CINXE.COM
Boolean algebra - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Boolean algebra - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"23075708-5fa4-491c-9613-27a5e6b31362","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Boolean_algebra","wgTitle":"Boolean algebra","wgCurRevisionId":1258106071,"wgRevisionId":1258106071,"wgArticleId":54476844,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with Internet Encyclopedia of Philosophy links","Articles with short description","Short description is different from Wikidata","Use dmy dates from October 2022","Use list-defined references from October 2022","Articles needing additional references from April 2019","All articles needing additional references","All articles with unsourced statements","Articles with unsourced statements from November 2020","All articles with specifically marked weasel-worded phrases", "Articles with specifically marked weasel-worded phrases from November 2022","CS1 location test","CS1 interwiki-linked names","Articles with Stanford Encyclopedia of Philosophy links","Articles with example code","Boolean algebra","1847 introductions","Algebraic logic"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Boolean_algebra","wgRelevantArticleId":54476844,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false, "wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q173183","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready", "ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Boolean algebra - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Boolean_algebra"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Boolean_algebra&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Boolean_algebra"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Boolean_algebra rootpage-Boolean_algebra skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Boolean+algebra" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Boolean+algebra" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Boolean+algebra" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Boolean+algebra" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Values" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Values"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Values</span> </div> </a> <ul id="toc-Values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operations</span> </div> </a> <button aria-controls="toc-Operations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Operations subsection</span> </button> <ul id="toc-Operations-sublist" class="vector-toc-list"> <li id="toc-Basic_operations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basic_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Basic operations</span> </div> </a> <ul id="toc-Basic_operations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Secondary_operations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Secondary_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Secondary operations</span> </div> </a> <ul id="toc-Secondary_operations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Laws" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Laws</span> </div> </a> <button aria-controls="toc-Laws-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Laws subsection</span> </button> <ul id="toc-Laws-sublist" class="vector-toc-list"> <li id="toc-Monotone_laws" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monotone_laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Monotone laws</span> </div> </a> <ul id="toc-Monotone_laws-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nonmonotone_laws" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nonmonotone_laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Nonmonotone laws</span> </div> </a> <ul id="toc-Nonmonotone_laws-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Completeness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Completeness</span> </div> </a> <ul id="toc-Completeness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Duality_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Duality_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Duality principle</span> </div> </a> <ul id="toc-Duality_principle-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Diagrammatic_representations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Diagrammatic_representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Diagrammatic representations</span> </div> </a> <button aria-controls="toc-Diagrammatic_representations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Diagrammatic representations subsection</span> </button> <ul id="toc-Diagrammatic_representations-sublist" class="vector-toc-list"> <li id="toc-Venn_diagrams" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Venn_diagrams"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Venn diagrams</span> </div> </a> <ul id="toc-Venn_diagrams-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Digital_logic_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Digital_logic_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Digital logic gates</span> </div> </a> <ul id="toc-Digital_logic_gates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Boolean_algebras" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Boolean_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Boolean algebras</span> </div> </a> <button aria-controls="toc-Boolean_algebras-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Boolean algebras subsection</span> </button> <ul id="toc-Boolean_algebras-sublist" class="vector-toc-list"> <li id="toc-Concrete_Boolean_algebras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Concrete_Boolean_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Concrete Boolean algebras</span> </div> </a> <ul id="toc-Concrete_Boolean_algebras-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subsets_as_bit_vectors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subsets_as_bit_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Subsets as bit vectors</span> </div> </a> <ul id="toc-Subsets_as_bit_vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prototypical_Boolean_algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prototypical_Boolean_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Prototypical Boolean algebra</span> </div> </a> <ul id="toc-Prototypical_Boolean_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Boolean_algebras:_the_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Boolean_algebras:_the_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Boolean algebras: the definition</span> </div> </a> <ul id="toc-Boolean_algebras:_the_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representable_Boolean_algebras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representable_Boolean_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Representable Boolean algebras</span> </div> </a> <ul id="toc-Representable_Boolean_algebras-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Axiomatizing_Boolean_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Axiomatizing_Boolean_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Axiomatizing Boolean algebra</span> </div> </a> <ul id="toc-Axiomatizing_Boolean_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Propositional_logic" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Propositional_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Propositional logic</span> </div> </a> <button aria-controls="toc-Propositional_logic-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Propositional logic subsection</span> </button> <ul id="toc-Propositional_logic-sublist" class="vector-toc-list"> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Deductive_systems_for_propositional_logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deductive_systems_for_propositional_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Deductive systems for propositional logic</span> </div> </a> <ul id="toc-Deductive_systems_for_propositional_logic-sublist" class="vector-toc-list"> <li id="toc-Sequent_calculus" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sequent_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.1</span> <span>Sequent calculus</span> </div> </a> <ul id="toc-Sequent_calculus-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Applications_2" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications_2-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications_2-sublist" class="vector-toc-list"> <li id="toc-Computers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Computers"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Computers</span> </div> </a> <ul id="toc-Computers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two-valued_logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two-valued_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Two-valued logic</span> </div> </a> <ul id="toc-Two-valued_logic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Boolean_operations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Boolean_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Boolean operations</span> </div> </a> <ul id="toc-Boolean_operations-sublist" class="vector-toc-list"> <li id="toc-Natural_language" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Natural_language"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.1</span> <span>Natural language</span> </div> </a> <ul id="toc-Natural_language-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Digital_logic" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Digital_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.2</span> <span>Digital logic</span> </div> </a> <ul id="toc-Digital_logic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Naive_set_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Naive_set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.3</span> <span>Naive set theory</span> </div> </a> <ul id="toc-Naive_set_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Video_cards" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Video_cards"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.4</span> <span>Video cards</span> </div> </a> <ul id="toc-Video_cards-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modeling_and_CAD" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Modeling_and_CAD"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.5</span> <span>Modeling and CAD</span> </div> </a> <ul id="toc-Modeling_and_CAD-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Boolean_searches" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Boolean_searches"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3.6</span> <span>Boolean searches</span> </div> </a> <ul id="toc-Boolean_searches-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Historical_perspective" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical_perspective"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Historical perspective</span> </div> </a> <ul id="toc-Historical_perspective-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Boolean algebra</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 66 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-66" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">66 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Boolse_algebra" title="Boolse algebra – Afrikaans" lang="af" hreflang="af" data-title="Boolse algebra" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AC%D8%A8%D8%B1_%D8%A8%D9%88%D9%84" title="جبر بول – Arabic" lang="ar" hreflang="ar" data-title="جبر بول" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/%C3%81lxebra_de_Boole" title="Álxebra de Boole – Asturian" lang="ast" hreflang="ast" data-title="Álxebra de Boole" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Bul_c%C9%99bri_(m%C9%99ntiqi)" title="Bul cəbri (məntiqi) – Azerbaijani" lang="az" hreflang="az" data-title="Bul cəbri (məntiqi)" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A8%D9%88%D9%84_%D8%AC%D8%A8%D8%B1%DB%8C" title="بول جبری – South Azerbaijani" lang="azb" hreflang="azb" data-title="بول جبری" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A7%81%E0%A6%B2%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%A8_%E0%A6%AC%E0%A7%80%E0%A6%9C%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="বুলিয়ান বীজগণিত – Bangla" lang="bn" hreflang="bn" data-title="বুলিয়ান বীজগণিত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D0%BA%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D2%BB%D1%8B" title="Логика алгебраһы – Bashkir" lang="ba" hreflang="ba" data-title="Логика алгебраһы" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%91%D1%83%D0%BB%D0%B5%D0%B2%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Булева алгебра – Bulgarian" lang="bg" hreflang="bg" data-title="Булева алгебра" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Booleova_algebra" title="Booleova algebra – Bosnian" lang="bs" hreflang="bs" data-title="Booleova algebra" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/%C3%80lgebra_de_Boole" title="Àlgebra de Boole – Catalan" lang="ca" hreflang="ca" data-title="Àlgebra de Boole" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BB%D0%B0%D0%BD%C4%83%D0%BB%C4%83%D1%85%D1%81%D0%B5%D0%BD_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B8" title="Каланăлăхсен алгебри – Chuvash" lang="cv" hreflang="cv" data-title="Каланăлăхсен алгебри" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Booleova_algebra" title="Booleova algebra – Czech" lang="cs" hreflang="cs" data-title="Booleova algebra" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Boolesk_algebra" title="Boolesk algebra – Danish" lang="da" hreflang="da" data-title="Boolesk algebra" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Boolesche_Algebra" title="Boolesche Algebra – German" lang="de" hreflang="de" data-title="Boolesche Algebra" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Boole%27i_algebra" title="Boole'i algebra – Estonian" lang="et" hreflang="et" data-title="Boole'i algebra" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%86%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1_%CE%9C%CF%80%CE%BF%CF%85%CE%BB" title="Άλγεβρα Μπουλ – Greek" lang="el" hreflang="el" data-title="Άλγεβρα Μπουλ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/%C3%81lgebra_de_Boole" title="Álgebra de Boole – Spanish" lang="es" hreflang="es" data-title="Álgebra de Boole" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Bulea_algebro" title="Bulea algebro – Esperanto" lang="eo" hreflang="eo" data-title="Bulea algebro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Booleren_aljebra" title="Booleren aljebra – Basque" lang="eu" hreflang="eu" data-title="Booleren aljebra" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AC%D8%A8%D8%B1_%D8%A8%D9%88%D9%84%DB%8C" title="جبر بولی – Persian" lang="fa" hreflang="fa" data-title="جبر بولی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Alg%C3%A8bre_de_Boole_(logique)" title="Algèbre de Boole (logique) – French" lang="fr" hreflang="fr" data-title="Algèbre de Boole (logique)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Ailg%C3%A9abar_Boole" title="Ailgéabar Boole – Irish" lang="ga" hreflang="ga" data-title="Ailgéabar Boole" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/%C3%81lxebra_de_Boole" title="Álxebra de Boole – Galician" lang="gl" hreflang="gl" data-title="Álxebra de Boole" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ki mw-list-item"><a href="https://ki.wikipedia.org/wiki/Boolean_Logic" title="Boolean Logic – Kikuyu" lang="ki" hreflang="ki" data-title="Boolean Logic" data-language-autonym="Gĩkũyũ" data-language-local-name="Kikuyu" class="interlanguage-link-target"><span>Gĩkũyũ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B6%88_%EB%85%BC%EB%A6%AC" title="불 논리 – Korean" lang="ko" hreflang="ko" data-title="불 논리" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B2%D5%B8%D6%82%D5%AC%D5%B5%D5%A1%D5%B6_%D5%B0%D5%A1%D5%B6%D6%80%D5%A1%D5%B0%D5%A1%D5%B7%D5%AB%D5%BE" title="Բուլյան հանրահաշիվ – Armenian" lang="hy" hreflang="hy" data-title="Բուլյան հանրահաշիվ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A5%82%E0%A4%B2%E0%A5%80%E0%A4%AF_%E0%A4%AC%E0%A5%80%E0%A4%9C%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4_(%E0%A4%A4%E0%A4%B0%E0%A5%8D%E0%A4%95%E0%A4%B6%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A5%8D%E0%A4%B0)" title="बूलीय बीजगणित (तर्कशास्त्र) – Hindi" lang="hi" hreflang="hi" data-title="बूलीय बीजगणित (तर्कशास्त्र)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Booleova_algebra" title="Booleova algebra – Croatian" lang="hr" hreflang="hr" data-title="Booleova algebra" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Booleana_algebro" title="Booleana algebro – Ido" lang="io" hreflang="io" data-title="Booleana algebro" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Aljabar_Boole" title="Aljabar Boole – Indonesian" lang="id" hreflang="id" data-title="Aljabar Boole" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Algebra_di_Boole" title="Algebra di Boole – Italian" lang="it" hreflang="it" data-title="Algebra di Boole" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94_%D7%91%D7%95%D7%9C%D7%99%D7%90%D7%A0%D7%99%D7%AA" title="אלגברה בוליאנית – Hebrew" lang="he" hreflang="he" data-title="אלגברה בוליאנית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AC%E0%B3%82%E0%B2%B2%E0%B2%BF%E0%B2%AF%E0%B2%A8%E0%B3%8D_%E0%B2%AC%E0%B3%80%E0%B2%9C%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ಬೂಲಿಯನ್ ಬೀಜಗಣಿತ – Kannada" lang="kn" hreflang="kn" data-title="ಬೂಲಿಯನ್ ಬೀಜಗಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Mantiq%C3%AA_B%C3%BBl%C3%AE" title="Mantiqê Bûlî – Kurdish" lang="ku" hreflang="ku" data-title="Mantiqê Bûlî" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%B9%D1%82%D1%8B%D0%BB%D1%8B%D1%88%D1%82%D0%B0%D1%80_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D1%81%D1%8B" title="Айтылыштар алгебрасы – Kyrgyz" lang="ky" hreflang="ky" data-title="Айтылыштар алгебрасы" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Algebra_Booleana_(logica)" title="Algebra Booleana (logica) – Latin" lang="la" hreflang="la" data-title="Algebra Booleana (logica)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/B%C5%ABla_algebra" title="Būla algebra – Latvian" lang="lv" hreflang="lv" data-title="Būla algebra" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/B%C5%ABlio_algebra" title="Būlio algebra – Lithuanian" lang="lt" hreflang="lt" data-title="Būlio algebra" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Boole-algebra_(informatika)" title="Boole-algebra (informatika) – Hungarian" lang="hu" hreflang="hu" data-title="Boole-algebra (informatika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%91%D1%83%D0%BB%D0%BE%D0%B2%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Булова алгебра – Macedonian" lang="mk" hreflang="mk" data-title="Булова алгебра" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mwl mw-list-item"><a href="https://mwl.wikipedia.org/wiki/%C3%81lgebra_de_Boole" title="Álgebra de Boole – Mirandese" lang="mwl" hreflang="mwl" data-title="Álgebra de Boole" data-language-autonym="Mirandés" data-language-local-name="Mirandese" class="interlanguage-link-target"><span>Mirandés</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%98%E1%80%B0%E1%80%9C%E1%80%AE%E1%80%9A%E1%80%94%E1%80%BA%E1%80%A1%E1%80%80%E1%80%B9%E1%80%81%E1%80%9B%E1%80%AC%E1%80%9E%E1%80%84%E1%80%BA%E1%80%B9%E1%80%81%E1%80%BB%E1%80%AC" title="ဘူလီယန်အက္ခရာသင်္ချာ – Burmese" lang="my" hreflang="my" data-title="ဘူလီယန်အက္ခရာသင်္ချာ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Booleaanse_algebra" title="Booleaanse algebra – Dutch" lang="nl" hreflang="nl" data-title="Booleaanse algebra" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Boolsk_algebra" title="Boolsk algebra – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Boolsk algebra" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Boolsk_algebra" title="Boolsk algebra – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Boolsk algebra" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/%C3%80lgebra_%C3%ABd_Boole" title="Àlgebra ëd Boole – Piedmontese" lang="pms" hreflang="pms" data-title="Àlgebra ëd Boole" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/%C3%81lgebra_booliana" title="Álgebra booliana – Portuguese" lang="pt" hreflang="pt" data-title="Álgebra booliana" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Algebr%C4%83_boolean%C4%83" title="Algebră booleană – Romanian" lang="ro" hreflang="ro" data-title="Algebră booleană" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_%D0%BB%D0%BE%D0%B3%D0%B8%D0%BA%D0%B8" title="Алгебра логики – Russian" lang="ru" hreflang="ru" data-title="Алгебра логики" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Boolean_algebra" title="Boolean algebra – Simple English" lang="en-simple" hreflang="en-simple" data-title="Boolean algebra" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Boolova_algebra" title="Boolova algebra – Slovak" lang="sk" hreflang="sk" data-title="Boolova algebra" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Booleova_algebra" title="Booleova algebra – Slovenian" lang="sl" hreflang="sl" data-title="Booleova algebra" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D1%83%D0%BB%D0%BE%D0%B2%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Булова алгебра – Serbian" lang="sr" hreflang="sr" data-title="Булова алгебра" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Bulova_algebra" title="Bulova algebra – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Bulova algebra" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Boolen_algebra" title="Boolen algebra – Finnish" lang="fi" hreflang="fi" data-title="Boolen algebra" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Boolesk_algebra" title="Boolesk algebra – Swedish" lang="sv" hreflang="sv" data-title="Boolesk algebra" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Alhebrang_Boolean" title="Alhebrang Boolean – Tagalog" lang="tl" hreflang="tl" data-title="Alhebrang Boolean" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AF%82%E0%AE%B2%E0%AE%BF%E0%AE%AF_%E0%AE%87%E0%AE%AF%E0%AE%B1%E0%AF%8D%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D" title="பூலிய இயற்கணிதம் – Tamil" lang="ta" hreflang="ta" data-title="பூலிய இயற்கணிதம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9E%E0%B8%B5%E0%B8%8A%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B9%81%E0%B8%9A%E0%B8%9A%E0%B8%9A%E0%B8%B9%E0%B8%A5" title="พีชคณิตแบบบูล – Thai" lang="th" hreflang="th" data-title="พีชคณิตแบบบูล" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8_%D0%BC%D0%B0%D0%BD%D1%82%D0%B8%D2%9B" title="Алгебраи мантиқ – Tajik" lang="tg" hreflang="tg" data-title="Алгебраи мантиқ" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Boole_cebiri" title="Boole cebiri – Turkish" lang="tr" hreflang="tr" data-title="Boole cebiri" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_%D0%BB%D0%BE%D0%B3%D1%96%D0%BA%D0%B8" title="Алгебра логіки – Ukrainian" lang="uk" hreflang="uk" data-title="Алгебра логіки" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BA%A1i_s%E1%BB%91_Boole" title="Đại số Boole – Vietnamese" lang="vi" hreflang="vi" data-title="Đại số Boole" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E4%BB%A3%E6%95%B0" title="逻辑代数 – Wu" lang="wuu" hreflang="wuu" data-title="逻辑代数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E4%BB%A3%E6%95%B8" title="邏輯代數 – Cantonese" lang="yue" hreflang="yue" data-title="邏輯代數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E4%BB%A3%E6%95%B0" title="逻辑代数 – Chinese" lang="zh" hreflang="zh" data-title="逻辑代数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q173183#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Boolean_algebra" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Boolean_algebra" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Boolean_algebra"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Boolean_algebra&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Boolean_algebra&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Boolean_algebra"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Boolean_algebra&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Boolean_algebra&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Boolean_algebra" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Boolean_algebra" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Boolean_algebra&oldid=1258106071" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Boolean_algebra&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Boolean_algebra&id=1258106071&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBoolean_algebra"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBoolean_algebra"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Boolean_algebra&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Boolean_algebra&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Boolean_algebra" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Boolean_algebra" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Boolean_algebra" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q173183" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Algebraic manipulation of "true" and "false"</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Boolean_algebra_(disambiguation)" class="mw-disambig" title="Boolean algebra (disambiguation)">Boolean algebra (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>, <b>Boolean algebra</b> is a branch of <a href="/wiki/Algebra" title="Algebra">algebra</a>. It differs from <a href="/wiki/Elementary_algebra" title="Elementary algebra">elementary algebra</a> in two ways. First, the values of the <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> are the <a href="/wiki/Truth_value" title="Truth value">truth values</a> <i>true</i> and <i>false</i>, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses <a href="/wiki/Logical_operator" class="mw-redirect" title="Logical operator">logical operators</a> such as <a href="/wiki/Logical_conjunction" title="Logical conjunction">conjunction</a> (<i>and</i>) denoted as <span class="texhtml">∧</span>, <a href="/wiki/Disjunction" class="mw-redirect" title="Disjunction">disjunction</a> (<i>or</i>) denoted as <span class="texhtml">∨</span>, and <a href="/wiki/Negation" title="Negation">negation</a> (<i>not</i>) denoted as <span class="texhtml">¬</span>. