4MLzZQvGJu4k3Q.jpeg","backgroundImageId":"","bio":"Solver of Problems, Knower of things. Lead AI Engineer @ Affinda. Trying to understand consciousness, intelligence, and how to make a machine that thinks.","allowNotes":1,"mediumMemberAt":1728000050592,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1721992730194,"isMembershipTrialEligible":true,"optInToIceland":true,"hasCompletedProfile":false,"userDismissableFlags":[47,29,12,5,21,1,33],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"},"7272e5ea3be1":{"userId":"7272e5ea3be1","name":"Aaron Beckley","username":"aaronbeckley","createdAt":1720369690514,"imageId":"1*wntVrmpk3dyO_VPjmL-v4A.png","backgroundImageId":"","bio":"","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1720369804521,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1731911068360,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"subdomainCreatedAt":1720369919633,"hasCompletedProfile":false,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-us","type":"User"},"10e58cd8f016":{"userId":"10e58cd8f016","name":"Michael Zakhary","username":"zakharymg","createdAt":1692714487508,"imageId":"1*IjgZHdotSStn8YBgoY17zw@2x.jpeg","backgroundImageId":"","bio":"DELL AI hackathon winner & AI Engineer with 2 years of Experience.","twitterScreenName":"","allowNotes":1,"mediumMemberAt":1731098125000,"isWriterProgramEnrolled":true,"isSuspended":false,"firstOpenedIosApp":1692717804768,"isMembershipTrialEligible":true,"facebookDisplayName":"","optInToIceland":true,"hasCompletedProfile":true,"isCreatorPartnerProgramEnrolled":true,"userDismissableFlags":[47,29],"hasSeenIcelandOnboarding":true,"postSubscribeMembershipUpsellShownAt":0,"languageCode":"en-gb","type":"User"}},"Post":{"74f119c7e036":{"id":"74f119c7e036","versionId":"b22ec3dd7416","creatorId":"a085c7ebee7","homeCollectionId":"7f60cf5620c9","title":"Making News Recommendations Explainable with Large Language Models","detectedLanguage":"en","latestVersion":"b22ec3dd7416","latestPublishedVersion":"b22ec3dd7416","hasUnpublishedEdits":false,"latestRev":543,"createdAt":1730898105657,"updatedAt":1732987691578,"acceptedAt":0,"firstPublishedAt":1732982543113,"latestPublishedAt":1732982543113,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*ASOYvGGW8pU5E5fVmFfKOw.png","filter":"","backgroundSize":"","originalWidth":1754,"originalHeight":982,"strategy":"resample","height":0,"width":0},"wordCount":1519,"imageCount":3,"readingTime":6.282075471698113,"subtitle":"A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":0,"isBookmarked":false,"tags":[{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":460741,"metadata":{"postCount":460741,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"journalism","name":"Journalism","postCount":76789,"metadata":{"postCount":76789,"coverImage":{"id":"1*QeMHAHnL3vgcEOB3zv8cBQ.jpeg"}},"type":"Tag"},{"slug":"recommendations","name":"Recommendations","postCount":7021,"metadata":{"postCount":7021,"coverImage":{"id":"1*WxXWvudhTOlanDWssdSf9g.jpeg","originalWidth":3088,"originalHeight":2320,"isFeatured":true}},"type":"Tag"},{"slug":"large-language-models","name":"Large Language Models","postCount":15084,"metadata":{"postCount":15084,"coverImage":{"id":"1*HeVyh7J8VfMWMuQoXnKYrA.jpeg","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"explainable-ai","name":"Explainable Ai","postCount":2083,"metadata":{"postCount":2083,"coverImage":{"id":"1*ncfjCpCN8XqYBj7wyZziow.png","originalWidth":1500,"originalHeight":850,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":0,"links":{"entries":[{"url":"https://vickiboykis.com/what_are_embeddings/","alts":[],"httpStatus":200},{"url":"https://www.evidentlyai.com/ranking-metrics/precision-recall-at-k","alts":[],"httpStatus":200},{"url":"https://www.anthropic.com/news/claude-3-5-sonnet","alts":[],"httpStatus":200},{"url":"https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html","alts":[],"httpStatus":200},{"url":"https://github.com/anthropics/anthropic-sdk-python","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/alex-held-1193b9234/","alts":[],"httpStatus":999},{"url":"https://www.spiegel.de/","alts":[],"httpStatus":200},{"url":"https://ai.meta.com/blog/meta-llama-3-1/","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/a-mixed-methods-approach-to-offline-evaluation-of-news-recommender-systems-7dc7e9f0b501","alts":[{"type":3,"url":"medium://p/7dc7e9f0b501"},{"type":2,"url":"medium://p/7dc7e9f0b501"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/a-mixed-methods-approach-to-offline-evaluation-of-news-recommender-systems-7dc7e9f0b501","alts":[{"type":2,"url":"medium://p/7dc7e9f0b501"},{"type":3,"url":"medium://p/7dc7e9f0b501"}],"httpStatus":200}],"version":"0.3","generatedAt":1732982545615},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":0,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"403f77178792","slug":"media","createdAt":1490118474751,"deletedAt":0,"image":{"id":"1*wLhNmBWoSMvG0kyRGjDIqw@2x.jpeg","originalWidth":3264,"originalHeight":2448},"name":"Media","description":"Where the newsroom is the news.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Articles and News About Media — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"making-news-recommendations-explainable-with-large-language-models","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"making-news-recommendations-explainable-with-large-language-models-74f119c7e036","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*ASOYvGGW8pU5E5fVmFfKOw.png","originalWidth":1754,"originalHeight":982,"isFeatured":true}},{"name":"c843","type":3,"text":"Making News Recommendations Explainable with Large Language Models","markups":[{"type":1,"start":0,"end":66}],"alignment":1},{"name":"2a54","type":13,"text":"A prompt-based experiment to…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"ff0df93a4620","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"c843","type":3,"text":"Making News Recommendations Explainable with Large Language Models","markups":[{"type":1,"start":0,"end":66}]},{"name":"2a54","type":13,"text":"A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization.","markups":[]},{"name":"0577","type":4,"text":"Deliver relevant content to readers at the right time. Image by author.","markups":[],"layout":1,"metadata":{"id":"1*ASOYvGGW8pU5E5fVmFfKOw.png","originalWidth":1754,"originalHeight":982,"isFeatured":true}},{"name":"10aa","type":1,"text":"At DER SPIEGEL, we are continually exploring ways to improve how we recommend news articles to our readers. In our latest (offline) experiment, we investigated whether Large Language Models (LLMs) could effectively predict which articles a reader would be interested in, based on their reading history.","markups":[{"type":3,"start":3,"end":14,"href":"https://www.spiegel.de/","title":"","rel":"","anchorType":0},{"type":3,"start":168,"end":189,"href":"https://vickiboykis.com/what_are_embeddings/","title":"","rel":"","anchorType":0}]},{"name":"9c2e","type":1,"text":"Our Approach","markups":[{"type":1,"start":0,"end":12}]},{"name":"ec3b","type":1,"text":"We conducted…","markups":[]}],"sections":[{"name":"4256","startIndex":0}]},"isFullContent":false,"subtitle":"A prompt-based experiment to improve both accuracy and transparent reasoning in content personalization."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"443c07f3a717":{"id":"443c07f3a717","versionId":"720bd9e513e9","creatorId":"c99ed9ed7b9a","homeCollectionId":"7f60cf5620c9","title":"Grokking Behavioral Interviews","detectedLanguage":"en","latestVersion":"720bd9e513e9","latestPublishedVersion":"720bd9e513e9","hasUnpublishedEdits":false,"latestRev":684,"createdAt":1732859000515,"updatedAt":1732980839272,"acceptedAt":0,"firstPublishedAt":1732976330727,"latestPublishedAt":1732976330727,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Master the art of behavioral interviews and land your dream job","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*EW9SIyf1bSVfd2TAzs8vqA.png","filter":"","backgroundSize":"","originalWidth":1838,"originalHeight":1656,"strategy":"resample","height":0,"width":0},"wordCount":1522,"imageCount":1,"readingTime":5.943396226415095,"subtitle":"Master the art of behavioral interviews and land your dream job","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":4,"isBookmarked":false,"tags":[{"slug":"behavioral-interviewing","name":"Behavioral Interviewing","postCount":122,"metadata":{"postCount":122,"coverImage":{"id":"1*IsKFYb9D67dKMf3mcFkDkQ.png","originalWidth":500,"originalHeight":500,"isFeatured":true}},"type":"Tag"},{"slug":"interview","name":"Interview","postCount":85993,"metadata":{"postCount":85993,"coverImage":{"id":"1*ZTbH0ESeronHdaBClwxBMQ.jpeg","originalWidth":5760,"originalHeight":3840,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"},{"slug":"technology","name":"Technology","postCount":2491712,"metadata":{"postCount":2491712,"coverImage":{"id":"1*yH2cmH1uhoFpR7HIseOAsw.jpeg"}},"type":"Tag"},{"slug":"careers","name":"Careers","postCount":135974,"metadata":{"postCount":135974,"coverImage":{"id":"1*CMV8oSUcBy4lnzqiCy45GA.jpeg","originalWidth":3456,"originalHeight":4608,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://minaquest.gumroad.com/l/behavioralinterviews","alts":[],"httpStatus":200},{"url":"https://www.amazon.jobs/content/en/our-workplace/leadership-principles","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/minaghashami/","alts":[],"httpStatus":999}],"version":"0.3","generatedAt":1732976331669},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":27,"sectionCount":2,"readingList":0,"topics":[{"topicId":"7b2438b07d33","slug":"business","createdAt":1493947240506,"deletedAt":0,"image":{"id":"1*K-IspU8zRzU2GEh1dmJ4VQ@2x.jpeg","originalWidth":4745,"originalHeight":3029},"name":"Business","description":"From Airbnb to Zappos.