CINXE.COM

G protein-coupled receptors: structure- and function-based drug discovery | Signal Transduction and Targeted Therapy

<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>G protein-coupled receptors: structure- and function-based drug discovery | Signal Transduction and Targeted Therapy</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/sigtrans.rss"/> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"review article","legacy":{"webtrendsPrimaryArticleType":"reviews","webtrendsSubjectTerms":"drug-discovery;target-validation","webtrendsContentCategory":null,"webtrendsContentCollection":null,"webtrendsContentGroup":"Signal Transduction and Targeted Therapy","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Review Article","status":null}},"article":{"doi":"10.1038/s41392-020-00435-w"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":true,"legacy":{"webtrendsLicenceType":"http://creativecommons.org/licenses/by/4.0/"}}},"contentInfo":{"authors":["Dehua Yang","Qingtong Zhou","Viktorija Labroska","Shanshan Qin","Sanaz Darbalaei","Yiran Wu","Elita Yuliantie","Linshan Xie","Houchao Tao","Jianjun Cheng","Qing Liu","Suwen Zhao","Wenqing Shui","Yi Jiang","Ming-Wei Wang"],"publishedAt":1610064000,"publishedAtString":"2021-01-08","title":"G protein-coupled receptors: structure- and function-based drug discovery","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Drug discovery,Target validation"},"journal":{"pcode":"sigtrans","title":"signal transduction and targeted therapy","volume":"6","issue":"1","id":41392,"publishingModel":"Open Access"},"authorization":{"status":true},"features":[{"name":"furtherReadingSection","present":true}],"collection":null},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"HK","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}.c-card--major .c-card__title,.u-h1,.u-h2,button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}button{border-radius:0;cursor:pointer}.c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-weight:700}h1{font-size:2rem;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,h2{font-size:1.5rem;letter-spacing:-.0117156rem;line-height:1.6rem}.u-h3{letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-reading-companion__figure-title,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}.c-reading-companion__figure-title,.u-h4,h4{font-size:1.125rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-link-inherit{color:inherit}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-text-bold{font-weight:700}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-912e265451.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-912e265451.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-606cb67187.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-e919764a53.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="Yes"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"G protein-coupled receptors: structure- and function-based drug discovery","description":"As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure–function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.","datePublished":"2021-01-08T00:00:00Z","dateModified":"2021-01-08T00:00:00Z","pageStart":"1","pageEnd":"27","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41392-020-00435-w","keywords":["Drug discovery","Target validation","Medicine/Public Health","general","Internal Medicine","Cancer Research","Cell Biology","Pathology","Oncology"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig11_HTML.png"],"isPartOf":{"name":"Signal Transduction and Targeted Therapy","issn":["2059-3635"],"volumeNumber":"6","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Dehua Yang","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Chinese Academy of Sciences","address":{"name":"The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Qingtong Zhou","affiliation":[{"name":"Fudan University","address":{"name":"School of Basic Medical Sciences, Fudan University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Viktorija Labroska","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Chinese Academy of Sciences","address":{"name":"University of Chinese Academy of Sciences, Beijing, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Shanshan Qin","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Sanaz Darbalaei","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Chinese Academy of Sciences","address":{"name":"University of Chinese Academy of Sciences, Beijing, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yiran Wu","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Elita Yuliantie","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Chinese Academy of Sciences","address":{"name":"University of Chinese Academy of Sciences, Beijing, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Linshan Xie","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"ShanghaiTech University","address":{"name":"School of Life Science and Technology, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Houchao Tao","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Jianjun Cheng","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Qing Liu","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Chinese Academy of Sciences","address":{"name":"The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Suwen Zhao","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"ShanghaiTech University","address":{"name":"School of Life Science and Technology, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Wenqing Shui","affiliation":[{"name":"ShanghaiTech University","address":{"name":"iHuman Institute, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"ShanghaiTech University","address":{"name":"School of Life Science and Technology, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"email":"shuiwq@shanghaitech.edu.cn","@type":"Person"},{"name":"Yi Jiang","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"email":"yijiang@simm.ac.cn","@type":"Person"},{"name":"Ming-Wei Wang","url":"http://orcid.org/0000-0001-6550-9017","affiliation":[{"name":"Chinese Academy of Sciences","address":{"name":"The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Chinese Academy of Sciences","address":{"name":"The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Fudan University","address":{"name":"School of Basic Medical Sciences, Fudan University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"University of Chinese Academy of Sciences","address":{"name":"University of Chinese Academy of Sciences, Beijing, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"ShanghaiTech University","address":{"name":"School of Life Science and Technology, ShanghaiTech University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"},{"name":"Fudan University","address":{"name":"School of Pharmacy, Fudan University, Shanghai, China","@type":"PostalAddress"},"@type":"Organization"}],"email":"mwwang@simm.ac.cn","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41392-020-00435-w"> <meta name="journal_id" content="41392"/> <meta name="dc.title" content="G protein-coupled receptors: structure- and function-based drug discovery"/> <meta name="dc.source" content="Signal Transduction and Targeted Therapy 2020 6:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2021-01-08"/> <meta name="dc.type" content="ReviewPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2020 The Author(s)"/> <meta name="dc.rights" content="2020 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure&#8211;function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery."/> <meta name="prism.issn" content="2059-3635"/> <meta name="prism.publicationName" content="Signal Transduction and Targeted Therapy"/> <meta name="prism.publicationDate" content="2021-01-08"/> <meta name="prism.volume" content="6"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="ReviewPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="27"/> <meta name="prism.copyright" content="2020 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41392-020-00435-w"/> <meta name="prism.doi" content="doi:10.1038/s41392-020-00435-w"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41392-020-00435-w.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41392-020-00435-w"/> <meta name="citation_journal_title" content="Signal Transduction and Targeted Therapy"/> <meta name="citation_journal_abbrev" content="Sig Transduct Target Ther"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="2059-3635"/> <meta name="citation_title" content="G protein-coupled receptors: structure- and function-based drug discovery"/> <meta name="citation_volume" content="6"/> <meta name="citation_issue" content="1"/> <meta name="citation_online_date" content="2021/01/08"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="27"/> <meta name="citation_article_type" content="Review Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41392-020-00435-w"/> <meta name="DOI" content="10.1038/s41392-020-00435-w"/> <meta name="size" content="807692"/> <meta name="citation_doi" content="10.1038/s41392-020-00435-w"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41392-020-00435-w&amp;api_key="/> <meta name="description" content="As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure&#8211;function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery."/> <meta name="dc.creator" content="Yang, Dehua"/> <meta name="dc.creator" content="Zhou, Qingtong"/> <meta name="dc.creator" content="Labroska, Viktorija"/> <meta name="dc.creator" content="Qin, Shanshan"/> <meta name="dc.creator" content="Darbalaei, Sanaz"/> <meta name="dc.creator" content="Wu, Yiran"/> <meta name="dc.creator" content="Yuliantie, Elita"/> <meta name="dc.creator" content="Xie, Linshan"/> <meta name="dc.creator" content="Tao, Houchao"/> <meta name="dc.creator" content="Cheng, Jianjun"/> <meta name="dc.creator" content="Liu, Qing"/> <meta name="dc.creator" content="Zhao, Suwen"/> <meta name="dc.creator" content="Shui, Wenqing"/> <meta name="dc.creator" content="Jiang, Yi"/> <meta name="dc.creator" content="Wang, Ming-Wei"/> <meta name="dc.subject" content="Drug discovery"/> <meta name="dc.subject" content="Target validation"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=GPCRomics: an approach to discover GPCR drug targets; citation_author=PA Insel; citation_volume=40; citation_publication_date=2019; citation_pages=378-387; citation_doi=10.1016/j.tips.2019.04.001; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?; citation_author=K Sriram, PA Insel; citation_volume=93; citation_publication_date=2018; citation_pages=251-258; citation_doi=10.1124/mol.117.111062; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Mol. Cell Biol.; citation_title=Mechanisms of signalling and biased agonism in G protein-coupled receptors; citation_author=D Wootten; citation_volume=19; citation_publication_date=2018; citation_pages=638-653; citation_doi=10.1038/s41580-018-0049-3; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Trends in GPCR drug discovery: new agents, targets and indications; citation_author=AS Hauser; citation_volume=16; citation_publication_date=2017; citation_pages=829-842; citation_doi=10.1038/nrd.2017.178; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures; citation_author=I Shimada; citation_volume=18; citation_publication_date=2019; citation_pages=59-82; citation_doi=10.1038/nrd.2018.180; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Front. Physiol.; citation_title=Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense; citation_author=NM Dalesio, SF Barreto Ortiz, JL Pluznick, DE Berkowitz; citation_volume=9; citation_publication_date=2018; citation_pages=1673; citation_doi=10.3389/fphys.2018.01673; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor; citation_author=V Cherezov; citation_volume=318; citation_publication_date=2007; citation_pages=1258-1265; citation_doi=10.1126/science.1150577; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function; citation_author=DM Rosenbaum; citation_volume=318; citation_publication_date=2007; citation_pages=1266-1273; citation_doi=10.1126/science.1150609; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Phase-plate cryo-EM structure of a class B GPCR-G-protein complex; citation_author=YL Liang; citation_volume=546; citation_publication_date=2017; citation_pages=118-123; citation_doi=10.1038/nature22327; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Trends Cell Biol.; citation_title=Illuminating GPCR signaling by cryo-EM; citation_author=HA Safdari, S Pandey, AK Shukla, S Dutta; citation_volume=28; citation_publication_date=2018; citation_pages=591-594; citation_doi=10.1016/j.tcb.2018.06.002; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Impact of GPCR structures on drug discovery; citation_author=M Congreve, C Graaf, NA Swain, CG Tate; citation_volume=181; citation_publication_date=2020; citation_pages=81-91; citation_doi=10.1016/j.cell.2020.03.003; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Chem. Rev.; citation_title=Allostery and biased agonism at class B G protein-coupled receptors; citation_author=D Wootten; citation_volume=117; citation_publication_date=2017; citation_pages=111-138; citation_doi=10.1021/acs.chemrev.6b00049; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Illuminating G-protein-coupling selectivity of GPCRs; citation_author=A Inoue; citation_volume=177; citation_publication_date=2019; citation_pages=1933-1947. e1925; citation_doi=10.1016/j.cell.2019.04.044; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=A kinetic view of GPCR allostery and biased agonism; citation_author=JR Lane; citation_volume=13; citation_publication_date=2017; citation_pages=929-937; citation_doi=10.1038/nchembio.2431; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure-based discovery of opioid analgesics with reduced side effects; citation_author=A Manglik; citation_volume=537; citation_publication_date=2016; citation_pages=185-190; citation_doi=10.1038/nature19112; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor; citation_author=M Korczynska; citation_volume=115; citation_publication_date=2018; citation_pages=E2419-E2428; citation_doi=10.1073/pnas.1718037115; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Discovery of human signaling systems: pairing peptides to G protein-coupled receptors; citation_author=SR Foster; citation_volume=179; citation_publication_date=2019; citation_pages=895-908. e821; citation_doi=10.1016/j.cell.2019.10.010; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Visualizing the GPCR network: classification and evolution; citation_author=GM Hu, TL Mai, CM Chen; citation_volume=7; citation_publication_date=2017; citation_doi=10.1038/s41598-017-15707-9; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Front. Pharmacol.; citation_title=Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design; citation_author=S Basith; citation_volume=9; citation_publication_date=2018; citation_pages=128; citation_doi=10.3389/fphar.2018.00128; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=DrugBank 5.0: a major update to the DrugBank database for 2018; citation_author=DS Wishart; citation_volume=46; citation_publication_date=2018; citation_pages=D1074-D1082; citation_doi=10.1093/nar/gkx1037; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Br. J. Pharmacol.; citation_title=The concise guide to pharmacology 2019/20: G protein-coupled receptors; citation_author=SPH Alexander; citation_volume=176; citation_publication_date=2019; citation_pages=S21-S141; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody; citation_author=N Bhudia; citation_volume=10; citation_publication_date=2020; citation_doi=10.1038/s41598-020-57989-6; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Acta Pharmacol. Sin.; citation_title=Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors; citation_author=K Pal, K Melcher, HE Xu; citation_volume=33; citation_publication_date=2012; citation_pages=300-311; citation_doi=10.1038/aps.2011.170; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Discov.; citation_title=Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions; citation_author=AD Bondarev; citation_volume=15; citation_publication_date=2020; citation_pages=1291-1307; citation_doi=10.1080/17460441.2020.1791075; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Mechanisms of adhesion G protein-coupled receptor activation; citation_author=A Vizurraga; citation_volume=295; citation_publication_date=2020; citation_pages=14065-14083; citation_doi=10.1074/jbc.REV120.007423; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Mol. Metab.; citation_title=Glucagon-like peptide 1 (GLP-1); citation_author=TD Muller; citation_volume=30; citation_publication_date=2019; citation_pages=72-130; citation_doi=10.1016/j.molmet.2019.09.010; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=Int. Rev. Cell Mol. Biol.; citation_title=Pharmacological actions of glucagon-like peptide-1, gastric inhibitory polypeptide, and glucagon; citation_author=R Sekar, K Singh, AW Arokiaraj, BK Chow; citation_volume=326; citation_publication_date=2016; citation_pages=279-341; citation_doi=10.1016/bs.ircmb.2016.05.002; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Adv. Drug Deliv. Rev.; citation_title=Battle of GLP-1 delivery technologies; citation_author=M Yu; citation_volume=130; citation_publication_date=2018; citation_pages=113-130; citation_doi=10.1016/j.addr.2018.07.009; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Cell Metab.; citation_title=Mechanisms of action and therapeutic application of glucagon-like peptide-1; citation_author=DJ Drucker; citation_volume=27; citation_publication_date=2018; citation_pages=740-756; citation_doi=10.1016/j.cmet.2018.03.001; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Lancet; citation_title=Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial; citation_author=R Pratley; citation_volume=394; citation_publication_date=2019; citation_pages=39-50; citation_doi=10.1016/S0140-6736(19)31271-1; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Diabetes Obes. Metab.; citation_title=Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity; citation_author=J Blundell; citation_volume=19; citation_publication_date=2017; citation_pages=1242-1251; citation_doi=10.1111/dom.12932; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=Diabetes Ther.; citation_title=Drug therapy in obesity: a review of current and emerging treatments; citation_author=DM Williams, A Nawaz, M Evans; citation_volume=11; citation_publication_date=2020; citation_pages=1199-1216; citation_doi=10.1007/s13300-020-00816-y; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Peptides; citation_title=Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates; citation_author=PJ Knerr; citation_volume=125; citation_publication_date=2020; citation_pages=170225; citation_doi=10.1016/j.peptides.2019.170225; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Cell Metab.; citation_title=The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes; citation_author=JP Frias; citation_volume=26; citation_publication_date=2017; citation_pages=343-352 e342; citation_doi=10.1016/j.cmet.2017.07.011; citation_id=CR34"/> <meta name="citation_reference" content="Parker, V. E. R. et al. Efficacy, safety, and mechanistic insights of cotadutide, a dual receptor glucagon-like peptide-1 and glucagon agonist. J. Clin. Endocrinol. Metab. 