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction, and division. Boolean algebra is therefore a formal way of describing <a href="/wiki/Logical_operation" class="mw-redirect" title="Logical operation">logical operations</a> in the same way that elementary algebra describes numerical operations. </p><p>Boolean algebra was introduced by <a href="/wiki/George_Boole" title="George Boole">George Boole</a> in his first book <i>The Mathematical Analysis of Logic</i> (1847),<sup id="cite_ref-Boole_2011_1-0" class="reference"><a href="#cite_note-Boole_2011-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> and set forth more fully in his <i><a href="/wiki/An_Investigation_of_the_Laws_of_Thought" class="mw-redirect" title="An Investigation of the Laws of Thought">An Investigation of the Laws of Thought</a></i> (1854).<sup id="cite_ref-Boole_1854_2-0" class="reference"><a href="#cite_note-Boole_1854-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> According to <a href="/wiki/Edward_Vermilye_Huntington" title="Edward Vermilye Huntington">Huntington</a>, the term <i>Boolean algebra</i> was first suggested by <a href="/wiki/Henry_M._Sheffer" title="Henry M. Sheffer">Henry M. Sheffer</a> in 1913,<sup id="cite_ref-Huntington_1933_3-0" class="reference"><a href="#cite_note-Huntington_1933-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> although <a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Charles Sanders Peirce</a> gave the title "A Boolian [<i><a href="/wiki/Sic" title="Sic">sic</a></i>] Algebra with One Constant" to the first chapter of his "The Simplest Mathematics" in 1880.<sup id="cite_ref-Peirce_1931_4-0" class="reference"><a href="#cite_note-Peirce_1931-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Boolean algebra has been fundamental in the development of <a href="/wiki/Digital_electronics" title="Digital electronics">digital electronics</a>, and is provided for in all modern <a href="/wiki/Programming_language" title="Programming language">programming languages</a>. It is also used in <a href="/wiki/Set_theory" title="Set theory">set theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>.<sup id="cite_ref-Givant-Halmos_2009_5-0" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A precursor of Boolean algebra was <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a>'s <a href="/wiki/Algebra_of_concepts" class="mw-redirect" title="Algebra of concepts">algebra of concepts</a>. The usage of binary in relation to the <i><a href="/wiki/I_Ching" title="I Ching">I Ching</a></i> was central to Leibniz's <i><a href="/wiki/Characteristica_universalis" title="Characteristica universalis">characteristica universalis</a></i>. It eventually created the foundations of algebra of concepts.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Leibniz's algebra of concepts is deductively equivalent to the Boolean algebra of sets.<sup id="cite_ref-Lenzen_7-0" class="reference"><a href="#cite_note-Lenzen-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>Boole's algebra predated the modern developments in <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a> and <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>; it is however seen as connected to the origins of both fields.<sup id="cite_ref-Dunn-Hardegree_2001_8-0" class="reference"><a href="#cite_note-Dunn-Hardegree_2001-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In an abstract setting, Boolean algebra was perfected in the late 19th century by <a href="/wiki/William_Stanley_Jevons" title="William Stanley Jevons">Jevons</a>, <a href="/wiki/Ernst_Schr%C3%B6der_(mathematician)" title="Ernst Schröder (mathematician)">Schröder</a>, <a href="/wiki/Edward_Vermilye_Huntington" title="Edward Vermilye Huntington">Huntington</a> and others, until it reached the modern conception of an (abstract) <a href="/wiki/Mathematical_structure" title="Mathematical structure">mathematical structure</a>.<sup id="cite_ref-Dunn-Hardegree_2001_8-1" class="reference"><a href="#cite_note-Dunn-Hardegree_2001-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> For example, the empirical observation that one can manipulate expressions in the <a href="/wiki/Algebra_of_sets" title="Algebra of sets">algebra of sets</a>, by translating them into expressions in Boole's algebra, is explained in modern terms by saying that the algebra of sets is <i>a</i> <a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a> (note the <a href="/wiki/Indefinite_article" class="mw-redirect" title="Indefinite article">indefinite article</a>). In fact, <a href="/wiki/M._H._Stone" class="mw-redirect" title="M. H. Stone">M. H. Stone</a> <a href="/wiki/Stone%27s_representation_theorem_for_Boolean_algebras" title="Stone's representation theorem for Boolean algebras">proved in 1936</a> that every Boolean algebra is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to a <a href="/wiki/Field_of_sets" title="Field of sets">field of sets</a>. </p><p>In the 1930s, while studying <a href="/wiki/Switching_circuit" class="mw-redirect" title="Switching circuit">switching circuits</a>, <a href="/wiki/Claude_Shannon" title="Claude Shannon">Claude Shannon</a> observed that one could also apply the rules of Boole's algebra in this setting,<sup id="cite_ref-Weisstein_9-0" class="reference"><a href="#cite_note-Weisstein-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> and he introduced <i>switching algebra</i> as a way to analyze and design circuits by algebraic means in terms of <a href="/wiki/Logic_gate" title="Logic gate">logic gates</a>. Shannon already had at his disposal the abstract mathematical apparatus, thus he cast his switching algebra as the <i><a href="/wiki/Two-element_Boolean_algebra" title="Two-element Boolean algebra">two-element Boolean algebra</a></i>. In modern circuit engineering settings, there is little need to consider other Boolean algebras, thus "switching algebra" and "Boolean algebra" are often used interchangeably.<sup id="cite_ref-Balabanian-Carlson_2001_10-0" class="reference"><a href="#cite_note-Balabanian-Carlson_2001-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Rajaraman-Radhakrishnan_2008_11-0" class="reference"><a href="#cite_note-Rajaraman-Radhakrishnan_2008-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Camara_2010_12-0" class="reference"><a href="#cite_note-Camara_2010-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Logic_optimization" title="Logic optimization">Efficient implementation</a> of <a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a> is a fundamental problem in the <a href="/wiki/Logic_design" class="mw-redirect" title="Logic design">design</a> of <a href="/wiki/Combinational_logic" title="Combinational logic">combinational logic</a> circuits. Modern <a href="/wiki/Electronic_design_automation" title="Electronic design automation">electronic design automation</a> tools for <a href="/wiki/Very-large-scale_integration" title="Very-large-scale integration">very-large-scale integration</a> (VLSI) circuits often rely on an efficient representation of Boolean functions known as (reduced ordered) <a href="/wiki/Binary_decision_diagram" title="Binary decision diagram">binary decision diagrams</a> (BDD) for <a href="/wiki/Logic_synthesis" title="Logic synthesis">logic synthesis</a> and <a href="/wiki/Formal_verification" title="Formal verification">formal verification</a>.<sup id="cite_ref-Chen_2007_13-0" class="reference"><a href="#cite_note-Chen_2007-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>Logic sentences that can be expressed in classical <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional calculus</a> have an <a href="/wiki/Algebraic_semantics_(mathematical_logic)" title="Algebraic semantics (mathematical logic)">equivalent expression</a> in Boolean algebra. Thus, <i>Boolean logic</i> is sometimes used to denote propositional calculus performed in this way.<sup id="cite_ref-Parkes_2002_14-0" class="reference"><a href="#cite_note-Parkes_2002-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Barwise-Etchemendy_1999_15-0" class="reference"><a href="#cite_note-Barwise-Etchemendy_1999-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goertzel_1994_16-0" class="reference"><a href="#cite_note-Goertzel_1994-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Boolean algebra is not sufficient to capture logic formulas using <a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">quantifiers</a>, like those from <a href="/wiki/First_order_logic" class="mw-redirect" title="First order logic">first order logic</a>. </p><p>Although the development of <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a> did not follow Boole's program, the connection between his algebra and logic was later put on firm ground in the setting of <a href="/wiki/Algebraic_logic" title="Algebraic logic">algebraic logic</a>, which also studies the algebraic systems of many other logics.<sup id="cite_ref-Dunn-Hardegree_2001_8-2" class="reference"><a href="#cite_note-Dunn-Hardegree_2001-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Decision_problem" title="Decision problem">problem of determining whether</a> the variables of a given Boolean (propositional) formula can be assigned in such a way as to make the formula evaluate to true is called the <a href="/wiki/Boolean_satisfiability_problem" title="Boolean satisfiability problem">Boolean satisfiability problem</a> (SAT), and is of importance to <a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">theoretical computer science</a>, being the first problem shown to be <a href="/wiki/NP-complete" class="mw-redirect" title="NP-complete">NP-complete</a>. The closely related <a href="/wiki/Model_of_computation" title="Model of computation">model of computation</a> known as a <i><a href="/wiki/Boolean_circuit" title="Boolean circuit">Boolean circuit</a></i> relates <a href="/wiki/Time_complexity" title="Time complexity">time complexity</a> (of an <a href="/wiki/Algorithm" title="Algorithm">algorithm</a>) to <a href="/wiki/Circuit_complexity" title="Circuit complexity">circuit complexity</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Values">Values</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=2" title="Edit section: Values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Whereas expressions denote mainly <a href="/wiki/Number" title="Number">numbers</a> in elementary algebra, in Boolean algebra, they denote the <a href="/wiki/Truth_values" class="mw-redirect" title="Truth values">truth values</a> <i>false</i> and <i>true</i>. These values are represented with the <a href="/wiki/Bit" title="Bit">bits</a>, 0 and 1. They do not behave like the <a href="/wiki/Integer" title="Integer">integers</a> 0 and 1, for which <span class="texhtml">1 + 1 = 2</span>, but may be identified with the elements of the <a href="/wiki/GF(2)" title="GF(2)">two-element field <span class="texhtml">GF(2)</span></a>, that is, <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">integer arithmetic modulo 2</a>, for which <span class="texhtml">1 + 1 = 0</span>. Addition and multiplication then play the Boolean roles of XOR (exclusive-or) and AND (conjunction), respectively, with disjunction <span class="texhtml"><i>x</i> ∨ <i>y</i></span> (inclusive-or) definable as <span class="texhtml"><i>x</i> + <i>y</i> − <i>xy</i></span> and negation <span class="texhtml">¬<i>x</i></span> as <span class="texhtml">1 − <i>x</i></span>. In <span class="texhtml">GF(2)</span>, <span class="nounderlines" style="border: 1px solid var(--border-color-muted,#ddd); color: var(--color-base); background-color: var( --background-color-neutral-subtle, #fdfdfd); padding: 1px 1px;">−</span> may be replaced by <span class="nounderlines" style="border: 1px solid var(--border-color-muted,#ddd); color: var(--color-base); background-color: var( --background-color-neutral-subtle, #fdfdfd); padding: 1px 1px;">+</span>, since they denote the same operation; however, this way of writing Boolean operations allows applying the usual arithmetic operations of integers (this may be useful when using a programming language in which <span class="texhtml">GF(2)</span> is not implemented). </p><p>Boolean algebra also deals with <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> which have their values in the set <span class="texhtml">{0,1}</span>. A <a href="/wiki/Bit_vector" class="mw-redirect" title="Bit vector">sequence of bits</a> is a commonly used example of such a function. Another common example is the totality of subsets of a set <span class="texhtml"><i>E</i></span>: to a subset <span class="texhtml"><i>F</i></span> of <span class="texhtml"><i>E</i></span>, one can define the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> that takes the value <span class="texhtml">1</span> on <span class="texhtml"><i>F</i></span>, and <span class="texhtml">0</span> outside <span class="texhtml"><i>F</i></span>. The most general example is the set elements of a <a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a>, with all of the foregoing being instances thereof. </p><p>As with elementary algebra, the purely equational part of the theory may be developed, without considering explicit values for the variables.<sup id="cite_ref-Halmos_1963_17-0" class="reference"><a href="#cite_note-Halmos_1963-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Operations"><span class="anchor" id="Boolean_operations"></span><span class="anchor" id="Boolean_operators"></span>Operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=3" title="Edit section: Operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Truth_table" title="Truth table">Truth table</a></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Boolean_algebra" title="Special:EditPage/Boolean algebra">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Boolean+algebra%22">"Boolean algebra"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Boolean+algebra%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Boolean+algebra%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Boolean+algebra%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Boolean+algebra%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Boolean+algebra%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">April 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Basic_operations">Basic operations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=4" title="Edit section: Basic operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> While Elementary algebra has four operations (addition, subtraction, multiplication, and division), the Boolean algebra has only three basic operations: <a href="/wiki/Logical_conjunction" title="Logical conjunction">conjunction</a>, <a href="/wiki/Disjunction" class="mw-redirect" title="Disjunction">disjunction</a>, and <a href="/wiki/Negation" title="Negation">negation</a>, expressed with the corresponding <a href="/wiki/Binary_operator" class="mw-redirect" title="Binary operator">binary operators</a> <i>AND</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>) and OR (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span>) and the <a href="/wiki/Unary_operator" class="mw-redirect" title="Unary operator">unary operator</a> <i>NOT</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa78fd02085d39aa58c9e47a6d4033ce41e02fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \neg }"></span>), collectively referred to as <i>Boolean operators</i>.<sup id="cite_ref-Bacon_18-0" class="reference"><a href="#cite_note-Bacon-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Variables in Boolean algebra that store the logical value of 0 and 1 are called the <i><a href="/wiki/Boolean_variable" class="mw-redirect" title="Boolean variable">Boolean variables</a></i>. They are used to store either true or false values.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> The basic operations on Boolean variables <i>x</i> and <i>y</i> are defined as follows:<style data-mw-deduplicate="TemplateStyles:r1216972533">.mw-parser-output .col-begin{border-collapse:collapse;padding:0;color:inherit;width:100%;border:0;margin:0}.mw-parser-output .col-begin-small{font-size:90%}.mw-parser-output .col-break{vertical-align:top;text-align:left}.mw-parser-output .col-break-2{width:50%}.mw-parser-output .col-break-3{width:33.3%}.mw-parser-output .col-break-4{width:25%}.mw-parser-output .col-break-5{width:20%}@media(max-width:720px){.mw-parser-output .col-begin,.mw-parser-output .col-begin>tbody,.mw-parser-output .col-begin>tbody>tr,.mw-parser-output .col-begin>tbody>tr>td{display:block!important;width:100%!important}.mw-parser-output .col-break{padding-left:0!important}}</style></p><div> <table class="col-begin" role="presentation"> <tbody><tr> <td class="col-break" style="width: 9%;"> <table class="wikitable" style="text-align: center"> <tbody><tr> <th>Logical operation </th> <th>Operator </th> <th>Notation </th> <th>Alternative notations </th> <th>Definition </th></tr> <tr> <td><b>Conjunction</b> </td> <td><b>AND</b> </td> <td><span class="texhtml"><i>x</i> ∧ <i>y</i></span> </td> <td><span class="texhtml"><i>x</i> AND <i>y</i>, K<i>xy</i></span> </td> <td><span class="texhtml"><i>x</i> ∧ <i>y</i> = 1 if <i>x</i> = <i>y</i> = 1, <i>x</i> ∧ <i>y</i> = 0 otherwise</span> </td></tr> <tr> <td><b>Disjunction</b> </td> <td><b>OR</b> </td> <td><span class="texhtml"><i>x</i> ∨ <i>y</i></span> </td> <td><span class="texhtml"><i>x</i> OR <i>y</i>, A<i>xy</i></span> </td> <td><span class="texhtml"><i>x</i> ∨ <i>y</i> = 0 if <i>x</i> = <i>y</i> = 0, <i>x</i> ∨ <i>y</i> = 1 otherwise</span> </td></tr> <tr> <td><b>Negation</b> </td> <td><b>NOT</b> </td> <td>¬<i>x</i> </td> <td><span class="texhtml">NOT <i>x</i>, N<i>x</i>, <i>x̅</i>, <i>x'</i>, !<i>x</i></span> </td> <td><span class="texhtml">¬<i>x</i> = 0 if <i>x</i> = 1, ¬<i>x</i> = 1 if <i>x</i> = 0</span> </td></tr></tbody></table> <p>  </p> </td></tr></tbody></table></div> <p>Alternatively, the values of <span class="texhtml"><i>x</i> ∧ <i>y</i></span>, <span class="texhtml"><i>x</i> ∨ <i>y</i></span>, and ¬<i>x</i> can be expressed by tabulating their values with <a href="/wiki/Truth_tables" class="mw-redirect" title="Truth tables">truth tables</a> as follows:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1216972533"><div> <table class="col-begin" role="presentation"> <tbody><tr> <td class="col-break" style="width: 9%;"> <table class="wikitable" style="text-align: center"> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e39c22fab294b953b40e439378be357dea68150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle x\wedge y}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/304b00d1f1cf4a707c7863e8fae02a2dff7d5a8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle x\vee y}"></span> </th></tr> <tr> <th>0 </th> <th>0 </th> <td>0</td> <td>0 </td></tr> <tr> <th>1 </th> <th>0 </th> <td>0</td> <td>1 </td></tr> <tr> <th>0 </th> <th>1 </th> <td>0</td> <td>1 </td></tr> <tr> <th>1 </th> <th>1 </th> <td>1</td> <td>1 </td></tr></tbody></table> </td> <td class="col-break"> <table class="wikitable" style="text-align: center"> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4737ada4f1bfb57e805dec52f6e30a82873304e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.88ex; height:1.676ex;" alt="{\displaystyle \neg x}"></span> </th></tr> <tr> <th>0 </th> <td>1 </td></tr> <tr> <th>1 </th> <td>0 </td></tr></tbody></table> <p>  </p> </td></tr></tbody></table></div> <p>When used in expressions, the operators are applied according to the precedence rules. As with elementary algebra, expressions in parentheses are evaluated first, following the precedence rules.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>If the truth values 0 and 1 are interpreted as integers, these operations may be expressed with the ordinary operations of arithmetic (where <i>x</i> + <i>y</i> uses addition and <i>xy</i> uses multiplication), or by the minimum/maximum functions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x\wedge y&=xy=\min(x,y)\\x\vee y&=x+y-xy=x+y(1-x)=\max(x,y)\\\neg x&=1-x\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x\wedge y&=xy=\min(x,y)\\x\vee y&=x+y-xy=x+y(1-x)=\max(x,y)\\\neg x&=1-x\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85021a38de902cb794787dd5e17ab55b30e4d638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:47.887ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}x\wedge y&=xy=\min(x,y)\\x\vee y&=x+y-xy=x+y(1-x)=\max(x,y)\\\neg x&=1-x\end{aligned}}}"></span></dd></dl> <p>One might consider that only negation and one of the two other operations are basic because of the following identities that allow one to define conjunction in terms of negation and the disjunction, and vice versa (<a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a>):<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x\wedge y&=\neg (\neg x\vee \neg y)\\x\vee y&=\neg (\neg x\wedge \neg y)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x\wedge y&=\neg (\neg x\vee \neg y)\\x\vee y&=\neg (\neg x\wedge \neg y)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a1628f610033d1ba2dff543ddf5aef5acc8fea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.446ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}x\wedge y&=\neg (\neg x\vee \neg y)\\x\vee y&=\neg (\neg x\wedge \neg y)\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Secondary_operations">Secondary operations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=5" title="Edit section: Secondary operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Operations composed from the basic operations include, among others, the following: </p> <table> <tbody><tr> <td><b>Material conditional</b>:</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\rightarrow y=\neg {x}\vee y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>y</mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>∨<!-- ∨ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\rightarrow y=\neg {x}\vee y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fda9f45995d9c3f64f6ebbb3addb232b64e4117" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.816ex; height:2.343ex;" alt="{\textstyle x\rightarrow y=\neg {x}\vee y}"></span> </td></tr> <tr> <td><b>Material biconditional</b>:</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\leftrightarrow y=(x\land y)\lor (\neg x\land \neg y)=(x\lor \neg y)\land (\neg x\lor y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↔<!