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Business News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"f862bfc84e38","slug":"technology","createdAt":1487918016768,"deletedAt":0,"image":{"id":"1*XxQLrxqHUlIHg5j-eIQrPQ@2x.png","originalWidth":640,"originalHeight":384},"name":"Technology","description":"The download.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Technology News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"grokking-behavioral-interviews","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"grokking-behavioral-interviews-443c07f3a717","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*EW9SIyf1bSVfd2TAzs8vqA.png","originalWidth":1838,"originalHeight":1656,"isFeatured":true}},{"name":"8ac3","type":3,"text":"Grokking Behavioral Interviews","markups":[],"alignment":1},{"name":"a425","type":13,"text":"Master the art of behavioral interviews and land your dream job","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Master the art of behavioral interviews and land your dream job"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"84f97b68f0ed","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732863744751,"primaryTopicId":"f862bfc84e38","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"8ac3","type":3,"text":"Grokking Behavioral Interviews","markups":[]},{"name":"a425","type":13,"text":"Master the art of behavioral interviews and land your dream job","markups":[]},{"name":"642c","type":4,"text":"Image generated by chatGPT","markups":[],"layout":1,"metadata":{"id":"1*EW9SIyf1bSVfd2TAzs8vqA.png","originalWidth":1838,"originalHeight":1656,"isFeatured":true}},{"name":"df59","type":1,"text":"I work for an institute which prepares professionals to land jobs in high tech companies such as Amazon, Meta, Google, etc. As part of the interview preparation, many candidates want to have behavioral mock interviews. Their main goal is to figure out what is going to be asked in these…","markups":[]}],"sections":[{"name":"d442","startIndex":0}]},"isFullContent":false,"subtitle":"Master the art of behavioral interviews and land your dream job"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"eb13bbdc8f88":{"id":"eb13bbdc8f88","versionId":"f6e152f14f37","creatorId":"d60bec775fa6","homeCollectionId":"7f60cf5620c9","title":"Model Validation Techniques, Explained: A Visual Guide with Code Examples","detectedLanguage":"en","latestVersion":"f6e152f14f37","latestPublishedVersion":"f6e152f14f37","hasUnpublishedEdits":false,"latestRev":3532,"createdAt":1731688656110,"updatedAt":1732977652246,"acceptedAt":0,"firstPublishedAt":1732971737897,"latestPublishedAt":1732976440362,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"12 must-know methods to validate your machine learning","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*XQDe622Tw9GCKJ8N4b0QeQ.png","filter":"","backgroundSize":"","originalWidth":2160,"originalHeight":1140,"strategy":"resample","height":0,"width":0},"wordCount":5982,"imageCount":32,"readingTime":24.92358490566038,"subtitle":"12 must-know methods to validate your machine learning","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":6,"isBookmarked":false,"tags":[{"slug":"train-test-split","name":"Train Test Split","postCount":100,"metadata":{"postCount":100,"coverImage":{"id":"1*QIZQpNcC7j892ZMjSv3QSA.png","originalWidth":1258,"originalHeight":278,"isFeatured":true}},"type":"Tag"},{"slug":"validation","name":"Validation","postCount":4801,"metadata":{"postCount":4801,"coverImage":{"id":"0*MkeNLk4YHVokmXtQ","originalWidth":3822,"originalHeight":2538,"isFeatured":true,"unsplashPhotoId":"jNSJE8dMro0"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":355190,"metadata":{"postCount":355190,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"tips-and-tricks","name":"Tips And Tricks","postCount":25042,"metadata":{"postCount":25042,"coverImage":{"id":"0*JTfMaNPNoCXvmCUq","originalWidth":5400,"originalHeight":3600,"isFeatured":true,"unsplashPhotoId":"l8JilDrJbpA"}},"type":"Tag"},{"slug":"crossvalidation","name":"Crossvalidation","postCount":566,"metadata":{"postCount":566,"coverImage":{"id":"1*41Gr547jRelLuhc99J2aAQ.gif","originalWidth":1080,"originalHeight":570,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://scikit-learn.org/stable/api/sklearn.model_selection.html","alts":[],"httpStatus":200},{"url":"https://medium.com/@samybaladram/list/b3586f0a772c","alts":[{"type":3,"url":"medium://@samybaladram/list/classification-algorithms-b3586f0a772c"},{"type":2,"url":"medium://@samybaladram/list/classification-algorithms-b3586f0a772c"}],"httpStatus":200},{"url":"https://medium.com/@samybaladram/list/331287896864","alts":[{"type":2,"url":"medium://@samybaladram/list/model-evaluation-optimization-331287896864"},{"type":3,"url":"medium://@samybaladram/list/model-evaluation-optimization-331287896864"}],"httpStatus":200},{"url":"https://medium.com/@samybaladram/list/673fc83cd7db","alts":[{"type":3,"url":"medium://@samybaladram/list/ensemble-learning-673fc83cd7db"},{"type":2,"url":"medium://@samybaladram/list/ensemble-learning-673fc83cd7db"}],"httpStatus":200},{"url":"https://towardsdatascience.com/decision-tree-classifier-explained-a-visual-guide-with-code-examples-for-beginners-7c863f06a71e","alts":[{"type":3,"url":"medium://p/7c863f06a71e"},{"type":2,"url":"medium://p/7c863f06a71e"}],"httpStatus":200}],"version":"0.3","generatedAt":1732976441785},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":50,"sectionCount":2,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"model-validation-techniques-explained-a-visual-guide-with-code-examples","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"model-validation-techniques-explained-a-visual-guide-with-code-examples-eb13bbdc8f88","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*XQDe622Tw9GCKJ8N4b0QeQ.png","originalWidth":2160,"originalHeight":1140,"isFeatured":true}},{"name":"8e8a","type":13,"text":"MODEL EVALUATION & OPTIMIZATION","markups":[],"alignment":1},{"name":"7cdb","type":3,"text":"Model Validation Techniques, Explained: A Visual Guide with Code…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"12 must-know methods to validate your machine learning"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"cb3fffc4ef3e","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"Model Validation Techniques","previewContent2":{"bodyModel":{"paragraphs":[{"name":"8e8a","type":13,"text":"MODEL EVALUATION & OPTIMIZATION","markups":[]},{"name":"7cdb","type":3,"text":"Model Validation Techniques, Explained: A Visual Guide with Code Examples","markups":[]},{"name":"78cb","type":13,"text":"12 must-know methods to validate your machine learning","markups":[{"type":1,"start":25,"end":54}]},{"name":"8c56","type":1,"text":"Every day, machines make millions of predictions — from detecting objects in photos to helping doctors find diseases. But before trusting these predictions, we need to know if they’re any good. After all, no one would want to use a machine that’s wrong most of the time!","markups":[]},{"name":"5035","type":1,"text":"This is where…","markups":[]}],"sections":[{"name":"02d1","startIndex":0}]},"isFullContent":false,"subtitle":"12 must-know methods to validate your machine learning"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"a234e29b192d":{"id":"a234e29b192d","versionId":"28f30065a62c","creatorId":"b9f817597253","homeCollectionId":"7f60cf5620c9","title":"Dunder Methods: The Hidden Gems of Python","detectedLanguage":"en","latestVersion":"28f30065a62c","latestPublishedVersion":"28f30065a62c","hasUnpublishedEdits":false,"latestRev":1065,"createdAt":1732633764421,"updatedAt":1732969699073,"acceptedAt":0,"firstPublishedAt":1732964530122,"latestPublishedAt":1732964530122,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Real-world examples on how actively using special methods can simplify coding and improve readability","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"0*_Wt6GwCNJEfYDcGi","filter":"","backgroundSize":"","originalWidth":6240,"originalHeight":4160,"strategy":"resample","height":0,"width":0},"wordCount":1789,"imageCount":3,"readingTime":7.3009433962264145,"subtitle":"Real-world examples on how actively using special methods can simplify coding and improve readability","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":7,"isBookmarked":false,"tags":[{"slug":"programming","name":"Programming","postCount":449031,"metadata":{"postCount":449031,"coverImage":{"id":"1*t5dwn8IabnCdEpoO-6Toog.png","originalWidth":1920,"originalHeight":1080,"isFeatured":true,"alt":"Kubernetes"}},"type":"Tag"},{"slug":"python","name":"Python","postCount":260269,"metadata":{"postCount":260269,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"},{"slug":"dunder-method","name":"Dunder Method","postCount":52,"metadata":{"postCount":52,"coverImage":{"id":"0*_Wt6GwCNJEfYDcGi","originalWidth":6240,"originalHeight":4160,"isFeatured":true,"unsplashPhotoId":"YqzGoZLhTQc"}},"type":"Tag"},{"slug":"tips-and-tricks","name":"Tips And Tricks","postCount":25042,"metadata":{"postCount":25042,"coverImage":{"id":"0*JTfMaNPNoCXvmCUq","originalWidth":5400,"originalHeight":3600,"isFeatured":true,"unsplashPhotoId":"l8JilDrJbpA"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://unsplash.com?