105, dgz047 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Diabetes Obes. Metab.; citation_title=Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes; citation_author=R Visentin; citation_volume=22; citation_publication_date=2020; citation_pages=640-647; citation_doi=10.1111/dom.13939; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Diabetes Obes. Metab.; citation_title=A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials; citation_author=J Tillner; citation_volume=21; citation_publication_date=2019; citation_pages=120-128; citation_doi=10.1111/dom.13494; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Clin. Nutr.; citation_title=Colon polyps in patients with short bowel syndrome before and after teduglutide: post hoc analysis of the STEPS study series; citation_author=D Armstrong; citation_volume=39; citation_publication_date=2020; citation_pages=1774-1777; citation_doi=10.1016/j.clnu.2019.08.020; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=New insights into the regulation of CGRP-family receptors; citation_author=JJ Gingell, ER Hendrikse, DL Hay; citation_volume=40; citation_publication_date=2019; citation_pages=71-83; citation_doi=10.1016/j.tips.2018.11.005; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Br. J. Pharmacol.; citation_title=Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25; citation_author=DL Hay, ML Garelja, DR Poyner, CS Walker; citation_volume=175; citation_publication_date=2018; citation_pages=3-17; citation_doi=10.1111/bph.14075; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Advances in therapeutic peptides targeting G protein-coupled receptors; citation_author=AP Davenport; citation_volume=19; citation_publication_date=2020; citation_pages=389-413; citation_doi=10.1038/s41573-020-0062-z; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=First GPCR-directed antibody passes approval milestone; citation_author=E Dolgin; citation_volume=17; citation_publication_date=2018; citation_pages=457-459; citation_doi=10.1038/nrd.2018.103; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Neurol.; citation_title=CGRP as the target of new migraine therapies - successful translation from bench to clinic; citation_author=L Edvinsson, KA Haanes, K Warfvinge, DN Krause; citation_volume=14; citation_publication_date=2018; citation_pages=338-350; citation_doi=10.1038/s41582-018-0003-1; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=JCSM Rapid Commun.; citation_title=Growth hormone secretagogues: history, mechanism of action, and clinical development; citation_author=J Ishida; citation_volume=3; citation_publication_date=2020; citation_pages=25-37; citation_doi=10.1002/rco2.9; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Endocrinol. Metab.; citation_title=Ectopic adrenocorticotropic hormone and corticotropin-releasing hormone co-secreting tumors in children and adolescents causing cushing syndrome: a diagnostic dilemma and how to solve it; citation_author=AS Karageorgiadis; citation_volume=100; citation_publication_date=2015; citation_pages=141-148; citation_doi=10.1210/jc.2014-2945; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=J. Clin. Endocrinol. Metab.; citation_title=Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis; citation_author=BZ Leder; citation_volume=100; citation_publication_date=2015; citation_pages=697-706; citation_doi=10.1210/jc.2014-3718; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=How many drug targets are there?; citation_author=JP Overington, B Al-Lazikani, AL Hopkins; citation_volume=5; citation_publication_date=2006; citation_pages=993-996; citation_doi=10.1038/nrd2199; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Pharmacol. Toxicol.; citation_title=Metabotropic glutamate receptors: physiology, pharmacology, and disease; citation_author=CM Niswender, PJ Conn; citation_volume=50; citation_publication_date=2010; citation_pages=295-322; citation_doi=10.1146/annurev.pharmtox.011008.145533; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=FEBS J.; citation_title=Allosteric functioning of dimeric class C G-protein-coupled receptors; citation_author=JP Pin; citation_volume=272; citation_publication_date=2005; citation_pages=2947-2955; citation_doi=10.1111/j.1742-4658.2005.04728.x; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural mechanism of ligand activation in human GABA(B) receptor; citation_author=Y Geng; citation_volume=504; citation_publication_date=2013; citation_pages=254-259; citation_doi=10.1038/nature12725; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural insights into the activation of metabotropic glutamate receptors; citation_author=A Koehl; citation_volume=566; citation_publication_date=2019; citation_pages=79-84; citation_doi=10.1038/s41586-019-0881-4; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Cryo-EM structures of inactive and active GABAB receptor; citation_author=C Mao; citation_volume=30; citation_publication_date=2020; citation_pages=564-573; citation_doi=10.1038/s41422-020-0350-5; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structures of metabotropic GABAB receptor; citation_author=MM Papasergi-Scott; citation_volume=584; citation_publication_date=2020; citation_pages=310-314; citation_doi=10.1038/s41586-020-2469-4; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of human GABAB receptor in an inactive state; citation_author=J Park; citation_volume=584; citation_publication_date=2020; citation_pages=304-309; citation_doi=10.1038/s41586-020-2452-0; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural basis of the activation of a metabotropic GABA receptor; citation_author=H Shaye; citation_volume=584; citation_publication_date=2020; citation_pages=298-303; citation_doi=10.1038/s41586-020-2408-4; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=CNS Drugs; citation_title=Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action; citation_author=P Witte, J Littleton, P Parot, G Koob; citation_volume=19; citation_publication_date=2005; citation_pages=517-537; citation_doi=10.2165/00023210-200519060-00004; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Metab. Toxicol.; citation_title=Cinacalcet: pharmacological and clinical aspects; citation_author=P Messa, C Alfieri, B Brezzi; citation_volume=4; citation_publication_date=2008; citation_pages=1551-1560; citation_doi=10.1517/17425250802587017; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Targeting of smoothened for therapeutic gain; citation_author=M Ruat, L Hoch, H Faure, D Rognan; citation_volume=35; citation_publication_date=2014; citation_pages=237-246; citation_doi=10.1016/j.tips.2014.03.002; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Frizzleds as GPCRs - more conventional than we thought!; citation_author=G Schulte, SC Wright; citation_volume=39; citation_publication_date=2018; citation_pages=828-842; citation_doi=10.1016/j.tips.2018.07.001; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Trends Biochem. Sci.; citation_title=Structural and druggability landscape of Frizzled G protein-coupled receptors; citation_author=X Zhang, S Dong, F Xu; citation_volume=43; citation_publication_date=2018; citation_pages=1033-1046; citation_doi=10.1016/j.tibs.2018.09.002; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Crystal structure of the Frizzled 4 receptor in a ligand-free state; citation_author=S Yang; citation_volume=560; citation_publication_date=2018; citation_pages=666-670; citation_doi=10.1038/s41586-018-0447-x; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand; citation_author=X Zhang; citation_volume=8; citation_publication_date=2017; citation_doi=10.1038/ncomms15383; citation_id=CR62"/> <meta name="citation_reference" content="Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife. 9, e58464 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Pharmacol.; citation_title=Frizzleds and WNT/beta-catenin signaling&#8211;The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics; citation_author=G Schulte; citation_volume=763; citation_publication_date=2015; citation_pages=191-195; citation_doi=10.1016/j.ejphar.2015.05.031; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Development of covalent ligands for G protein-coupled receptors: a case for the human adenosine A3 receptor; citation_author=X Yang; citation_volume=62; citation_publication_date=2019; citation_pages=3539-3552; citation_doi=10.1021/acs.jmedchem.8b02026; citation_id=CR65"/> <meta name="citation_reference" content="citation_journal_title=ACS Chem. Biol.; citation_title=Covalent molecular probes for class A G protein-coupled receptors: advances and applications; citation_author=D Weichert, P Gmeiner; citation_volume=10; citation_publication_date=2015; citation_pages=1376-1386; citation_doi=10.1021/acschembio.5b00070; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=Mol. Cell. Endocrinol.; citation_title=GPCR photopharmacology; citation_author=M Ricart-Ortega, J Font, A Llebaria; citation_volume=488; citation_publication_date=2019; citation_pages=36-51; citation_doi=10.1016/j.mce.2019.03.003; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Chem. Rev.; citation_title=In vivo photopharmacology; citation_author=K Hull, J Morstein, D Trauner; citation_volume=118; citation_publication_date=2018; citation_pages=10710-10747; citation_doi=10.1021/acs.chemrev.8b00037; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Nature-derived peptides: a growing niche for GPCR ligand discovery; citation_author=E Muratspahic, M Freissmuth, CW Gruber; citation_volume=40; citation_publication_date=2019; citation_pages=309-326; citation_doi=10.1016/j.tips.2019.03.004; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Advances in oral peptide therapeutics; citation_author=DJ Drucker; citation_volume=19; citation_publication_date=2020; citation_pages=277-289; citation_doi=10.1038/s41573-019-0053-0; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Rev.; citation_title=International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands; citation_author=AP Davenport; citation_volume=65; citation_publication_date=2013; citation_pages=967-986; citation_doi=10.1124/pr.112.007179; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Biol. Ther.; citation_title=A review of antibody-based therapeutics targeting G protein-coupled receptors: an update; citation_author=CJ Hutchings; citation_volume=20; citation_publication_date=2020; citation_pages=925-935; citation_doi=10.1080/14712598.2020.1745770; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Opportunities for therapeutic antibodies directed at G-protein-coupled receptors; citation_author=CJ Hutchings, M Koglin, WC Olson, FH Marshall; citation_volume=16; citation_publication_date=2017; citation_pages=787-810; citation_doi=10.1038/nrd.2017.91; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Conformationally selective RNA aptamers allosterically modulate the beta2-adrenoceptor; citation_author=AW Kahsai; citation_volume=12; citation_publication_date=2016; citation_pages=709-716; citation_doi=10.1038/nchembio.2126; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Adv. Drug Deliv. Rev.; citation_title=Aptamers: uptake mechanisms and intracellular applications; citation_author=S Yoon, JJ Rossi; citation_volume=134; citation_publication_date=2018; citation_pages=22-35; citation_doi=10.1016/j.addr.2018.07.003; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Biophys. Res. Commun.; citation_title=Beta-adrenergic receptors: evidence for negative cooperativity; citation_author=LE Limbird, PD Meyts, RJ Lefkowitz; citation_volume=64; citation_publication_date=1975; citation_pages=1160-1168; citation_doi=10.1016/0006-291X(75)90815-3; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=Chem. Soc. Rev.; citation_title=Nongenetic engineering strategies for regulating receptor oligomerization in living cells; citation_author=J Li; citation_volume=49; citation_publication_date=2020; citation_pages=1545-1568; citation_doi=10.1039/C9CS00473D; citation_id=CR77"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Orexin receptor antagonists: new therapeutic agents for the treatment of insomnia; citation_author=AJ Roecker, CD Cox, PJ Coleman; citation_volume=59; citation_publication_date=2016; citation_pages=504-530; citation_doi=10.1021/acs.jmedchem.5b00832; citation_id=CR78"/> <meta name="citation_reference" content="citation_journal_title=Annu Rev. Pharmacol. Toxicol.; citation_title=The discovery of suvorexant, the first orexin receptor drug for insomnia; citation_author=PJ Coleman; citation_volume=57; citation_publication_date=2017; citation_pages=509-533; citation_doi=10.1146/annurev-pharmtox-010716-104837; citation_id=CR79"/> <meta name="citation_reference" content="citation_journal_title=Drugs; citation_title=Lemborexant: first approval; citation_author=LJ Scott; citation_volume=80; citation_publication_date=2020; citation_pages=425-432; citation_doi=10.1007/s40265-020-01276-1; citation_id=CR80"/> <meta name="citation_reference" content="citation_journal_title=Bioorg. Med. Chem.; citation_title=Design, synthesis, and structure-activity relationships of a series of novel N-aryl-2-phenylcyclopropanecarboxamide that are potent and orally active orexin receptor antagonists; citation_author=Y Yoshida; citation_volume=22; citation_publication_date=2014; citation_pages=6071-6088; citation_doi=10.1016/j.bmc.2014.08.034; citation_id=CR81"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methy1}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide(E2006): a potent and efficacious oral orexin receptor antagonist; citation_author=Y Yoshida; citation_volume=58; citation_publication_date=2015; citation_pages=4648-4664; citation_doi=10.1021/acs.jmedchem.5b00217; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Calcitonin gene-related peptide receptor antagonists: new therapeutic agents for migraine; citation_author=IM Bell; citation_volume=57; citation_publication_date=2014; citation_pages=7838-7858; citation_doi=10.1021/jm500364u; citation_id=CR83"/> <meta name="citation_reference" content="citation_journal_title=Bioorg. Med. Chem. Lett.; citation_title=Non-peptide calcitonin gene-related peptide receptor antagonists from a benzodiazepinone lead; citation_author=TM Williams; citation_volume=16; citation_publication_date=2006; citation_pages=2595-2598; citation_doi=10.1016/j.bmcl.2006.02.051; citation_id=CR84"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists.1-[N-2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonistfor clinical trials in acute migraine; citation_author=K Rudolf; citation_volume=48; citation_publication_date=2005; citation_pages=5921-5931; citation_doi=10.1021/jm0490641; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Bioorg. Med. Chem. Lett.; citation_title=Caprolactams as potent CGRP receptor antagonists for the treatment of migraine; citation_author=AW Shaw; citation_volume=17; citation_publication_date=2007; citation_pages=4795-4798; citation_doi=10.1016/j.bmcl.2007.06.062; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974); citation_author=DV Paone; citation_volume=50; citation_publication_date=2007; citation_pages=5564-5567; citation_doi=10.1021/jm070668p; citation_id=CR87"/> <meta name="citation_reference" content="citation_journal_title=ACS Med. Chem. Lett.; citation_title=Discovery of BMS-846372, a potent and orally active human CGRP receptor antagonist for the treatment of migraine; citation_author=G Luo; citation_volume=3; citation_publication_date=2012; citation_pages=337-341; citation_doi=10.1021/ml300021s; citation_id=CR88"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Discovery of (5S,6S,9R)-5-amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyri din-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): an oral calcitonin gene-related peptide (CGRP) antagonist in clinical trials for treating migraine; citation_author=G Luo; citation_volume=55; citation_publication_date=2012; citation_pages=10644-10651; citation_doi=10.1021/jm3013147; citation_id=CR89"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Crystal structure of rhodopsin: a G protein-coupled receptor; citation_author=K Palczewski; citation_volume=289; citation_publication_date=2000; citation_pages=739-745; citation_doi=10.1126/science.289.5480.739; citation_id=CR90"/> <meta name="citation_reference" content="citation_journal_title=Protein Expr. Purif.; citation_title=Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression; citation_author=MA Hanson; citation_volume=56; citation_publication_date=2007; citation_pages=85-92; citation_doi=10.1016/j.pep.2007.06.003; citation_id=CR91"/> <meta name="citation_reference" content="citation_journal_title=Nat. Methods; citation_title=Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins; citation_author=PS Chae; citation_volume=7; citation_publication_date=2010; citation_pages=1003-1008; citation_doi=10.1038/nmeth.1526; citation_id=CR92"/> <meta name="citation_reference" content="citation_journal_title=Structure; citation_title=Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors; citation_author=E Chun; citation_volume=20; citation_publication_date=2012; citation_pages=967-976; citation_doi=10.1016/j.str.2012.04.010; citation_id=CR93"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor; citation_author=SG Rasmussen; citation_volume=469; citation_publication_date=2011; citation_pages=175-180; citation_doi=10.1038/nature09648; citation_id=CR94"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Crystal structure of the human beta2 adrenergic G-protein-coupled receptor; citation_author=SG Rasmussen; citation_volume=450; citation_publication_date=2007; citation_pages=383-387; citation_doi=10.1038/nature06325; citation_id=CR95"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Soc. Trans.; citation_title=Crystallizing membrane proteins for structure-function studies using lipidic mesophases; citation_author=M Caffrey; citation_volume=39; citation_publication_date=2011; citation_pages=725-732; citation_doi=10.1042/BST0390725; citation_id=CR96"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Crystal structure of the beta2 adrenergic receptor-Gs protein complex; citation_author=SG Rasmussen; citation_volume=477; citation_publication_date=2011; citation_pages=549-555; citation_doi=10.1038/nature10361; citation_id=CR97"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser; citation_author=Y Kang; citation_volume=523; citation_publication_date=2015; citation_pages=561-567; citation_doi=10.1038/nature14656; citation_id=CR98"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Pharmacol. Toxicol.; citation_title=Structure-function of the G protein-coupled receptor superfamily; citation_author=V Katritch, V Cherezov, RC Stevens; citation_volume=53; citation_publication_date=2013; citation_pages=531-556; citation_doi=10.1146/annurev-pharmtox-032112-135923; citation_id=CR99"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure and dynamics of the M3 muscarinic acetylcholine receptor; citation_author=AC Kruse; citation_volume=482; citation_publication_date=2012; citation_pages=552-556; citation_doi=10.1038/nature10867; citation_id=CR100"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Structural basis for ligand recognition and functional selectivity at angiotensin receptor; citation_author=H Zhang; citation_volume=290; citation_publication_date=2015; citation_pages=29127-29139; citation_doi=10.1074/jbc.M115.689000; citation_id=CR101"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Activation and allosteric modulation of a muscarinic acetylcholine receptor; citation_author=AC Kruse; citation_volume=504; citation_publication_date=2013; citation_pages=101-106; citation_doi=10.1038/nature12735; citation_id=CR102"/> <meta name="citation_reference" content="Zhou, Q. et al. Common activation mechanism of class A GPCRs. Elife. 