-- ↔ --></mo> <mi>y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\leftrightarrow y=(x\land y)\lor (\neg x\land \neg y)=(x\lor \neg y)\land (\neg x\lor y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04c47c8d0ab24cedf4e664c5cca2c5ce8794ccab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.171ex; height:2.843ex;" alt="{\textstyle x\leftrightarrow y=(x\land y)\lor (\neg x\land \neg y)=(x\lor \neg y)\land (\neg x\lor y)}"></span> </td></tr> <tr> <td><b>Exclusive OR</b> (<b>XOR</b>):</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\oplus y=\neg (x\leftrightarrow y)=(x\vee y)\wedge \neg (x\wedge y)=(x\vee y)\wedge (\neg x\vee \neg y)=(x\wedge \neg y)\vee (\neg x\wedge y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mi>y</mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">↔<!-- ↔ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\oplus y=\neg (x\leftrightarrow y)=(x\vee y)\wedge \neg (x\wedge y)=(x\vee y)\wedge (\neg x\vee \neg y)=(x\wedge \neg y)\vee (\neg x\wedge y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0fd79948645f7f291776b3e2eaae2be35d6c391" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:83.94ex; height:2.843ex;" alt="{\textstyle x\oplus y=\neg (x\leftrightarrow y)=(x\vee y)\wedge \neg (x\wedge y)=(x\vee y)\wedge (\neg x\vee \neg y)=(x\wedge \neg y)\vee (\neg x\wedge y)}"></span> </td></tr></tbody></table> <p>These definitions give rise to the following truth tables giving the values of these operations for all four possible inputs. </p> <dl><dd><table class="wikitable" style="text-align: center"> <caption>Secondary operations. Table 1 </caption> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\rightarrow y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\rightarrow y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fce077cec2b56644f63a641afc4266677f1238e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle x\rightarrow y}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\oplus y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊕<!-- ⊕ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\oplus y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10fc94462e7622639c0c464161a1f0c8fc057999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle x\oplus y}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\leftrightarrow y,x\equiv y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↔<!-- ↔ --></mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo>≡<!-- ≡ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\leftrightarrow y,x\equiv y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b3c81aa7e3499c2cef8f7227791d1ef2204f65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.717ex; height:2.176ex;" alt="{\displaystyle x\leftrightarrow y,x\equiv y}"></span> </th></tr> <tr> <th>0 </th> <th>0 </th> <td>1</td> <td>0</td> <td>1 </td></tr> <tr> <th>1 </th> <th>0 </th> <td>0</td> <td>1</td> <td>0 </td></tr> <tr> <th>0 </th> <th>1 </th> <td>1</td> <td>1</td> <td>0 </td></tr> <tr> <th>1 </th> <th>1 </th> <td>1</td> <td>0</td> <td>1 </td></tr></tbody></table></dd></dl> <dl><dt><b>Material conditional</b></dt> <dd>The first operation, <i>x</i> → <i>y</i>, or C<i>xy</i>, is called <i>material implication</i>. If <i>x</i> is true, then the result of expression <i>x</i> → <i>y</i> is taken to be that of <i>y</i> (e.g. if <i>x</i> is true and <i>y</i> is false, then <i>x</i> → <i>y</i> is also false). But if <i>x</i> is false, then the value of <i>y</i> can be ignored; however, the operation must return <i>some</i> Boolean value and there are only two choices. So by definition, <i>x</i> → <i>y</i> is <i>true</i> when x is false. (<a href="/wiki/Relevance_logic" title="Relevance logic">relevance logic</a> suggests this definition, by viewing an implication with a <a href="/wiki/False_premise" title="False premise">false premise</a> as something other than either true or false.)</dd> <dt><b>Exclusive OR</b> (<b>XOR</b>)</dt> <dd>The second operation, <i>x</i> ⊕ <i>y</i>, or J<i>xy</i>, is called <i>exclusive or</i> (often abbreviated as XOR) to distinguish it from disjunction as the inclusive kind. It excludes the possibility of both <i>x</i> and <i>y being</i> true (e.g. see table): if both are true then result is false. Defined in terms of arithmetic it is addition where mod 2 is 1 + 1 = 0.</dd> <dt><b>Logical equivalence</b></dt> <dd>The third operation, the complement of exclusive or, is <i>equivalence</i> or Boolean equality: <i>x</i> ≡ <i>y</i>, or E<i>xy</i>, is true just when <i>x</i> and <i>y</i> have the same value. Hence <i>x</i> ⊕ <i>y</i> as its complement can be understood as <i>x</i> ≠ <i>y</i>, being true just when <i>x</i> and <i>y</i> are different. Thus, its counterpart in arithmetic mod 2 is <i>x</i> + <i>y</i>. Equivalence's counterpart in arithmetic mod 2 is <i>x</i> + <i>y</i> + 1.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Laws">Laws</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=6" title="Edit section: Laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i>law</i> of Boolean algebra is an <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identity</a> such as <span class="texhtml"><i>x</i> ∨ (<i>y</i> ∨ <i>z</i>) = (<i>x</i> ∨ <i>y</i>) ∨ <i>z</i></span> between two Boolean terms, where a <i>Boolean term</i> is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡, but such extensions are unnecessary for the purposes to which the laws are put. Such purposes include the definition of a <a href="#Boolean_algebras">Boolean algebra</a> as any <a href="/wiki/Model_(logic)" class="mw-redirect" title="Model (logic)">model</a> of the Boolean laws, and as a means for deriving new laws from old as in the derivation of <span class="texhtml"><i>x</i> ∨ (<i>y</i> ∧ <i>z</i>) = <i>x</i> ∨ (<i>z</i> ∧ <i>y</i>)</span> from <span class="texhtml"><i>y</i> ∧ <i>z</i> = <i>z</i> ∧ <i>y</i></span> (as treated in <i><a href="#Axiomatizing_Boolean_algebra">§ Axiomatizing Boolean algebra</a></i>). </p> <div class="mw-heading mw-heading3"><h3 id="Monotone_laws">Monotone laws</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=7" title="Edit section: Monotone laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Boolean algebra satisfies many of the same laws as ordinary algebra when one matches up ∨ with addition and ∧ with multiplication. In particular the following laws are common to both kinds of algebra:<sup id="cite_ref-ORegan_2008_23-0" class="reference"><a href="#cite_note-ORegan_2008-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-EoBA_24-0" class="reference"><a href="#cite_note-EoBA-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><table> <tbody><tr> <td>Associativity of <span class="texhtml">∨</span>:</td> <td style="width:2em"></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee (y\vee z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∨<!-- ∨ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee (y\vee z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e43f6b6bb6feceba01569e15016d6a8af4ada801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:2.843ex;" alt="{\displaystyle x\vee (y\vee z)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(x\vee y)\vee z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(x\vee y)\vee z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d25a96fc01de59a76cfb5302b067b7f02da8f2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.001ex; height:2.843ex;" alt="{\displaystyle =(x\vee y)\vee z}"></span> </td></tr> <tr> <td>Associativity of <span class="texhtml">∧</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge (y\wedge z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge (y\wedge z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f985d5acedc3560c9dfbe76622058a49bbb4cc2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:2.843ex;" alt="{\displaystyle x\wedge (y\wedge z)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(x\wedge y)\wedge z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(x\wedge y)\wedge z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ddbf9998bf875ecf6948b9b871cdd9a02fe015" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.001ex; height:2.843ex;" alt="{\displaystyle =(x\wedge y)\wedge z}"></span> </td></tr> <tr> <td>Commutativity of <span class="texhtml">∨</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/304b00d1f1cf4a707c7863e8fae02a2dff7d5a8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle x\vee y}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =y\vee x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>y</mi> <mo>∨<!-- ∨ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =y\vee x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84a116ff6ae01fd596a4a2952803a8e5bb3b8571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.521ex; height:2.343ex;" alt="{\displaystyle =y\vee x}"></span> </td></tr> <tr> <td>Commutativity of <span class="texhtml">∧</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e39c22fab294b953b40e439378be357dea68150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle x\wedge y}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =y\wedge x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =y\wedge x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612e28d9c887bf17b78deeb8b6690827b6bf7dab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.521ex; height:2.343ex;" alt="{\displaystyle =y\wedge x}"></span> </td></tr> <tr> <td>Distributivity of <span class="texhtml">∧</span> over <span class="texhtml">∨</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge (y\vee z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∨<!-- ∨ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge (y\vee z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3acd78dcc7481cd258b13f2f22a13bf5894bfe19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:2.843ex;" alt="{\displaystyle x\wedge (y\vee z)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(x\wedge y)\vee (x\wedge z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(x\wedge y)\vee (x\wedge z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49e4bd21a491b4a9653a0636a36b1c4276e9a347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.723ex; height:2.843ex;" alt="{\displaystyle =(x\wedge y)\vee (x\wedge z)}"></span> </td></tr> <tr> <td>Identity for <span class="texhtml">∨</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cbf63019e961cfde4abddd64640ca3f7b712fe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.075ex; height:2.176ex;" alt="{\displaystyle x\vee 0}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Identity for <span class="texhtml">∧</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e13cfe3c5eea983f9f6f14fa71ee27beee2f1d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.075ex; height:2.176ex;" alt="{\displaystyle x\wedge 1}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Annihilator for <span class="texhtml">∧</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f53bbfb4f7678ad702506b628799febe354f8a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.075ex; height:2.176ex;" alt="{\displaystyle x\wedge 0}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc9e66de468806365c20e32e83456cc526ce29e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.616ex; height:2.176ex;" alt="{\displaystyle =0}"></span> </td></tr> </tbody></table></dd></dl> <p>The following laws hold in Boolean algebra, but not in ordinary algebra: </p> <dl><dd><table> <tbody><tr> <td>Annihilator for <span class="texhtml">∨</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d179f5e174104545342b7ae195cabaebd31f86d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.075ex; height:2.176ex;" alt="{\displaystyle x\vee 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282a76fe69ce05e31352dfd19b7700eb784fb3f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.616ex; height:2.176ex;" alt="{\displaystyle =1}"></span> </td></tr> <tr> <td>Idempotence of <span class="texhtml">∨</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18299516620d66d42505a46089684d22e18cae58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.009ex;" alt="{\displaystyle x\vee x}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Idempotence of <span class="texhtml">∧</span>:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61c3e1f66a763d5a708485438e3f6d952e0bc4f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.242ex; height:2.009ex;" alt="{\displaystyle x\wedge x}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Absorption 1:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\wedge (x\vee y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\wedge (x\vee y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7317a18981f4f50ddd5281621860434d32a2055c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.789ex; height:2.843ex;" alt="{\displaystyle x\wedge (x\vee y)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Absorption 2:</td> <td></td> <td style="text-align: right"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee (x\wedge y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee (x\wedge y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da75106eaa322a67bccf2daf277d8e74eabbab36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.789ex; height:2.843ex;" alt="{\displaystyle x\vee (x\wedge y)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66e79d9cccef418849534769b5e3c6ffeb9d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.783ex; height:1.676ex;" alt="{\displaystyle =x}"></span> </td></tr> <tr> <td>Distributivity of <span class="texhtml">∨</span> over <span class="texhtml">∧</span>: </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\vee (y\wedge z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>∧<!-- ∧ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\vee (y\wedge z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6e9658b0b6387c317cfb8ad6da05af1095f6351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:2.843ex;" alt="{\displaystyle x\vee (y\wedge z)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(x\vee y)\wedge (x\vee z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(x\vee y)\wedge (x\vee z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90090bce4eaa5a183fdb45215c63b98f2ed08e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.723ex; height:2.843ex;" alt="{\displaystyle =(x\vee y)\wedge (x\vee z)}"></span> </td></tr> <tr> <td class="texhtml"> </td></tr></tbody></table></dd></dl> <p>Taking <span class="texhtml"><i>x</i> = 2</span> in the third law above shows that it is not an ordinary algebra law, since <span class="texhtml">2 × 2 = 4</span>. The remaining five laws can be falsified in ordinary algebra by taking all variables to be 1. For example, in absorption law 1, the left hand side would be <span class="texhtml">1(1 + 1) = 2</span>, while the right hand side would be 1 (and so on). </p><p>All of the laws treated thus far have been for conjunction and disjunction. These operations have the property that changing either argument either leaves the output unchanged, or the output changes in the same way as the input. Equivalently, changing any variable from 0 to 1 never results in the output changing from 1 to 0. Operations with this property are said to be <i>monotone</i>. Thus the axioms thus far have all been for monotonic Boolean logic. Nonmonotonicity enters via complement ¬ as follows.<sup id="cite_ref-Givant-Halmos_2009_5-1" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nonmonotone_laws">Nonmonotone laws</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=8" title="Edit section: Nonmonotone laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The complement operation is defined by the following two laws. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\text{Complementation 1}}&x\wedge \neg x&=0\\&{\text{Complementation 2}}&x\vee \neg x&=1\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Complementation 1</mtext> </mrow> </mtd> <mtd> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Complementation 2</mtext> </mrow> </mtd> <mtd> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\text{Complementation 1}}&x\wedge \neg x&=0\\&{\text{Complementation 2}}&x\vee \neg x&=1\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/890da58e4b6645af3acf6620db71bda66737502c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.275ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}&{\text{Complementation 1}}&x\wedge \neg x&=0\\&{\text{Complementation 2}}&x\vee \neg x&=1\end{aligned}}}"></span></dd></dl> <p>All properties of negation including the laws below follow from the above two laws alone.<sup id="cite_ref-Givant-Halmos_2009_5-2" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>In both ordinary and Boolean algebra, negation works by exchanging pairs of elements, hence in both algebras it satisfies the double negation law (also called involution law) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\text{Double negation}}&\neg {(\neg {x})}&=x\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>Double negation</mtext> </mrow> </mtd> <mtd> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\text{Double negation}}&\neg {(\neg {x})}&=x\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c56a5a07eca36ae6c78a36328d10a53f8172bb1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.504ex; height:2.843ex;" alt="{\displaystyle {\begin{aligned}&{\text{Double negation}}&\neg {(\neg {x})}&=x\end{aligned}}}"></span></dd></dl> <p>But whereas <i>ordinary algebra</i> satisfies the two laws </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(-x)(-y)&=xy\\(-x)+(-y)&=-(x+y)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(-x)(-y)&=xy\\(-x)+(-y)&=-(x+y)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6818895e12c9da760588cb7e857a0541a29eb462" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.353ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}(-x)(-y)&=xy\\(-x)+(-y)&=-(x+y)\end{aligned}}}"></span></dd></dl> <p>Boolean algebra satisfies <a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\text{De Morgan 1}}&\neg x\wedge \neg y&=\neg {(x\vee y)}\\&{\text{De Morgan 2}}&\neg x\vee \neg y&=\neg {(x\wedge y)}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>De Morgan 1</mtext> </mrow> </mtd> <mtd> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>De Morgan 2</mtext> </mrow> </mtd> <mtd> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>x</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∧<!-- ∧ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\text{De Morgan 1}}&\neg x\wedge \neg y&=\neg {(x\vee y)}\\&{\text{De Morgan 2}}&\neg x\vee \neg y&=\neg {(x\wedge y)}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1060095f2a3b66ed2ad2e3da7d17b5f8f17f7740" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.045ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}&{\text{De Morgan 1}}&\neg x\wedge \neg y&=\neg {(x\vee y)}\\&{\text{De Morgan 2}}&\neg x\vee \neg y&=\neg {(x\wedge y)}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Completeness">Completeness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=9" title="Edit section: Completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The laws listed above define Boolean algebra, in the sense that they entail the rest of the subject. The laws <i>complementation</i> 1 and 2, together with the monotone laws, suffice for this purpose and can therefore be taken as one possible <i>complete</i> set of laws or <a href="/wiki/Axiomatization" class="mw-redirect" title="Axiomatization">axiomatization</a> of Boolean algebra. Every law of Boolean algebra follows logically from these axioms. Furthermore, Boolean algebras can then be defined as the <a href="/wiki/Model_(logic)" class="mw-redirect" title="Model (logic)">models</a> of these axioms as treated in <i><a href="#Boolean_algebras">§ Boolean algebras</a></i>. </p><p>Writing down further laws of Boolean algebra cannot give rise to any new consequences of these axioms, nor can it rule out any model of them. In contrast, in a list of some but not all of the same laws, there could have been Boolean laws that did not follow from those on the list, and moreover there would have been models of the listed laws that were not Boolean algebras. </p><p>This axiomatization is by no means the only one, or even necessarily the most natural given that attention was not paid as to whether some of the axioms followed from others, but there was simply a choice to stop when enough laws had been noticed, treated further in <i><a href="#Axiomatizing_Boolean_algebra">§ Axiomatizing Boolean algebra</a></i>. Or the intermediate notion of axiom can be sidestepped altogether by defining a Boolean law directly as any <i>tautology</i>, understood as an equation that holds for all values of its variables over 0 and 1.<sup id="cite_ref-McGee_2005_25-0" class="reference"><a href="#cite_note-McGee_2005-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goodstein_2012_26-0" class="reference"><a href="#cite_note-Goodstein_2012-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> All these definitions of Boolean algebra can be shown to be equivalent. </p> <div class="mw-heading mw-heading3"><h3 id="Duality_principle">Duality principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=10" title="Edit section: Duality principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conjunction/disjunction_duality" title="Conjunction/disjunction duality">Conjunction/disjunction duality</a></div> <p>Principle: If {X, R} is a <a href="/wiki/Partially_ordered_set" title="Partially ordered set">partially ordered set</a>, then {X, R(inverse)} is also a partially ordered set. </p><p>There is nothing special about the choice of symbols for the values of Boolean algebra. 0 and 1 could be renamed to <i>α</i> and <i>β</i>, and as long as it was done consistently throughout, it would still be Boolean algebra, albeit with some obvious cosmetic differences. </p><p>But suppose 0 and 1 were renamed 1 and 0 respectively. Then it would still be Boolean algebra, and moreover operating on the same values. However, it would not be identical to our original Boolean algebra because now ∨ behaves the way ∧ used to do and vice versa. So there are still some cosmetic differences to show that the notation has been changed, despite the fact that 0s and 1s are still being used. </p><p>But if in addition to interchanging the names of the values, the names of the two binary operations are also interchanged, <i>now</i> there is no trace of what was done. The end product is completely indistinguishable from what was started with. The columns for <span class="texhtml"><i>x</i> ∧ <i>y</i></span> and <span class="texhtml"><i>x</i> ∨ <i>y</i></span> in the truth tables have changed places, but that switch is immaterial. </p><p>When values and operations can be paired up in a way that leaves everything important unchanged when all pairs are switched simultaneously, the members of each pair are called <i>dual</i> to each other. Thus 0 and 1 are dual, and ∧ and ∨ are dual. The <i>duality principle</i>, also called <a href="/wiki/De_Morgan_duality" class="mw-redirect" title="De Morgan duality">De Morgan duality</a>, asserts that Boolean algebra is unchanged when all dual pairs are interchanged. </p><p>One change not needed to make as part of this interchange was to complement. Complement is a <i>self-dual</i> operation. The identity or do-nothing operation <i>x</i> (copy the input to the output) is also self-dual. A more complicated example of a self-dual operation is <span class="texhtml">(<i>x</i> ∧ <i>y</i>) ∨ (<i>y</i> ∧ <i>z</i>) ∨ (<i>z</i> ∧ <i>x</i>)</span>. There is no self-dual binary operation that depends on both its arguments. A composition of self-dual operations is a self-dual operation. For example, if <span class="texhtml"><i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>) = (<i>x</i> ∧ <i>y</i>) ∨ (<i>y</i> ∧ <i>z</i>) ∨ (<i>z</i> ∧ <i>x</i>)</span>, then <span class="texhtml"><i>f</i>(<i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>), <i>x</i>, <i>t</i>)</span> is a self-dual operation of four arguments <i>x</i>, <i>y</i>, <i>z</i>, <i>t</i>. </p><p>The principle of duality can be explained from a <a href="/wiki/Group_theory" title="Group theory">group theory</a> perspective by the fact that there are exactly four functions that are one-to-one mappings (<a href="/wiki/Automorphism" title="Automorphism">automorphisms</a>) of the set of <a href="/wiki/Boolean_polynomial" class="mw-redirect" title="Boolean polynomial">Boolean polynomials</a> back to itself: the identity function, the complement function, the dual function and the contradual function (complemented dual). These four functions form a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under <a href="/wiki/Function_composition" title="Function composition">function composition</a>, isomorphic to the <a href="/wiki/Klein_four-group" title="Klein four-group">Klein four-group</a>, <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">acting</a> on the set of Boolean polynomials. <a href="/wiki/Walter_Gottschalk" title="Walter Gottschalk">Walter Gottschalk</a> remarked that consequently a more appropriate name for the phenomenon would be the <i>principle</i> (or <i>square</i>) <i>of quaternality</i>.