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@jccards?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://docs.python.org/3/reference/datamodel.html","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@shamblenstudios?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"https://unsplash.com/@ro_ka?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732964531445},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":68,"sectionCount":1,"readingList":0,"topics":[{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"dunder-methods-the-hidden-gems-of-python","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"dunder-methods-the-hidden-gems-of-python-a234e29b192d","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"0*_Wt6GwCNJEfYDcGi","originalWidth":6240,"originalHeight":4160,"isFeatured":true,"unsplashPhotoId":"YqzGoZLhTQc"}},{"name":"1781","type":3,"text":"Dunder Methods: The Hidden Gems of Python","markups":[],"alignment":1},{"name":"9fae","type":13,"text":"Real-world examples on how actively using special methods…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Real-world examples on how actively using special methods can simplify coding and improve readability"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"decb52b64abf","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"1781","type":3,"text":"Dunder Methods: The Hidden Gems of Python","markups":[]},{"name":"9fae","type":13,"text":"Real-world examples on how actively using special methods can simplify coding and improve readability.","markups":[]},{"name":"91f3","type":1,"text":"Dunder methods, though possibly a basic topic in Python, are something I have often noticed being understood only superficially, even by people who have been coding for quite some time.","markups":[]},{"name":"acac","type":1,"text":"Disclaimer: This is a forgivable gap, as in most cases, actively using dunder methods “simply” speeds up and standardize tasks…","markups":[{"type":1,"start":0,"end":12}]}],"sections":[{"name":"0e9c","startIndex":0}]},"isFullContent":false,"subtitle":"Real-world examples on how actively using special methods can simplify coding and improve readability"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"af06d24e011d":{"id":"af06d24e011d","versionId":"443894cbf406","creatorId":"5f5a8adb223a","homeCollectionId":"7f60cf5620c9","title":"Why Internal Company Chatbots Fail and How to Use Generative AI in Enterprise with Impact","detectedLanguage":"en","latestVersion":"443894cbf406","latestPublishedVersion":"443894cbf406","hasUnpublishedEdits":false,"latestRev":1128,"createdAt":1732705280984,"updatedAt":1732934603017,"acceptedAt":0,"firstPublishedAt":1732902081652,"latestPublishedAt":1732902081652,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Start with the problem and not with the solution","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*Z42dmszgUoF6-ztCNqo8tg.png","filter":"","backgroundSize":"","originalWidth":4993,"originalHeight":2527,"strategy":"resample","height":0,"width":0},"wordCount":2258,"imageCount":6,"readingTime":9.470754716981132,"subtitle":"Start with the problem and not with the solution","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":26,"isBookmarked":false,"tags":[{"slug":"ai","name":"AI","postCount":432326,"metadata":{"postCount":432326,"coverImage":{"id":"1*2zMHAuEF6FxrdPG23QWuWw.jpeg","originalWidth":4500,"originalHeight":3000,"isFeatured":true}},"type":"Tag"},{"slug":"generative-ai-tools","name":"Generative Ai Tools","postCount":17321,"metadata":{"postCount":17321,"coverImage":{"id":"1*C9g9dY3ryVlQJ6TmlasFYA.png","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"chatbots","name":"Chatbots","postCount":46999,"metadata":{"postCount":46999,"coverImage":{"id":"1*Z42dmszgUoF6-ztCNqo8tg.png","originalWidth":4993,"originalHeight":2527,"isFeatured":true}},"type":"Tag"},{"slug":"automation","name":"Automation","postCount":62779,"metadata":{"postCount":62779,"coverImage":{"id":"0*jJYcQd2FMc2eqpVC.png","originalWidth":1492,"originalHeight":1226,"isFeatured":true}},"type":"Tag"},{"slug":"notes-from-industry","name":"Notes From Industry","postCount":414,"metadata":{"postCount":414,"coverImage":{"id":"1*Z42dmszgUoF6-ztCNqo8tg.png","originalWidth":4993,"originalHeight":2527,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":3,"links":{"entries":[],"version":"0.3","generatedAt":1732902081883},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":210,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"7b2438b07d33","slug":"business","createdAt":1493947240506,"deletedAt":0,"image":{"id":"1*K-IspU8zRzU2GEh1dmJ4VQ@2x.jpeg","originalWidth":4745,"originalHeight":3029},"name":"Business","description":"From Airbnb to Zappos.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Business News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"why-internal-company-chatbots-fail-and-how-to-use-generative-ai-in-enterprise-with-impact","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"why-internal-company-chatbots-fail-and-how-to-use-generative-ai-in-enterprise-with-impact-af06d24e011d","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*Z42dmszgUoF6-ztCNqo8tg.png","originalWidth":4993,"originalHeight":2527,"isFeatured":true}},{"name":"1354","type":3,"text":"Why Internal Company Chatbots Fail and How to Use Generative AI in Enterprise with Impact","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Start with the problem and not with the solution"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"30a4bfad3ce7","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1af65db9c2f8","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"1354","type":3,"text":"Why Internal Company Chatbots Fail and How to Use Generative AI in Enterprise with Impact","markups":[]},{"name":"8296","type":13,"text":"Start with the problem and not with the solution","markups":[]},{"name":"9cc4","type":4,"text":"Background licensed from elements.envato.com, edit by Marcel Müller 2024","markups":[],"layout":3,"metadata":{"id":"1*Z42dmszgUoF6-ztCNqo8tg.png","originalWidth":4993,"originalHeight":2527,"isFeatured":true}},{"name":"11c1","type":1,"text":"The most common disillusion that many organizations have is the following: They get excited about generative AI with ChatGPT or Microsoft Co-Pilot, read some article about how AI can “make your business better in some way,” then try to find other use cases where they can slap a chatbot on…","markups":[]}],"sections":[{"name":"45f2","startIndex":0}]},"isFullContent":false,"subtitle":"Start with the problem and not with the solution"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"930e2267006e":{"id":"930e2267006e","versionId":"2af2ae90cc05","creatorId":"f44c0bb08544","homeCollectionId":"7f60cf5620c9","title":"Think you Know Excel? Take Your Analytics Skills to the Next Level with Power Query!","detectedLanguage":"en","latestVersion":"2af2ae90cc05","latestPublishedVersion":"2af2ae90cc05","hasUnpublishedEdits":false,"latestRev":869,"createdAt":1732781570274,"updatedAt":1732934920219,"acceptedAt":0,"firstPublishedAt":1732896588678,"latestPublishedAt":1732896588678,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"5 practical use cases that prove Power Query is worth exploring.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*qzR1tyW9-KTPpuoAjFiCtw.png","filter":"","backgroundSize":"","originalWidth":712,"originalHeight":383,"strategy":"resample","height":0,"width":0},"wordCount":1375,"imageCount":10,"readingTime":6.438679245283019,"subtitle":"5 practical use cases that prove Power Query is worth exploring.