8, e50279 (2019)."/> <meta name="citation_reference" content="citation_journal_title=Hormones; citation_title=Current understanding of the structure and function of family B GPCRs to design novel drugs; citation_author=V Karageorgos; citation_volume=17; citation_publication_date=2018; citation_pages=45-59; citation_doi=10.1007/s42000-018-0009-5; citation_id=CR104"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of class B GPCR corticotropin-releasing factor receptor 1; citation_author=K Hollenstein; citation_volume=499; citation_publication_date=2013; citation_pages=438-443; citation_doi=10.1038/nature12357; citation_id=CR105"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Extra-helical binding site of a glucagon receptor antagonist; citation_author=A Jazayeri; citation_volume=533; citation_publication_date=2016; citation_pages=274-277; citation_doi=10.1038/nature17414; citation_id=CR106"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators; citation_author=G Song; citation_volume=546; citation_publication_date=2017; citation_pages=312-315; citation_doi=10.1038/nature22378; citation_id=CR107"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy; citation_author=J Duan; citation_volume=11; citation_publication_date=2020; citation_doi=10.1038/s41467-020-17933-8; citation_id=CR108"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain; citation_author=AS Dore; citation_volume=511; citation_publication_date=2014; citation_pages=557-562; citation_doi=10.1038/nature13396; citation_id=CR109"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural insights into G-protein-coupled receptor allostery; citation_author=DM Thal, A Glukhova, PM Sexton, A Christopoulos; citation_volume=559; citation_publication_date=2018; citation_pages=45-53; citation_doi=10.1038/s41586-018-0259-z; citation_id=CR110"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator; citation_author=H Wu; citation_volume=344; citation_publication_date=2014; citation_pages=58-64; citation_doi=10.1126/science.1249489; citation_id=CR111"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Rev.; citation_title=International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors; citation_author=G Schulte; citation_volume=62; citation_publication_date=2010; citation_pages=632-667; citation_doi=10.1124/pr.110.002931; citation_id=CR112"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural basis of smoothened regulation by its extracellular domains; citation_author=EFX Byrne; citation_volume=535; citation_publication_date=2016; citation_pages=517-522; citation_doi=10.1038/nature18934; citation_id=CR113"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Smoothened stimulation by membrane sterols drives Hedgehog pathway activity; citation_author=I Deshpande; citation_volume=571; citation_publication_date=2019; citation_pages=284-288; citation_doi=10.1038/s41586-019-1355-4; citation_id=CR114"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Cryo-EM structure of oxysterol-bound human smoothened coupled to a heterotrimeric Gi; citation_author=X Qi; citation_volume=571; citation_publication_date=2019; citation_pages=279-283; citation_doi=10.1038/s41586-019-1286-0; citation_id=CR115"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities; citation_author=R Nusse, H Clevers; citation_volume=169; citation_publication_date=2017; citation_pages=985-999; citation_doi=10.1016/j.cell.2017.05.016; citation_id=CR116"/> <meta name="citation_reference" content="citation_journal_title=Nat. Struct. Mol. Biol.; citation_title=Crystal structure of a mammalian Wnt-frizzled complex; citation_author=H Hirai; citation_volume=26; citation_publication_date=2019; citation_pages=372-379; citation_doi=10.1038/s41594-019-0216-z; citation_id=CR117"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=Structural basis of the Norrin-Frizzled 4 interaction; citation_author=G Shen; citation_volume=25; citation_publication_date=2015; citation_pages=1078-1081; citation_doi=10.1038/cr.2015.92; citation_id=CR118"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Cellular cholesterol directly activates smoothened in Hedgehog signaling; citation_author=P Huang; citation_volume=166; citation_publication_date=2016; citation_pages=1176.e14-1187.e14; citation_id=CR119"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Polypharmacology: challenges and opportunities in drug discovery; citation_author=A Anighoro, J Bajorath, G Rastelli; citation_volume=57; citation_publication_date=2014; citation_pages=7874-7887; citation_doi=10.1021/jm5006463; citation_id=CR120"/> <meta name="citation_reference" content="citation_journal_title=Pharmaceuticals; citation_title=Drug repositioning: an opportunity to develop novel treatments for Alzheimer&#8217;s disease; citation_author=A Corbett, G Williams, C Ballard; citation_volume=6; citation_publication_date=2013; citation_pages=1304-1321; citation_doi=10.3390/ph6101304; citation_id=CR121"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Discov.; citation_title=Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery; citation_author=B Ravikumar, T Aittokallio; citation_volume=13; citation_publication_date=2018; citation_pages=179-192; citation_doi=10.1080/17460441.2018.1413089; citation_id=CR122"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Unexplored therapeutic opportunities in the human genome; citation_author=TI Oprea; citation_volume=17; citation_publication_date=2018; citation_pages=317-332; citation_doi=10.1038/nrd.2018.14; citation_id=CR123"/> <meta name="citation_reference" content="citation_journal_title=Psychopharmacology; citation_title=A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment; citation_author=JM Palacios, A Pazos, D Hoyer; citation_volume=234; citation_publication_date=2017; citation_pages=1395-1418; citation_doi=10.1007/s00213-017-4545-5; citation_id=CR124"/> <meta name="citation_reference" content="citation_journal_title=Neuropsychopharmacology; citation_title=5-HT2C agonists modulate schizophrenia-like behaviors in mice; citation_author=VM Pogorelov; citation_volume=42; citation_publication_date=2017; citation_pages=2163-2177; citation_doi=10.1038/npp.2017.52; citation_id=CR125"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Ther.; citation_title=Structure and function of serotonin G protein-coupled receptors; citation_author=JD McCorvy, BL Roth; citation_volume=150; citation_publication_date=2015; citation_pages=129-142; citation_doi=10.1016/j.pharmthera.2015.01.009; citation_id=CR126"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=To bind or not to bind: unravelling GPCR polypharmacology; citation_author=PM Sexton, A Christopoulos; citation_volume=172; citation_publication_date=2018; citation_pages=636-638; citation_doi=10.1016/j.cell.2018.01.018; citation_id=CR127"/> <meta name="citation_reference" content="citation_journal_title=J. Biomol. Screen.; citation_title=Are GPCRs still a source of new targets?; citation_author=SL Garland; citation_volume=18; citation_publication_date=2013; citation_pages=947-966; citation_doi=10.1177/1087057113498418; citation_id=CR128"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models; citation_author=PY Yang; citation_volume=61; citation_publication_date=2018; citation_pages=3218-3223; citation_doi=10.1021/acs.jmedchem.7b00768; citation_id=CR129"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Rev.; citation_title=Psychedelics; citation_author=DE Nichols; citation_volume=68; citation_publication_date=2016; citation_pages=264-355; citation_doi=10.1124/pr.115.011478; citation_id=CR130"/> <meta name="citation_reference" content="citation_journal_title=Prog. Neurobiol.; citation_title=Polypharmacology of dopamine receptor ligands; citation_author=S Butini; citation_volume=142; citation_publication_date=2016; citation_pages=68-103; citation_doi=10.1016/j.pneurobio.2016.03.011; citation_id=CR131"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=A comprehensive map of molecular drug targets; citation_author=R Santos; citation_volume=16; citation_publication_date=2017; citation_pages=19-34; citation_doi=10.1038/nrd.2016.230; citation_id=CR132"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Res.; citation_title=Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches; citation_author=Z Wu; citation_volume=129; citation_publication_date=2018; citation_pages=400-413; citation_doi=10.1016/j.phrs.2017.11.005; citation_id=CR133"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65; citation_author=XP Huang; citation_volume=527; citation_publication_date=2015; citation_pages=477-483; citation_doi=10.1038/nature15699; citation_id=CR134"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=The 7 TM G-protein-coupled receptor target family; citation_author=E Jacoby, R Bouhelal, M Gerspacher, K Seuwen; citation_volume=1; citation_publication_date=2006; citation_pages=761-782; citation_doi=10.1002/cmdc.200600134; citation_id=CR135"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Discov.; citation_title=Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives; citation_author=M Quinones; citation_volume=14; citation_publication_date=2019; citation_pages=421-431; citation_doi=10.1080/17460441.2019.1583642; citation_id=CR136"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=Biased signalling: from simple switches to allosteric microprocessors; citation_author=JS Smith, RJ Lefkowitz, S Rajagopal; citation_volume=17; citation_publication_date=2018; citation_pages=243-260; citation_doi=10.1038/nrd.2017.229; citation_id=CR137"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Biased ligands of G protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential; citation_author=L Tan, W Yan, JD McCorvy, J Cheng; citation_volume=61; citation_publication_date=2018; citation_pages=9841-9878; citation_doi=10.1021/acs.jmedchem.8b00435; citation_id=CR138"/> <meta name="citation_reference" content="citation_journal_title=Korean J. Pain; citation_title=Can oliceridine (TRV130), an ideal novel micro receptor G protein pathway selective (micro-GPS) modulator, provide analgesia without opioid-related adverse reactions?; citation_author=HG Ok; citation_volume=31; citation_publication_date=2018; citation_pages=73-79; citation_doi=10.3344/kjp.2018.31.2.73; citation_id=CR139"/> <meta name="citation_reference" content="citation_journal_title=Front. Pharmacol.; citation_title=Desmetramadol is identified as a G-protein biased micro opioid receptor agonist; citation_author=JA Zebala, AD Schuler, SJ Kahn, DY Maeda; citation_volume=10; citation_publication_date=2019; citation_pages=1680; citation_doi=10.3389/fphar.2019.01680; citation_id=CR140"/> <meta name="citation_reference" content="Bedini, A. et al. Functional selectivity and antinociceptive effects of a novel KOPr agonist. Front. Pharmacol. 11, 188 (2020)."/> <meta name="citation_reference" content="citation_journal_title=Clin. Pharmacol. Drug Dev.; citation_title=A first-in-human clinical study with TRV734, an orally bioavailable G-protein-biased ligand at the mu-opioid receptor; citation_author=IE James; citation_volume=9; citation_publication_date=2020; citation_pages=256-266; citation_doi=10.1002/cpdd.721; citation_id=CR142"/> <meta name="citation_reference" content="citation_journal_title=Br. J. Pharmacol.; citation_title=The novel mu-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception; citation_author=R Hill; citation_volume=175; citation_publication_date=2018; citation_pages=2653-2661; citation_doi=10.1111/bph.14224; citation_id=CR143"/> <meta name="citation_reference" content="citation_journal_title=iScience; citation_title=Biased signaling of the mu opioid receptor revealed in native neurons; citation_author=AT Ehrlich; citation_volume=14; citation_publication_date=2019; citation_pages=47-57; citation_doi=10.1016/j.isci.2019.03.011; citation_id=CR144"/> <meta name="citation_reference" content="citation_journal_title=J. Pharmacol. Exp. Ther.; citation_title=The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo; citation_author=KL White; citation_volume=352; citation_publication_date=2015; citation_pages=98-109; citation_doi=10.1124/jpet.114.216820; citation_id=CR145"/> <meta name="citation_reference" content="citation_journal_title=Front. Pharmacol.; citation_title=A review of the therapeutic potential of recently developed G protein-biased kappa agonists; citation_author=KL Mores, BR Cummins, RJ Cassell, RM Rijn; citation_volume=10; citation_publication_date=2019; citation_pages=407; citation_doi=10.3389/fphar.2019.00407; citation_id=CR146"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Nephrol. Renovasc. Dis.; citation_title=Post-marketing surveillance study of the safety and efficacy of nalfurafine hydrochloride (Remitch&#174; capsules 2.5 &#956;g) in 3,762 hemodialysis patients with intractable pruritus; citation_author=H Kozono, H Yoshitani, R Nakano; citation_volume=11; citation_publication_date=2018; citation_pages=9-24; citation_doi=10.2147/IJNRD.S145720; citation_id=CR147"/> <meta name="citation_reference" content="citation_journal_title=Front. Pharmacol.; citation_title=Desensitization of cAMP accumulation via human beta3-adrenoceptors expressed in human embryonic kidney cells by full, partial, and biased agonists; citation_author=K Okeke, MB Michel-Reher, S Gravas, MC Michel; citation_volume=10; citation_publication_date=2019; citation_pages=596; citation_doi=10.3389/fphar.2019.00596; citation_id=CR148"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=The odd sibling: features of beta3-adrenoceptor pharmacology; citation_author=H Cernecka, C Sand, MC Michel; citation_volume=86; citation_publication_date=2014; citation_pages=479-484; citation_doi=10.1124/mol.114.092817; citation_id=CR149"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Evolution of beta-blockers: from anti-anginal drugs to ligand-directed signalling; citation_author=JG Baker, SJ Hill, RJ Summers; citation_volume=32; citation_publication_date=2011; citation_pages=227-234; citation_doi=10.1016/j.tips.2011.02.010; citation_id=CR150"/> <meta name="citation_reference" content="citation_journal_title=Obesity; citation_title=Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C; citation_author=C Xiao, M Goldgof, O Gavrilova, ML Reitman; citation_volume=23; citation_publication_date=2015; citation_pages=1450-1459; citation_doi=10.1002/oby.21124; citation_id=CR151"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion; citation_author=X Lei, GW Wong; citation_volume=294; citation_publication_date=2019; citation_pages=15638-15649; citation_doi=10.1074/jbc.RA119.009230; citation_id=CR152"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework; citation_author=SRJ Hoare, PH Tewson, AM Quinn, TE Hughes; citation_volume=10; citation_publication_date=2020; citation_doi=10.1038/s41598-020-58421-9; citation_id=CR153"/> <meta name="citation_reference" content="citation_journal_title=Eur. Heart J.; citation_title=Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF); citation_author=PS Pang; citation_volume=38; citation_publication_date=2017; citation_pages=2364-2373; citation_doi=10.1093/eurheartj/ehx196; citation_id=CR154"/> <meta name="citation_reference" content="citation_journal_title=Sci. Signal.; citation_title=Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors; citation_author=Y Namkung; citation_volume=11; citation_publication_date=2018; citation_doi=10.1126/scisignal.aat1631; citation_id=CR155"/> <meta name="citation_reference" content="citation_journal_title=Cells; citation_title=Everything you always wanted to know about beta3-AR * (* but were afraid to ask); citation_author=G Schena, MJ Caplan; citation_volume=8; citation_publication_date=2019; citation_pages=357; citation_doi=10.3390/cells8040357; citation_id=CR156"/> <meta name="citation_reference" content="citation_journal_title=Cell