<sup id="cite_ref-Givant-Halmos_2009_5-3" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 21–22">: 21–22 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Diagrammatic_representations">Diagrammatic representations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=11" title="Edit section: Diagrammatic representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Venn_diagrams">Venn diagrams</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=12" title="Edit section: Venn diagrams"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a><sup id="cite_ref-Venn_1880_27-0" class="reference"><a href="#cite_note-Venn_1880-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> can be used as a representation of a Boolean operation using shaded overlapping regions. There is one region for each variable, all circular in the examples here. The interior and exterior of region <i>x</i> corresponds respectively to the values 1 (true) and 0 (false) for variable <i>x</i>. The shading indicates the value of the operation for each combination of regions, with dark denoting 1 and light 0 (some authors use the opposite convention). </p><p>The three Venn diagrams in the figure below represent respectively conjunction <span class="texhtml"><i>x</i> ∧ <i>y</i></span>, disjunction <span class="texhtml"><i>x</i> ∨ <i>y</i></span>, and complement ¬<i>x</i>. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Vennandornot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Vennandornot.svg/500px-Vennandornot.svg.png" decoding="async" width="500" height="172" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Vennandornot.svg/750px-Vennandornot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Vennandornot.svg/1000px-Vennandornot.svg.png 2x" data-file-width="851" data-file-height="293" /></a><figcaption>Figure 2. Venn diagrams for conjunction, disjunction, and complement</figcaption></figure> <p>For conjunction, the region inside both circles is shaded to indicate that <span class="texhtml"><i>x</i> ∧ <i>y</i></span> is 1 when both variables are 1. The other regions are left unshaded to indicate that <span class="texhtml"><i>x</i> ∧ <i>y</i></span> is 0 for the other three combinations. </p><p>The second diagram represents disjunction <span class="texhtml"><i>x</i> ∨ <i>y</i></span> by shading those regions that lie inside either or both circles. The third diagram represents complement ¬<i>x</i> by shading the region <i>not</i> inside the circle. </p><p>While we have not shown the Venn diagrams for the constants 0 and 1, they are trivial, being respectively a white box and a dark box, neither one containing a circle. However, we could put a circle for <i>x</i> in those boxes, in which case each would denote a function of one argument, <i>x</i>, which returns the same value independently of <i>x</i>, called a constant function. As far as their outputs are concerned, constants and constant functions are indistinguishable; the difference is that a constant takes no arguments, called a <i>zeroary</i> or <i>nullary</i> operation, while a constant function takes one argument, which it ignores, and is a <i>unary</i> operation. </p><p>Venn diagrams are helpful in visualizing laws. The commutativity laws for ∧ and ∨ can be seen from the symmetry of the diagrams: a binary operation that was not commutative would not have a symmetric diagram because interchanging <i>x</i> and <i>y</i> would have the effect of reflecting the diagram horizontally and any failure of commutativity would then appear as a failure of symmetry. </p><p><a href="/wiki/Idempotence" title="Idempotence">Idempotence</a> of ∧ and ∨ can be visualized by sliding the two circles together and noting that the shaded area then becomes the whole circle, for both ∧ and ∨. </p><p>To see the first absorption law, <span class="texhtml"><i>x</i> ∧ (<i>x</i> ∨ <i>y</i>) = <i>x</i></span>, start with the diagram in the middle for <i>x</i> ∨ <i>y</i> and note that the portion of the shaded area in common with the <i>x</i> circle is the whole of the <i>x</i> circle. For the second absorption law, <span class="texhtml"><i>x</i> ∨ (<i>x</i> ∧ <i>y</i>) = <i>x</i></span>, start with the left diagram for <span class="texhtml"><i>x</i>∧<i>y</i></span> and note that shading the whole of the <i>x</i> circle results in just the <i>x</i> circle being shaded, since the previous shading was inside the <i>x</i> circle. </p><p>The double negation law can be seen by complementing the shading in the third diagram for ¬<i>x</i>, which shades the <i>x</i> circle. </p><p>To visualize the first De Morgan's law, <span class="texhtml">(¬<i>x</i>) ∧ (¬<i>y</i>) = ¬(<i>x</i> ∨ <i>y</i>)</span>, start with the middle diagram for <span class="texhtml"><i>x</i> ∨ <i>y</i></span> and complement its shading so that only the region outside both circles is shaded, which is what the right hand side of the law describes. The result is the same as if we shaded that region which is both outside the <i>x</i> circle <i>and</i> outside the <i>y</i> circle, i.e. the conjunction of their exteriors, which is what the left hand side of the law describes. </p><p>The second De Morgan's law, <span class="texhtml">(¬<i>x</i>) ∨ (¬<i>y</i>) = ¬(<i>x</i> ∧ <i>y</i>)</span>, works the same way with the two diagrams interchanged. </p><p>The first complement law, <span class="texhtml"><i>x</i> ∧ ¬<i>x</i> = 0</span>, says that the interior and exterior of the <i>x</i> circle have no overlap. The second complement law, <span class="texhtml"><i>x</i> ∨ ¬<i>x</i> = 1</span>, says that everything is either inside or outside the <i>x</i> circle. </p> <div class="mw-heading mw-heading3"><h3 id="Digital_logic_gates">Digital logic gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=13" title="Edit section: Digital logic gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Digital logic is the application of the Boolean algebra of 0 and 1 to electronic hardware consisting of <a href="/wiki/Logic_gates" class="mw-redirect" title="Logic gates">logic gates</a> connected to form a <a href="/wiki/Circuit_diagram" title="Circuit diagram">circuit diagram</a>. Each gate implements a Boolean operation, and is depicted schematically by a shape indicating the operation. The shapes associated with the gates for conjunction (AND-gates), disjunction (OR-gates), and complement (inverters) are as follows:<sup id="cite_ref-Shannon_1949_28-0" class="reference"><a href="#cite_note-Shannon_1949-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:LogicGates.GIF" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/LogicGates.GIF/400px-LogicGates.GIF" decoding="async" width="400" height="82" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/LogicGates.GIF/600px-LogicGates.GIF 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/LogicGates.GIF/800px-LogicGates.GIF 2x" data-file-width="942" data-file-height="192" /></a><figcaption>From left to right: <a href="/wiki/AND_gate" title="AND gate">AND</a>, <a href="/wiki/OR_gate" title="OR gate">OR</a>, and <a href="/wiki/Inverter_(logic_gate)" title="Inverter (logic gate)">NOT</a> gates.</figcaption></figure> <p>The lines on the left of each gate represent input wires or <i>ports</i>. The value of the input is represented by a voltage on the lead. For so-called "active-high" logic, 0 is represented by a voltage close to zero or "ground," while 1 is represented by a voltage close to the supply voltage; active-low reverses this. The line on the right of each gate represents the output port, which normally follows the same voltage conventions as the input ports. </p><p>Complement is implemented with an inverter gate. The triangle denotes the operation that simply copies the input to the output; the small circle on the output denotes the actual inversion complementing the input. The convention of putting such a circle on any port means that the signal passing through this port is complemented on the way through, whether it is an input or output port. </p><p>The <a href="#Duality_principle">duality principle</a>, or <a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a>, can be understood as asserting that complementing all three ports of an AND gate converts it to an OR gate and vice versa, as shown in Figure 4 below. Complementing both ports of an inverter however leaves the operation unchanged. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:DeMorganGates.GIF" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/DeMorganGates.GIF/400px-DeMorganGates.GIF" decoding="async" width="400" height="82" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/DeMorganGates.GIF/600px-DeMorganGates.GIF 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/DeMorganGates.GIF/800px-DeMorganGates.GIF 2x" data-file-width="921" data-file-height="189" /></a><figcaption></figcaption></figure> <p>More generally, one may complement any of the eight subsets of the three ports of either an AND or OR gate. The resulting sixteen possibilities give rise to only eight Boolean operations, namely those with an odd number of 1s in their truth table. There are eight such because the "odd-bit-out" can be either 0 or 1 and can go in any of four positions in the truth table. There being sixteen binary Boolean operations, this must leave eight operations with an even number of 1s in their truth tables. Two of these are the constants 0 and 1 (as binary operations that ignore both their inputs); four are the operations that depend nontrivially on exactly one of their two inputs, namely <i>x</i>, <i>y</i>, ¬<i>x</i>, and ¬<i>y</i>; and the remaining two are <i>x</i> ⊕ <i>y</i> (XOR) and its complement <i>x</i> ≡ <i>y</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Boolean_algebras">Boolean algebras</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=14" title="Edit section: Boolean algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra (structure)</a></div> <p>The term "algebra" denotes both a subject, namely the subject of <a href="/wiki/Algebra" title="Algebra">algebra</a>, and an object, namely an <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a>. Whereas the foregoing has addressed the subject of Boolean algebra, this section deals with mathematical objects called Boolean algebras, defined in full generality as any model of the Boolean laws. We begin with a special case of the notion definable without reference to the laws, namely concrete Boolean algebras, and then give <a href="#Boolean_algebras:_the_definition">the formal definition</a> of the general notion. </p> <div class="mw-heading mw-heading3"><h3 id="Concrete_Boolean_algebras">Concrete Boolean algebras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=15" title="Edit section: Concrete Boolean algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i>concrete Boolean algebra</i> or <a href="/wiki/Field_of_sets" title="Field of sets">field of sets</a> is any nonempty set of subsets of a given set <i>X</i> closed under the set operations of <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a>, <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>, and <a href="/wiki/Complement_(set_theory)#Relative_complement" title="Complement (set theory)">complement</a> relative to <i>X</i>.<sup id="cite_ref-Givant-Halmos_2009_5-4" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>(Historically <i>X</i> itself was required to be nonempty as well to exclude the degenerate or one-element Boolean algebra, which is the one exception to the rule that all Boolean algebras satisfy the same equations since the degenerate algebra satisfies every equation. However, this exclusion conflicts with the preferred purely equational definition of "Boolean algebra", there being no way to rule out the one-element algebra using only equations— 0 ≠ 1 does not count, being a negated equation. Hence modern authors allow the degenerate Boolean algebra and let <i>X</i> be empty.) </p><p><i>Example 1.</i> The <a href="/wiki/Power_set" title="Power set">power set</a> 2<sup><i>X</i></sup> of <i>X</i>, consisting of all <a href="/wiki/Subset" title="Subset">subsets</a> of <i>X</i>. Here <i>X</i> may be any set: empty, finite, infinite, or even <a href="/wiki/Uncountable" class="mw-redirect" title="Uncountable">uncountable</a>. </p><p><i>Example 2.</i> The empty set and <i>X</i>. This two-element algebra shows that a concrete Boolean algebra can be finite even when it consists of subsets of an infinite set. It can be seen that every field of subsets of <i>X</i> must contain the empty set and <i>X</i>. Hence no smaller example is possible, other than the degenerate algebra obtained by taking <i>X</i> to be empty so as to make the empty set and <i>X</i> coincide. </p><p><i>Example 3.</i> The set of finite and <a href="/wiki/Cofinite" class="mw-redirect" title="Cofinite">cofinite</a> sets of integers, where a cofinite set is one omitting only finitely many integers. This is clearly closed under complement, and is closed under union because the union of a cofinite set with any set is cofinite, while the union of two finite sets is finite. Intersection behaves like union with "finite" and "cofinite" interchanged. This example is countably infinite because there are only countably many finite sets of integers. </p><p><i>Example 4.</i> For a less trivial example of the point made by example 2, consider a <a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a> formed by <i>n</i> closed curves <a href="/wiki/Partition_of_a_set" title="Partition of a set">partitioning</a> the diagram into 2<sup><i>n</i></sup> regions, and let <i>X</i> be the (infinite) set of all points in the plane not on any curve but somewhere within the diagram. The interior of each region is thus an infinite subset of <i>X</i>, and every point in <i>X</i> is in exactly one region. Then the set of all 2<sup><span>2<sup><i>n</i></sup></span></sup> possible unions of regions (including the empty set obtained as the union of the empty set of regions and <i>X</i> obtained as the union of all 2<sup><i>n</i></sup> regions) is closed under union, intersection, and complement relative to <i>X</i> and therefore forms a concrete Boolean algebra. Again, there are finitely many subsets of an infinite set forming a concrete Boolean algebra, with example 2 arising as the case <i>n</i> = 0 of no curves. </p> <div class="mw-heading mw-heading3"><h3 id="Subsets_as_bit_vectors">Subsets as bit vectors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=16" title="Edit section: Subsets as bit vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A subset <i>Y</i> of <i>X</i> can be identified with an <a href="/wiki/Indexed_family" title="Indexed family">indexed family</a> of bits with <a href="/wiki/Index_set" title="Index set">index set</a> <i>X</i>, with the bit indexed by <span class="texhtml"><i>x</i> ∈ <i>X</i></span> being 1 or 0 according to whether or not <span class="texhtml"><i>x</i> ∈ <i>Y</i></span>. (This is the so-called <a href="/wiki/Indicator_function" title="Indicator function">characteristic function</a> notion of a subset.) For example, a 32-bit computer word consists of 32 bits indexed by the set {0,1,2,...,31}, with 0 and 31 indexing the low and high order bits respectively. For a smaller example, if <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\{a,b,c\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\{a,b,c\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36964a6c0376aed739ef2645a5ff6a8d659744d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.705ex; height:2.843ex;" alt="{\displaystyle X=\{a,b,c\}}"></span>⁠</span> where <span class="texhtml mvar" style="font-style:italic;">a, b, c</span> are viewed as bit positions in that order from left to right, the eight subsets {}, {<i>c</i>}, {<i>b</i>}, {<i>b</i>,<i>c</i>}, {<i>a</i>}, {<i>a</i>,<i>c</i>}, {<i>a</i>,<i>b</i>}, and {<i>a</i>,<i>b</i>,<i>c</i>} of <i>X</i> can be identified with the respective bit vectors 000, 001, 010, 011, 100, 101, 110, and 111. Bit vectors indexed by the set of natural numbers are infinite <a href="/wiki/Sequence" title="Sequence">sequences</a> of bits, while those indexed by the <a href="/wiki/Real_number" title="Real number">reals</a> in the <a href="/wiki/Unit_interval" title="Unit interval">unit interval</a> [0,1] are packed too densely to be able to write conventionally but nonetheless form well-defined indexed families (imagine coloring every point of the interval [0,1] either black or white independently; the black points then form an arbitrary subset of [0,1]). </p><p>From this bit vector viewpoint, a concrete Boolean algebra can be defined equivalently as a nonempty set of bit vectors all of the same length (more generally, indexed by the same set) and closed under the bit vector operations of <a href="/wiki/Bitwise" class="mw-redirect" title="Bitwise">bitwise</a> ∧, ∨, and ¬, as in <span class="texhtml">1010∧0110 = 0010</span>, <span class="texhtml">1010∨0110 = 1110</span>, and <span class="texhtml">¬1010 = 0101</span>, the bit vector realizations of intersection, union, and complement respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Prototypical_Boolean_algebra">Prototypical Boolean algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=17" title="Edit section: Prototypical Boolean algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Two-element_Boolean_algebra" title="Two-element Boolean algebra">two-element Boolean algebra</a></div> <p>The set {0,1} and its Boolean operations as treated above can be understood as the special case of bit vectors of length one, which by the identification of bit vectors with subsets can also be understood as the two subsets of a one-element set. This is called the <i>prototypical</i> Boolean algebra, justified by the following observation. </p> <dl><dd>The laws satisfied by all nondegenerate concrete Boolean algebras coincide with those satisfied by the prototypical Boolean algebra.</dd></dl> <p>This observation is proved as follows. Certainly any law satisfied by all concrete Boolean algebras is satisfied by the prototypical one since it is concrete. Conversely any law that fails for some concrete Boolean algebra must have failed at a particular bit position, in which case that position by itself furnishes a one-bit counterexample to that law. Nondegeneracy ensures the existence of at least one bit position because there is only one empty bit vector. </p><p>The final goal of the next section can be understood as eliminating "concrete" from the above observation. That goal is reached via the stronger observation that, up to isomorphism, all Boolean algebras are concrete. </p> <div class="mw-heading mw-heading3"><h3 id="Boolean_algebras:_the_definition">Boolean algebras: the definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=18" title="Edit section: Boolean algebras: the definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Boolean algebras so far have all been concrete, consisting of bit vectors or equivalently of subsets of some set. Such a Boolean algebra consists of a set and operations on that set which can be <i>shown</i> to satisfy the laws of Boolean algebra. </p><p>Instead of showing that the Boolean laws are satisfied, we can instead postulate a set <i>X</i>, two binary operations on <i>X</i>, and one unary operation, and <i>require</i> that those operations satisfy the laws of Boolean algebra. The elements of <i>X</i> need not be bit vectors or subsets but can be anything at all. This leads to the more general <i>abstract</i> definition. </p> <dl><dd>A <i>Boolean algebra</i> is any set with binary operations ∧ and ∨ and a unary operation ¬ thereon satisfying the Boolean laws.<sup id="cite_ref-Koppelberg_1989_29-0" class="reference"><a href="#cite_note-Koppelberg_1989-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></dd></dl> <p>For the purposes of this definition it is irrelevant how the operations came to satisfy the laws, whether by fiat or proof. All concrete Boolean algebras satisfy the laws (by proof rather than fiat), whence every concrete Boolean algebra is a Boolean algebra according to our definitions. This axiomatic definition of a Boolean algebra as a set and certain operations satisfying certain laws or axioms <i>by fiat</i> is entirely analogous to the abstract definitions of <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>, <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>, <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> etc. characteristic of modern or <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>. </p><p>Given any complete axiomatization of Boolean algebra, such as the axioms for a <a href="/wiki/Complemented_lattice" title="Complemented lattice">complemented</a> <a href="/wiki/Distributive_lattice" title="Distributive lattice">distributive lattice</a>, a sufficient condition for an <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a> of this kind to satisfy all the Boolean laws is that it satisfy just those axioms. The following is therefore an equivalent definition. </p> <dl><dd>A <i>Boolean algebra</i> is a complemented distributive lattice.</dd></dl> <p>The section on <a href="#Axiomatizing_Boolean_algebra">axiomatization</a> lists other axiomatizations, any of which can be made the basis of an equivalent definition. </p> <div class="mw-heading mw-heading3"><h3 id="Representable_Boolean_algebras">Representable Boolean algebras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=19" title="Edit section: Representable Boolean algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although every concrete Boolean algebra is a Boolean algebra, not every Boolean algebra need be concrete. Let <i>n</i> be a <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a> positive integer, one not divisible by the square of an integer, for example 30 but not 12. The operations of <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">greatest common divisor</a>, <a href="/wiki/Least_common_multiple" title="Least common multiple">least common multiple</a>, and division into <i>n</i> (that is, ¬<i>x</i> = <i>n</i>/<i>x</i>), can be shown to satisfy all the Boolean laws when their arguments range over the positive divisors of <i>n</i>. Hence those divisors form a Boolean algebra. These divisors are not subsets of a set, making the divisors of <i>n</i> a Boolean algebra that is not concrete according to our definitions. </p><p>However, if each divisor of <i>n</i> is <i>represented</i> by the set of its prime factors, this nonconcrete Boolean algebra is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to the concrete Boolean algebra consisting of all sets of prime factors of <i>n</i>, with union corresponding to least common multiple, intersection to greatest common divisor, and complement to division into <i>n</i>. So this example, while not technically concrete, is at least "morally" concrete via this representation, called an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>. This example is an instance of the following notion. </p> <dl><dd>A Boolean algebra is called <i>representable</i> when it is isomorphic to a concrete Boolean algebra.</dd></dl> <p>The next question is answered positively as follows. </p> <dl><dd>Every Boolean algebra is representable.</dd></dl> <p>That is, up to isomorphism, abstract and concrete Boolean algebras are the same thing. This result depends on the <a href="/wiki/Boolean_prime_ideal_theorem" title="Boolean prime ideal theorem">Boolean prime ideal theorem</a>, a choice principle slightly weaker than the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>. This strong relationship implies a weaker result strengthening the observation in the previous subsection to the following easy consequence of representability. </p> <dl><dd>The laws satisfied by all Boolean algebras coincide with those satisfied by the prototypical Boolean algebra.