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":12,"isBookmarked":false,"tags":[{"slug":"excel","name":"Excel","postCount":13211,"metadata":{"postCount":13211,"coverImage":{"id":"1*Gp4kLSTmfcUzAoaHAEy7Mg.jpeg","originalWidth":1792,"originalHeight":1024}},"type":"Tag"},{"slug":"data-analytics","name":"Data Analytics","postCount":27782,"metadata":{"postCount":27782,"coverImage":{"id":"0*CMVvDNwWUU6PtMvR","originalWidth":5410,"originalHeight":3607,"isFeatured":true,"unsplashPhotoId":"0gkw_9fy0eQ"}},"type":"Tag"},{"slug":"data-analysis","name":"Data Analysis","postCount":60945,"metadata":{"postCount":60945,"coverImage":{"id":"0*Ek2wluniPO8naKd6","originalWidth":4000,"originalHeight":6000,"isFeatured":true,"unsplashPhotoId":"S5BcW0DrNJQ"}},"type":"Tag"},{"slug":"power-query","name":"Power Query","postCount":817,"metadata":{"postCount":817,"coverImage":{"id":"1*qzR1tyW9-KTPpuoAjFiCtw.png","originalWidth":712,"originalHeight":383,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":2,"links":{"entries":[],"version":"0.3","generatedAt":1732896588838},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":85,"sectionCount":1,"readingList":0,"topics":[{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"think-you-know-excel-take-your-analytics-skills-to-the-next-level-with-power-query","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"think-you-know-excel-take-your-analytics-skills-to-the-next-level-with-power-query-930e2267006e","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*qzR1tyW9-KTPpuoAjFiCtw.png","originalWidth":712,"originalHeight":383,"isFeatured":true}},{"name":"4304","type":3,"text":"Think you Know Excel? Take Your Analytics Skills to the Next Level with Power Query!","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"5 practical use cases that prove Power Query is worth exploring."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"4304","type":3,"text":"Think you Know Excel? Take Your Analytics Skills to the Next Level with Power Query!","markups":[]},{"name":"3515","type":13,"text":"5 practical use cases that prove Power Query is worth exploring.","markups":[]},{"name":"70b3","type":1,"text":"I have a confession to make: I’ve been living under a rock 🪨. Not literally, but how else can I explain not discovering Power Query in Excel until now?","markups":[{"type":1,"start":121,"end":132}]},{"name":"71f6","type":1,"text":"Imagine realising that all those hours spent wrangling VLOOKUPs, nesting IFs, and battling messy data could’ve been replaced with a few…","markups":[]}],"sections":[{"name":"9efd","startIndex":0}]},"isFullContent":false,"subtitle":"5 practical use cases that prove Power Query is worth exploring."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"caf98151db0e":{"id":"caf98151db0e","versionId":"760b1f0810d1","creatorId":"dce3cb684eae","homeCollectionId":"7f60cf5620c9","title":"Water Cooler Small Talk: Simpson’s Paradox","detectedLanguage":"en","latestVersion":"760b1f0810d1","latestPublishedVersion":"760b1f0810d1","hasUnpublishedEdits":false,"latestRev":1804,"createdAt":1732305123146,"updatedAt":1732960795063,"acceptedAt":0,"firstPublishedAt":1732896129346,"latestPublishedAt":1732896129346,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Is your data tricking you? What can you do about it?","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*RlB5AwLS6p3jwKuM6kGJVA.png","filter":"","backgroundSize":"","originalWidth":947,"originalHeight":592,"strategy":"resample","height":0,"width":0},"wordCount":2048,"imageCount":5,"readingTime":8.561635220125787,"subtitle":"Is your data tricking you? What can you do about it?","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":33,"isBookmarked":false,"tags":[{"slug":"statistics","name":"Statistics","postCount":33704,"metadata":{"postCount":33704,"coverImage":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":355190,"metadata":{"postCount":355190,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4829,"metadata":{"postCount":4829,"coverImage":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},"type":"Tag"},{"slug":"simpsons-paradox","name":"Simpsons Paradox","postCount":87,"metadata":{"postCount":87,"coverImage":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":12,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/Jordan_Ellenberg","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Causality","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Correlation","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Edward_H._Simpson","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Simpson%27s_paradox","alts":[],"httpStatus":200},{"url":"http://buymeacoffee.com/mmouschoutzi","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Confounding","alts":[],"httpStatus":200},{"url":"https://datacream.substack.com/","alts":[],"httpStatus":200},{"url":"https://pmc.ncbi.nlm.nih.gov/articles/PMC1339981/","alts":[],"httpStatus":200},{"url":"https://www.linkedin.com/in/mmouschoutzi/","alts":[],"httpStatus":999},{"url":"https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/water-cooler-small-talk-the-birthday-paradox-94ea294502c7","alts":[{"type":3,"url":"medium://p/94ea294502c7"},{"type":2,"url":"medium://p/94ea294502c7"}],"httpStatus":200},{"url":"https://medium.com/@m.mouschoutzi","alts":[{"type":2,"url":"medium://@m.mouschoutzi"},{"type":3,"url":"medium://@m.mouschoutzi"}],"httpStatus":200},{"url":"https://towardsdatascience.com/water-cooler-small-talk-why-does-the-monty-hall-problem-still-bother-us-cc50d906522c","alts":[{"type":3,"url":"medium://p/cc50d906522c"},{"type":2,"url":"medium://p/cc50d906522c"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/water-cooler-small-talk-the-birthday-paradox-94ea294502c7?source=user_profile_page---------4-------------dce3cb684eae---------------","alts":[{"type":3,"url":"medium://p/94ea294502c7"},{"type":2,"url":"medium://p/94ea294502c7"}],"httpStatus":200}],"version":"0.3","generatedAt":1732896130643},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":353,"sectionCount":8,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"water-cooler-small-talk-simpsons-paradox","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"water-cooler-small-talk-simpsons-paradox-caf98151db0e","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},{"name":"da3a","type":13,"text":"STATISTICS","markups":[],"alignment":1},{"name":"3b18","type":3,"text":"Water Cooler Small Talk: Simpson’s Paradox","markups":[],"alignment":1},{"name":"5329","type":13,"text":"Is your data tricking you? What…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Is your data tricking you? What can you do about it?"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"7d597a43058a","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732712224904,"primaryTopicId":"7808efc0cf94","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"da3a","type":13,"text":"STATISTICS","markups":[]},{"name":"3b18","type":3,"text":"Water Cooler Small Talk: Simpson’s Paradox","markups":[]},{"name":"5329","type":13,"text":"Is your data tricking you? What can you do about it?","markups":[]},{"name":"144d","type":4,"text":"Image created by the author using GPT-4 / All other images created by the author…","markups":[],"layout":1,"metadata":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},{"name":"dff5","type":1,"text":"Water cooler small talk is a special kind of small talk, typically observed in office spaces around a water cooler. There, employees frequently share all kinds of corporate gossip, myths, and legends, inaccurate scientific opinions, indiscreet personal anecdotes, or outright lies. Anything goes. So, in my Water Cooler Small Talk…","markups":[]}],"sections":[{"name":"bc41","startIndex":0}]},"isFullContent":false,"subtitle":"Is your data tricking you? What can you do about it?"