Signal.; citation_title=Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor; citation_author=SS Schattauer, JR Kuhar, A Song, C Chavkin; citation_volume=32; citation_publication_date=2017; citation_pages=59-65; citation_doi=10.1016/j.cellsig.2017.01.016; citation_id=CR157"/> <meta name="citation_reference" content="citation_journal_title=Chem. Rev.; citation_title=Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors; citation_author=CW Lindsley; citation_volume=116; citation_publication_date=2016; citation_pages=6707-6741; citation_doi=10.1021/acs.chemrev.5b00656; citation_id=CR158"/> <meta name="citation_reference" content="citation_journal_title=Trends Pharmacol. Sci.; citation_title=Applying structure-based drug design approaches to allosteric modulators of GPCRs; citation_author=M Congreve, C Oswald, FH Marshall; citation_volume=38; citation_publication_date=2017; citation_pages=837-847; citation_doi=10.1016/j.tips.2017.05.010; citation_id=CR159"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts; citation_author=EA Wold, J Chen, KA Cunningham, J Zhou; citation_volume=62; citation_publication_date=2019; citation_pages=88-127; citation_doi=10.1021/acs.jmedchem.8b00875; citation_id=CR160"/> <meta name="citation_reference" content="citation_journal_title=Adv. Exp. Med. Biol.; citation_title=GPCR allosteric modulator discovery; citation_author=Y Wu; citation_volume=1163; citation_publication_date=2019; citation_pages=225-251; citation_doi=10.1007/978-981-13-8719-7_10; citation_id=CR161"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=Unraveling allosteric landscapes of allosterome with ASD; citation_author=X Liu; citation_volume=48; citation_publication_date=2020; citation_pages=D394-D401; citation_id=CR162"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification; citation_author=WM Nolte; citation_volume=10; citation_publication_date=2014; citation_pages=629-631; citation_doi=10.1038/nchembio.1581; citation_id=CR163"/> <meta name="citation_reference" content="citation_journal_title=Neuropharmacology; citation_title=Allosteric modulators targeting CNS muscarinic receptors; citation_author=A Bock, R Schrage, K Mohr; citation_volume=136; citation_publication_date=2018; citation_pages=427-437; citation_doi=10.1016/j.neuropharm.2017.09.024; citation_id=CR164"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=Allosteric modulation of the cannabinoid CB1 receptor; citation_author=MR Price; citation_volume=68; citation_publication_date=2005; citation_pages=1484-1495; citation_doi=10.1124/mol.105.016162; citation_id=CR165"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Structure of an allosteric modulator bound to the CB1 cannabinoid receptor; citation_author=Z Shao; citation_volume=15; citation_publication_date=2019; citation_pages=1199-1205; citation_doi=10.1038/s41589-019-0387-2; citation_id=CR166"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2alpha-mediated Rho/ROCK signaling pathway; citation_author=E Goupil; citation_volume=285; citation_publication_date=2010; citation_pages=25624-25636; citation_doi=10.1074/jbc.M110.115196; citation_id=CR167"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein; citation_author=J Quoyer; citation_volume=110; citation_publication_date=2013; citation_pages=E5088-E5097; citation_doi=10.1073/pnas.1312515110; citation_id=CR168"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Two disparate ligand-binding sites in the human P2Y1 receptor; citation_author=D Zhang; citation_volume=520; citation_publication_date=2015; citation_pages=317-321; citation_doi=10.1038/nature14287; citation_id=CR169"/> <meta name="citation_reference" content="citation_journal_title=J. Pharmacol. Exp. Ther; citation_title=al. Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a novel, orally bioavailable C5a receptor inverse agonist.; citation_author=RM Brodbeck; citation_volume=327; citation_publication_date=2008; citation_pages=898-909; citation_doi=10.1124/jpet.108.141572; citation_id=CR170"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727; citation_author=N Robertson; citation_volume=553; citation_publication_date=2018; citation_pages=111-114; citation_doi=10.1038/nature25025; citation_id=CR171"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes; citation_author=S Maeda; citation_volume=364; citation_publication_date=2019; citation_pages=552-557; citation_doi=10.1126/science.aaw5188; citation_id=CR172"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc; citation_author=DP Staus; citation_volume=579; citation_publication_date=2020; citation_pages=297-302; citation_doi=10.1038/s41586-020-1954-0; citation_id=CR173"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling; citation_author=DM Shore; citation_volume=289; citation_publication_date=2014; citation_pages=5828-5845; citation_doi=10.1074/jbc.M113.478495; citation_id=CR174"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments; citation_author=M Stornaiuolo; citation_volume=5; citation_publication_date=2015; citation_doi=10.1038/srep15453; citation_id=CR175"/> <meta name="citation_reference" content="citation_journal_title=Biochemistry; citation_title=The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity; citation_author=JF Fay, DL Farrens; citation_volume=52; citation_publication_date=2013; citation_pages=8286-8294; citation_doi=10.1021/bi400842k; citation_id=CR176"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation; citation_author=KH Ahn, MM Mahmoud, DA Kendall; citation_volume=287; citation_publication_date=2012; citation_pages=12070-12082; citation_doi=10.1074/jbc.M111.316463; citation_id=CR177"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity; citation_author=GL Baillie; citation_volume=83; citation_publication_date=2013; citation_pages=322-338; citation_doi=10.1124/mol.112.080879; citation_id=CR178"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Crystal structures of agonist-bound human cannabinoid receptor CB1; citation_author=T Hua; citation_volume=547; citation_publication_date=2017; citation_pages=468-471; citation_doi=10.1038/nature23272; citation_id=CR179"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=An allosteric modulator binds to a conformational hub in the beta2 adrenergic receptor; citation_author=X Liu; citation_volume=16; citation_publication_date=2020; citation_pages=749-755; citation_doi=10.1038/s41589-020-0549-2; citation_id=CR180"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Mechanism of beta2AR regulation by an intracellular positive allosteric modulator; citation_author=X Liu; citation_volume=364; citation_publication_date=2019; citation_pages=1283-1287; citation_doi=10.1126/science.aaw8981; citation_id=CR181"/> <meta name="citation_reference" content="citation_journal_title=Nat. Struct. Mol. Biol.; citation_title=Orthosteric and allosteric action of the C5a receptor antagonists; citation_author=H Liu; citation_volume=25; citation_publication_date=2018; citation_pages=472-481; citation_doi=10.1038/s41594-018-0067-z; citation_id=CR182"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Structure of the adenosine A1 receptor reveals the basis for subtype selectivity; citation_author=A Glukhova; citation_volume=168; citation_publication_date=2017; citation_pages=867-877 e813; citation_doi=10.1016/j.cell.2017.01.042; citation_id=CR183"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Structural basis for GPR40 allosteric agonism and incretin stimulation; citation_author=JD Ho; citation_volume=9; citation_publication_date=2018; citation_doi=10.1038/s41467-017-01240-w; citation_id=CR184"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Full-length human GLP-1 receptor structure without orthosteric ligands; citation_author=F Wu; citation_volume=11; citation_publication_date=2020; citation_doi=10.1038/s41467-020-14934-5; citation_id=CR185"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=The relative activity of &quot;function sparing&quot; HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property?; citation_author=VM Muniz-Medina; citation_volume=75; citation_publication_date=2009; citation_pages=490-501; citation_doi=10.1124/mol.108.052555; citation_id=CR186"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex; citation_author=Q Tan; citation_volume=341; citation_publication_date=2013; citation_pages=1387-1390; citation_doi=10.1126/science.1241475; citation_id=CR187"/> <meta name="citation_reference" content="citation_journal_title=Immunity; citation_title=Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV; citation_author=Y Zheng; citation_volume=46; citation_publication_date=2017; citation_pages=1005-1017 e1005; citation_doi=10.1016/j.immuni.2017.05.002; citation_id=CR188"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structural basis of coreceptor recognition by HIV-1 envelope spike; citation_author=MM Shaik; citation_volume=565; citation_publication_date=2019; citation_pages=318-323; citation_doi=10.1038/s41586-018-0804-9; citation_id=CR189"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Activation of the GLP-1 receptor by a non-peptidic agonist; citation_author=P Zhao; citation_volume=577; citation_publication_date=2020; citation_pages=432-436; citation_doi=10.1038/s41586-019-1902-z; citation_id=CR190"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein; citation_author=Y Zhang; citation_volume=546; citation_publication_date=2017; citation_pages=248-253; citation_doi=10.1038/nature22394; citation_id=CR191"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists; citation_author=Y Zheng; citation_volume=540; citation_publication_date=2016; citation_pages=458-461; citation_doi=10.1038/nature20605; citation_id=CR192"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7; citation_author=K Jaeger; citation_volume=178; citation_publication_date=2019; citation_pages=1222.e10-1230.e10; citation_doi=10.1016/j.cell.2019.07.028; citation_id=CR193"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Intracellular allosteric antagonism of the CCR9 receptor; citation_author=C Oswald; citation_volume=540; citation_publication_date=2016; citation_pages=462-465; citation_doi=10.1038/nature20606; citation_id=CR194"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Mechanism of intracellular allosteric beta2AR antagonist revealed by X-ray crystal structure; citation_author=X Liu; citation_volume=548; citation_publication_date=2017; citation_pages=480-484; citation_doi=10.1038/nature23652; citation_id=CR195"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody; citation_author=LM Wingler; citation_volume=176; citation_publication_date=2019; citation_pages=479.e12-490.e12; citation_id=CR196"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR; citation_author=LM Wingler; citation_volume=367; citation_publication_date=2020; citation_pages=888-892; citation_doi=10.1126/science.aay9813; citation_id=CR197"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Molecular basis of beta-arrestin coupling to formoterol-bound beta1-adrenoceptor; citation_author=Y Lee; citation_volume=583; citation_publication_date=2020; citation_pages=862-866; citation_doi=10.1038/s41586-020-2419-1; citation_id=CR198"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Res.; citation_title=Molecular insights into allosteric modulation of Class C G protein-coupled receptors; citation_author=K Leach, KJ Gregory; citation_volume=116; citation_publication_date=2017; citation_pages=105-118; citation_doi=10.1016/j.phrs.2016.12.006; citation_id=CR199"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography; citation_author=U Weierstall; citation_volume=5; citation_publication_date=2014; citation_doi=10.1038/ncomms4309; citation_id=CR200"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Structure of the human smoothened receptor bound to an antitumour agent; citation_author=C Wang; citation_volume=497; citation_publication_date=2013; citation_pages=338-343; citation_doi=10.1038/nature12167; citation_id=CR201"/> <meta name="citation_reference" content="citation_journal_title=PLoS Negl. Trop. Dis.; citation_title=Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens; citation_author=GJ Crowther; citation_volume=8; citation_publication_date=2014; citation_doi=10.1371/journal.pntd.0002628; citation_id=CR202"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Colocalization strategy unveils an underside binding site in the transmembrane domain of smoothened receptor; citation_author=F Zhou; citation_volume=62; citation_publication_date=2019; citation_pages=9983-9989; citation_doi=10.1021/acs.jmedchem.9b00283; citation_id=CR203"/> <meta name="citation_reference" content="citation_journal_title=Cell; citation_title=Structural basis of smoothened activation in Hedgehog signaling; citation_author=P Huang; citation_volume=174; citation_publication_date=2018; citation_pages=312.e16-324.e16; citation_doi=10.1016/j.cell.2018.04.029; citation_id=CR204"/> <meta name="citation_reference" content="citation_journal_title=Methods Mol. Biol.; citation_title=Computer-aided drug design methods; citation_author=W Yu, AD MacKerell; citation_volume=1520; citation_publication_date=2017; citation_pages=85-106; citation_doi=10.1007/978-1-4939-6634-9_5; citation_id=CR205"/> <meta name="citation_reference" content="citation_journal_title=Nat. Protoc.; citation_title=Crystallizing membrane proteins using lipidic mesophases; citation_author=M Caffrey, V Cherezov; citation_volume=4; citation_publication_date=2009; citation_pages=706-731; citation_doi=10.1038/nprot.2009.31; citation_id=CR206"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Biophys.; citation_title=Structural basis for G protein-coupled receptor signaling; citation_author=SC Erlandson, C McMahon, AC Kruse; citation_volume=47; citation_publication_date=2018; citation_pages=1-18; citation_doi=10.1146/annurev-biophys-070317-032931; citation_id=CR207"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Ultra-large library docking for discovering new chemotypes; citation_author=J Lyu; citation_volume=566; citation_publication_date=2019; citation_pages=224-229; citation_doi=10.1038/s41586-019-0917-9; citation_id=CR208"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Virtual discovery of melatonin receptor ligands to modulate circadian rhythms; citation_author=RM Stein; citation_volume=579; citation_publication_date=2020; citation_pages=609-614; citation_doi=10.1038/s41586-020-2027-0; citation_id=CR209"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Docking finds GPCR ligands in dark chemical matter; citation_author=F Ballante; citation_volume=63; citation_publication_date=2020; citation_pages=613-620; citation_doi=10.1021/acs.jmedchem.9b01560; citation_id=CR210"/> <meta name="citation_reference" content="citation_journal_title=ACS Chem. Biol.; citation_title=Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries; citation_author=A Ranganathan; citation_volume=12; citation_publication_date=2017; citation_pages=735-745; citation_doi=10.1021/acschembio.6b00646; citation_id=CR211"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors; citation_author=X Liu; citation_volume=8; citation_publication_date=2018; citation_doi=10.1038/s41598-018-26577-0; citation_id=CR212"/> <meta name="citation_reference" content="citation_journal_title=Proteins; citation_title=Focused library design in GPCR projects on the example of 5-HT(2c) agonists: comparison of structure-based virtual screening with ligand-based search methods; citation_author=C Bissantz, C Schalon, W Guba, M Stahl; citation_volume=61; citation_publication_date=2005; citation_pages=938-952; citation_doi=10.1002/prot.20651; citation_id=CR213"/> <meta name="citation_reference" content="citation_journal_title=ACS Chem. Biol.; citation_title=Structure-guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library; citation_author=B Mannel; citation_volume=12; citation_publication_date=2017; citation_pages=2652-2661; citation_doi=10.1021/acschembio.7b00493; citation_id=CR214"/> <meta name="citation_reference" content="citation_journal_title=Assay Drug Dev. Technol.; citation_title=Privileged structure-based combinatorial libraries targeting G protein-coupled receptors; citation_author=T Guo, DW Hobbs; citation_volume=1; citation_publication_date=2003; citation_pages=579-592; citation_doi=10.1089/154065803322302835; citation_id=CR215"/> <meta name="citation_reference" content="citation_journal_title=Chem. Rev.; citation_title=GPCR dynamics: structures in motion; citation_author=NR Latorraca, AJ Venkatakrishnan, RO Dror; citation_volume=117; citation_publication_date=2017; citation_pages=139-155; citation_doi=10.1021/acs.chemrev.6b00177; citation_id=CR216"/> <meta name="citation_reference" content="citation_journal_title=Curr. Opin. Struct. Biol.; citation_title=Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs); citation_author=Y Lee, R Lazim, SJY Macalino, S Choi; citation_volume=55; citation_publication_date=2019; citation_pages=147-153; citation_doi=10.1016/j.sbi.2019.03.015; citation_id=CR217"/> <meta name="citation_reference" content="citation_journal_title=Nat. Struct. Mol. Biol.; citation_title=Structure and dynamics of GPCR signaling complexes; citation_author=D Hilger, M Masureel, BK Kobilka; citation_volume=25; citation_publication_date=2018; citation_pages=4-12; citation_doi=10.1038/s41594-017-0011-7; citation_id=CR218"/> <meta name="citation_reference" content="Vilar, S. &amp; Costanzi, S. In G Protein Coupled Receptors: Modeling, Activation, Interactions and Virtual Screening. Methods in Enzymology, Vol. 522 (ed. Conn P. M.) 263&#8211;278 (Elsevier Academic Press, 2013)."