</dd></dl> <p>It is weaker in the sense that it does not of itself imply representability. Boolean algebras are special here, for example a <a href="/wiki/Relation_algebra" title="Relation algebra">relation algebra</a> is a Boolean algebra with additional structure but it is not the case that every relation algebra is representable in the sense appropriate to relation algebras. </p> <div class="mw-heading mw-heading2"><h2 id="Axiomatizing_Boolean_algebra">Axiomatizing Boolean algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=20" title="Edit section: Axiomatizing Boolean algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Axiomatization of Boolean algebras</a> and <a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">Boolean algebras canonically defined</a></div> <p>The above definition of an abstract Boolean algebra as a set together with operations satisfying "the" Boolean laws raises the question of what those laws are. A simplistic answer is "all Boolean laws", which can be defined as all equations that hold for the Boolean algebra of 0 and 1. However, since there are infinitely many such laws, this is not a satisfactory answer in practice, leading to the question of it suffices to require only finitely many laws to hold. </p><p>In the case of Boolean algebras, the answer is "yes": the finitely many equations listed above are sufficient. Thus, Boolean algebra is said to be <i>finitely axiomatizable</i> or <i>finitely based</i>. </p><p>Moreover, the number of equations needed can be further reduced. To begin with, some of the above laws are implied by some of the others. A sufficient subset of the above laws consists of the pairs of associativity, commutativity, and absorption laws, distributivity of ∧ over ∨ (or the other distributivity law—one suffices), and the two complement laws. In fact, this is the traditional axiomatization of Boolean algebra as a <a href="/wiki/Complemented_lattice" title="Complemented lattice">complemented</a> <a href="/wiki/Distributive_lattice" title="Distributive lattice">distributive lattice</a>. </p><p>By introducing additional laws not listed above, it becomes possible to shorten the list of needed equations yet further; for instance, with the vertical bar representing the <a href="/wiki/Sheffer_stroke" title="Sheffer stroke">Sheffer stroke</a> operation, the single axiom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((a\mid b)\mid c)\mid (a\mid ((a\mid c)\mid a))=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>∣<!-- ∣ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>∣<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>∣<!-- ∣ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((a\mid b)\mid c)\mid (a\mid ((a\mid c)\mid a))=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463145ea214780d9c62f572a7f232ec584c7fe77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.705ex; height:2.843ex;" alt="{\displaystyle ((a\mid b)\mid c)\mid (a\mid ((a\mid c)\mid a))=c}"></span> is sufficient to completely axiomatize Boolean algebra. It is also possible to find longer single axioms using more conventional operations; see <a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">Minimal axioms for Boolean algebra</a>.<sup id="cite_ref-McCune_2002_30-0" class="reference"><a href="#cite_note-McCune_2002-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Propositional_logic">Propositional logic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=21" title="Edit section: Propositional logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></div> <p><i><a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">Propositional logic</a></i> is a <a href="/wiki/Logical_system" class="mw-redirect" title="Logical system">logical system</a> that is intimately connected to Boolean algebra.<sup id="cite_ref-Givant-Halmos_2009_5-5" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Many syntactic concepts of Boolean algebra carry over to propositional logic with only minor changes in notation and terminology, while the semantics of propositional logic are defined via Boolean algebras in a way that the tautologies (theorems) of propositional logic correspond to equational theorems of Boolean algebra. </p><p>Syntactically, every Boolean term corresponds to a <i><a href="/wiki/Propositional_formula" title="Propositional formula">propositional formula</a></i> of propositional logic. In this translation between Boolean algebra and propositional logic, Boolean variables <i>x, y,</i> ... become <i><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variables</a></i> (or <i>atoms</i>) <i>P, Q</i>, ... Boolean terms such as <i>x</i> ∨ <i>y</i> become propositional formulas <i>P</i> ∨ <i>Q</i>; 0 becomes <i>false</i> or <b>⊥</b>, and 1 becomes <i>true</i> or <b>T</b>. It is convenient when referring to generic propositions to use Greek letters Φ, Ψ, ... as metavariables (variables outside the language of propositional calculus, used when talking <i>about</i> propositional calculus) to denote propositions. </p><p>The semantics of propositional logic rely on <i><a href="/wiki/Truth_assignment" class="mw-redirect" title="Truth assignment">truth assignments</a></i>. The essential idea of a truth assignment is that the propositional variables are mapped to elements of a fixed Boolean algebra, and then the <i><a href="/wiki/Truth_value" title="Truth value">truth value</a></i> of a propositional formula using these letters is the element of the Boolean algebra that is obtained by computing the value of the Boolean term corresponding to the formula. In classical semantics, only the two-element Boolean algebra is used, while in <a href="/wiki/Boolean-valued_semantics" class="mw-redirect" title="Boolean-valued semantics">Boolean-valued semantics</a> arbitrary Boolean algebras are considered. A <i><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">tautology</a></i> is a propositional formula that is assigned truth value <i>1</i> by every truth assignment of its propositional variables to an arbitrary Boolean algebra (or, equivalently, every truth assignment to the two element Boolean algebra). </p><p>These semantics permit a translation between tautologies of propositional logic and equational theorems of Boolean algebra. Every tautology Φ of propositional logic can be expressed as the Boolean equation Φ = 1, which will be a theorem of Boolean algebra. Conversely, every theorem Φ = Ψ of Boolean algebra corresponds to the tautologies (Φ ∨ ¬Ψ) ∧ (¬Φ ∨ Ψ) and (Φ ∧ Ψ) ∨ (¬Φ ∧ ¬Ψ). If → is in the language, these last tautologies can also be written as (Φ → Ψ) ∧ (Ψ → Φ), or as two separate theorems Φ → Ψ and Ψ → Φ; if ≡ is available, then the single tautology Φ ≡ Ψ can be used. </p> <div class="mw-heading mw-heading3"><h3 id="Applications">Applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=22" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One motivating application of propositional calculus is the analysis of propositions and deductive arguments in natural language.<sup id="cite_ref-Allwood_1977_31-0" class="reference"><a href="#cite_note-Allwood_1977-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> Whereas the proposition "if <i>x</i> = 3, then <i>x</i> + 1 = 4" depends on the meanings of such symbols as + and 1, the proposition "if <i>x</i> = 3, then <i>x</i> = 3" does not; it is true merely by virtue of its structure, and remains true whether "<i>x</i> = 3" is replaced by "<i>x</i> = 4" or "the moon is made of green cheese." The generic or abstract form of this tautology is "if <i>P</i>, then <i>P</i>," or in the language of Boolean algebra, <i>P</i> → <i>P</i>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2020)">citation needed</span></a></i>]</sup> </p><p>Replacing <i>P</i> by <i>x</i> = 3 or any other proposition is called <i>instantiation</i> of <i>P</i> by that proposition. The result of instantiating <i>P</i> in an abstract proposition is called an <i>instance</i> of the proposition. Thus, <i>x</i> = 3 → <i>x</i> = 3 is a tautology by virtue of being an instance of the abstract tautology <i>P</i> → <i>P</i>. All occurrences of the instantiated variable must be instantiated with the same proposition, to avoid such nonsense as <i>P</i> → <i>x</i> = 3 or <i>x</i> = 3 → <i>x</i> = 4. </p><p>Propositional calculus restricts attention to abstract propositions, those built up from propositional variables using Boolean operations. Instantiation is still possible within propositional calculus, but only by instantiating propositional variables by abstract propositions, such as instantiating <i>Q</i> by <i>Q</i> → <i>P</i> in <i>P</i> → (<i>Q</i> → <i>P</i>) to yield the instance <i>P</i> → ((<i>Q</i> → <i>P</i>) → <i>P</i>). </p><p>(The availability of instantiation as part of the machinery of propositional calculus avoids the need for metavariables within the language of propositional calculus, since ordinary propositional variables can be considered within the language to denote arbitrary propositions. The metavariables themselves are outside the reach of instantiation, not being part of the language of propositional calculus but rather part of the same language for talking about it that this sentence is written in, where there is a need to be able to distinguish propositional variables and their instantiations as being distinct syntactic entities.) </p> <div class="mw-heading mw-heading3"><h3 id="Deductive_systems_for_propositional_logic">Deductive systems for propositional logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=23" title="Edit section: Deductive systems for propositional logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An axiomatization of propositional calculus is a set of tautologies called <i><a href="/wiki/Axioms" class="mw-redirect" title="Axioms">axioms</a></i> and one or more inference rules for producing new tautologies from old. A <i>proof</i> in an axiom system <i>A</i> is a finite nonempty sequence of propositions each of which is either an instance of an axiom of <i>A</i> or follows by some rule of <i>A</i> from propositions appearing earlier in the proof (thereby disallowing circular reasoning). The last proposition is the <i>theorem</i> proved by the proof. Every nonempty initial segment of a proof is itself a proof, whence every proposition in a proof is itself a theorem. An axiomatization is <i>sound</i> when every theorem is a tautology, and <i>complete</i> when every tautology is a theorem.<sup id="cite_ref-Hausman-Tidman_2007_32-0" class="reference"><a href="#cite_note-Hausman-Tidman_2007-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Sequent_calculus">Sequent calculus</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=24" title="Edit section: Sequent calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></div> <p>Propositional calculus is commonly organized as a <a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert system</a>, whose operations are just those of Boolean algebra and whose theorems are Boolean tautologies, those Boolean terms equal to the Boolean constant 1. Another form is <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculus</a>, which has two sorts, propositions as in ordinary propositional calculus, and pairs of lists of propositions called <i><a href="/wiki/Sequent" title="Sequent">sequents</a></i>, such as <span class="texhtml"><i>A</i> ∨ <i>B</i>, <i>A</i> ∧ <i>C</i>, ... ⊢ <i>A</i>, <i>B</i> → <i>C</i>, ....</span> The two halves of a sequent are called the antecedent and the succedent respectively. The customary metavariable denoting an antecedent or part thereof is Γ, and for a succedent Δ; thus Γ, <i>A</i> ⊢ Δ would denote a sequent whose succedent is a list Δ and whose antecedent is a list Γ with an additional proposition <i>A</i> appended after it. The antecedent is interpreted as the conjunction of its propositions, the succedent as the disjunction of its propositions, and the sequent itself as the <a href="/wiki/Entailment" class="mw-redirect" title="Entailment">entailment</a> of the succedent by the antecedent. </p><p>Entailment differs from implication in that whereas the latter is a binary <i>operation</i> that returns a value in a Boolean algebra, the former is a binary <i>relation</i> which either holds or does not hold. In this sense, entailment is an <i>external</i> form of implication, meaning external to the Boolean algebra, thinking of the reader of the sequent as also being external and interpreting and comparing antecedents and succedents in some Boolean algebra. The natural interpretation of ⊢ is as ≤ in the partial order of the Boolean algebra defined by <i>x</i> ≤ <i>y</i> just when <span class="texhtml"><i>x</i> ∨ <i>y</i> = <i>y</i></span>. This ability to mix external implication ⊢ and internal implication → in the one logic is among the essential differences between sequent calculus and propositional calculus.<sup id="cite_ref-Girard-Tylor-Lafont_1989_33-0" class="reference"><a href="#cite_note-Girard-Tylor-Lafont_1989-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications_2">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=25" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Boolean algebra as the calculus of two values is fundamental to computer circuits, computer programming, and mathematical logic, and is also used in other areas of mathematics such as set theory and statistics.<sup id="cite_ref-Givant-Halmos_2009_5-6" class="reference"><a href="#cite_note-Givant-Halmos_2009-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Computers">Computers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=26" title="Edit section: Computers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the early 20th century, several electrical engineers<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Words_to_watch#Unsupported_attributions" title="Wikipedia:Manual of Style/Words to watch"><span title="The material near this tag possibly uses too-vague attribution or weasel words. (November 2022)">who?</span></a></i>]</sup> intuitively recognized that Boolean algebra was analogous to the behavior of certain types of electrical circuits. <a href="/wiki/Claude_Shannon" title="Claude Shannon">Claude Shannon</a> formally proved such behavior was logically equivalent to Boolean algebra in his 1937 master's thesis, <i><a href="/wiki/A_Symbolic_Analysis_of_Relay_and_Switching_Circuits" title="A Symbolic Analysis of Relay and Switching Circuits">A Symbolic Analysis of Relay and Switching Circuits</a></i>. </p><p>Today, all modern general-purpose <a href="/wiki/Computer" title="Computer">computers</a> perform their functions using two-value Boolean logic; that is, their electrical circuits are a physical manifestation of two-value Boolean logic. They achieve this in various ways: as <a href="/wiki/Digital_signal" title="Digital signal">voltages on wires</a> in high-speed circuits and capacitive storage devices, as orientations of a <a href="/wiki/Magnetic_storage" title="Magnetic storage">magnetic domain</a> in ferromagnetic storage devices, as holes in <a href="/wiki/Punched_card" title="Punched card">punched cards</a> or <a href="/wiki/Paper_tape" class="mw-redirect" title="Paper tape">paper tape</a>, and so on. (Some early computers used decimal circuits or mechanisms instead of two-valued logic circuits.) </p><p>Of course, it is possible to code more than two symbols in any given medium. For example, one might use respectively 0, 1, 2, and 3 volts to code a four-symbol alphabet on a wire, or holes of different sizes in a punched card. In practice, the tight constraints of high speed, small size, and low power combine to make noise a major factor. This makes it hard to distinguish between symbols when there are several possible symbols that could occur at a single site. Rather than attempting to distinguish between four voltages on one wire, digital designers have settled on two voltages per wire, high and low. </p><p>Computers use two-value Boolean circuits for the above reasons. The most common computer architectures use ordered sequences of Boolean values, called bits, of 32 or 64 values, e.g. 01101000110101100101010101001011. When programming in <a href="/wiki/Machine_code" title="Machine code">machine code</a>, <a href="/wiki/Assembly_language" title="Assembly language">assembly language</a>, and certain other <a href="/wiki/Programming_languages" class="mw-redirect" title="Programming languages">programming languages</a>, programmers work with the low-level digital structure of the <a href="/wiki/Word_(data_type)" class="mw-redirect" title="Word (data type)">data registers</a>. These registers operate on voltages, where zero volts represents Boolean 0, and a reference voltage (often +5 V, +3.3 V, or +1.8 V) represents Boolean 1. Such languages support both numeric operations and logical operations. In this context, "numeric" means that the computer treats sequences of bits as <a href="/wiki/Binary_number" title="Binary number">binary numbers</a> (base two numbers) and executes arithmetic operations like add, subtract, multiply, or divide. "Logical" refers to the Boolean logical operations of disjunction, conjunction, and negation between two sequences of bits, in which each bit in one sequence is simply compared to its counterpart in the other sequence. Programmers therefore have the option of working in and applying the rules of either numeric algebra or Boolean algebra as needed. A core differentiating feature between these families of operations is the existence of the <a href="/wiki/Carry_(arithmetic)" title="Carry (arithmetic)">carry</a> operation in the first but not the second. </p> <div class="mw-heading mw-heading3"><h3 id="Two-valued_logic">Two-valued logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=27" title="Edit section: Two-valued logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Other areas where two values is a good choice are the law and mathematics. In everyday relaxed conversation, nuanced or complex answers such as "maybe" or "only on the weekend" are acceptable. In more focused situations such as a court of law or theorem-based mathematics, however, it is deemed advantageous to frame questions so as to admit a simple yes-or-no answer—is the defendant guilty or not guilty, is the proposition true or false—and to disallow any other answer. However, limiting this might prove in practice for the respondent, the principle of the simple yes–no question has become a central feature of both judicial and mathematical logic, making <a href="/wiki/Two-valued_logic" class="mw-redirect" title="Two-valued logic">two-valued logic</a> deserving of organization and study in its own right. </p><p>A central concept of set theory is membership. An organization may permit multiple degrees of membership, such as novice, associate, and full. With sets, however, an element is either in or out. The candidates for membership in a set work just like the wires in a digital computer: each candidate is either a member or a nonmember, just as each wire is either high or low. </p><p>Algebra being a fundamental tool in any area amenable to mathematical treatment, these considerations combine to make the algebra of two values of fundamental importance to computer hardware, mathematical logic, and set theory. </p><p>Two-valued logic can be extended to <a href="/wiki/Multi-valued_logic" class="mw-redirect" title="Multi-valued logic">multi-valued logic</a>, notably by replacing the Boolean domain {0, 1} with the unit interval [0,1], in which case rather than only taking values 0 or 1, any value between and including 0 and 1 can be assumed. Algebraically, negation (NOT) is replaced with 1 − <i>x</i>, conjunction (AND) is replaced with multiplication (<i>xy</i>), and disjunction (OR) is defined via <a href="/wiki/De_Morgan%27s_law" class="mw-redirect" title="De Morgan's law">De Morgan's law</a>. Interpreting these values as logical <a href="/wiki/Truth_value" title="Truth value">truth values</a> yields a multi-valued logic, which forms the basis for <a href="/wiki/Fuzzy_logic" title="Fuzzy logic">fuzzy logic</a> and <a href="/wiki/Probabilistic_logic" title="Probabilistic logic">probabilistic logic</a>. In these interpretations, a value is interpreted as the "degree" of truth – to what extent a proposition is true, or the probability that the proposition is true. </p> <div class="mw-heading mw-heading3"><h3 id="Boolean_operations">Boolean operations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=28" title="Edit section: Boolean operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The original application for Boolean operations was <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>, where it combines the truth values, true or false, of individual formulas. </p> <div class="mw-heading mw-heading4"><h4 id="Natural_language">Natural language</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=29" title="Edit section: Natural language"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Natural languages such as English have words for several Boolean operations, in particular conjunction (<i>and</i>), disjunction (<i>or</i>), negation (<i>not</i>), and implication (<i>implies</i>). <i>But not</i> is synonymous with <i>and not</i>. When used to combine situational assertions such as "the block is on the table" and "cats drink milk", which naïvely are either true or false, the meanings of these <a href="/wiki/Logical_connective" title="Logical connective">logical connectives</a> often have the meaning of their logical counterparts. However, with descriptions of behavior such as "Jim walked through the door", one starts to notice differences such as failure of commutativity, for example, the conjunction of "Jim opened the door" with "Jim walked through the door" in that order is not equivalent to their conjunction in the other order, since <i>and</i> usually means <i>and then</i> in such cases. Questions can be similar: the order "Is the sky blue, and why is the sky blue?" makes more sense than the reverse order. Conjunctive commands about behavior are like behavioral assertions, as in <i>get dressed and go to school</i>. Disjunctive commands such <i>love me or leave me</i> or <i>fish or cut bait</i> tend to be asymmetric via the implication that one alternative is less preferable. Conjoined nouns such as <i>tea and milk</i> generally describe aggregation as with set union while <i>tea or milk</i> is a choice. However, context can reverse these senses, as in <i>your choices are coffee and tea</i> which usually means the same as <i>your choices are coffee or tea</i> (alternatives). Double negation, as in "I don't not like milk", rarely means literally "I do like milk" but rather conveys some sort of hedging, as though to imply that there is a third possibility. "Not not P" can be loosely interpreted as "surely P", and although <i>P</i> necessarily implies "not not <i>P</i>," the converse is suspect in English, much as with <a href="/wiki/Intuitionistic_logic" title="Intuitionistic logic">intuitionistic logic</a>. In view of the highly idiosyncratic usage of conjunctions in natural languages, Boolean algebra cannot be considered a reliable framework for interpreting them. </p> <div class="mw-heading mw-heading4"><h4 id="Digital_logic">Digital logic</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=30" title="Edit section: Digital logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Boolean operations are used in <a href="/wiki/Digital_logic" class="mw-redirect" title="Digital logic">digital logic</a> to combine the bits carried on individual wires, thereby interpreting them over {0,1}. When a vector of <i>n</i> identical binary gates are used to combine two bit vectors each of <i>n</i> bits, the individual bit operations can be understood collectively as a single operation on values from a <a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a> with 2<sup><i>n</i></sup> elements. </p> <div class="mw-heading mw-heading4"><h4 id="Naive_set_theory">Naive set theory</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=31" title="Edit section: Naive set theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive set theory</a> interprets Boolean operations as acting on subsets of a given set <i>X</i>. As we saw earlier this behavior exactly parallels the coordinate-wise combinations of bit vectors, with the union of two sets corresponding to the disjunction of two bit vectors and so on. </p> <div class="mw-heading mw-heading4"><h4 id="Video_cards">Video cards</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=32" title="Edit section: Video cards"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The 256-element free Boolean algebra on