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"5dc36975966f":{"id":"5dc36975966f","versionId":"aced6c8193dd","creatorId":"f3998e1cd186","homeCollectionId":"7f60cf5620c9","title":"Multimodal Embeddings: An Introduction","detectedLanguage":"en","latestVersion":"aced6c8193dd","latestPublishedVersion":"aced6c8193dd","hasUnpublishedEdits":false,"latestRev":1125,"createdAt":1732656290965,"updatedAt":1732934539972,"acceptedAt":0,"firstPublishedAt":1732892532635,"latestPublishedAt":1732892976219,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Mapping text and images into a common space","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*a6BF-kEeo8rd7OW2a3JYGA.png","filter":"","backgroundSize":"","originalWidth":1280,"originalHeight":720,"strategy":"resample","height":0,"width":0},"wordCount":1524,"imageCount":10,"readingTime":7.000943396226415,"subtitle":"Mapping text and images into a common space","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":19,"isBookmarked":false,"tags":[{"slug":"ai","name":"AI","postCount":432326,"metadata":{"postCount":432326,"coverImage":{"id":"1*2zMHAuEF6FxrdPG23QWuWw.jpeg","originalWidth":4500,"originalHeight":3000,"isFeatured":true}},"type":"Tag"},{"slug":"multimodal-ai","name":"Multimodal Ai","postCount":310,"metadata":{"postCount":310,"coverImage":{"id":"1*a6BF-kEeo8rd7OW2a3JYGA.png","originalWidth":1280,"originalHeight":720,"isFeatured":true}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":355190,"metadata":{"postCount":355190,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"computer-vision","name":"Computer Vision","postCount":24633,"metadata":{"postCount":24633,"coverImage":{"id":"1*12z1KvuwHd8P8kwDLpOjDg.jpeg","originalWidth":946,"originalHeight":524}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://huggingface.co/docs/transformers/en/installation","alts":[],"httpStatus":200},{"url":"https://www.shawhintalebi.com/","alts":[],"httpStatus":200},{"url":"https://huggingface.co/openai/clip-vit-base-patch16","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2103.00020","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2002.05709","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2410.07507","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2010.11929","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1810.04805","alts":[],"httpStatus":200},{"url":"https://github.com/ShawhinT/YouTube-Blog/tree/main/multimodal-ai/2-mm-embeddings","alts":[],"httpStatus":200},{"url":"https://towardsdatascience.com/multimodal-models-llms-that-can-see-and-hear-5c6737c981d3","alts":[{"type":3,"url":"medium://p/5c6737c981d3"},{"type":2,"url":"medium://p/5c6737c981d3"}],"httpStatus":200},{"url":"https://shawhin.medium.com/list/fe9521d0e77a","alts":[{"type":3,"url":"medium://@shawhin/list/multimodal-ai-fe9521d0e77a"},{"type":2,"url":"medium://@shawhin/list/multimodal-ai-fe9521d0e77a"}],"httpStatus":200},{"url":"https://shawhin.medium.com/list/multimodal-ai-fe9521d0e77a","alts":[{"type":3,"url":"medium://@shawhin/list/multimodal-ai-fe9521d0e77a"},{"type":2,"url":"medium://@shawhin/list/multimodal-ai-fe9521d0e77a"}],"httpStatus":200},{"url":"https://shawhin.medium.com/list/large-language-models-llms-8e009ae3054c","alts":[{"type":3,"url":"medium://@shawhin/list/large-language-models-llms-8e009ae3054c"},{"type":2,"url":"medium://@shawhin/list/large-language-models-llms-8e009ae3054c"}],"httpStatus":200}],"version":"0.3","generatedAt":1732892977591},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":121,"sectionCount":4,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"multimodal-embeddings-an-introduction","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"multimodal-embeddings-an-introduction-5dc36975966f","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*a6BF-kEeo8rd7OW2a3JYGA.png","originalWidth":1280,"originalHeight":720,"isFeatured":true}},{"name":"7c71","type":3,"text":"Multimodal Embeddings: An Introduction","markups":[{"type":1,"start":0,"end":38}],"alignment":1},{"name":"341a","type":13,"text":"Mapping text and images into a common space","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Mapping text and images into a common space"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"93a5138ffa22","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":6,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"Multimodal Embeddings: An Introduction | by Shaw Talebi","previewContent2":{"bodyModel":{"paragraphs":[{"name":"7c71","type":3,"text":"Multimodal Embeddings: An Introduction","markups":[{"type":1,"start":0,"end":38}]},{"name":"341a","type":13,"text":"Mapping text and images into a common space","markups":[]},{"name":"9161","type":1,"text":"This is the 2nd article in a larger series on multimodal AI. In the previous post, we saw how to augment large language models (LLMs) to understand new data modalities (e.g., images, audio, video). One such approach relied on encoders that generate vector representations (i.e. embeddings) of non-text data. In…","markups":[{"type":3,"start":29,"end":42,"href":"https://shawhin.medium.com/list/multimodal-ai-fe9521d0e77a","title":"","rel":"","anchorType":0},{"type":3,"start":68,"end":81,"href":"https://towardsdatascience.com/multimodal-models-llms-that-can-see-and-hear-5c6737c981d3","title":"","rel":"","anchorType":0},{"type":3,"start":105,"end":133,"href":"https://shawhin.medium.com/list/large-language-models-llms-8e009ae3054c","title":"","rel":"","anchorType":0},{"type":2,"start":340,"end":350}]}],"sections":[{"name":"798a","startIndex":0}]},"isFullContent":false,"subtitle":"Mapping text and images into a common space"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"e444f80053dd":{"id":"e444f80053dd","versionId":"3e9d8df718a1","creatorId":"752038078741","homeCollectionId":"7f60cf5620c9","title":"AI Math: The Bias-Variance Trade-off in Deep Learning","detectedLanguage":"en","latestVersion":"3e9d8df718a1","latestPublishedVersion":"3e9d8df718a1","hasUnpublishedEdits":true,"latestRev":11365,"createdAt":1729467463624,"updatedAt":1732934819790,"acceptedAt":0,"firstPublishedAt":1732888936600,"latestPublishedAt":1732888936600,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"A visual tour from classical statistics to the nuances of deep learning","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*BeQ2h3qftp--CFxKY2rW8w@2x.jpeg","filter":"","backgroundSize":"","originalWidth":2386,"originalHeight":1491,"strategy":"resample","height":0,"width":0},"wordCount":11547,"imageCount":47,"readingTime":46.67358490566038,"subtitle":"A visual tour from classical statistics to the nuances of deep learning","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":15,"isBookmarked":false,"tags":[{"slug":"mathematics","name":"Mathematics","postCount":34784,"metadata":{"postCount":34784,"coverImage":{"id":"1*5lwFGR84BoqacpEyB-Q67Q.png","originalWidth":1203,"originalHeight":765,"isFeatured":true}},"type":"Tag"},{"slug":"statistics","name":"Statistics","postCount":33704,"metadata":{"postCount":33704,"coverImage":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},"type":"Tag"},{"slug":"deep-learning","name":"Deep Learning","postCount":101676,"metadata":{"postCount":101676,"coverImage":{"id":"1*lFaRb83-Bq6SuW-xFNJ7Ig@2x.jpeg","originalWidth":1024,"originalHeight":1024,"isFeatured":true}},"type":"Tag"},{"slug":"machine-learning","name":"Machine Learning","postCount":355190,"metadata":{"postCount":355190,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"editors-pick","name":"Editors Pick","postCount":4829,"metadata":{"postCount":4829,"coverImage":{"id":"1*RlB5AwLS6p3jwKuM6kGJVA.png","originalWidth":947,"originalHeight":592,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://en.wikipedia.org/wiki/Minimum-variance_unbiased_estimator","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Combination","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2310.13572","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1708.02002","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2303.14151","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/German_tank_problem","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff#Derivation","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Likelihood_function","alts":[],"httpStatus":200},{"url":"https://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/2106.05522v4","alts":[],"httpStatus":200},{"url":"https://en.wikipedia.org/wiki/Fisher_information","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2404.00897","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2310.13572","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/2303.14151","alts":[],"httpStatus":200},{"url":"https://doi.org/10.1111/insr.12409","alts":[],"httpStatus":403},{"url":"https://en.wikipedia.org/wiki/Statistical_risk","alts":[],"httpStatus":200},{"url":"https://stats.stackexchange.com/questions/470626/why-is-using-squared-error-the-standard-when-absolute-error-is-more-relevant-to","alts":[],"httpStatus":200},{"url":"https://stats.stackexchange.com/questions/470626/w","alts":[],"httpStatus":200},{"url":"https://med.stanford.edu/content/dam/sm/dbds/documents/biostats-workshop/paper-1-.pdf","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/why-scalin","alts":[],"httpStatus":200},{"url":"https://hastie.su.domains/ElemStatLearn/","alts":[],"httpStatus":403},{"url":"https://medium.com/management-matters/managing-risks-in-deploying-generative-ai-393254259497","alts":[{"type":3,"url":"medium://p/393254259497"},{"type":2,"url":"medium://p/393254259497"}],"httpStatus":200},{"url":"https://proceedings.neurips.cc/paper_files/paper/2020/file/7d420e2b2939762031eed0447a9be19f-Paper.pdf","alts":[],"httpStatus":200},{"url":"https://medium.com/towards-data-science/why-scaling-works-inductive-biases-vs-the-bitter-lesson-9c2782f99b18","alts":[{"type":3,"url":"medium://p/9c2782f99b18"},{"type":2,"url":"medium://p/9c2782f99b18"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/exploring-the-ai-alignment-problem-with-gridworlds-2683f2f5af38","alts":[{"type":2,"url":"medium://p/2683f2f5af38"},{"type":3,"url":"medium://p/2683f2f5af38"}],"httpStatus":200},{"url":"https://medium.com/towards-data-science/what-do-large-language-models-understand-befdb4411b77","alts":[{"type":3,"url":"medium://p/befdb4411b77"},{"type":2,"url":"medium://p/befdb4411b77"}],"httpStatus":200}],"version":"0.3","generatedAt":1732888939324},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":123,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"7808efc0cf94","slug":"math","createdAt":1494090780021,"deletedAt":0,"image":{"id":"1*S4y5QE8kNj1Im9dAcGQtOA@2x.jpeg","originalWidth":1800,"originalHeight":1200},"name":"Math","description":"Add it up.