/> <meta name="citation_reference" content="citation_journal_title=PLoS ONE; citation_title=Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening; citation_author=T Coudrat, A Christopoulos, PM Sexton, D Wootten; citation_volume=12; citation_publication_date=2017; citation_doi=10.1371/journal.pone.0174719; citation_id=CR220"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor; citation_author=Y Miao; citation_volume=113; citation_publication_date=2016; citation_pages=E5675-5684; citation_doi=10.1073/pnas.1612353113; citation_id=CR221"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Inf. Model.; citation_title=From homology models to a set of predictive binding pockets-a 5-HT1A receptor case study; citation_author=D Warszycki; citation_volume=57; citation_publication_date=2017; citation_pages=311-321; citation_doi=10.1021/acs.jcim.6b00263; citation_id=CR222"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor; citation_author=C Graaf; citation_volume=54; citation_publication_date=2011; citation_pages=8195-8206; citation_doi=10.1021/jm2011589; citation_id=CR223"/> <meta name="citation_reference" content="citation_journal_title=Curr. Comput. Aided Drug Des.; citation_title=Scope and limitation of ligand docking: methods, scoring functions and protein targets; citation_author=L David, PA Nielsen, M Hedstrom, B Norden; citation_volume=1; citation_publication_date=2005; citation_pages=275-306; citation_doi=10.2174/1573409054367682; citation_id=CR224"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Function-specific virtual screening for GPCR ligands using a combined scoring method; citation_author=AJ Kooistra; citation_volume=6; citation_publication_date=2016; citation_doi=10.1038/srep28288; citation_id=CR225"/> <meta name="citation_reference" content="citation_journal_title=Molecules; citation_title=Recent advances and applications of molecular docking to G protein-coupled receptors; citation_author=D Bartuzi, AA Kaczor, KM Targowska-Duda, D Matosiuk; citation_volume=22; citation_publication_date=2017; citation_pages=23; citation_id=CR226"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Structure-based discovery of novel and selective 5-hydroxytryptamine 2B receptor antagonists for the treatment of irritable bowel syndrome; citation_author=Y Zhou; citation_volume=59; citation_publication_date=2016; citation_pages=707-720; citation_doi=10.1021/acs.jmedchem.5b01631; citation_id=CR227"/> <meta name="citation_reference" content="citation_journal_title=Front. Chem.; citation_title=Refinement and rescoring of virtual screening results; citation_author=G Rastelli, L Pinzi; citation_volume=7; citation_publication_date=2019; citation_pages=498; citation_doi=10.3389/fchem.2019.00498; citation_id=CR228"/> <meta name="citation_reference" content="citation_journal_title=ACS Omega; citation_title=Predicting binding affinities for GPCR ligands using free-energy perturbation; citation_author=EB Lenselink; citation_volume=1; citation_publication_date=2016; citation_pages=293-304; citation_doi=10.1021/acsomega.6b00086; citation_id=CR229"/> <meta name="citation_reference" content="citation_journal_title=Phys. Chem. Chem. Phys.; citation_title=Incorporating QM and solvation into docking for applications to GPCR targets; citation_author=M Kim, AE Cho; citation_volume=18; citation_publication_date=2016; citation_pages=28281-28289; citation_doi=10.1039/C6CP04742D; citation_id=CR230"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Soc. Trans.; citation_title=Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions; citation_author=A Heifetz; citation_volume=44; citation_publication_date=2016; citation_pages=574-581; citation_doi=10.1042/BST20150250; citation_id=CR231"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Inf. Model.; citation_title=The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions; citation_author=A Heifetz; citation_volume=56; citation_publication_date=2016; citation_pages=159-172; citation_doi=10.1021/acs.jcim.5b00644; citation_id=CR232"/> <meta name="citation_reference" content="citation_journal_title=J. Phys. Chem. Lett.; citation_title=Exploring the mutational robustness of nucleic acids by searching genotype neighborhoods in sequence space; citation_author=Q Zhou; citation_volume=8; citation_publication_date=2017; citation_pages=407-414; citation_doi=10.1021/acs.jpclett.6b02769; citation_id=CR233"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Inf. Model.; citation_title=Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations; citation_author=T Hou, J Wang, Y Li, W Wang; citation_volume=51; citation_publication_date=2011; citation_pages=69-82; citation_doi=10.1021/ci100275a; citation_id=CR234"/> <meta name="citation_reference" content="citation_journal_title=J. Comput. Aided Mol. Des.; citation_title=Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures; citation_author=MQ Yau; citation_volume=33; citation_publication_date=2019; citation_pages=487-496; citation_doi=10.1007/s10822-019-00201-3; citation_id=CR235"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Inf. Model.; citation_title=Structure-based prediction of G-protein-coupled receptor ligand function: a beta-adrenoceptor case study; citation_author=AJ Kooistra, R Leurs, IJ Esch, C Graaf; citation_volume=55; citation_publication_date=2015; citation_pages=1045-1061; citation_doi=10.1021/acs.jcim.5b00066; citation_id=CR236"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands; citation_author=L Fan; citation_volume=11; citation_publication_date=2020; citation_doi=10.1038/s41467-020-14884-y; citation_id=CR237"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=Muscarinic receptors as model targets and antitargets for structure-based ligand discovery; citation_author=AC Kruse; citation_volume=84; citation_publication_date=2013; citation_pages=528-540; citation_doi=10.1124/mol.113.087551; citation_id=CR238"/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Med. Chem.; citation_title=Identification of new potent A1 adenosine receptor antagonists using a multistage virtual screening approach; citation_author=Y Wei; citation_volume=187; citation_publication_date=2020; citation_pages=111936; citation_doi=10.1016/j.ejmech.2019.111936; citation_id=CR239"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor; citation_author=CM Suomivuori; citation_volume=367; citation_publication_date=2020; citation_pages=881-887; citation_doi=10.1126/science.aaz0326; citation_id=CR240"/> <meta name="citation_reference" content="citation_journal_title=Nat. Chem. Biol.; citation_title=Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs; citation_author=JD McCorvy; citation_volume=14; citation_publication_date=2018; citation_pages=126-134; citation_doi=10.1038/nchembio.2527; citation_id=CR241"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Small molecule allosteric modulators of G-protein-coupled receptors: drug-target interactions; citation_author=S Lu, J Zhang; citation_volume=62; citation_publication_date=2019; citation_pages=24-45; citation_doi=10.1021/acs.jmedchem.7b01844; citation_id=CR242"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1; citation_author=M Luckmann; citation_volume=116; citation_publication_date=2019; citation_pages=7123-7128; citation_doi=10.1073/pnas.1811066116; citation_id=CR243"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Biochem.; citation_title=The molecular basis of G protein-coupled receptor activation; citation_author=WI Weis, BK Kobilka; citation_volume=87; citation_publication_date=2018; citation_pages=897-919; citation_doi=10.1146/annurev-biochem-060614-033910; citation_id=CR244"/> <meta name="citation_reference" content="citation_journal_title=Curr. Opin. Struct. Biol.; citation_title=Automated discovery of GPCR bioactive ligands; citation_author=S Raschka; citation_volume=55; citation_publication_date=2019; citation_pages=17-24; citation_doi=10.1016/j.sbi.2019.02.011; citation_id=CR245"/> <meta name="citation_reference" content="citation_journal_title=Trends Mol. Med.; citation_title=Emerging approaches to GPCR ligand screening for drug discovery; citation_author=P Kumari, E Ghosh, AK Shukla; citation_volume=21; citation_publication_date=2015; citation_pages=687-701; citation_doi=10.1016/j.molmed.2015.09.002; citation_id=CR246"/> <meta name="citation_reference" content="citation_journal_title=Expert Opin. Drug Discov.; citation_title=An update of novel screening methods for GPCR in drug discovery; citation_author=L Chen, L Jin, N Zhou; citation_volume=7; citation_publication_date=2012; citation_pages=791-806; citation_doi=10.1517/17460441.2012.699036; citation_id=CR247"/> <meta name="citation_reference" content="citation_journal_title=Annu. Rev. Biochem.; citation_title=DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information; citation_author=D Neri, RA Lerner; citation_volume=87; citation_publication_date=2018; citation_pages=479-502; citation_doi=10.1146/annurev-biochem-062917-012550; citation_id=CR248"/> <meta name="citation_reference" content="citation_journal_title=Chem. Soc. Rev.; citation_title=Small-molecule discovery from DNA-encoded chemical libraries; citation_author=RE Kleiner, CE Dumelin, DR Liu; citation_volume=40; citation_publication_date=2011; citation_pages=5707-5717; citation_doi=10.1039/c1cs15076f; citation_id=CR249"/> <meta name="citation_reference" content="citation_journal_title=Nat. Rev. Drug Discov.; citation_title=DNA-encoded chemistry: enabling the deeper sampling of chemical space; citation_author=RA Goodnow, CE Dumelin, AD Keefe; citation_volume=16; citation_publication_date=2017; citation_pages=131-147; citation_doi=10.1038/nrd.2016.213; citation_id=CR250"/> <meta name="citation_reference" content="citation_journal_title=Chem. Commun.; citation_title=Beyond protein binding: recent advances in screening DNA-encoded libraries; citation_author=T Kodadek, NG Paciaroni, M Balzarini, P Dickson; citation_volume=55; citation_publication_date=2019; citation_pages=13330-13341; citation_doi=10.1039/C9CC06256D; citation_id=CR251"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Allosteric &#8220;beta-blocker&#8221; isolated from a DNA-encoded small molecule library; citation_author=S Ahn; citation_volume=114; citation_publication_date=2017; citation_pages=1708-1713; citation_doi=10.1073/pnas.1620645114; citation_id=CR252"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries; citation_author=S Ahn; citation_volume=94; citation_publication_date=2018; citation_pages=850-861; citation_doi=10.1124/mol.118.111948; citation_id=CR253"/> <meta name="citation_reference" content="citation_journal_title=SLAS Discov.; citation_title=Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target; citation_author=DG Brown; citation_volume=23; citation_publication_date=2018; citation_pages=429-436; citation_id=CR254"/> <meta name="citation_reference" content="citation_journal_title=ACS Comb. Sci.; citation_title=Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor; citation_author=Z Wu; citation_volume=17; citation_publication_date=2015; citation_pages=722-731; citation_doi=10.1021/acscombsci.5b00124; citation_id=CR255"/> <meta name="citation_reference" content="Annis, A., Chuang, C. C. &amp; Nazef, N. In Mass Spectrometry in Medicinal Chemistry: Applications in Drug Discovery. Methods and Principles in Medicinal Chemistry (eds Wanner, K. T. &amp; H&#246;fner, G.) 121&#8211;156 (Wiley, 2007)."/> <meta name="citation_reference" content="citation_journal_title=Anal. Chem.; citation_title=Solution-based indirect affinity selection mass spectrometry&#8211;a general tool for high-throughput screening of pharmaceutical compound libraries; citation_author=TN O&#8217;Connell; citation_volume=86; citation_publication_date=2014; citation_pages=7413-7420; citation_doi=10.1021/ac500938y; citation_id=CR257"/> <meta name="citation_reference" content="citation_journal_title=Anal. Chem.; citation_title=Identification of inhibitors of the antibiotic-resistance target New Delhi metallo-beta-lactamase 1 by both nanoelectrospray ionization mass spectrometry and ultrafiltration liquid chromatography/mass spectrometry approaches; citation_author=X Chen; citation_volume=85; citation_publication_date=2013; citation_pages=7957-7965; citation_doi=10.1021/ac401732d; citation_id=CR258"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline; citation_author=X Chen; citation_volume=5; citation_publication_date=2015; citation_doi=10.1038/srep08361; citation_id=CR259"/> <meta name="citation_reference" content="citation_journal_title=Anal. Chim. Acta; citation_title=Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening; citation_author=S Qin; citation_volume=886; citation_publication_date=2015; citation_pages=98-106; citation_doi=10.1016/j.aca.2015.06.017; citation_id=CR260"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Nanoscale synthesis and affinity ranking; citation_author=NJ Gesmundo; citation_volume=557; citation_publication_date=2018; citation_pages=228-232; citation_doi=10.1038/s41586-018-0056-8; citation_id=CR261"/> <meta name="citation_reference" content="citation_journal_title=Comb. Chem. High Throughput Screen.; citation_title=Application of affinity selection-mass spectrometry assays to purification and affinity-based screening of the chemokine receptor CXCR4; citation_author=CE Whitehurst; citation_volume=15; citation_publication_date=2012; citation_pages=473-485; citation_doi=10.2174/138620712800563945; citation_id=CR262"/> <meta name="citation_reference" content="citation_journal_title=Anal. Methods; citation_title=Ligand identification of the adenosine A2A receptor in self-assembled nanodiscs by affinity mass spectrometry; citation_author=J Ma; citation_volume=9; citation_publication_date=2017; citation_pages=5851-5858; citation_doi=10.1039/C7AY01891F; citation_id=CR263"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor; citation_author=E Calleri; citation_volume=53; citation_publication_date=2010; citation_pages=3489-3501; citation_doi=10.1021/jm901691y; citation_id=CR264"/> <meta name="citation_reference" content="citation_journal_title=Anal. Bioanal. Chem.; citation_title=Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS; citation_author=C Temporini; citation_volume=405; citation_publication_date=2013; citation_pages=837-845; citation_doi=10.1007/s00216-012-6353-4; citation_id=CR265"/> <meta name="citation_reference" content="citation_journal_title=Chem. Sci.; citation_title=High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening; citation_author=S Qin; citation_volume=9; citation_publication_date=2018; citation_pages=3192-3199; citation_doi=10.1039/C7SC04698G; citation_id=CR266"/> <meta name="citation_reference" content="citation_journal_title=Purinergic Signal.; citation_title=Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors; citation_author=A Massink; citation_volume=11; citation_publication_date=2015; citation_pages=581-594; citation_doi=10.1007/s11302-015-9477-0; citation_id=CR267"/> <meta name="citation_reference" content="citation_journal_title=Sci. Adv.; citation_title=Ligand binding to a G protein-coupled receptor captured in a mass spectrometer; citation_author=HY Yen; citation_volume=3; citation_publication_date=2017; citation_doi=10.1126/sciadv.1701016; citation_id=CR268"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling; citation_author=HY Yen; citation_volume=559; citation_publication_date=2018; citation_pages=423-427; citation_doi=10.1038/s41586-018-0325-6; citation_id=CR269"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase; citation_author=Y Deng; citation_volume=57; citation_publication_date=2014; citation_pages=8817-8826; citation_doi=10.1021/jm500847m; citation_id=CR270"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure-activity relationships and guide drug design in a factor IXa inhibitor program; citation_author=T Zhang; citation_volume=59; citation_publication_date=2016; citation_pages=1818-1829; citation_doi=10.1021/acs.jmedchem.5b01293; citation_id=CR271"/> <meta name="citation_reference" content="citation_journal_title=J. Biomol. Screen.; citation_title=Integration of affinity selection-mass spectrometry and functional cell-based assays to rapidly triage druggable target space within the NF-kappaB pathway; citation_author=VD Kutilek; citation_volume=21; citation_publication_date=2016; citation_pages=608-619; citation_doi=10.1177/1087057116637353; citation_id=CR272"/> <meta name="citation_reference" content="citation_journal_title=ACS Chem. Biol.; citation_title=Affinity selection-mass spectrometry identifies a novel antibacterial RNA polymerase inhibitor; citation_author=SS Walker; citation_volume=12; citation_publication_date=2017; citation_pages=1346-1352; citation_doi=10.1021/acschembio.6b01133; citation_id=CR273"/> <meta name="citation_reference" content="citation_journal_title=J. Biomol. Screen.; citation_title=Discovery and characterization of orthosteric and allosteric muscarinic M2 acetylcholine receptor ligands by affinity selection-mass spectrometry; citation_author=CE Whitehurst; citation_volume=11; citation_publication_date=2006; citation_pages=194-207; citation_doi=10.1177/1087057105284340; citation_id=CR274"/> <meta name="citation_reference" content="citation_journal_title=Anal. Chem.; citation_title=Accelerating the throughput of affinity mass spectrometry-based ligand screening toward a G protein-coupled receptor; citation_author=Y Lu; citation_volume=91; citation_publication_date=2019; citation_pages=8162-8169; citation_doi=10.1021/acs.analchem.9b00477; citation_id=CR275"/> <meta name="citation_reference" content="citation_journal_title=Anal. Chem.; citation_title=Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS; citation_author=Y Choi; citation_volume=83; citation_publication_date=2011; citation_pages=1048-1052; citation_doi=10.1021/ac1028424; citation_id=CR276"/> <meta name="citation_reference" content="citation_journal_title=Anal. Chim. Acta; citation_title=An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves; citation_author=Z Yang; citation_volume=719; citation_publication_date=2012; citation_pages=87-95; citation_doi=10.1016/j.aca.2012.01.018; citation_id=CR277"/> <meta name="citation_reference" content="citation_journal_title=Chem. Commun.; citation_title=A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking; citation_author=HP Song; citation_volume=51; citation_publication_date=2015; citation_pages=1494-1497; citation_doi=10.1039/C4CC08728C; citation_id=CR278"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches; citation_author=X Fu; citation_volume=6; citation_publication_date=2016; citation_doi=10.1038/srep29680; citation_id=CR279"/> <meta name="citation_reference" content="citation_journal_title=J. Agric. Food Chem.; citation_title=Quickly screening for potential alpha-glucosidase inhibitors from guava leaves tea by bioaffinity ultrafiltration coupled with HPLC-ESI-TOF/MS method; citation_author=L Wang; citation_volume=66; citation_publication_date=2018; citation_pages=1576-1582; citation_doi=10.1021/acs.jafc.7b05280; citation_id=CR280"/> <meta name="citation_reference" content="citation_journal_title=Analyst; citation_title=Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics; citation_author=Z