three generators is deployed in <a href="/wiki/Computer_displays" class="mw-redirect" title="Computer displays">computer displays</a> based on <a href="/wiki/Raster_graphics" title="Raster graphics">raster graphics</a>, which use <a href="/wiki/Bit_blit" title="Bit blit">bit blit</a> to manipulate whole regions consisting of <a href="/wiki/Pixels" class="mw-redirect" title="Pixels">pixels</a>, relying on Boolean operations to specify how the source region should be combined with the destination, typically with the help of a third region called the <a href="/wiki/Mask_(computing)" title="Mask (computing)">mask</a>. Modern <a href="/wiki/Video_cards" class="mw-redirect" title="Video cards">video cards</a> offer all <span class="nowrap">2<sup>2<span><sup>3</sup></span></sup> = 256</span> ternary operations for this purpose, with the choice of operation being a one-byte (8-bit) parameter. The constants <style data-mw-deduplicate="TemplateStyles:r886049734">.mw-parser-output .monospaced{font-family:monospace,monospace}</style><span class="monospaced">SRC = 0xaa</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0b10101010</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">DST = 0xcc</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0b11001100</span>, and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">MSK = 0xf0</span> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0b11110000</span> allow Boolean operations such as <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">(SRC^DST)&MSK</code> (meaning XOR the source and destination and then AND the result with the mask) to be written directly as a constant denoting a byte calculated at compile time, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0x80</span> in the <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">(SRC^DST)&MSK</code> example, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0x88</span> if just <code class="mw-highlight mw-highlight-lang-text mw-content-ltr" style="" dir="ltr">SRC^DST</code>, etc. At run time the video card interprets the byte as the raster operation indicated by the original expression in a uniform way that requires remarkably little hardware and which takes time completely independent of the complexity of the expression. </p> <div class="mw-heading mw-heading4"><h4 id="Modeling_and_CAD">Modeling and CAD</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=33" title="Edit section: Modeling and CAD"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Solid_modeling" title="Solid modeling">Solid modeling</a> systems for <a href="/wiki/Computer_aided_design" class="mw-redirect" title="Computer aided design">computer aided design</a> offer a variety of methods for building objects from other objects, combination by Boolean operations being one of them. In this method the space in which objects exist is understood as a set <i>S</i> of <a href="/wiki/Voxel" title="Voxel">voxels</a> (the three-dimensional analogue of pixels in two-dimensional graphics) and shapes are defined as subsets of <i>S</i>, allowing objects to be combined as sets via union, intersection, etc. One obvious use is in building a complex shape from simple shapes simply as the union of the latter. Another use is in sculpting understood as removal of material: any grinding, milling, routing, or drilling operation that can be performed with physical machinery on physical materials can be simulated on the computer with the Boolean operation <span class="texhtml"><i>x</i> ∧ ¬<i>y</i></span> or <span class="texhtml"><i>x</i> − <i>y</i></span>, which in set theory is set difference, remove the elements of <i>y</i> from those of <i>x</i>. Thus given two shapes one to be machined and the other the material to be removed, the result of machining the former to remove the latter is described simply as their set difference. </p> <div class="mw-heading mw-heading4"><h4 id="Boolean_searches">Boolean searches</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=34" title="Edit section: Boolean searches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Search engine queries also employ Boolean logic. For this application, each web page on the Internet may be considered to be an "element" of a "set." The following examples use a syntax supported by <a href="/wiki/Google" title="Google">Google</a>.<sup id="cite_ref-NB2_34-0" class="reference"><a href="#cite_note-NB2-34"><span class="cite-bracket">[</span>NB 1<span class="cite-bracket">]</span></a></sup> </p> <ul><li>Doublequotes are used to combine whitespace-separated words into a single search term.<sup id="cite_ref-NB3_35-0" class="reference"><a href="#cite_note-NB3-35"><span class="cite-bracket">[</span>NB 2<span class="cite-bracket">]</span></a></sup></li> <li>Whitespace is used to specify logical AND, as it is the default operator for joining search terms:</li></ul> <pre>"Search term 1" "Search term 2" </pre> <ul><li>The OR keyword is used for logical OR:</li></ul> <pre>"Search term 1" OR "Search term 2" </pre> <ul><li>A prefixed minus sign is used for logical NOT:</li></ul> <pre>"Search term 1" −"Search term 2" </pre> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=35" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">Boolean algebras canonically defined</a></li> <li><a href="/wiki/Boolean_differential_calculus" title="Boolean differential calculus">Boolean differential calculus</a></li> <li><a href="/wiki/Booleo" title="Booleo">Booleo</a></li> <li><a href="/wiki/Cantor_algebra" title="Cantor algebra">Cantor algebra</a></li> <li><a href="/wiki/Heyting_algebra" title="Heyting algebra">Heyting algebra</a></li> <li><a href="/wiki/List_of_Boolean_algebra_topics" title="List of Boolean algebra topics">List of Boolean algebra topics</a></li> <li><a href="/wiki/Logic_design" class="mw-redirect" title="Logic design">Logic design</a></li> <li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i></li> <li><a href="/wiki/Three-valued_logic" title="Three-valued logic">Three-valued logic</a></li> <li><a href="/wiki/Vector_logic" title="Vector logic">Vector logic</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=36" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-NB2-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-NB2_34-0">^</a></b></span> <span class="reference-text">Not all search engines support the same query syntax. Additionally, some organizations (such as Google) provide "specialized" search engines that support alternate or extended syntax. (See, <a rel="nofollow" class="external text" href="https://www.google.com/help/cheatsheet.html">Syntax cheatsheet</a>.) The now-defunct Google code search used to support regular expressions but no longer exists.</span> </li> <li id="cite_note-NB3-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-NB3_35-0">^</a></b></span> <span class="reference-text">Doublequote-delimited search terms are called "exact phrase" searches in the Google documentation.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=37" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Boole_2011-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boole_2011_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBoole2011" class="citation book cs1"><a href="/wiki/George_Boole" title="George Boole">Boole, George</a> (2011-07-28). <a rel="nofollow" class="external text" href="https://www.gutenberg.org/ebooks/36884"><i>The Mathematical Analysis of Logic - Being an Essay Towards a Calculus of Deductive Reasoning</i></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematical+Analysis+of+Logic+-+Being+an+Essay+Towards+a+Calculus+of+Deductive+Reasoning&rft.date=2011-07-28&rft.aulast=Boole&rft.aufirst=George&rft_id=https%3A%2F%2Fwww.gutenberg.org%2Febooks%2F36884&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boole_1854-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boole_1854_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoole2003" class="citation book cs1"><a href="/wiki/George_Boole" title="George Boole">Boole, George</a> (2003) [1854]. <i>An Investigation of the Laws of Thought</i>. <a href="/wiki/Prometheus_Books" title="Prometheus Books">Prometheus Books</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59102-089-9" title="Special:BookSources/978-1-59102-089-9"><bdi>978-1-59102-089-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Investigation+of+the+Laws+of+Thought&rft.pub=Prometheus+Books&rft.date=2003&rft.isbn=978-1-59102-089-9&rft.aulast=Boole&rft.aufirst=George&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Huntington_1933-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Huntington_1933_3-0">^</a></b></span> <span class="reference-text">"The name Boolean algebra (or Boolean 'algebras') for the calculus originated by Boole, extended by Schröder, and perfected by Whitehead seems to have been first suggested by Sheffer, in 1913." <a href="/wiki/Edward_Vermilye_Huntington" title="Edward Vermilye Huntington">Edward Vermilye Huntington</a>, "<a rel="nofollow" class="external text" href="https://www.ams.org/journals/tran/1933-035-01/S0002-9947-1933-1501684-X/S0002-9947-1933-1501684-X.pdf">New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell's <i>Principia mathematica</i></a>", in <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i> <b>35</b> (1933), 274-304; footnote, page 278.</span> </li> <li id="cite_note-Peirce_1931-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Peirce_1931_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeirce1931" class="citation book cs1"><a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Peirce, Charles S.</a> (1931). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3JJgOkGmnjEC&pg=RA1-PA13"><i>Collected Papers</i></a>. Vol. 3. <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>. p. 13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-674-13801-8" title="Special:BookSources/978-0-674-13801-8"><bdi>978-0-674-13801-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+Papers&rft.pages=13&rft.pub=Harvard+University+Press&rft.date=1931&rft.isbn=978-0-674-13801-8&rft.aulast=Peirce&rft.aufirst=Charles+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3JJgOkGmnjEC%26pg%3DRA1-PA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Givant-Halmos_2009-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Givant-Halmos_2009_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Givant-Halmos_2009_5-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGivantHalmos2009" class="citation book cs1">Givant, Steven R.; <a href="/wiki/Paul_Richard_Halmos" class="mw-redirect" title="Paul Richard Halmos">Halmos, Paul Richard</a> (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ORILyf8sF2sC&pg=PA22"><i>Introduction to Boolean Algebras</i></a>. Undergraduate Texts in Mathematics, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. pp. 21–22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-40293-2" title="Special:BookSources/978-0-387-40293-2"><bdi>978-0-387-40293-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Boolean+Algebras&rft.pages=21-22&rft.pub=Undergraduate+Texts+in+Mathematics%2C+Springer&rft.date=2009&rft.isbn=978-0-387-40293-2&rft.aulast=Givant&rft.aufirst=Steven+R.&rft.au=Halmos%2C+Paul+Richard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DORILyf8sF2sC%26pg%3DPA22&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelson2011" class="citation journal cs1">Nelson, Eric S. (2011). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/NELTYA">"The Yijing and Philosophy: From Leibniz to Derrida"</a>. <i>Journal of Chinese Philosophy</i>. <b>38</b> (3): 377–396. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1540-6253.2011.01661.x">10.1111/j.1540-6253.2011.01661.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Chinese+Philosophy&rft.atitle=The+Yijing+and+Philosophy%3A+From+Leibniz+to+Derrida&rft.volume=38&rft.issue=3&rft.pages=377-396&rft.date=2011&rft_id=info%3Adoi%2F10.1111%2Fj.1540-6253.2011.01661.x&rft.aulast=Nelson&rft.aufirst=Eric+S.&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FNELTYA&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Lenzen-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lenzen_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLenzen" class="citation encyclopaedia cs1">Lenzen, Wolfgang. <a rel="nofollow" class="external text" href="http://www.iep.utm.edu/leib-log">"Leibniz: Logic"</a>. <i><a href="/wiki/Internet_Encyclopedia_of_Philosophy" title="Internet Encyclopedia of Philosophy">Internet Encyclopedia of Philosophy</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Leibniz%3A+Logic&rft.btitle=Internet+Encyclopedia+of+Philosophy&rft.aulast=Lenzen&rft.aufirst=Wolfgang&rft_id=http%3A%2F%2Fwww.iep.utm.edu%2Fleib-log&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Dunn-Hardegree_2001-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dunn-Hardegree_2001_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dunn-Hardegree_2001_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Dunn-Hardegree_2001_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunnHardegree2001" class="citation book cs1">Dunn, J. Michael; Hardegree, Gary M. (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-AokWhbILUIC&pg=PA2"><i>Algebraic methods in philosophical logic</i></a>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. p. 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-853192-0" title="Special:BookSources/978-0-19-853192-0"><bdi>978-0-19-853192-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+methods+in+philosophical+logic&rft.pages=2&rft.pub=Oxford+University+Press&rft.date=2001&rft.isbn=978-0-19-853192-0&rft.aulast=Dunn&rft.aufirst=J.+Michael&rft.au=Hardegree%2C+Gary+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-AokWhbILUIC%26pg%3DPA2&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weisstein_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/BooleanAlgebra.html">"Boolean Algebra"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Boolean+Algebra&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FBooleanAlgebra.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Balabanian-Carlson_2001-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Balabanian-Carlson_2001_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalabanianCarlson2001" class="citation book cs1">Balabanian, Norman; Carlson, Bradley (2001). <i>Digital logic design principles</i>. John Wiley. pp. 39–40. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-29351-4" title="Special:BookSources/978-0-471-29351-4"><bdi>978-0-471-29351-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Digital+logic+design+principles&rft.pages=39-40&rft.pub=John+Wiley&rft.date=2001&rft.isbn=978-0-471-29351-4&rft.aulast=Balabanian&rft.aufirst=Norman&rft.au=Carlson%2C+Bradley&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span>, <a rel="nofollow" class="external text" href="http://www.wiley.com/college/engin/balabanian293512/pdf/ch02.pdf">online sample</a></span> </li> <li id="cite_note-Rajaraman-Radhakrishnan_2008-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rajaraman-Radhakrishnan_2008_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRajaramanRadhakrishnan2008" class="citation book cs1">Rajaraman; Radhakrishnan (2008-03-01). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-8MvcOgsSjcC&pg=PA65"><i>Introduction To Digital Computer Design</i></a>. PHI Learning Pvt. Ltd. p. 65. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-203-3409-0" title="Special:BookSources/978-81-203-3409-0"><bdi>978-81-203-3409-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+To+Digital+Computer+Design&rft.pages=65&rft.pub=PHI+Learning+Pvt.+Ltd.&rft.date=2008-03-01&rft.isbn=978-81-203-3409-0&rft.au=Rajaraman&rft.au=Radhakrishnan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-8MvcOgsSjcC%26pg%3DPA65&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Camara_2010-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Camara_2010_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCamara2010" class="citation book cs1">Camara, John A. (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rfHWHeU0jfsC&pg=SA41-PA3"><i>Electrical and Electronics Reference Manual for the Electrical and Computer PE Exam</i></a>. www.ppi2pass.com. p. 41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59126-166-7" title="Special:BookSources/978-1-59126-166-7"><bdi>978-1-59126-166-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electrical+and+Electronics+Reference+Manual+for+the+Electrical+and+Computer+PE+Exam&rft.pages=41&rft.pub=www.ppi2pass.com&rft.date=2010&rft.isbn=978-1-59126-166-7&rft.aulast=Camara&rft.aufirst=John+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrfHWHeU0jfsC%26pg%3DSA41-PA3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Chen_2007-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chen_2007_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShin-ichi_Minato,_Saburo_Muroga2007" class="citation book cs1">Shin-ichi Minato, Saburo Muroga (2007). "Chapter 29: Binary Decision Diagrams". In Chen, Wai-Kai (ed.). <i>The VLSI handbook</i> (2 ed.). <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-4199-1" title="Special:BookSources/978-0-8493-4199-1"><bdi>978-0-8493-4199-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+29%3A+Binary+Decision+Diagrams&rft.btitle=The+VLSI+handbook&rft.edition=2&rft.pub=CRC+Press&rft.date=2007&rft.isbn=978-0-8493-4199-1&rft.au=Shin-ichi+Minato%2C+Saburo+Muroga&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Parkes_2002-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Parkes_2002_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkes2002" class="citation book cs1">Parkes, Alan (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sUQXKy8KPcQC&pg=PA276"><i>Introduction to languages, machines and logic: computable languages, abstract machines and formal logic</i></a>. Springer. p. 276. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-85233-464-2" title="Special:BookSources/978-1-85233-464-2"><bdi>978-1-85233-464-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+languages%2C+machines+and+logic%3A+computable+languages%2C+abstract+machines+and+formal+logic&rft.pages=276&rft.pub=Springer&rft.date=2002&rft.isbn=978-1-85233-464-2&rft.aulast=Parkes&rft.aufirst=Alan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsUQXKy8KPcQC%26pg%3DPA276&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Barwise-Etchemendy_1999-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Barwise-Etchemendy_1999_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarwiseEtchemendyAllweinBarker-Plummer1999" class="citation book cs1"><a href="/wiki/Jon_Barwise" title="Jon Barwise">Barwise, Jon</a>; <a href="/wiki/John_Etchemendy" title="John Etchemendy">Etchemendy, John</a>; Allwein, Gerard; Barker-Plummer, Dave; Liu, Albert (1999). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/languageprooflog00barw"><i>Language, proof, and logic</i></a></span>. CSLI Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-889119-08-3" title="Special:BookSources/978-1-889119-08-3"><bdi>978-1-889119-08-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Language%2C+proof%2C+and+logic&rft.pub=CSLI+Publications&rft.date=1999&rft.isbn=978-1-889119-08-3&rft.aulast=Barwise&rft.aufirst=Jon&rft.au=Etchemendy%2C+John&rft.au=Allwein%2C+Gerard&rft.au=Barker-Plummer%2C+Dave&rft.au=Liu%2C+Albert&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flanguageprooflog00barw&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Goertzel_1994-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goertzel_1994_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoertzel1994" class="citation book cs1">Goertzel, Ben (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zVOWoXDunp8C&pg=PA48"><i>Chaotic logic: language, thought, and reality from the perspective of complex systems science</i></a>. Springer. p. 48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-306-44690-0" title="Special:BookSources/978-0-306-44690-0"><bdi>978-0-306-44690-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chaotic+logic%3A+language%2C+thought%2C+and+reality+from+the+perspective+of+complex+systems+science&rft.pages=48&rft.pub=Springer&rft.date=1994&rft.isbn=978-0-306-44690-0&rft.aulast=Goertzel&rft.aufirst=Ben&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzVOWoXDunp8C%26pg%3DPA48&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Halmos_1963-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Halmos_1963_17-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Paul_Richard_Halmos" class="mw-redirect" title="Paul Richard Halmos">Halmos, Paul Richard</a> (1963). Lectures on Boolean Algebras. van Nostrand.</span> </li> <li id="cite_note-Bacon-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bacon_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBacon2011" class="citation web cs1">Bacon, Jason W. (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211002001321/http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch13s02.html">"Computer Science 315 Lecture Notes"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch13s02.html">the original</a> on 2021-10-02<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-10-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Computer+Science+315+Lecture+Notes&rft.date=2011&rft.aulast=Bacon&rft.aufirst=Jason+W.&rft_id=http%3A%2F%2Fwww.cs.uwm.edu%2Fclasses%2Fcs315%2FBacon%2FLecture%2FHTML%2Fch13s02.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.geeksforgeeks.org/boolean-algebra/">"Boolean Algebra - Expression, Rules, Theorems, and Examples"</a>. <i>GeeksforGeeks</i>. 2021-09-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=GeeksforGeeks&rft.atitle=Boolean+Algebra+-+Expression%2C+Rules%2C+Theorems%2C+and+Examples&rft.date=2021-09-24&rft_id=https%3A%2F%2Fwww.geeksforgeeks.org%2Fboolean-algebra%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.uobabylon.edu.iq/eprints/publication_12_3018_1456.pdf">"Boolean Logical Operations"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Boolean+Logical+Operations&rft_id=https%3A%2F%2Fwww.uobabylon.edu.iq%2Feprints%2Fpublication_12_3018_1456.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://bob.cs.sonoma.edu/IntroCompOrg-RPi/sec-balgebra.html">"Boolean Algebra Operations"</a>. <i>bob.cs.sonoma.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=bob.cs.sonoma.edu&rft.atitle=Boolean+Algebra+Operations&rft_id=https%3A%2F%2Fbob.cs.sonoma.edu%2FIntroCompOrg-RPi%2Fsec-balgebra.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www2.seas.gwu.edu/~ayoussef/cs1311/BooleanAlgebra.pdf">"Boolean Algebra"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Boolean+Algebra&rft_id=https%3A%2F%2Fwww2.seas.gwu.edu%2F~ayoussef%2Fcs1311%2FBooleanAlgebra.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-ORegan_2008-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-ORegan_2008_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Regan2008" class="citation book cs1">O'Regan, Gerard (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=081H96F1enMC&pg=PA33"><i>A brief history of computing</i></a>. Springer. p. 33. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84800-083-4" title="Special:BookSources/978-1-84800-083-4"><bdi>978-1-84800-083-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+brief+history+of+computing&rft.pages=33&rft.pub=Springer&rft.date=2008&rft.isbn=978-1-84800-083-4&rft.aulast=O%27Regan&rft.aufirst=Gerard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D081H96F1enMC%26pg%3DPA33&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-EoBA-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-EoBA_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/">"Elements of Boolean Algebra"</a>. <i>www.ee.surrey.ac.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.ee.surrey.ac.uk&rft.atitle=Elements+of+Boolean+Algebra&rft_id=http%3A%2F%2Fwww.ee.surrey.ac.uk%2FProjects%2FLabview%2Fboolalgebra%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-McGee_2005-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-McGee_2005_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcGee" class="citation cs2">McGee, Vann, <a rel="nofollow" class="external text" href="https://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/chp24.pdf"><i>Sentential Calculus Revisited: Boolean Algebra</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sentential+Calculus+Revisited%3A+Boolean+Algebra&rft.aulast=McGee&rft.aufirst=Vann&rft_id=https%3A%2F%2Focw.mit.edu%2Fcourses%2Flinguistics-and-philosophy%2F24-241-logic-i-fall-2005%2Freadings%2Fchp24.