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Math News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"ai-math-the-bias-variance-trade-off-in-deep-learning","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":false,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":0,"uniqueSlug":"ai-math-the-bias-variance-trade-off-in-deep-learning-e444f80053dd","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*BeQ2h3qftp--CFxKY2rW8w@2x.jpeg","originalWidth":2386,"originalHeight":1491,"isFeatured":true,"alt":"Title: Bias-variance trade-off. Handwritten notes full of equations and diagrams explain various aspects of decomposing total error into bias and variance terms. This includes the key assumptions necessary for the decomposition. Additional aspects covered include complex decision boundaries and difficulty of training examples."}},{"name":"d726","type":3,"text":"AI Math: The Bias-Variance Trade-off in Deep Learning","markups":[],"alignment":1},{"name":"5232","type":13,"text":"A visual tour from classical statistics to the…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"A visual tour from classical statistics to the nuances of deep learning"},"license":3,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"398a18fffa11","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":false,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":false,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":0,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":1,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":0,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"d726","type":3,"text":"AI Math: The Bias-Variance Trade-off in Deep Learning","markups":[]},{"name":"5232","type":13,"text":"A visual tour from classical statistics to the nuances of deep learning","markups":[]},{"name":"c1e4","type":4,"text":"Source: All images by author unless otherwise indicated.","markups":[],"layout":3,"metadata":{"id":"1*BeQ2h3qftp--CFxKY2rW8w@2x.jpeg","originalWidth":2386,"originalHeight":1491,"isFeatured":true,"alt":"Title: Bias-variance trade-off. Handwritten notes full of equations and diagrams explain various aspects of decomposing total error into bias and variance terms. This includes the key assumptions necessary for the decomposition. Additional aspects covered include complex decision boundaries and difficulty of training examples."}},{"name":"9ec0","type":1,"text":"In deep learning the bias-variance trade-off is not straightforward and can often be the wrong thing to pay attention to. To understand why, we need to take a tour through inferential statistics, classical statistical learning methods, and machine learning robustness. We’ll end the article by touching on overparameterisation and the…","markups":[]}],"sections":[{"name":"b1d6","startIndex":0}]},"isFullContent":false,"subtitle":"A visual tour from classical statistics to the nuances of deep learning"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":true,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"c65dc602e809":{"id":"c65dc602e809","versionId":"906dfa97f181","creatorId":"7272e5ea3be1","homeCollectionId":"7f60cf5620c9","title":"Porting Twitter’s Anomaly Detection Algorithm To Swift","detectedLanguage":"en","latestVersion":"906dfa97f181","latestPublishedVersion":"906dfa97f181","hasUnpublishedEdits":false,"latestRev":1551,"createdAt":1732498741343,"updatedAt":1732934994429,"acceptedAt":0,"firstPublishedAt":1732885334386,"latestPublishedAt":1732885334386,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"From Twitter to Swift: Building Anomaly Detection.","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*9R0wZJbmGQSTxG4nLcWmxQ.png","filter":"","backgroundSize":"","originalWidth":1974,"originalHeight":1238,"strategy":"resample","height":0,"width":0},"wordCount":2657,"imageCount":7,"readingTime":11.076415094339623,"subtitle":"From Twitter to Swift: Building Anomaly Detection.","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":1,"isBookmarked":false,"tags":[{"slug":"anomaly-detection","name":"Anomaly Detection","postCount":1814,"metadata":{"postCount":1814,"coverImage":{"id":"1*6qCZ4x-NI99fTG-yeJFlzg.png","originalWidth":2036,"originalHeight":942,"isFeatured":true}},"type":"Tag"},{"slug":"ios-app-development","name":"iOS App Development","postCount":29307,"metadata":{"postCount":29307,"coverImage":{"id":"0*7QOivsGgUBC5yBgG.png","originalWidth":1200,"originalHeight":979,"isFeatured":true}},"type":"Tag"},{"slug":"swift-programming","name":"Swift Programming","postCount":5825,"metadata":{"postCount":5825,"coverImage":{"id":"1*Lcx3sDwOrFIgMrrby_zn9A.png","originalWidth":938,"originalHeight":412,"isFeatured":true}},"type":"Tag"},{"slug":"time-series-analysis","name":"Time Series Analysis","postCount":4176,"metadata":{"postCount":4176,"coverImage":{"id":"1*Cj52RZUAEZShEfSUfvabIg.jpeg","originalWidth":640,"originalHeight":480}},"type":"Tag"},{"slug":"twitter","name":"Twitter","postCount":74542,"metadata":{"postCount":74542,"coverImage":{"id":"1*_xNFc2aHJl7hWzlByHOspQ.jpeg","originalWidth":588,"originalHeight":460,"isFeatured":true,"alt":"IMAGE: A Bluesky “join the conversation” banner with the logo and the buttons to either sign up or sign in"}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":0,"links":{"entries":[{"url":"https://blog.x.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series","alts":[],"httpStatus":403},{"url":"https://en.wikipedia.org/wiki/Grubbs's_test","alts":[],"httpStatus":200},{"url":"https://anomaly.io/anomaly-detection-twitter-r/index.html","alts":[],"httpStatus":200},{"url":"https://arxiv.org/abs/1704.07706","alts":[],"httpStatus":200},{"url":"https://arxiv.org/pdf/1704.07706","alts":[],"httpStatus":200},{"url":"https://github.com/ankane/stl-rust/blob/master/src/stl_result.rs#L15","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/Seasonal-Trends-Decomposition-STL-Swift/blob/dec98db36a04e5f9210ec80009705b336f7a29c3/Sources/SeasonalTrendsDecomp/stl_result.swift#L23","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/AnomalyDetection-Swift/blob/main/Sources/AnomalyDetection/AnomalyDetection.swift#L77","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/AnomalyDetection-Swift","alts":[],"httpStatus":200},{"url":"https://github.com/twitter/AnomalyDetection","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/Anomaly-Detection-App-Ios","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/Anomaly-Detection-App-Ios?tab=readme-ov-file","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/Seasonal-Trends-Decomposition-STL-Swift","alts":[],"httpStatus":200},{"url":"https://github.com/ankane/AnomalyDetection.rs","alts":[],"httpStatus":200},{"url":"https://github.com/ambeckley/Normal-and-Student-T-distributions-Swift","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732885335535},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":1,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"decb52b64abf","slug":"programming","createdAt":1493934116328,"deletedAt":0,"image":{"id":"1*iPa136b1cGEO7lvoXg6uHQ@2x.jpeg","originalWidth":6016,"originalHeight":4016},"name":"Programming","description":"The good, the bad, the buggy.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Programming News and Articles — Medium","type":"Topic"}]},"coverless":true,"slug":"porting-twitters-anomaly-detection-algorithm-to-swift","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"porting-twitters-anomaly-detection-algorithm-to-swift-c65dc602e809","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*9R0wZJbmGQSTxG4nLcWmxQ.png","originalWidth":1974,"originalHeight":1238,"isFeatured":true}},{"name":"3ccc","type":3,"text":"Porting Twitter’s Anomaly Detection Algorithm To Swift","markups":[],"alignment":1},{"name":"259c","type":13,"text":"From Twitter to Swift: Building Anomaly…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"From Twitter to Swift: Building Anomaly Detection."