Wang; citation_volume=144; citation_publication_date=2019; citation_pages=2881-2890; citation_doi=10.1039/C8AN02482K; citation_id=CR281"/> <meta name="citation_reference" content="citation_journal_title=ACS Cent. Sci.; citation_title=A novel G protein-biased and subtype-selective agonist for a G protein-coupled receptor discovered from screening herbal extracts; citation_author=B Zhang; citation_volume=6; citation_publication_date=2020; citation_pages=213-225; citation_doi=10.1021/acscentsci.9b01125; citation_id=CR282"/> <meta name="citation_reference" content="citation_journal_title=J. Am. Chem. Soc.; citation_title=A peptoid &#8220;antibody surrogate&#8221; that antagonizes VEGF receptor 2 activity; citation_author=DG Udugamasooriya, SP Dineen, RA Brekken, T Kodadek; citation_volume=130; citation_publication_date=2008; citation_pages=5744-5752; citation_doi=10.1021/ja711193x; citation_id=CR283"/> <meta name="citation_reference" content="citation_journal_title=Angew. Chem. Int. Ed.; citation_title=Competitive binding assays made easy with a native marker and mass spectrometric quantification; citation_author=G Hofner, KT Wanner; citation_volume=42; citation_publication_date=2003; citation_pages=5235-5237; citation_doi=10.1002/anie.200351806; citation_id=CR284"/> <meta name="citation_reference" content="citation_journal_title=ChemBioChem; citation_title=Competitive MS binding assays for dopamine D2 receptors employing spiperone as a native marker; citation_author=KV Niessen, G Hofner, KT Wanner; citation_volume=6; citation_publication_date=2005; citation_pages=1769-1775; citation_doi=10.1002/cbic.200500074; citation_id=CR285"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=MS-binding assays: kinetic, saturation, and competitive experiments based on quantitation of bound marker as exemplified by the GABA transporter mGAT1; citation_author=C Zepperitz, G Hofner, KT Wanner; citation_volume=1; citation_publication_date=2006; citation_pages=208-217; citation_doi=10.1002/cmdc.200500038; citation_id=CR286"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=MS binding assays for the three monoamine transporters using the triple reuptake inhibitor (1R,3S)-indatraline as native marker; citation_author=SH Grimm, G Hofner, KT Wanner; citation_volume=10; citation_publication_date=2015; citation_pages=1027-1039; citation_doi=10.1002/cmdc.201500084; citation_id=CR287"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=Generation and screening of oxime libraries addressing the neuronal GABA transporter GAT1; citation_author=FT Kern, KT Wanner; citation_volume=10; citation_publication_date=2015; citation_pages=396-410; citation_doi=10.1002/cmdc.201402376; citation_id=CR288"/> <meta name="citation_reference" content="citation_journal_title=Toxicol. Lett.; citation_title=Development of MS binding assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor; citation_author=S Sichler; citation_volume=293; citation_publication_date=2018; citation_pages=172-183; citation_doi=10.1016/j.toxlet.2017.11.013; citation_id=CR289"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=MS binding assays for D1 and D5 dopamine receptors; citation_author=P Neiens, G Hofner, KT Wanner; citation_volume=10; citation_publication_date=2015; citation_pages=1924-1931; citation_doi=10.1002/cmdc.201500355; citation_id=CR290"/> <meta name="citation_reference" content="citation_journal_title=ChemMedChem; citation_title=Simultaneous multiple MS binding assays addressing D1 and D2 dopamine receptors; citation_author=M Schuller, G Hofner, KT Wanner; citation_volume=12; citation_publication_date=2017; citation_pages=1585-1594; citation_doi=10.1002/cmdc.201700369; citation_id=CR291"/> <meta name="citation_reference" content="citation_journal_title=Diabetologia; citation_title=GLP-1/glucagon receptor co-agonism for treatment of obesity; citation_author=MA Sanchez-Garrido; citation_volume=60; citation_publication_date=2017; citation_pages=1851-1861; citation_doi=10.1007/s00125-017-4354-8; citation_id=CR292"/> <meta name="citation_reference" content="citation_journal_title=Peptides; citation_title=Gut hormone polyagonists for the treatment of type 2 diabetes; citation_author=SJ Brandt, A Gotz, MH Tschop, TD Muller; citation_volume=100; citation_publication_date=2018; citation_pages=190-201; citation_doi=10.1016/j.peptides.2017.12.021; citation_id=CR293"/> <meta name="citation_reference" content="citation_journal_title=Nucleic Acids Res.; citation_title=The Protein Data Bank; citation_author=HM Berman; citation_volume=28; citation_publication_date=2000; citation_pages=235-242; citation_doi=10.1093/nar/28.1.235; citation_id=CR294"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Structural basis for activation of the growth hormone-releasing hormone receptor; citation_author=F Zhou; citation_volume=11; citation_publication_date=2020; citation_doi=10.1038/s41467-020-18945-0; citation_id=CR295"/> <meta name="citation_reference" content="citation_journal_title=Cell Res.; citation_title=A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor; citation_author=W Sun; citation_volume=30; citation_publication_date=2020; citation_pages=1098-1108; citation_doi=10.1038/s41422-020-00442-0; citation_id=CR296"/> <meta name="citation_reference" content="citation_journal_title=Pharmacol. Ther.; citation_title=Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential; citation_author=M Seyedabadi, MH Ghahremani, PR Albert; citation_volume=200; citation_publication_date=2019; citation_pages=148-178; citation_doi=10.1016/j.pharmthera.2019.05.006; citation_id=CR297"/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Pharmacol.; citation_title=Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells; citation_author=D Cussac; citation_volume=594; citation_publication_date=2008; citation_pages=32-38; citation_doi=10.1016/j.ejphar.2008.07.040; citation_id=CR298"/> <meta name="citation_reference" content="citation_journal_title=J. Pharmacol. Exp. Ther.; citation_title=Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways; citation_author=TF Brust; citation_volume=352; citation_publication_date=2015; citation_pages=480-493; citation_doi=10.1124/jpet.114.220293; citation_id=CR299"/> <meta name="citation_reference" content="citation_journal_title=Science; citation_title=Structural features for functional selectivity at serotonin receptors; citation_author=D Wacker; citation_volume=340; citation_publication_date=2013; citation_pages=615-619; citation_doi=10.1126/science.1232808; citation_id=CR300"/> <meta name="citation_reference" content="citation_journal_title=ACS Chem. Biol.; citation_title=Detection of novel functional selectivity at M3 muscarinic acetylcholine receptors using a Saccharomyces cerevisiae platform; citation_author=GD Stewart, PM Sexton, A Christopoulos; citation_volume=5; citation_publication_date=2010; citation_pages=365-375; citation_doi=10.1021/cb900276p; citation_id=CR301"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=Teaching an old drug new tricks: agonism, antagonism, and biased signaling of pilocarpine through M3 muscarinic acetylcholine receptor; citation_author=AN Pronin, Q Wang, VZ Slepak; citation_volume=92; citation_publication_date=2017; citation_pages=601-612; citation_doi=10.1124/mol.117.109678; citation_id=CR302"/> <meta name="citation_reference" content="citation_journal_title=Biochem. Pharmacol.; citation_title=Quantification of adenosine A(1) receptor biased agonism: implications for drug discovery; citation_author=JA Baltos; citation_volume=99; citation_publication_date=2016; citation_pages=101-112; citation_doi=10.1016/j.bcp.2015.11.013; citation_id=CR303"/> <meta name="citation_reference" content="citation_journal_title=J. Cardiovasc. Pharmacol.; citation_title=G Protein-coupled receptor biased agonism; citation_author=SY Hodavance, C Gareri, RD Torok, HA Rockman; citation_volume=67; citation_publication_date=2016; citation_pages=193-202; citation_doi=10.1097/FJC.0000000000000356; citation_id=CR304"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=beta-arrestin-biased agonism at the beta2-adrenergic receptor; citation_author=MT Drake; citation_volume=283; citation_publication_date=2008; citation_pages=5669-5676; citation_doi=10.1074/jbc.M708118200; citation_id=CR305"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor; citation_author=H Yano; citation_volume=9; citation_publication_date=2018; citation_doi=10.1038/s41467-017-02606-w; citation_id=CR306"/> <meta name="citation_reference" content="citation_journal_title=Nat. Commun.; citation_title=The role of kinetic context in apparent biased agonism at GPCRs; citation_author=C Klein Herenbrink; citation_volume=7; citation_publication_date=2016; citation_doi=10.1038/ncomms10842; citation_id=CR307"/> <meta name="citation_reference" content="citation_journal_title=Pain Med.; citation_title=Dilemma of addiction and respiratory depression in the treatment of pain: a prototypical endomorphin as a new approach; citation_author=L Webster, WK Schmidt; citation_volume=21; citation_publication_date=2020; citation_pages=992-1004; citation_doi=10.1093/pm/pnz122; citation_id=CR308"/> <meta name="citation_reference" content="citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy; citation_author=R Rahmeh; citation_volume=109; citation_publication_date=2012; citation_pages=6733-6738; citation_doi=10.1073/pnas.1201093109; citation_id=CR309"/> <meta name="citation_reference" content="citation_journal_title=J. Biol. Chem.; citation_title=Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes; citation_author=M Busnelli; citation_volume=287; citation_publication_date=2012; citation_pages=3617-3629; citation_doi=10.1074/jbc.M111.277178; citation_id=CR310"/> <meta name="citation_reference" content="citation_journal_title=ACS Med. Chem. Lett.; citation_title=Identification and preclinical pharmacology of BMS-986104: a differentiated S1P1 receptor modulator in clinical trials; citation_author=TG Dhar; citation_volume=7; citation_publication_date=2016; citation_pages=283-288; citation_doi=10.1021/acsmedchemlett.5b00448; citation_id=CR311"/> <meta name="citation_reference" content="citation_journal_title=Mol. Pharmacol.; citation_title=Slowly signaling G protein-biased CB2 cannabinoid receptor agonist ly2828360 suppresses neuropathic pain with sustained efficacy and attenuates morphine tolerance and dependence; citation_author=X Lin; citation_volume=93; citation_publication_date=2018; citation_pages=49-62; citation_doi=10.1124/mol.117.109355; citation_id=CR312"/> <meta name="citation_reference" content="citation_journal_title=J. Med. Chem.; citation_title=(1aR,5aR)1a,3,5,5a-Tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalene-4-carboxylic acid (MK-1903): a potent GPR109a agonist that lowers free fatty acids in humans; citation_author=PD Boatman; citation_volume=55; citation_publication_date=2012; citation_pages=3644-3666; citation_doi=10.1021/jm2010964; citation_id=CR313"/> <meta name="citation_reference" content="citation_journal_title=Drug Discov. Today; citation_title=Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery; citation_author=M Cruz-Monteagudo; citation_volume=22; citation_publication_date=2017; citation_pages=994-1007; citation_doi=10.1016/j.drudis.2017.02.004; citation_id=CR314"/> <meta name="citation_reference" content="citation_journal_title=PLoS ONE; citation_title=The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: a case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs; citation_author=F Fan, D Toledo Warshaviak, HK Hamadeh, RT Dunn; citation_volume=14; citation_publication_date=2019; citation_doi=10.1371/journal.pone.0204378; citation_id=CR315"/> <meta name="citation_reference" content="citation_journal_title=J. Chem. Inf. Comput Sci.; citation_title=GPCR-tailored pharmacophore pattern recognition of small molecular ligands; citation_author=M Korff, M Steger; citation_volume=44; citation_publication_date=2004; citation_pages=1137-1147; citation_doi=10.1021/ci0303013; citation_id=CR316"/> <meta name="citation_reference" content="citation_journal_title=Front Pharmacol.; citation_title=An improved receptor-based pharmacophore generation algorithm guided by atomic chemical characteristics and hybridization types; citation_author=G He; citation_volume=9; citation_publication_date=2018; citation_pages=1463; citation_doi=10.3389/fphar.2018.01463; citation_id=CR317"/> <meta name="citation_author" content="Yang, Dehua"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author" content="Zhou, Qingtong"/> <meta name="citation_author_institution" content="School of Basic Medical Sciences, Fudan University, Shanghai, China"/> <meta name="citation_author" content="Labroska, Viktorija"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="University of Chinese Academy of Sciences, Beijing, China"/> <meta name="citation_author" content="Qin, Shanshan"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Darbalaei, Sanaz"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="University of Chinese Academy of Sciences, Beijing, China"/> <meta name="citation_author" content="Wu, Yiran"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Yuliantie, Elita"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="University of Chinese Academy of Sciences, Beijing, China"/> <meta name="citation_author" content="Xie, Linshan"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author_institution" content="School of Life Science and Technology, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Tao, Houchao"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Cheng, Jianjun"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Liu, Qing"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author" content="Zhao, Suwen"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author_institution" content="School of Life Science and Technology, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Shui, Wenqing"/> <meta name="citation_author_institution" content="iHuman Institute, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author_institution" content="School of Life Science and Technology, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author" content="Jiang, Yi"/> <meta name="citation_author_institution" content="The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author" content="Wang, Ming-Wei"/> <meta name="citation_author_institution" content="The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China"/> <meta name="citation_author_institution" content="School of Basic Medical Sciences, Fudan University, Shanghai, China"/> <meta name="citation_author_institution" content="University of Chinese Academy of Sciences, Beijing, China"/> <meta name="citation_author_institution" content="School of Life Science and Technology, ShanghaiTech University, Shanghai, China"/> <meta name="citation_author_institution" content="School of Pharmacy, Fudan University, Shanghai, China"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@null"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="G protein-coupled receptors: structure- and function-based drug discovery"/> <meta name="twitter:description" content="Signal Transduction and Targeted Therapy - G protein-coupled receptors: structure- and function-based drug discovery"/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41392-020-00435-w"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="G protein-coupled receptors: structure- and function-based drug discovery - Signal Transduction and Targeted Therapy"/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'false'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/sigtrans.nature.com/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41392-020-00435-w;doi=10.1038/s41392-020-00435-w;subjmeta=154,556,631,92;kwrd=Drug+discovery,Target+validation"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/sigtrans.nature.com/article&amp;sz=728x90&amp;c=1446391556&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41392-020-00435-w%26doi%3D10.1038/s41392-020-00435-w%26subjmeta%3D154,556,631,92%26kwrd%3DDrug+discovery,Target+validation"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/sigtrans.nature.com/article&amp;sz=728x90&amp;c=1446391556&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41392-020-00435-w%26doi%3D10.1038/s41392-020-00435-w%26subjmeta%3D154,556,631,92%26kwrd%3DDrug+discovery,Target+validation" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#1f94ba"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/sigtrans" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/sigtrans/header-0db8944b73efe3a9d2686bcbbb5b2aa8.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/sigtrans/header-0db8944b73efe3a9d2686bcbbb5b2aa8.svg" height="32" alt="Signal Transduction and Targeted Therapy"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41392-020-00435-w?error=cookies_not_supported&code=1cf0a703-60fc-4926-8cd8-df46c5edd234'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D369%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fsigtrans%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/sigtrans.