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Goodstein_2012-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goodstein_2012_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodstein2012" class="citation cs2"><a href="/wiki/Reuben_Louis_Goodstein" class="mw-redirect" title="Reuben Louis Goodstein">Goodstein, Reuben Louis</a> (2012), "Chapter 4: Sentence Logic", <i>Boolean Algebra</i>, Courier Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-48615497-8" title="Special:BookSources/978-0-48615497-8"><bdi>978-0-48615497-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+4%3A+Sentence+Logic&rft.btitle=Boolean+Algebra&rft.pub=Courier+Dover+Publications&rft.date=2012&rft.isbn=978-0-48615497-8&rft.aulast=Goodstein&rft.aufirst=Reuben+Louis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Venn_1880-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Venn_1880_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVenn1880" class="citation journal cs1"><a href="/wiki/John_Venn" title="John Venn">Venn, John</a> (July 1880). <a rel="nofollow" class="external text" href="https://www.cis.upenn.edu/~bhusnur4/cit592_fall2014/venn%20diagrams.pdf">"I. On the Diagrammatic and Mechanical Representation of Propositions and Reasonings"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/The_London,_Edinburgh,_and_Dublin_Philosophical_Magazine_and_Journal_of_Science" class="mw-redirect" title="The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science">The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</a></i>. 5. <b>10</b> (59): 1–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786448008626877">10.1080/14786448008626877</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170516204620/https://www.cis.upenn.edu/~bhusnur4/cit592_fall2014/venn%20diagrams.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2017-05-16.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&rft.atitle=I.+On+the+Diagrammatic+and+Mechanical+Representation+of+Propositions+and+Reasonings&rft.volume=10&rft.issue=59&rft.pages=1-18&rft.date=1880-07&rft_id=info%3Adoi%2F10.1080%2F14786448008626877&rft.aulast=Venn&rft.aufirst=John&rft_id=https%3A%2F%2Fwww.cis.upenn.edu%2F~bhusnur4%2Fcit592_fall2014%2Fvenn%2520diagrams.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span> <a rel="nofollow" class="external autonumber" href="http://www.tandfonline.com/doi/abs/10.1080/14786448008626877">[1]</a> <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=k68vAQAAIAAJ&pg=PA1">[2]</a></span> </li> <li id="cite_note-Shannon_1949-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shannon_1949_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShannon1949" class="citation journal cs1"><a href="/wiki/Claude_Shannon" title="Claude Shannon">Shannon, Claude</a> (1949). "The Synthesis of Two-Terminal Switching Circuits". <i><a href="/wiki/Bell_System_Technical_Journal" class="mw-redirect" title="Bell System Technical Journal">Bell System Technical Journal</a></i>. <b>28</b>: 59–98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fj.1538-7305.1949.tb03624.x">10.1002/j.1538-7305.1949.tb03624.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bell+System+Technical+Journal&rft.atitle=The+Synthesis+of+Two-Terminal+Switching+Circuits&rft.volume=28&rft.pages=59-98&rft.date=1949&rft_id=info%3Adoi%2F10.1002%2Fj.1538-7305.1949.tb03624.x&rft.aulast=Shannon&rft.aufirst=Claude&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Koppelberg_1989-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Koppelberg_1989_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoppelberg1989" class="citation book cs1">Koppelberg, Sabine (1989). "General Theory of Boolean Algebras". <i>Handbook of Boolean Algebras, Vol. 1 (ed. J. Donald Monk with Robert Bonnet)</i>. Amsterdam, Netherlands: <a href="/wiki/North_Holland" title="North Holland">North Holland</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-70261-6" title="Special:BookSources/978-0-444-70261-6"><bdi>978-0-444-70261-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=General+Theory+of+Boolean+Algebras&rft.btitle=Handbook+of+Boolean+Algebras%2C+Vol.+1+%28ed.+J.+Donald+Monk+with+Robert+Bonnet%29&rft.place=Amsterdam%2C+Netherlands&rft.pub=North+Holland&rft.date=1989&rft.isbn=978-0-444-70261-6&rft.aulast=Koppelberg&rft.aufirst=Sabine&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-McCune_2002-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-McCune_2002_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCuneVeroffFitelsonHarris2002" class="citation cs2"><a href="/wiki/William_McCune" title="William McCune">McCune, William</a>; Veroff, Robert; <a href="/wiki/Branden_Fitelson" title="Branden Fitelson">Fitelson, Branden</a>; Harris, Kenneth; Feist, Andrew; <a href="/wiki/Larry_Wos" title="Larry Wos">Wos, Larry</a> (2002), "Short single axioms for Boolean algebra", <i><a href="/wiki/Journal_of_Automated_Reasoning" title="Journal of Automated Reasoning">Journal of Automated Reasoning</a></i>, <b>29</b> (1): 1–16, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1020542009983">10.1023/A:1020542009983</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1940227">1940227</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207582048">207582048</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Automated+Reasoning&rft.atitle=Short+single+axioms+for+Boolean+algebra&rft.volume=29&rft.issue=1&rft.pages=1-16&rft.date=2002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1940227%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207582048%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1023%2FA%3A1020542009983&rft.aulast=McCune&rft.aufirst=William&rft.au=Veroff%2C+Robert&rft.au=Fitelson%2C+Branden&rft.au=Harris%2C+Kenneth&rft.au=Feist%2C+Andrew&rft.au=Wos%2C+Larry&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Allwood_1977-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Allwood_1977_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllwoodAnderssonAnderssonDahl1977" class="citation book cs1">Allwood, Jens; Andersson, Gunnar-Gunnar; Andersson, Lars-Gunnar; Dahl, Osten (1977-09-15). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hXIpFPttDjgC&q=%22propositional+logic%22"><i>Logic in Linguistics</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-29174-3" title="Special:BookSources/978-0-521-29174-3"><bdi>978-0-521-29174-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Logic+in+Linguistics&rft.pub=Cambridge+University+Press&rft.date=1977-09-15&rft.isbn=978-0-521-29174-3&rft.aulast=Allwood&rft.aufirst=Jens&rft.au=Andersson%2C+Gunnar-Gunnar&rft.au=Andersson%2C+Lars-Gunnar&rft.au=Dahl%2C+Osten&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhXIpFPttDjgC%26q%3D%2522propositional%2Blogic%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Hausman-Tidman_2007-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hausman-Tidman_2007_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHausmanKahaneTidman2010" class="citation book cs1">Hausman, Alan; Kahane, Howard; Tidman, Paul (2010) [2007]. <i>Logic and Philosophy: A Modern Introduction</i>. Wadsworth Cengage Learning. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-60158-6" title="Special:BookSources/978-0-495-60158-6"><bdi>978-0-495-60158-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Logic+and+Philosophy%3A+A+Modern+Introduction&rft.pub=Wadsworth+Cengage+Learning&rft.date=2010&rft.isbn=978-0-495-60158-6&rft.aulast=Hausman&rft.aufirst=Alan&rft.au=Kahane%2C+Howard&rft.au=Tidman%2C+Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Girard-Tylor-Lafont_1989-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Girard-Tylor-Lafont_1989_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGirardTaylorLafont1990" class="citation book cs1"><a href="/wiki/Jean-Yves_Girard" title="Jean-Yves Girard">Girard, Jean-Yves</a>; Taylor, Paul; Lafont, Yves (1990) [1989]. <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/proofstypes0000gira"><i>Proofs and Types</i></a></span>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a> (Cambridge Tracts in Theoretical Computer Science, 7). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-37181-0" title="Special:BookSources/978-0-521-37181-0"><bdi>978-0-521-37181-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Proofs+and+Types&rft.pub=Cambridge+University+Press+%28Cambridge+Tracts+in+Theoretical+Computer+Science%2C+7%29&rft.date=1990&rft.isbn=978-0-521-37181-0&rft.aulast=Girard&rft.aufirst=Jean-Yves&rft.au=Taylor%2C+Paul&rft.au=Lafont%2C+Yves&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fproofstypes0000gira&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=38" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManoCiletti2013" class="citation book cs1">Mano, Morris; Ciletti, Michael D. (2013). <i>Digital Design</i>. Pearson. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-277420-8" title="Special:BookSources/978-0-13-277420-8"><bdi>978-0-13-277420-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Digital+Design&rft.pub=Pearson&rft.date=2013&rft.isbn=978-0-13-277420-8&rft.aulast=Mano&rft.aufirst=Morris&rft.au=Ciletti%2C+Michael+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhitesitt1995" class="citation book cs1">Whitesitt, J. Eldon (1995). <i>Boolean algebra and its applications</i>. <a href="/wiki/Courier_Dover_Publications" class="mw-redirect" title="Courier Dover Publications">Courier Dover Publications</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-68483-3" title="Special:BookSources/978-0-486-68483-3"><bdi>978-0-486-68483-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Boolean+algebra+and+its+applications&rft.pub=Courier+Dover+Publications&rft.date=1995&rft.isbn=978-0-486-68483-3&rft.aulast=Whitesitt&rft.aufirst=J.+Eldon&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDwinger1971" class="citation book cs1">Dwinger, Philip (1971). <i>Introduction to Boolean algebras</i>. Würzburg, Germany: Physica Verlag.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Boolean+algebras&rft.place=W%C3%BCrzburg%2C+Germany&rft.pub=Physica+Verlag&rft.date=1971&rft.aulast=Dwinger&rft.aufirst=Philip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSikorski1969" class="citation book cs1"><a href="/wiki/Roman_Sikorski" title="Roman Sikorski">Sikorski, Roman</a> (1969). <i>Boolean Algebras</i> (3 ed.). Berlin, Germany: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-04469-9" title="Special:BookSources/978-0-387-04469-9"><bdi>978-0-387-04469-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Boolean+Algebras&rft.place=Berlin%2C+Germany&rft.edition=3&rft.pub=Springer-Verlag&rft.date=1969&rft.isbn=978-0-387-04469-9&rft.aulast=Sikorski&rft.aufirst=Roman&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><a href="/wiki/Boche%C5%84ski,_J%C3%B3zef_Maria" class="mw-redirect" title="Bocheński, Józef Maria">Bocheński, Józef Maria</a> (1959). <i>A Précis of Mathematical Logic</i>. Translated from the French and German editions by Otto Bird. Dordrecht, South Holland: D. Reidel.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Historical_perspective">Historical perspective</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=39" title="Edit section: Historical perspective"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoole1848" class="citation journal cs1"><a href="/wiki/George_Boole" title="George Boole">Boole, George</a> (1848). <a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/CalcLogic.html">"The Calculus of Logic"</a>. <i><a href="/wiki/Cambridge_and_Dublin_Mathematical_Journal" class="mw-redirect" title="Cambridge and Dublin Mathematical Journal">Cambridge and Dublin Mathematical Journal</a></i>. <b>III</b>: 183–198.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cambridge+and+Dublin+Mathematical+Journal&rft.atitle=The+Calculus+of+Logic&rft.volume=III&rft.pages=183-198&rft.date=1848&rft.aulast=Boole&rft.aufirst=George&rft_id=http%3A%2F%2Fwww.maths.tcd.ie%2Fpub%2FHistMath%2FPeople%2FBoole%2FCalcLogic%2FCalcLogic.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHailperin1986" class="citation book cs1">Hailperin, Theodore (1986). <i>Boole's logic and probability: a critical exposition from the standpoint of contemporary algebra, logic, and probability theory</i> (2 ed.). <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-87952-3" title="Special:BookSources/978-0-444-87952-3"><bdi>978-0-444-87952-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Boole%27s+logic+and+probability%3A+a+critical+exposition+from+the+standpoint+of+contemporary+algebra%2C+logic%2C+and+probability+theory&rft.edition=2&rft.pub=Elsevier&rft.date=1986&rft.isbn=978-0-444-87952-3&rft.aulast=Hailperin&rft.aufirst=Theodore&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGabbayWoods2004" class="citation book cs1">Gabbay, Dov M.; Woods, John, eds. (2004). <i>The rise of modern logic: from Leibniz to Frege</i>. Handbook of the History of Logic. Vol. 3. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-51611-4" title="Special:BookSources/978-0-444-51611-4"><bdi>978-0-444-51611-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+rise+of+modern+logic%3A+from+Leibniz+to+Frege&rft.series=Handbook+of+the+History+of+Logic&rft.pub=Elsevier&rft.date=2004&rft.isbn=978-0-444-51611-4&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span>, several relevant chapters by Hailperin, Valencia, and Grattan-Guinness</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBadesa2004" class="citation book cs1">Badesa, Calixto (2004). "Chapter 1. Algebra of Classes and Propositional Calculus". <i>The birth of model theory: Löwenheim's theorem in the frame of the theory of relatives</i>. <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-05853-5" title="Special:BookSources/978-0-691-05853-5"><bdi>978-0-691-05853-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+1.+Algebra+of+Classes+and+Propositional+Calculus&rft.btitle=The+birth+of+model+theory%3A+L%C3%B6wenheim%27s+theorem+in+the+frame+of+the+theory+of+relatives&rft.pub=Princeton+University+Press&rft.date=2004&rft.isbn=978-0-691-05853-5&rft.aulast=Badesa&rft.aufirst=Calixto&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStankovićAstola2011" class="citation book cs1 cs1-prop-location-test cs1-prop-interwiki-linked-name"><a href="https://de.wikipedia.org/wiki/Radomir_S._Stankovi%C4%87" class="extiw" title="de:Radomir S. Stanković">Stanković, Radomir S.</a> <span class="cs1-format">[in German]</span>; <a href="https://fi.wikipedia.org/wiki/Jaakko_Tapio_Astola" class="extiw" title="fi:Jaakko Tapio Astola">Astola, Jaakko Tapio</a> <span class="cs1-format">[in Finnish]</span> (2011). Written at Niš, Serbia & Tampere, Finland. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZuHwCAAAQBAJ"><i>From Boolean Logic to Switching Circuits and Automata: Towards Modern Information Technology</i></a>. Studies in Computational Intelligence. Vol. 335 (1 ed.). Berlin & Heidelberg, Germany: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. pp. xviii + 212. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-11682-7">10.1007/978-3-642-11682-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-11681-0" title="Special:BookSources/978-3-642-11681-0"><bdi>978-3-642-11681-0</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1860-949X">1860-949X</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/2011921126">2011921126</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-10-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=From+Boolean+Logic+to+Switching+Circuits+and+Automata%3A+Towards+Modern+Information+Technology&rft.place=Berlin+%26+Heidelberg%2C+Germany&rft.series=Studies+in+Computational+Intelligence&rft.pages=xviii+%2B+212&rft.edition=1&rft.pub=Springer-Verlag&rft.date=2011&rft_id=info%3Adoi%2F10.1007%2F978-3-642-11682-7&rft.issn=1860-949X&rft_id=info%3Alccn%2F2011921126&rft.isbn=978-3-642-11681-0&rft.aulast=Stankovi%C4%87&rft.aufirst=Radomir+S.&rft.au=Astola%2C+Jaakko+Tapio&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZuHwCAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABoolean+algebra" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/algebra-logic-tradition/">"The Algebra of Logic Tradition"</a> entry by Burris, Stanley in the <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>, 21 February 2012</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Boolean_algebra&action=edit&section=40" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/How_To_Search" class="extiw" title="wikibooks:How To Search">How To Search</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/How_To_Search/Boolean_Logic" class="extiw" title="wikibooks:How To Search/Boolean Logic">Boolean Logic</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Electronics" class="extiw" title="wikibooks:Electronics">Electronics</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Electronics/Boolean_Algebra" class="extiw" title="wikibooks:Electronics/Boolean Algebra">Boolean Algebra</a></b></i></div></div> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Digital_electronics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Digital_electronics" title="Template:Digital electronics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Digital_electronics" title="Template talk:Digital electronics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Digital_electronics" title="Special:EditPage/Template:Digital electronics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Digital_electronics" style="font-size:114%;margin:0 4em"><a href="/wiki/Digital_electronics" title="Digital electronics">Digital electronics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electronic_component" title="Electronic component">Components</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a></li> <li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/Electronic_circuit" title="Electronic circuit">Electronic circuit</a></li> <li><a href="/wiki/Flip-flop_(electronics)" title="Flip-flop (electronics)">Flip-flop</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Combinational_logic" title="Combinational logic">Combinational logic</a></li> <li><a href="/wiki/Sequential_logic" title="Sequential logic">Sequential logic</a></li> <li><a href="/wiki/Logic_gate" title="Logic gate">Logic gate</a></li> <li><a href="/wiki/Boolean_circuit" title="Boolean circuit">Boolean circuit</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a> (HIC)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a href="/wiki/Three-dimensional_integrated_circuit" title="Three-dimensional integrated circuit">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Emitter-coupled_logic" title="Emitter-coupled logic">Emitter-coupled logic</a> (ECL)</li> <li><a href="/wiki/Erasable_programmable_logic_device" class="mw-redirect" title="Erasable programmable logic device">Erasable programmable logic device</a> (EPLD)</li> <li><a href="/wiki/Macrocell_array" title="Macrocell array">Macrocell array</a></li> <li><a href="/wiki/Programmable_logic_array" title="Programmable logic array">Programmable logic array</a> (PLA)</li> <li><a href="/wiki/Programmable_logic_device" title="Programmable logic device">Programmable logic device</a> (PLD)</li> <li><a href="/wiki/Programmable_Array_Logic" title="Programmable Array Logic">Programmable Array Logic</a> (PAL)</li> <li><a href="/wiki/Generic_Array_Logic" title="Generic Array Logic">Generic Array Logic</a> (GAL)</li> <li><a href="/wiki/Complex_programmable_logic_device" title="Complex programmable logic device">Complex programmable logic device</a> (CPLD)</li> <li><a href="/wiki/Field-programmable_gate_array" title="Field-programmable gate array">Field-programmable gate array</a> (FPGA)</li> <li><a href="/wiki/Field-programmable_object_array" title="Field-programmable object array">Field-programmable object array</a> (FPOA)</li> <li><a href="/wiki/Application-specific_integrated_circuit" title="Application-specific integrated circuit">Application-specific integrated circuit</a> (ASIC)</li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">Tensor Processing Unit</a> (TPU)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Theory</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Digital_signal" title="Digital signal">Digital signal</a></li> <li><a class="mw-selflink selflink">Boolean algebra</a></li> <li><a href="/wiki/Logic_synthesis" title="Logic synthesis">Logic synthesis</a></li> <li><a href="/wiki/Logic_in_computer_science" title="Logic in computer science">Logic in computer science</a></li> <li><a href="/wiki/Computer_architecture" title="Computer architecture">Computer architecture</a></li> <li><a href="/wiki/Digital_signal_(signal_processing)" title="Digital signal (signal processing)">Digital signal</a> <ul><li><a href="/wiki/Digital_signal_processing" title="Digital signal processing">Digital signal processing</a></li></ul></li> <li><a href="/wiki/Circuit_minimization_for_Boolean_functions" class="mw-redirect" title="Circuit minimization for Boolean functions">Circuit minimization</a></li> <li><a href="/wiki/Switching_circuit_theory" title="Switching circuit theory">Switching circuit theory</a></li> <li><a href="/wiki/Gate_equivalent" title="Gate equivalent">Gate equivalent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electronics_design" class="mw-redirect" title="Electronics design">Design</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Logic_synthesis" title="Logic synthesis">Logic synthesis</a></li> <li><a href="/wiki/Place_and_route" title="Place and route">Place and route</a> <ul><li><a href="/wiki/Placement_(electronic_design_automation)" title="Placement (electronic design automation)">Placement</a></li> <li><a href="/wiki/Routing_(electronic_design_automation)" title="Routing (electronic design automation)">Routing</a></li></ul></li> <li><a href="/wiki/Transaction-level_modeling" title="Transaction-level modeling">Transaction-level modeling</a></li> <li><a href="/wiki/Register-transfer_level" title="Register-transfer level">Register-transfer level</a> <ul><li><a href="/wiki/Hardware_description_language" title="Hardware description language">Hardware description language</a></li> <li><a href="/wiki/High-level_synthesis" title="High-level synthesis">High-level synthesis</a></li></ul></li> <li><a href="/wiki/Formal_equivalence_checking" title="Formal equivalence checking">Formal equivalence checking</a></li> <li><a href="/wiki/Synchronous_circuit" title="Synchronous circuit">Synchronous logic</a></li> <li><a href="/wiki/Asynchronous_circuit" title="Asynchronous circuit">Asynchronous logic</a></li> <li><a href="/wiki/Finite-state_machine" title="Finite-state machine">Finite-state machine</a> <ul><li><a href="/wiki/Hierarchical_state_machine" class="mw-redirect" title="Hierarchical state machine">Hierarchical state machine</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Applications</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_hardware" title="Computer hardware">Computer hardware</a> <ul><li><a href="/wiki/Hardware_acceleration" title="Hardware acceleration">Hardware acceleration</a></li></ul></li> <li><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a> <ul><li><a href="/wiki/Digital_radio" title="Digital radio">radio</a></li></ul></li> <li><a href="/wiki/Digital_photography" title="Digital photography">Digital photography</a></li> <li><a href="/wiki/Telephony#Digital_telephony" title="Telephony">Digital telephone</a></li> <li><a href="/wiki/Digital_video" title="Digital video">Digital video</a> <ul><li><a href="/wiki/Digital_cinematography" title="Digital cinematography">cinematography</a></li> <li><a href="/wiki/Digital_television" title="Digital television">television</a></li></ul></li> <li><a href="/wiki/Electronic_literature" title="Electronic literature">Electronic literature</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Design issues</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Metastability_(electronics)" title="Metastability (electronics)">Metastability</a></li> <li><a href="/wiki/Runt_pulse" title="Runt pulse">Runt pulse</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Mathematical_logic" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_logic" title="Template:Mathematical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_logic" title="Template talk:Mathematical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_logic" title="Special:EditPage/Template:Mathematical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematical_logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a> <ul><li><a