},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732639570593,"primaryTopicId":"ae5d4995e225","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"3ccc","type":3,"text":"Porting Twitter’s Anomaly Detection Algorithm To Swift","markups":[]},{"name":"259c","type":13,"text":"From Twitter to Swift: Building Anomaly Detection.","markups":[]},{"name":"011e","type":4,"text":"Zoomed in image of my ADS App.","markups":[{"type":3,"start":0,"end":29,"href":"https://github.com/ambeckley/Anomaly-Detection-App-Ios","title":"","rel":"","anchorType":0}],"layout":1,"metadata":{"id":"1*9R0wZJbmGQSTxG4nLcWmxQ.png","originalWidth":1974,"originalHeight":1238,"isFeatured":true}},{"name":"6122","type":1,"text":"Twitter (now X), back in 2015 made an Anomaly Detection Algorithm for use in tracking trends among their millions of users.","markups":[{"type":3,"start":30,"end":123,"href":"https://blog.x.com/engineering/en_us/a/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series","title":"","rel":"","anchorType":0}]},{"name":"5055","type":14,"text":"GitHub - twitter/AnomalyDetection: Anomaly Detection with R\nAnomaly Detection with R. Contribute to twitter/AnomalyDetection development by creating an account on GitHub.github.com","markups":[{"type":3,"start":0,"end":180,"href":"https://github.com/twitter/AnomalyDetection","title":"https://github.com/twitter/AnomalyDetection","rel":"","anchorType":0},{"type":1,"start":0,"end":59},{"type":2,"start":60,"end":170}],"mixtapeMetadata":{"mediaResourceId":"df71c75b2959b632c1e4937251796a7a","thumbnailImageId":"0*wue1FiGVMx3KUFn2","href":"https://github.com/twitter/AnomalyDetection"}},{"name":"e2d1","type":1,"text":"This package, made entirely in R, is still very usable. It was designed to be able to detect global and local anomalies, and it is able to successfully detect…","markups":[{"type":3,"start":56,"end":119,"href":"https://anomaly.io/anomaly-detection-twitter-r/index.html","title":"","rel":"","anchorType":0},{"type":3,"start":257,"end":300,"href":"https://anomaly.io/anomaly-detection-twitter-r/index.html","title":"","rel":"","anchorType":0}]}],"sections":[{"name":"c045","startIndex":0}]},"isFullContent":false,"subtitle":"From Twitter to Swift: Building Anomaly Detection."},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"},"64b4a868f91a":{"id":"64b4a868f91a","versionId":"1c5d31f8f998","creatorId":"10e58cd8f016","homeCollectionId":"7f60cf5620c9","title":"So It’s Your First Year in AI; Here’s What to Expect","detectedLanguage":"en","latestVersion":"1c5d31f8f998","latestPublishedVersion":"1c5d31f8f998","hasUnpublishedEdits":false,"latestRev":908,"createdAt":1732532206993,"updatedAt":1732934571980,"acceptedAt":0,"firstPublishedAt":1732881739565,"latestPublishedAt":1732881739565,"vote":false,"experimentalCss":"","displayAuthor":"","content":{"subtitle":"Sharing my experience from both AI startups and large corporates","postDisplay":{"coverless":true}},"virtuals":{"statusForCollection":"APPROVED","allowNotes":true,"previewImage":{"imageId":"1*NEqNt6OXJiZhVuaYvphsAA@2x.jpeg","filter":"","backgroundSize":"","originalWidth":3240,"originalHeight":1827,"strategy":"resample","height":0,"width":0},"wordCount":1717,"imageCount":3,"readingTime":7.029245283018867,"subtitle":"Sharing my experience from both AI startups and large corporates","publishedInCount":1,"usersBySocialRecommends":[],"noIndex":false,"recommends":3,"isBookmarked":false,"tags":[{"slug":"machine-learning","name":"Machine Learning","postCount":355190,"metadata":{"postCount":355190,"coverImage":{"id":"1*8yJrgGPFwHBY8lpIFg7ERQ.png","originalWidth":940,"originalHeight":788,"isFeatured":true}},"type":"Tag"},{"slug":"artificial-intelligence","name":"Artificial Intelligence","postCount":460741,"metadata":{"postCount":460741,"coverImage":{"id":"1*gAn_BSffVBcwCIR6bDgK1g.jpeg"}},"type":"Tag"},{"slug":"data-science","name":"Data Science","postCount":348274,"metadata":{"postCount":348274,"coverImage":{"id":"0*1UW2in6Ia_m72vge","originalWidth":4316,"originalHeight":3448,"isFeatured":true,"unsplashPhotoId":"iOykDIkZLQw"}},"type":"Tag"},{"slug":"career-advice","name":"Career Advice","postCount":59575,"metadata":{"postCount":59575,"coverImage":{"id":"1*ZTbH0ESeronHdaBClwxBMQ.jpeg","originalWidth":5760,"originalHeight":3840,"isFeatured":true}},"type":"Tag"},{"slug":"office-hours","name":"Office Hours","postCount":377,"metadata":{"postCount":377,"coverImage":{"id":"1*NEqNt6OXJiZhVuaYvphsAA@2x.jpeg","originalWidth":3240,"originalHeight":1827,"isFeatured":true}},"type":"Tag"}],"socialRecommendsCount":0,"responsesCreatedCount":1,"links":{"entries":[{"url":"https://unsplash.com/?utm_source=medium&utm_medium=referral","alts":[],"httpStatus":200},{"url":"http://ferh.xyz","alts":[],"httpStatus":0},{"url":"https://uwsgi-docs.readthedocs.io/en/latest/","alts":[],"httpStatus":200},{"url":"https://www.mongodb.com/docs/manual/core/aggregation-pipeline/","alts":[],"httpStatus":200},{"url":"https://www.tensorflow.org/tensorboard","alts":[],"httpStatus":200}],"version":"0.3","generatedAt":1732881740266},"isLockedPreviewOnly":false,"metaDescription":"","totalClapCount":31,"sectionCount":1,"readingList":0,"topics":[{"topicId":"1af65db9c2f8","slug":"artificial-intelligence","createdAt":1487916832419,"deletedAt":0,"image":{"id":"1*A28aHchbaA8zNVXraBq0Ug@2x.jpeg","originalWidth":4866,"originalHeight":3244},"name":"Artificial Intelligence","description":"Born to be bot.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"AI News and Artificial Intelligence Articles — Medium","type":"Topic"},{"topicId":"1eca0103fff3","slug":"machine-learning","createdAt":1534449726145,"deletedAt":0,"image":{"id":"1*gFJS3amhZEg_z39D5EErVg@2x.png","originalWidth":2800,"originalHeight":1750},"name":"Machine Learning","description":"Teaching the learners.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Machine Learning News and Articles — Medium","type":"Topic"},{"topicId":"ae5d4995e225","slug":"data-science","createdAt":1493923906289,"deletedAt":0,"image":{"id":"1*NHWOEki_ncCX-xzbKtkEWw@2x.jpeg","originalWidth":5760,"originalHeight":3840},"name":"Data Science","description":"Query this.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Data Science News and Articles — Medium","type":"Topic"},{"topicId":"ba2d3ab15ed6","slug":"startups","createdAt":1493829293973,"deletedAt":0,"image":{"id":"1*unFN2bn-rJB7tM_HJ4m_Rg@2x.jpeg","originalWidth":5472,"originalHeight":3648},"name":"Startups","description":"Founding, funding, and beyond.","relatedTopics":[],"visibility":1,"relatedTags":[],"relatedTopicIds":[],"seoTitle":"Startup News — Medium","type":"Topic"}]},"coverless":true,"slug":"so-its-your-first-year-in-ai-here-s-what-to-expect","translationSourcePostId":"","translationSourceCreatorId":"","isApprovedTranslation":false,"inResponseToPostId":"","inResponseToRemovedAt":0,"isTitleSynthesized":true,"allowResponses":true,"importedUrl":"","importedPublishedAt":0,"visibility":2,"uniqueSlug":"so-its-your-first-year-in-ai-here-s-what-to-expect-64b4a868f91a","previewContent":{"bodyModel":{"paragraphs":[{"name":"previewImage","type":4,"text":"","layout":10,"metadata":{"id":"1*NEqNt6OXJiZhVuaYvphsAA@2x.jpeg","originalWidth":3240,"originalHeight":1827,"isFeatured":true}},{"name":"96c0","type":3,"text":"So It’s Your First Year in AI; Here’s What to Expect","markups":[],"alignment":1},{"name":"2082","type":13,"text":"Sharing my experience from both AI startups and…","markups":[],"alignment":1}],"sections":[{"startIndex":0}]},"isFullContent":false,"subtitle":"Sharing my experience from both AI startups and large corporates"},"license":0,"inResponseToMediaResourceId":"","canonicalUrl":"","approvedHomeCollectionId":"7f60cf5620c9","isNewsletter":false,"newsletterId":"","webCanonicalUrl":"","mediumUrl":"","migrationId":"","notifyFollowers":true,"notifyTwitter":false,"notifyFacebook":false,"responseHiddenOnParentPostAt":0,"isSeries":false,"isSubscriptionLocked":true,"seriesLastAppendedAt":0,"audioVersionDurationSec":0,"sequenceId":"","isEligibleForRevenue":true,"isBlockedFromHightower":false,"deletedAt":0,"lockedPostSource":1,"hightowerMinimumGuaranteeStartsAt":0,"hightowerMinimumGuaranteeEndsAt":0,"featureLockRequestAcceptedAt":0,"mongerRequestType":1,"layerCake":0,"socialTitle":"","socialDek":"","editorialPreviewTitle":"","editorialPreviewDek":"","curationEligibleAt":1732659189296,"primaryTopicId":"1eca0103fff3","isProxyPost":false,"proxyPostFaviconUrl":"","proxyPostProviderName":"","proxyPostType":0,"isSuspended":false,"isLimitedState":false,"seoTitle":"","previewContent2":{"bodyModel":{"paragraphs":[{"name":"96c0","type":3,"text":"So It’s Your First Year in AI; Here’s What to Expect","markups":[]},{"name":"2082","type":13,"text":"Sharing my experience from both AI startups and large corporates","markups":[]},{"name":"6462","type":4,"text":"Photo by Nahrizul Kadri on Unsplash","markups":[{"type":3,"start":27,"end":35,"href":"https://unsplash.com/?utm_source=medium&utm_medium=referral","title":"","rel":"","anchorType":0}],"layout":1,"metadata":{"id":"1*NEqNt6OXJiZhVuaYvphsAA@2x.jpeg","originalWidth":3240,"originalHeight":1827,"isFeatured":true}},{"name":"1c88","type":3,"text":"Introduction","markups":[]},{"name":"849d","type":1,"text":"In recent conversations, I’ve noticed a recurring theme among those eager to break into the AI field: there’s a lot of uncertainty about what to expect. I realized that outside my bubble, many newcomers find the landscape of AI and machine learning (ML) daunting.","markups":[]},{"name":"4637","type":1,"text":"Whether you’re preparing to study AI…","markups":[]}],"sections":[{"name":"f3ed","startIndex":0}]},"isFullContent":false,"subtitle":"Sharing my experience from both AI startups and large corporates"},"cardType":0,"isDistributionAlertDismissed":false,"isShortform":false,"shortformType":0,"responsesLocked":false,"isLockedResponse":false,"isPublishToEmail":false,"responseDistribution":0,"isMarkedPaywallOnly":false,"type":"Post"}}},"paging":{"path":"/_/api/collections/7f60cf5620c9/stream","next":{"to":"1732881739565","ignoredIds":[],"page":3}},"collection":{"id":"7f60cf5620c9","name":"Towards Data Science","slug":"towards-data-science","tags":["DATA SCIENCE","MACHINE LEARNING","ARTIFICIAL INTELLIGENCE","DATA ENGINEERING","DATA"],"creatorId":"9c70285657bb","description":"Your home for data science and AI. The world’s leading publication for data science, data analytics, data engineering, machine learning, and artificial intelligence professionals.","shortDescription":"Your home for data science and AI.","image":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"metadata":{"followerCount":770193,"activeAt":1732982545174},"virtuals":{"permissions":{"canPublish":false,"canPublishAll":false,"canRepublish":false,"canRemove":false,"canManageAll":false,"canSubmit":false,"canEditPosts":false,"canAddWriters":false,"canViewStats":false,"canSendNewsletter":false,"canViewLockedPosts":false,"canViewCloaked":false,"canEditOwnPosts":false,"canBeAssignedAuthor":false,"canEnrollInHightower":false,"canLockPostsForMediumMembers":false,"canLockOwnPostsForMediumMembers":false,"canViewNewsletterV2Stats":false,"canCreateNewsletterV3":false},"isSubscribed":false,"isEnrolledInHightower":false,"isEligibleForHightower":false,"isSubscribedToCollectionEmails":false,"isMuted":false,"canToggleEmail":false,"isWriter":false},"logo":{"imageId":"1*cFFKn8rFH4ZndmaYeAs6iQ.png","filter":"","backgroundSize":"","originalWidth":2381,"originalHeight":743,"strategy":"resample","height":0,"width":0},"twitterUsername":"TDataScience","collectionMastheadId":"8b6aceffde6","domain":"towardsdatascience.com","sections":[{"type":2,"collectionHeaderMetadata":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":2,"postIds":["74f119c7e036","443c07f3a717"]}},{"type":1,"postListMetadata":{"source":1,"layout":4,"number":9,"postIds":["eb13bbdc8f88","a234e29b192d","af06d24e011d","930e2267006e","caf98151db0e","5dc36975966f","e444f80053dd","c65dc602e809","64b4a868f91a"],"sectionHeader":"Latest"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"f9f3fdba6ebf"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Editors Pick","tagName":"Editors Pick","sectionHeader":"Editors' Picks"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":2,"postIds":[],"tagSlug":"Tds Features","tagName":"Tds Features","sectionHeader":"Features"}},{"type":3,"promoMetadata":{"sectionHeader":"","promoId":"efaedc412a41"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["e602d27ec876","c57724e9c461","69019493b259"],"sectionHeader":"Trending articles"}},{"type":1,"postListMetadata":{"source":3,"layout":4,"number":3,"postIds":["182a5ef6588c","e24b50e1d292","68b2303cc9c5"],"sectionHeader":"Popular from our archive"}},{"type":1,"postListMetadata":{"source":4,"layout":4,"number":6,"postIds":[],"tagSlug":"Deep Dives","tagName":"Deep Dives","sectionHeader":"Deep Dives"}},{"type":1,"postListMetadata":{"source":3,"layout":5,"number":3,"postIds":["d691af11cc2f","c2c8e712c971","3bf37f75a345"],"sectionHeader":"About"}},{"type":1,"postListMetadata":{"source":1,"layout":5,"number":16,"postIds":[],"sectionHeader":"Latest"}}],"tintColor":"#FF355876","lightText":true,"favicon":{"imageId":"1*VzTUkfeGymHP4Bvav-T-lA.png","filter":"","backgroundSize":"","originalWidth":207,"originalHeight":206,"strategy":"resample","height":0,"width":0},"colorPalette":{"defaultBackgroundSpectrum":{"colorPoints":[{"color":"#FF668AAA","point":0},{"color":"#FF61809D","point":0.1},{"color":"#FF5A7690","point":0.2},{"color":"#FF546C83","point":0.3},{"color":"#FF4D6275","point":0.4},{"color":"#FF455768","point":0.5},{"color":"#FF3D4C5A","point":0.6},{"color":"#FF34414C","point":0.7},{"color":"#FF2B353E","point":0.8},{"color":"#FF21282F","point":0.9},{"color":"#FF161B1F","point":1}],"backgroundColor":"#FFFFFFFF"},"tintBackgroundSpectrum":{"colorPoints":[{"color":"#FF355876","point":0},{"color":"#FF4D6C88","point":0.1},{"color":"#FF637F99","point":0.2},{"color":"#FF7791A8","point":0.3},{"color":"#FF8CA2B7","point":0.4},{"color":"#FF9FB3C6","point":0.5},{"color":"#FFB2C3D4","point":0.6},{"color":"#FFC5D2E1","point":0.7},{"color":"#FFD7E2EE","point":0.8},{"color":"#FFE9F1FA","point":0.9},{"color":"#FFFBFFFF","point":1}],"backgroundColor":"#FF355876"},"highlightSpectrum":{"colorPoints":[{"color":"#FFEDF4FC","point":0},{"color":"#FFE9F2FD","point":0.1},{"color":"#FFE6F1FD","point":0.2},{"color":"#FFE2EFFD","point":0.3},{"color":"#FFDFEEFD","point":0.4},{"color":"#FFDBECFE","point":0.5},{"color":"#FFD7EBFE","point":0.6},{"color":"#FFD4E9FE","point":0.7},{"color":"#FFD0E7FF","point":0.8},{"color":"#FFCCE6FF","point":0.9},{"color":"#FFC8E4FF","point":1}],"backgroundColor":"#FFFFFFFF"},"darkBackgroundSpectrum":{"colorPoints":[{"color":"#FF7EA2C3","point":0},{"color":"#FF8AAAC9","point":0.1},{"color":"#FF95B2CE","point":0.2},{"color":"#FFA0BAD3","point":0.3},{"color":"#FFABC2D9","point":0.4},{"color":"#FFB6CADE","point":0.5},{"color":"#FFC1D2E3","point":0.6},{"color":"#FFCBD9E8","point":0.7},{"color":"#FFD6E1EC","point":0.8},{"color":"#FFE0E8F1","point":0.9},{"color":"#FFEAEFF6","point":1}],"backgroundColor":"#FF000000"}},"navItems":[{"type":8,"title":"Latest","url":"https://towardsdatascience.com/latest"},{"type":4,"title":"Editors' Picks","url":"https://towardsdatascience.com/editors-picks/home","topicId":"20b4f3e27fbe","source":"topicId"},{"type":4,"title":"Deep Dives","url":"https://towardsdatascience.com/deep-dives/home","topicId":"8ad314313527","source":"topicId"},{"type":4,"title":"About","url":"https://towardsdatascience.com/about-us/home","topicId":"e4bc46bb3ab0","source":"topicId"},{"type":2,"title":"Contribute","postId":"96667b06af5","url":"https://towardsdatascience.com/questions-96667b06af5","source":"postId"},{"type":3,"title":"Newsletter","url":"https://medium.com/towards-data-science/newsletter"}],"colorBehavior":2,"collectionFeatures":[29,30,27,25],"ampLogo":{"imageId":"","filter":"","backgroundSize":"","originalWidth":0,"originalHeight":0,"strategy":"resample","height":0,"width":0},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"paidForDomainAt":1509037374118,"subscriberCount":770193,"tagline":"A Medium publication sharing concepts, ideas and codes.","isOptedIntoAurora":false,"newsletterV3":{"newsletterV3Id":"d6fe9076899","type":1,"name":"The Variable","description":"Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials and cutting-edge research to the latest on data science and machine learning tools.","collectionId":"7f60cf5620c9","newsletterSlug":"the-variable","isSubscribed":false,"showPromo":true,"avatarImageId":"","creatorId":"895063a310f4","showNewsletterPostsInCollectionHome":true,"exportableSubscribersCount":52140,"subscribersCount":131884,"promoHeadline":"","promoBody":"","replyToEmail":""},"isCurationAllowedByDefault":false,"polarisCoverImage":{"imageId":"1*CJe3891yB1A1mzMdqemkdg.jpeg","filter":"","backgroundSize":"","originalWidth":2861,"originalHeight":2861,"strategy":"resample","height":0,"width":0},"ptsQualifiedAt":1616092952992,"type":"Collection"},"header":{"title":"","description":"The world’s leading publication for data science, AI, data analytics, data engineering and ML professionals.","backgroundImage":{},"logoImage":{"id":"1*1m9fjwOZWwXIP82RWvRH5A@2x.png","originalWidth":1589,"originalHeight":661,"alt":"Towards Data Science"},"alignment":2,"layout":5},"streamItems":[{"createdAt":1732995396275,"randomId":"bf0766867b1d","section":{"items":[{"post":{"postId":"74f119c7e036"},"itemType":"post"},{"post":{"postId":"443c07f3a717"},"itemType":"post"}],"layout":4},"itemType":"section","type":"StreamItem"},{"createdAt":1732995396275,"randomId":"4388f6898d58","section":{"items":[{"post":{"postId":"eb13bbdc8f88"},"itemType":"post"},{"post":{"postId":"a234e29b192d"},"itemType":"post"},{"post":{"postId":"af06d24e011d"},"itemType":"post"},{"post":{"postId":"930e2267006e"},"itemType":"post"},{"post":{"postId":"caf98151db0e"},"itemType":"post"},{"post":{"postId":"5dc36975966f"},"itemType":"post"},{"post":{"postId":"e444f80053dd"},"itemType":"post"},{"post":{"postId":"c65dc602e809"},"itemType":"post"},{"post":{"postId":"64b4a868f91a"},"itemType":"post"}],"layout":4,"heading":{"fallbackTitle":"Latest","headingBasic":{"title":"Latest"},"headingType":"headingBasic"}},"itemType":"section","type":"StreamItem"}]}) // ]]></script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8ead49890c488bca',t:'MTczMjk5NTM5Ni4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>