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/sigtrans" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:signal transduction and targeted therapy"><span itemprop="name">signal transduction and targeted therapy</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/sigtrans/articles?type&#x3D;review-article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:review articles"><span itemprop="name">review articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> G protein-coupled receptors: structure- and function-based drug discovery </div> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41392-020-00435-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41392-020-00435-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Review Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2021-01-08">08 January 2021</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">G protein-coupled receptors: structure- and function-based drug discovery</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Dehua-Yang-Aff1-Aff2" data-author-popup="auth-Dehua-Yang-Aff1-Aff2" data-author-search="Yang, Dehua">Dehua Yang</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Qingtong-Zhou-Aff3" data-author-popup="auth-Qingtong-Zhou-Aff3" data-author-search="Zhou, Qingtong">Qingtong Zhou</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Viktorija-Labroska-Aff1-Aff4" data-author-popup="auth-Viktorija-Labroska-Aff1-Aff4" data-author-search="Labroska, Viktorija">Viktorija Labroska</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff4">4</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shanshan-Qin-Aff5" data-author-popup="auth-Shanshan-Qin-Aff5" data-author-search="Qin, Shanshan">Shanshan Qin</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Sanaz-Darbalaei-Aff1-Aff4" data-author-popup="auth-Sanaz-Darbalaei-Aff1-Aff4" data-author-search="Darbalaei, Sanaz">Sanaz Darbalaei</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yiran-Wu-Aff5" data-author-popup="auth-Yiran-Wu-Aff5" data-author-search="Wu, Yiran">Yiran Wu</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Elita-Yuliantie-Aff1-Aff4" data-author-popup="auth-Elita-Yuliantie-Aff1-Aff4" data-author-search="Yuliantie, Elita">Elita Yuliantie</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Linshan-Xie-Aff5-Aff6" data-author-popup="auth-Linshan-Xie-Aff5-Aff6" data-author-search="Xie, Linshan">Linshan Xie</a><sup class="u-js-hide"><a href="#Aff5">5</a>,<a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Houchao-Tao-Aff5" data-author-popup="auth-Houchao-Tao-Aff5" data-author-search="Tao, Houchao">Houchao Tao</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jianjun-Cheng-Aff5" data-author-popup="auth-Jianjun-Cheng-Aff5" data-author-search="Cheng, Jianjun">Jianjun Cheng</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Qing-Liu-Aff1-Aff2" data-author-popup="auth-Qing-Liu-Aff1-Aff2" data-author-search="Liu, Qing">Qing Liu</a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Suwen-Zhao-Aff5-Aff6" data-author-popup="auth-Suwen-Zhao-Aff5-Aff6" data-author-search="Zhao, Suwen">Suwen Zhao</a><sup class="u-js-hide"><a href="#Aff5">5</a>,<a href="#Aff6">6</a></sup><sup class="u-js-hide"> <a href="#na1">na1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Wenqing-Shui-Aff5-Aff6" data-author-popup="auth-Wenqing-Shui-Aff5-Aff6" data-author-search="Shui, Wenqing" data-corresp-id="c1">Wenqing Shui<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff5">5</a>,<a href="#Aff6">6</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yi-Jiang-Aff2" data-author-popup="auth-Yi-Jiang-Aff2" data-author-search="Jiang, Yi" data-corresp-id="c2">Yi Jiang<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 15 authors for this article" title="Show all 15 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Ming_Wei-Wang-Aff1-Aff2-Aff3-Aff4-Aff6-Aff7" data-author-popup="auth-Ming_Wei-Wang-Aff1-Aff2-Aff3-Aff4-Aff6-Aff7" data-author-search="Wang, Ming-Wei" data-corresp-id="c3">Ming-Wei Wang<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0001-6550-9017"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0001-6550-9017</a></span><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a>,<a href="#Aff3">3</a>,<a href="#Aff4">4</a>,<a href="#Aff6">6</a>,<a href="#Aff7">7</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/sigtrans" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Signal Transduction and Targeted Therapy</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 6</b>, Article number: <span data-test="article-number">7</span> (<span data-test="article-publication-year">2021</span>) <a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">116k <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="citation-count"> <p class="c-article-metrics-bar__count">316 <span class="c-article-metrics-bar__label">Citations</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">40 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41392-020-00435-w/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/drug-discovery" data-track="click" data-track-action="view subject" data-track-label="link">Drug discovery</a></li><li class="c-article-subject-list__subject"><a href="/subjects/target-validation" data-track="click" data-track-action="view subject" data-track-label="link">Target validation</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure–function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.</p></div></div></section> <noscript> </noscript> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41392-024-01803-6/MediaObjects/41392_2024_1803_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41392-024-01803-6?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s41392-024-01803-6">G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">10 April 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41401-022-00938-y/MediaObjects/41401_2022_938_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41401-022-00938-y?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41401-022-00938-y">AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">01 July 2022</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41594-021-00675-6/MediaObjects/41594_2021_675_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41594-021-00675-6?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41594-021-00675-6">An online GPCR structure analysis platform </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">10 November 2021</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732384900, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>G protein-coupled receptors (GPCRs) represent the largest protein family encoded by the human genome. Located on the cell membrane, they transduce extracellular signals into key physiological effects.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Insel, P. A. et al. GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol. Sci. 40, 378–387 (2019)." href="/articles/s41392-020-00435-w#ref-CR1" id="ref-link-section-d122191348e662">1</a></sup> Their endogenous ligands include odors, hormones, neurotransmitters, chemokines, etc., varying from photons, amines, carbohydrates, lipids, peptides to proteins. GPCRs have been implicated in a large number of diseases, such as type 2 diabetes mellitus (T2DM), obesity, depression, cancer, Alzheimer’s disease, and many others.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Sriram, K. &amp; Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018)." href="/articles/s41392-020-00435-w#ref-CR2" id="ref-link-section-d122191348e666">2</a></sup> Activated by external signals through coupling to different G proteins or arrestins, GPCRs elicit cyclic adenosine 3,5-monophosphate (cAMP) response, calcium mobilization, or phosphorylation of extracellular regulated protein kinases 1/2 (pERK1/2).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Wootten, D. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018)." href="/articles/s41392-020-00435-w#ref-CR3" id="ref-link-section-d122191348e670">3</a></sup> The seven-transmembrane protein property endows them easy to access, while the diversified downstream signaling pathways make them attractive for drug development.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e674">4</a></sup> The human GPCR family is divided into classes A (rhodopsin), B (secretin and adhesion), C (glutamate), and F (Frizzled) subfamilies according to their amino acid sequences (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig1">1</a>). Of the 826 human GPCRs, approximately 350 non-olfactory members are regarded as druggable and 165 of them are validated drug targets (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig1">1</a> and Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM2">S1</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="#ref-CR4" id="ref-link-section-d122191348e688">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Shimada, I. et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2019)." href="#ref-CR5" id="ref-link-section-d122191348e688_1">5</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Dalesio, N. M., Barreto Ortiz, S. F., Pluznick, J. L. &amp; Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. Front. Physiol. 9, 1673 (2018)." href="/articles/s41392-020-00435-w#ref-CR6" id="ref-link-section-d122191348e691">6</a></sup> Latest statistical data indicate that 527 Food and Drug Administration (FDA)-approved drugs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e695">4</a></sup> and <span class="stix">∼</span>60 drug candidates currently in clinical trials target GPCRs (Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM2">S1</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Shimada, I. et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2019)." href="/articles/s41392-020-00435-w#ref-CR5" id="ref-link-section-d122191348e702">5</a></sup></p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="738"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Phylogenetic tree of GPCRs as drug targets. Node represents GPCR named according to its gene name. Receptors with approved drugs on the market are highlighted by color. GPCRs are organized according to GPCR database.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e716">4</a></sup> Approved drug list was derived from previous publications,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e720">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Congreve, M., de Graaf, C., Swain, N. A. &amp; Tate, C. G. Impact of GPCR structures on drug discovery. Cell 181, 81–91 (2020)." href="/articles/s41392-020-00435-w#ref-CR11" id="ref-link-section-d122191348e723">11</a></sup> complemented by additional search of newly approved entities at Drugs@FDA (<a href="http://accessdata.fda.gov">accessdata.fda.gov</a>) until June 2020. See Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM3">S2</a> for details</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Started with crystal structure determination and accelerated by cryo-electron microscopy (cryo-EM) technology, three-dimensional (3D) structural studies on a variety of GPCRs in complex with ligands, G proteins/arrestins, or both<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)." href="#ref-CR7" id="ref-link-section-d122191348e748">7</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007)." href="#ref-CR8" id="ref-link-section-d122191348e748_1">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017)." href="#ref-CR9" id="ref-link-section-d122191348e748_2">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Safdari, H. A., Pandey, S., Shukla, A. K. &amp; Dutta, S. Illuminating GPCR signaling by cryo-EM. Trends Cell Biol. 28, 591–594 (2018)." href="/articles/s41392-020-00435-w#ref-CR10" id="ref-link-section-d122191348e751">10</a></sup> (involving 455 structures from 82 different receptors) significantly deepened our knowledge of molecular mechanisms of signal transduction. Novel insights into ligand recognition and receptor activation are gained from inactive, transitional, active, and <i>apo</i> states, thereby offering new opportunities for structure-based drug design (SBDD).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Congreve, M., de Graaf, C., Swain, N. A. &amp; Tate, C. G. Impact of GPCR structures on drug discovery. Cell 181, 81–91 (2020)." href="/articles/s41392-020-00435-w#ref-CR11" id="ref-link-section-d122191348e758">11</a></sup> Pharmacological parameters such as cAMP accumulation, calcium flux, ERK phosphorylation, arrestin recruitment, and G protein interaction,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Wootten, D. et al. Allostery and biased agonism at class B G protein-coupled receptors. Chem. Rev. 117, 111–138 (2017)." href="/articles/s41392-020-00435-w#ref-CR12" id="ref-link-section-d122191348e762">12</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947. e1925 (2019)." href="/articles/s41392-020-00435-w#ref-CR13" id="ref-link-section-d122191348e765">13</a></sup> are commonly used to evaluate ligand action and biased signaling. Ligand-binding kinetics and signaling timing render another dimension for interpreting signal bias profiles and link in vitro bioactivities with in vivo effects.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Lane, J. R. et al. A kinetic view of GPCR allostery and biased agonism. Nat. Chem. Biol. 13, 929–937 (2017)." href="/articles/s41392-020-00435-w#ref-CR14" id="ref-link-section-d122191348e769">14</a></sup> In this process, a series of biased and allosteric modulators were discovered by rational design, ligand screening, and pharmacological assessment leading to the identification of novel binding sites or action modes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016)." href="/articles/s41392-020-00435-w#ref-CR15" id="ref-link-section-d122191348e774">15</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Korczynska, M. et al. Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 115, E2419–E2428 (2018)." href="/articles/s41392-020-00435-w#ref-CR16" id="ref-link-section-d122191348e777">16</a></sup></p><p>Apart from crystallography and cryo-EM, the striking advancement in GPCR biology is also attributable to the deployment of powerful technologies such as nuclear magnetic resonance (NMR), hydrogen–deuterium exchange (HDX), fluorescence resonance energy transfer, bioluminescence resonance energy transfer, surface plasmon resonance, single molecule fluorescence, CRISPR/Cas9, artificial intelligence, etc. This review systematically summarizes the latest information on this important drug target family to cover both basic and translational sciences in the context of drug discovery and development.</p></div></div></section><section data-title="GPCR as drug target"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">GPCR as drug target</h2><div class="c-article-section__content" id="Sec2-content"><h3 class="c-article__sub-heading" id="Sec3">Class A</h3><p>Class A GPCRs, the so called “rhodopsin-like family” consisting of 719 members, are divided into several subgroups: aminergic, peptide, protein, lipid, melatonin, nucleotide, steroid, alicarboxylic acid, sensory, and orphan.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179, 895–908. e821 (2019)." href="/articles/s41392-020-00435-w#ref-CR17" id="ref-link-section-d122191348e795">17</a></sup> They have a conventional transmembrane domain (TMD) that forms ligand-binding pocket and additional eight helices with a palmitoylated cysteine at the C terminal.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Hu, G. M., Mai, T. L. &amp; Chen, C. M. Visualizing the GPCR network: classification and evolution. Sci. Rep. 7, 15495 (2017)." href="/articles/s41392-020-00435-w#ref-CR18" id="ref-link-section-d122191348e799">18</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Basith, S. et al. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front. Pharmacol. 9, 128 (2018)." href="/articles/s41392-020-00435-w#ref-CR19" id="ref-link-section-d122191348e802">19</a></sup> Given the wide range of their physiological functions, this class of receptors is the most targeted therapeutically among all other classes. By manually curating Drugs@FDA original New Drug Application (NDA) and Biologic License Application (BLA) database (data extracted from August 2017 to June 2020) and cross-referencing with Drugbank,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018)." href="/articles/s41392-020-00435-w#ref-CR20" id="ref-link-section-d122191348e806">20</a></sup> IUPHAR and ChemBL databases, we were able to find the approved drugs associated with this class.</p><p>Over 500 GPCR drugs target class A and many of them act at &gt;1 receptor: 75% are made against aminergic receptors and 10% for peptidic ligand receptors with indications ranging from analgesics, allergies, cardiovascular diseases, hypertension, pulmonary diseases, depression, migraine, glaucoma, Parkinson’s disease to schizophrenia, cancer-related fatigue, etc. Approximately 500 novel drug candidates are in clinical trials. Of them, 134 are for peptide-activated GPCRs, while small molecules still occupy the majority. It is noted that 6% of class A members are sensory and alicarboxylic acid receptors that have broad untapped therapeutic potentials (Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM2">S1</a>). Chemokine, prostanoid and melanocortin receptors constitute &gt;8% clinical trial targets in this class.</p><p>In the past 3 years, about 20 NDAs were approved targeting mostly peptide and aminergic receptors (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab1">1</a>). Siponimod and ozanimod provide alternatives to fingolimod (approved in 2010) for treating relapsing forms of multiple sclerosis by modulating sphingosine-1-phosphate receptor. Two radiolabeled ligands, gallium 68 dotatoc and lutetium 177 dotatate, have been approved for neuroendocrine tumor and pancreatic gastrointestinal cancer diagnosis, respectively. Pitolisant, a selective inverse agonist of histamine receptor, is used to treat narcolepsy-related daytime sleepiness, while lemborexant, an orexin receptor antagonist, is used for insomnia management. Gilteritinib (ASP2215) is a small molecule inhibitor of tyrosine kinase. However, it also antagonizes serotonin receptors without any reported pharmacological consequences. Revefenacin is a long-acting antagonist of muscarinic acetylcholine receptors (mAChRs) indicated for chronic obstructive pulmonary disease. Amisulpride, trialed for antiemetic and schizophrenia, was finally approved for antiemetic in 2020. This molecule is acting as an antagonist against dopamine and serotonin receptors. Fosnetupitant, a prodrug of netupitant, was approved for chemotherapy-induced nausea and vomiting. Cysteamine treats radiation sickness via modifying action of neuropeptide Y receptor. Cannabidiol is one the active constituents of the <i>Cannabis</i> plant and was trialed for schizophrenia, graft versus host disease, and anticonvulsant. It was eventually approved in 2018 for the treatment of severe forms of epilepsy—Lennox–Gastaut syndrome and Dravet syndrome. Meanwhile, fostamatinib, indicated for chronic immune thrombocytopenia, targets &gt;300 receptors and enzymes, including adenosine receptor A3.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Newly approved drugs targeting class A GPCRs in the past 3 years</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec4">Class B</h3><p>This class of GPCRs is divided into two subfamilies: secretin (B1) and adhesion (B2), containing 15 and 33 members, respectively.