href="/wiki/List_of_axioms" title="List of axioms">list</a></li></ul></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Formal_semantics_(logic)" class="mw-redirect" title="Formal semantics (logic)">Formal semantics</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">Lemma</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems (<a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">list</a>)<br /> and <a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel's completeness theorem">Gödel's completeness</a> and <a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel's incompleteness theorems">incompleteness theorems</a></li> <li><a href="/wiki/Tarski%27s_undefinability_theorem" title="Tarski's undefinability theorem">Tarski's undefinability</a></li> <li><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a></li> <li>Cantor's <a href="/wiki/Cantor%27s_theorem" title="Cantor's theorem">theorem,</a> <a href="/wiki/Cantor%27s_paradox" title="Cantor's paradox">paradox</a> and <a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor's diagonal argument">diagonal argument</a></li> <li><a href="/wiki/Compactness_theorem" title="Compactness theorem">Compactness</a></li> <li><a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a></li> <li><a href="/wiki/Lindstr%C3%B6m%27s_theorem" title="Lindström's theorem">Lindström's</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell's paradox">Russell's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic" title="Logic">Logics</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Traditional" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Term_logic" title="Term logic">Traditional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">Tautology</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Logical_equivalence" title="Logical equivalence">Logical equivalence</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a> <ul><li><a href="/wiki/Equiconsistency" title="Equiconsistency">Equiconsistency</a></li></ul></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li> <li><a href="/wiki/Syllogism" title="Syllogism">Syllogism</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Boolean algebra</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connectives</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Propositional_formula" title="Propositional formula">Propositional formula</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth tables</a></li> <li><a href="/wiki/Many-valued_logic" title="Many-valued logic">Many-valued logic</a> <ul><li><a href="/wiki/Three-valued_logic" title="Three-valued logic">3</a></li> <li><a href="/wiki/Finite-valued_logic" title="Finite-valued logic">finite</a></li> <li><a href="/wiki/Infinite-valued_logic" title="Infinite-valued logic">∞</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">Predicate</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First-order_logic" title="First-order logic">First-order</a> <ul><li><a href="/wiki/List_of_first-order_theories" title="List of first-order theories"><span style="font-size:85%;">list</span></a></li></ul></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order</a> <ul><li><a href="/wiki/Monadic_second-order_logic" title="Monadic second-order logic">Monadic</a></li></ul></li> <li><a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order</a></li> <li><a href="/wiki/Fixed-point_logic" title="Fixed-point logic">Fixed-point</a></li> <li><a href="/wiki/Free_logic" title="Free logic">Free</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifiers</a></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a></li> <li><a href="/wiki/Monadic_predicate_calculus" title="Monadic predicate calculus">Monadic predicate calculus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Set</a> <ul><li><a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a></li></ul></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li>(<a href="/wiki/Urelement" title="Urelement">Ur-</a>)<a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Extensionality" title="Extensionality">Extensionality</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> <ul><li><a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a></li> <li><a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a></li></ul></li> <li>Set operations: <ul><li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a></li> <li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Power_set" title="Power set">power set</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">identities</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Inhabited_set" title="Inhabited set">Inhabited</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Ultrafilter_(set_theory)" class="mw-redirect" title="Ultrafilter (set theory)">Ultrafilter</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li> <li><a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">Universe</a> <ul><li><a href="/wiki/Constructible_universe" title="Constructible universe">constructible</a></li> <li><a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck</a></li> <li><a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Maps</a> and <a href="/wiki/Cardinality" title="Cardinality">cardinality</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a>/<a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map</a> <ul><li><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></li> <li><a href="/wiki/Codomain" title="Codomain">codomain</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></li> <li><a href="/wiki/Injective_function" title="Injective function">In</a>/<a href="/wiki/Surjective_function" title="Surjective function">Sur</a>/<a href="/wiki/Bijection" title="Bijection">Bi</a>-jection</li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem" title="Schröder–Bernstein theorem">Schröder–Bernstein theorem</a></li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphism</a></li> <li><a href="/wiki/G%C3%B6del_numbering" title="Gödel numbering">Gödel numbering</a></li> <li><a href="/wiki/Enumeration" title="Enumeration">Enumeration</a></li> <li><a href="/wiki/Large_cardinal" title="Large cardinal">Large cardinal</a> <ul><li><a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible</a></li></ul></li> <li><a href="/wiki/Aleph_number" title="Aleph number">Aleph number</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> <ul><li><a href="/wiki/Binary_operation" title="Binary operation">binary</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel</a> <ul><li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a></li></ul></li> <li><a href="/wiki/General_set_theory" title="General set theory">General</a></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel</a></li> <li><a href="/wiki/Ackermann_set_theory" title="Ackermann set theory">Ackermann</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Formal_system" title="Formal system">Formal systems</a> (<a href="/wiki/List_of_formal_systems" title="List of formal systems"><span style="font-size:85%;">list</span></a>),<br /><a href="/wiki/Formal_language" title="Formal language">language</a> and <a href="/wiki/Syntax_(logic)" title="Syntax (logic)">syntax</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alphabet_(formal_languages)" title="Alphabet (formal languages)">Alphabet</a></li> <li><a href="/wiki/Arity" title="Arity">Arity</a></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata</a></li> <li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a></li> <li><a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression</a> <ul><li><a href="/wiki/Ground_expression" title="Ground expression">ground</a></li></ul></li> <li><a href="/wiki/Extension_by_new_constant_and_function_names" title="Extension by new constant and function names">Extension</a> <ul><li><a href="/wiki/Extension_by_definitions" title="Extension by definitions">by definition</a></li> <li><a href="/wiki/Conservative_extension" title="Conservative extension">conservative</a></li></ul></li> <li><a href="/wiki/Finitary_relation" title="Finitary relation">Relation</a></li> <li><a href="/wiki/Formation_rule" title="Formation rule">Formation rule</a></li> <li><a href="/wiki/Formal_grammar" title="Formal grammar">Grammar</a></li> <li><a href="/wiki/Well-formed_formula" title="Well-formed formula">Formula</a> <ul><li><a href="/wiki/Atomic_formula" title="Atomic formula">atomic</a></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">closed</a></li> <li><a href="/wiki/Ground_formula" class="mw-redirect" title="Ground formula">ground</a></li> <li><a href="/wiki/Open_formula" title="Open formula">open</a></li></ul></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free/bound variable</a></li> <li><a href="/wiki/Formal_language" title="Formal language">Language</a></li> <li><a href="/wiki/Metalanguage" title="Metalanguage">Metalanguage</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a> <ul><li><a href="/wiki/Negation" title="Negation">¬</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">∨</a></li> <li><a href="/wiki/Logical_conjunction" title="Logical conjunction">∧</a></li> <li><a href="/wiki/Material_conditional" title="Material conditional">→</a></li> <li><a href="/wiki/Logical_biconditional" title="Logical biconditional">↔</a></li> <li><a href="/wiki/Logical_equality" title="Logical equality">=</a></li></ul></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a> <ul><li><a href="/wiki/Functional_predicate" title="Functional predicate">functional</a></li> <li><a href="/wiki/Predicate_variable" title="Predicate variable">variable</a></li> <li><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variable</a></li></ul></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifier</a> <ul><li><a href="/wiki/Existential_quantification" title="Existential quantification">∃</a></li> <li><a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">!</a></li> <li><a href="/wiki/Universal_quantification" title="Universal quantification">∀</a></li> <li><a href="/wiki/Quantifier_rank" title="Quantifier rank">rank</a></li></ul></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">Sentence</a> <ul><li><a href="/wiki/Atomic_sentence" title="Atomic sentence">atomic</a></li> <li><a href="/wiki/Spectrum_of_a_sentence" title="Spectrum of a sentence">spectrum</a></li></ul></li> <li><a href="/wiki/Signature_(logic)" title="Signature (logic)">Signature</a></li> <li><a href="/wiki/String_(formal_languages)" class="mw-redirect" title="String (formal languages)">String</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Symbol_(formal)" title="Symbol (formal)">Symbol</a> <ul><li><a href="/wiki/Uninterpreted_function" title="Uninterpreted function">function</a></li> <li><a href="/wiki/Logical_constant" title="Logical constant">logical/constant</a></li> <li><a href="/wiki/Non-logical_symbol" title="Non-logical symbol">non-logical</a></li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></li></ul></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a> <ul><li><a href="/wiki/List_of_mathematical_theories" title="List of mathematical theories"><span style="font-size:85%;">list</span></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="nowrap">Example <a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic<br />systems</a> <span style="font-size:85%;">(<a href="/wiki/List_of_first-order_theories" title="List of first-order theories">list</a>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>of <a href="/wiki/True_arithmetic" title="True arithmetic">arithmetic</a>: <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano</a></li> <li><a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order</a></li> <li><a href="/wiki/Elementary_function_arithmetic" title="Elementary function arithmetic">elementary function</a></li> <li><a href="/wiki/Primitive_recursive_arithmetic" title="Primitive recursive arithmetic">primitive recursive</a></li> <li><a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson</a></li> <li><a href="/wiki/Skolem_arithmetic" title="Skolem arithmetic">Skolem</a></li></ul></li> <li>of the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">real numbers</a> <ul><li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski's axiomatization of the reals">Tarski's axiomatization</a></li></ul></li> <li>of <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Boolean algebras</a> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">canonical</a></li> <li><a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">minimal axioms</a></li></ul></li> <li>of <a href="/wiki/Foundations_of_geometry" title="Foundations of geometry">geometry</a>: <ul><li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a>: <ul><li><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements"><i>Elements</i></a></li> <li><a href="/wiki/Hilbert%27s_axioms" title="Hilbert's axioms">Hilbert's</a></li> <li><a href="/wiki/Tarski%27s_axioms" title="Tarski's axioms">Tarski's</a></li></ul></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean</a></li></ul></li></ul> <ul><li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proof_theory" title="Proof theory">Proof theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Systems</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic</a></li> <li><a href="/wiki/Deductive_system" class="mw-redirect" title="Deductive system">deductive</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert</a> <ul><li><a href="/wiki/List_of_Hilbert_systems" class="mw-redirect" title="List of Hilbert systems">list</a></li></ul></li></ul></li> <li><a href="/wiki/Complete_theory" title="Complete theory">Complete theory</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a> (<a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">from ZFC</a>)</li> <li><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Proof of impossibility</a></li> <li><a href="/wiki/Ordinal_analysis" title="Ordinal analysis">Ordinal analysis</a></li> <li><a href="/wiki/Reverse_mathematics" title="Reverse mathematics">Reverse mathematics</a></li> <li><a href="/wiki/Self-verifying_theories" title="Self-verifying theories">Self-verifying theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_theory" title="Model theory">Model theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a> <ul><li><a href="/wiki/Interpretation_function" class="mw-redirect" title="Interpretation function">function</a></li> <li><a href="/wiki/Interpretation_(model_theory)" title="Interpretation (model theory)">of models</a></li></ul></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a> <ul><li><a href="/wiki/Elementary_equivalence" title="Elementary equivalence">equivalence</a></li> <li><a href="/wiki/Finite_model_theory" title="Finite model theory">finite</a></li> <li><a href="/wiki/Saturated_model" title="Saturated model">saturated</a></li> <li><a href="/wiki/Spectrum_of_a_theory" title="Spectrum of a theory">spectrum</a></li> <li><a href="/wiki/Substructure_(mathematics)" title="Substructure (mathematics)">submodel</a></li></ul></li> <li><a href="/wiki/Non-standard_model" title="Non-standard model">Non-standard model</a> <ul><li><a href="/wiki/Non-standard_model_of_arithmetic" title="Non-standard model of arithmetic">of arithmetic</a></li></ul></li> <li><a href="/wiki/Diagram_(mathematical_logic)" title="Diagram (mathematical logic)">Diagram</a> <ul><li><a href="/wiki/Elementary_diagram" title="Elementary diagram">elementary</a></li></ul></li> <li><a href="/wiki/Categorical_theory" title="Categorical theory">Categorical theory</a></li> <li><a href="/wiki/Model_complete_theory" title="Model complete theory">Model complete theory</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Strength_(mathematical_logic)" title="Strength (mathematical logic)">Strength</a></li> <li><a href="/wiki/Theories_of_truth" class="mw-redirect" title="Theories of truth">Theories of truth</a> <ul><li><a href="/wiki/Semantic_theory_of_truth" title="Semantic theory of truth">semantic</a></li> <li><a href="/wiki/Tarski%27s_theory_of_truth" class="mw-redirect" title="Tarski's theory of truth">Tarski's</a></li> <li><a href="/wiki/Kripke%27s_theory_of_truth" class="mw-redirect" title="Kripke's theory of truth">Kripke's</a></li></ul></li> <li><a href="/wiki/T-schema" title="T-schema">T-schema</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Truth_predicate" title="Truth predicate">Truth predicate</a></li> <li><a href="/wiki/Truth_value" title="Truth value">Truth value</a></li> <li><a href="/wiki/Type_(model_theory)" title="Type (model theory)">Type</a></li> <li><a href="/wiki/Ultraproduct" title="Ultraproduct">Ultraproduct</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Church_encoding" title="Church encoding">Church encoding</a></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">Computably enumerable</a></li> <li><a href="/wiki/Computable_function" title="Computable function">Computable function</a></li> <li><a href="/wiki/Computable_set" title="Computable set">Computable set</a></li> <li><a href="/wiki/Decision_problem" title="Decision problem">Decision problem</a> <ul><li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a></li> <li><a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a></li> <li><a href="/wiki/P_(complexity)" title="P (complexity)">P</a></li> <li><a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></li> <li><a href="/wiki/Primitive_recursive_function" title="Primitive recursive function">Primitive recursive function</a></li> <li><a href="/wiki/Recursion" title="Recursion">Recursion</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive set</a></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_logic" title="Abstract logic">Abstract logic</a></li> <li><a href="/wiki/Algebraic_logic" title="Algebraic logic">Algebraic logic</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Concrete_category" title="Concrete category">Concrete</a>/<a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Abstract category</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History of logic</a></li> <li><a href="/wiki/History_of_mathematical_logic" class="mw-redirect" title="History of mathematical logic">History of mathematical logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Mathematical_object" title="Mathematical object">Mathematical object</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Supertask" title="Supertask">Supertask</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q173183#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q173183#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q173183#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4146280-4">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85003429">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Boole, Algèbre de"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119793249">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Boole, Algèbre de"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119793249">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00560863">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Álgebra de Boole"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX4576349">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007293933005171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=43596">Encyclopedia of Modern Ukraine</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐dmn8l Cached time: 20241122151038 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.879 seconds Real time usage: 1.143 seconds Preprocessor visited node count: 9143/1000000 Post‐expand include size: 192217/2097152 bytes Template argument size: 12261/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 19/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 170577/5000000 bytes Lua time usage: 0.447/10.000 seconds Lua memory usage: 8372602/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 805.616 1 -total 29.21% 235.292 2 Template:Reflist 20.36% 163.991 25 Template:Cite_book 11.06% 89.062 5 Template:Navbox 8.47% 68.196 1 Template:Digital_systems 8.01% 64.512 80 Template:Math 7.83% 63.110 1 Template:Short_description 5.57% 44.835 1 Template:More_citations_needed 5.33% 42.943 1 Template:Ambox 5.17% 41.637 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:idhash:54476844-0!canonical and timestamp 20241122151038 and revision id 1258106071. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Boolean_algebra&oldid=1258106071">https://en.wikipedia.org/w/index.php?title=Boolean_algebra&oldid=1258106071</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Boolean_algebra" title="Category:Boolean algebra">Boolean algebra</a></li><li><a href="/wiki/Category:1847_introductions" title="Category:1847 introductions">1847 introductions</a></li><li><a href="/wiki/Category:Algebraic_logic" title="Category:Algebraic logic">Algebraic logic</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_Internet_Encyclopedia_of_Philosophy_links" title="Category:Articles with Internet Encyclopedia of Philosophy links">Articles with Internet Encyclopedia of Philosophy links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_October_2022" title="Category:Use dmy dates from October 2022">Use dmy dates from October 2022</a></li><li><a href="/wiki/Category:Use_list-defined_references_from_October_2022" title="Category:Use list-defined references from October 2022">Use list-defined references from October 2022</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_April_2019" title="Category:Articles needing additional references from April 2019">Articles needing additional references from April 2019</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2020" title="Category:Articles with unsourced statements from November 2020">Articles with unsourced statements from November 2020</a></li><li><a href="/wiki/Category:All_articles_with_specifically_marked_weasel-worded_phrases" title="Category:All articles with specifically marked weasel-worded phrases">All articles with specifically marked weasel-worded phrases</a></li><li><a href="/wiki/Category:Articles_with_specifically_marked_weasel-worded_phrases_from_November_2022" title="Category:Articles with specifically marked weasel-worded phrases from November 2022">Articles with specifically marked weasel-worded phrases from November 2022</a></li><li><a href="/wiki/Category:CS1_location_test" title="Category:CS1 location test">CS1 location test</a></li><li><a href="/wiki/Category:CS1_interwiki-linked_names" title="Category:CS1 interwiki-linked names">CS1 interwiki-linked names</a></li><li><a href="/wiki/Category:Articles_with_Stanford_Encyclopedia_of_Philosophy_links" title="Category:Articles with Stanford Encyclopedia of Philosophy links">Articles with Stanford Encyclopedia of Philosophy links</a></li><li><a href="/wiki/Category:Articles_with_example_code" title="Category:Articles with example code">Articles with example code</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 November 2024, at 04:44<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Boolean_algebra&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-khxd6","wgBackendResponseTime":201,"wgPageParseReport":{"limitreport":{"cputime":"0.879","walltime":"1.143","ppvisitednodes":{"value":9143,"limit":1000000},"postexpandincludesize":{"value":192217,"limit":2097152},"templateargumentsize":{"value":12261,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":19,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":170577,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 805.616 1 -total"," 29.21% 235.292 2 Template:Reflist"," 20.36% 163.991 25 Template:Cite_book"," 11.06% 89.062 5 Template:Navbox"," 8.47% 68.196 1 Template:Digital_systems"," 8.01% 64.512 80 Template:Math"," 7.83% 63.110 1 Template:Short_description"," 5.57% 44.835 1 Template:More_citations_needed"," 5.33% 42.943 1 Template:Ambox"," 5.17% 41.637 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.447","limit":"10.000"},"limitreport-memusage":{"value":8372602,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-dmn8l","timestamp":"20241122151038","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Boolean algebra","url":"https:\/\/en.wikipedia.org\/wiki\/Boolean_algebra","sameAs":"http:\/\/www.wikidata.org\/entity\/Q173183","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q173183","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-01-25T09:07:02Z","dateModified":"2024-11-18T04:44:23Z","headline":"branch of algebra abstracting logical operations"}</script> </body> </html>