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e1717">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Alexander, S. P. H. et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 176, S21–S141 (2019)." href="/articles/s41392-020-00435-w#ref-CR21" id="ref-link-section-d122191348e1720">21</a></sup> Secretin subfamily members are characteristic of large extracellular domains (ECDs) and bind to vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), corticotropin-releasing factor (CRF), parathyroid peptide hormone (PTH), growth hormone-releasing hormone (GHRH), calcitonin gene-related peptide (CGRP), glucagon, and glucagon-like peptides (GLPs), respectively. Adhesion subfamily has nine subgroups, possessing unique N-terminal motifs, such as epidermal growth factor, cadherin, and immunoglobulin domains. They are distinguished from other GPCRs due to their roles in cell adhesion and migration.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Bhudia, N. et al. G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody. Sci. Rep. 10, 1004 (2020)." href="/articles/s41392-020-00435-w#ref-CR22" id="ref-link-section-d122191348e1724">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Pal, K., Melcher, K. &amp; Xu, H. E. Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacol. Sin. 33, 300–311 (2012)." href="/articles/s41392-020-00435-w#ref-CR23" id="ref-link-section-d122191348e1727">23</a></sup> Apart from the long N-terminal domain, other unique features of the B2 subfamily are the GPCR autoproteolysis-inducing domain and the proteolysis site that are responsible for signaling activation through a Stachel sequence (a tethered agonist) and producing N-terminal fragment (NTF) and C-terminal fragment. The hallmarks of the B2 GPCR subfamily are a two-step activation model, the ligand–NTF interaction and the Stachel signaling/basal activity. Adhesion receptors can also signal independently of fragment dissociation and this has complicated pharmacological consequences.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Bhudia, N. et al. G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody. Sci. Rep. 10, 1004 (2020)." href="/articles/s41392-020-00435-w#ref-CR22" id="ref-link-section-d122191348e1731">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 15, 1291–1307 (2020)." href="/articles/s41392-020-00435-w#ref-CR24" id="ref-link-section-d122191348e1734">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Vizurraga, A. et al. Mechanisms of adhesion G protein-coupled receptor activation. J. Biol. Chem. 295, 14065–14083 (2020)." href="/articles/s41392-020-00435-w#ref-CR25" id="ref-link-section-d122191348e1737">25</a></sup></p><p>In this class, receptors of glucagon family peptides, followed by CGRP, PTH, GHRH, CRF, VIP, and PACAP, constitute major targets for therapeutic intervention (Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM2">S1</a>) of various diseases, including obesity, T2DM, osteoporosis, migraine, depression, and anxiety.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019)." href="/articles/s41392-020-00435-w#ref-CR26" id="ref-link-section-d122191348e1746">26</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Sekar, R., Singh, K., Arokiaraj, A. W. &amp; Chow, B. K. Pharmacological actions of glucagon-like peptide-1, gastric inhibitory polypeptide, and glucagon. Int. Rev. Cell Mol. Biol. 326, 279–341 (2016)." href="/articles/s41392-020-00435-w#ref-CR27" id="ref-link-section-d122191348e1749">27</a></sup></p><p>To date, multiple GLP-1 receptor (GLP-1R) agonists have been developed by a combination of selective amino acid substitutions, enzymatic cleavage blockade, and conjugation to entities that increase binding to plasma proteins. These methods not only slow down fast renal clearance of the peptides but also extend their half-lives. Dose-dependent side effects such as nausea and gastrointestinal adverse events are the main drawbacks that are becoming more of a compliant with dose scaling.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Yu, M. et al. Battle of GLP-1 delivery technologies. Adv. Drug Deliv. Rev. 130, 113–130 (2018)." href="/articles/s41392-020-00435-w#ref-CR28" id="ref-link-section-d122191348e1755">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 29" title="Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018)." href="/articles/s41392-020-00435-w#ref-CR29" id="ref-link-section-d122191348e1758">29</a></sup> For instance, one newly approved GLP-1R agonist, semaglutide, has a noticeable half-life of 168 h thereby allowing weekly subcutaneous administration, while oral semaglutide (approved in 2019) formulated using absorption enhancer shows a similar half-life but is dosed daily with reported side effects (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab2">2</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019)." href="/articles/s41392-020-00435-w#ref-CR30" id="ref-link-section-d122191348e1765">30</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Blundell, J. et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 19, 1242–1251 (2017)." href="/articles/s41392-020-00435-w#ref-CR31" id="ref-link-section-d122191348e1768">31</a></sup></p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Newly approved drugs targeting class B GPCRs in the past 3 years</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>One of the latest approaches to develop more efficacious therapeutics against T2DM and obesity relates to dual- and tri-agonists targeting two or more of GLP-1R, glucagon receptor (GCGR), and glucose-dependent insulinotropic peptide receptor (GIPR). Many of them are currently in different phases of clinical trials (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab3">3</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Williams, D. M., Nawaz, A. &amp; Evans, M. Drug therapy in obesity: a review of current and emerging treatments. Diabetes Ther. 11, 1199–1216 (2020)." href="#ref-CR32" id="ref-link-section-d122191348e2065">32</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Knerr, P. J. et al. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides 125, 170225 (2020)." href="#ref-CR33" id="ref-link-section-d122191348e2065_1">33</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Frias, J. P. et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352 e342 (2017)." href="#ref-CR34" id="ref-link-section-d122191348e2065_2">34</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Parker, V. E. R. et al. Efficacy, safety, and mechanistic insights of cotadutide, a dual receptor glucagon-like peptide-1 and glucagon agonist. J. Clin. Endocrinol. Metab. 105, dgz047 (2020)." href="#ref-CR35" id="ref-link-section-d122191348e2065_3">35</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Visentin, R. et al. Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes. Diabetes Obes. Metab. 22, 640–647 (2020)." href="#ref-CR36" id="ref-link-section-d122191348e2065_4">36</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes. Metab. 21, 120–128 (2019)." href="/articles/s41392-020-00435-w#ref-CR37" id="ref-link-section-d122191348e2068">37</a></sup> Of note, in this receptor family, GLP-2 stimulates intestinal growth and an approved GLP-2R agonist, teduglutide, is used to treat short bowel syndrome.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Armstrong, D. et al. Colon polyps in patients with short bowel syndrome before and after teduglutide: post hoc analysis of the STEPS study series. Clin. Nutr. 39, 1774–1777 (2020)." href="/articles/s41392-020-00435-w#ref-CR38" id="ref-link-section-d122191348e2072">38</a></sup></p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Mono-, dual- and tri-agonists targeting GLP-1R, GCGR, and GIPR</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>CGRP family has a considerable clinical relevance. For instance, pramlintide that targets amylin receptor is utilized to treat both type 1 and type 2 diabetes. Salmon calcitonin has been explored as a treatment for Paget’s disease and metabolic disorders.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Gingell, J. J., Hendrikse, E. R. &amp; Hay, D. L. New insights into the regulation of CGRP-family receptors. Trends Pharmacol. Sci. 40, 71–83 (2019)." href="#ref-CR39" id="ref-link-section-d122191348e2779">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hay, D. L., Garelja, M. L., Poyner, D. R. &amp; Walker, C. S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 175, 3–17 (2018)." href="#ref-CR40" id="ref-link-section-d122191348e2779_1">40</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Davenport, A. P. et al. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 19, 389–413 (2020)." href="/articles/s41392-020-00435-w#ref-CR41" id="ref-link-section-d122191348e2782">41</a></sup> Furthermore, the association of migraine and CGRP elevation led to FDA-approved monoclonal antibodies (mAbs) against its receptor, e.g., erenumab and eptinezumab, as well as several small molecule antagonists such as rimegepant and ubrogepant (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab2">2</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Dolgin, E. First GPCR-directed antibody passes approval milestone. Nat. Rev. Drug Discov. 17, 457–459 (2018)." href="/articles/s41392-020-00435-w#ref-CR42" id="ref-link-section-d122191348e2789">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Edvinsson, L., Haanes, K. A., Warfvinge, K. &amp; Krause, D. N. CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat. Rev. Neurol. 14, 338–350 (2018)." href="/articles/s41392-020-00435-w#ref-CR43" id="ref-link-section-d122191348e2792">43</a></sup> Two approved diagnostic agents are analogs of CRF (corticorelin ovine triflutate peptide) and GHRH (sermorelin) for diagnosis of Cushing’s disease or ectopic adrenocorticotropic hormone syndrome and growth hormone deficiency, respectively.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Ishida, J. et al. Growth hormone secretagogues: history, mechanism of action, and clinical development. JCSM Rapid Commun. 3, 25–37 (2020)." href="/articles/s41392-020-00435-w#ref-CR44" id="ref-link-section-d122191348e2796">44</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="Karageorgiadis, A. S. et al. Ectopic adrenocorticotropic hormone and corticotropin-releasing hormone co-secreting tumors in children and adolescents causing cushing syndrome: a diagnostic dilemma and how to solve it. J. Clin. Endocrinol. Metab. 100, 141–148 (2015)." href="/articles/s41392-020-00435-w#ref-CR45" id="ref-link-section-d122191348e2799">45</a></sup> Tesamorelin, another synthetic form of GHRH, was approved in 2010 to treat human immunodeficiency virus (HIV)-associated lipodystrophy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Ishida, J. et al. Growth hormone secretagogues: history, mechanism of action, and clinical development. JCSM Rapid Commun. 3, 25–37 (2020)." href="/articles/s41392-020-00435-w#ref-CR44" id="ref-link-section-d122191348e2803">44</a></sup></p><p>PTH analogs, teriparatide and abaloparatide, were approved in 2002 and 2017, respectively, for postmenopausal osteoporosis with similar side effects. However, abaloparatide binds to parathyroid hormone 1 receptor (PTH1R) with higher affinity and selectivity that resulted in greater bone density.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="Leder, B. Z. et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 100, 697–706 (2015)." href="/articles/s41392-020-00435-w#ref-CR46" id="ref-link-section-d122191348e2809">46</a></sup></p><p>No therapeutic agent from the adhesion subfamily has entered clinical trial to date (Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM2">S1</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Sriram, K. &amp; Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018)." href="/articles/s41392-020-00435-w#ref-CR2" id="ref-link-section-d122191348e2818">2</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e2821">4</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="Overington, J. P., Al-Lazikani, B. &amp; Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006)." href="/articles/s41392-020-00435-w#ref-CR47" id="ref-link-section-d122191348e2824">47</a></sup> Although, adhesion GPCRs have shown coupling to heterotrimeric G proteins, the major challenge associated with this family is connecting G protein signals with biological activities.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 15, 1291–1307 (2020)." href="/articles/s41392-020-00435-w#ref-CR24" id="ref-link-section-d122191348e2828">24</a></sup> This subfamily was found to play functional roles in the immune, cardiovascular, respiratory, nervous, musculoskeletal, reproductive, renal, integumentary, sensory, endocrine, and gastrointestinal systems, with implications in neurological and neoplastic disorders.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 15, 1291–1307 (2020)." href="/articles/s41392-020-00435-w#ref-CR24" id="ref-link-section-d122191348e2832">24</a></sup> For instance, ADGRG1 and ADGRF1 are considered as potential drug targets due to their extensive pathogenetic involvement. Two ADGRG1/ADGRG5 modulators, dihydromunduletone and 3-α-acetoxydihydrodeoxygedunin developed via drug screening efforts, showed disease-related efficacy changes thereby calling for exploration of their activities in a pathological environment.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 15, 1291–1307 (2020)." href="/articles/s41392-020-00435-w#ref-CR24" id="ref-link-section-d122191348e2836">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Vizurraga, A. et al. Mechanisms of adhesion G protein-coupled receptor activation. J. Biol. Chem. 295, 14065–14083 (2020)." href="/articles/s41392-020-00435-w#ref-CR25" id="ref-link-section-d122191348e2839">25</a></sup> However, associated drug resistance may not only hamper disease but also offer insights into potential mechanisms of such resistance and strategies to tackle it.</p><h3 class="c-article__sub-heading" id="Sec5">Classes C and F</h3><p>Class C (glutamate) contains 22 receptors, which are further divided into 5 subfamilies including 1 calcium-sensing receptor (CaSR), 2 gamma-aminobutyric acid (GABA) type B receptors (GABA<sub>B1</sub> and GABA<sub>B2</sub>), 3 taste 1 receptors (TS1R1–3), 8 metabotropic glutamate receptors (mGluR1–8), and 8 orphan GPCRs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="Niswender, C. M. &amp; Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010)." href="/articles/s41392-020-00435-w#ref-CR48" id="ref-link-section-d122191348e2855">48</a></sup> The distinctive features of glutamate subfamily are their large ECD and obligated constitutive dimer for receptor activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="Pin, J. P. et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J. 272, 2947–2955 (2005)." href="/articles/s41392-020-00435-w#ref-CR49" id="ref-link-section-d122191348e2859">49</a></sup> The structural information of ECD indicates the roles of conserved venus fly trap (VFT) and cysteine-rich domain (CRD) on the ligand-binding site. Two conserved disulfide bonds between VFT domains stabilize the homodimers or heterodimers of class F GPCRs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="Geng, Y. et al. Structural mechanism of ligand activation in human GABA(B) receptor. Nature 504, 254–259 (2013)." href="/articles/s41392-020-00435-w#ref-CR50" id="ref-link-section-d122191348e2863">50</a></sup> The cryo-EM structures of the first full-length mGluR5<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019)." href="/articles/s41392-020-00435-w#ref-CR51" id="ref-link-section-d122191348e2868">51</a></sup> and more recently the GABA<sub>B</sub>Rs further revealed their assembly mechanism and overall architecture.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="#ref-CR52" id="ref-link-section-d122191348e2874">52</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020)." href="#ref-CR53" id="ref-link-section-d122191348e2874_1">53</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Park, J. et al. Structure of human GABAB receptor in an inactive state. Nature 584, 304–309 (2020)." href="#ref-CR54" id="ref-link-section-d122191348e2874_2">54</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Shaye, H. et al. Structural basis of the activation of a metabotropic GABA receptor. Nature 584, 298–303 (2020)." href="/articles/s41392-020-00435-w#ref-CR55" id="ref-link-section-d122191348e2877">55</a></sup> To date, 16 drugs have been approved by the FDA targeting 8 class C GPCRs. As archetypal receptors, mGluRs mediate the stimulus of agonists such as glutamate and their malfunction are implicated in various diseases, including cancer, schizophrenia, depression, and movement disorders. Acamprosate, an antagonist of mGluR5, was launched in 2004 as an anti-neoplastic agent.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="De Witte, P., Littleton, J., Parot, P. &amp; Koob, G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs 19, 517–537 (2005)." href="/articles/s41392-020-00435-w#ref-CR56" id="ref-link-section-d122191348e2881">56</a></sup> In fact, mGluRs have been vigorously pursued as therapeutic targets and there are 15 drug candidates undergoing clinical trials at present for pain, migraine, Parkinson’s disease, Fragile X syndrome, etc. Although allosteric modulators of class C have attracted significant development efforts involving 8 clinical trial stage compounds [2 positive (PAM) and 6 negative (NAM) allosteric modulators], the only success is cinacalcet, a small molecule PAM of CaSR approved in 2004 for hyperparathyroidism and calcimimetics.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="Messa, P., Alfieri, C. &amp; Brezzi, B. Cinacalcet: pharmacological and clinical aspects. Expert Opin. Drug Metab. Toxicol. 4, 1551–1560 (2008)." href="/articles/s41392-020-00435-w#ref-CR57" id="ref-link-section-d122191348e2885">57</a></sup></p><p>Only one class F GPCR (smoothed receptor SMO) has been validated as a drug target whose small molecule antagonists were approved as anti-neoplastic agents.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="Ruat, M., Hoch, L., Faure, H. &amp; Rognan, D. Targeting of smoothened for therapeutic gain. Trends Pharmacol. Sci. 35, 237–246 (2014)." href="/articles/s41392-020-00435-w#ref-CR58" id="ref-link-section-d122191348e2891">58</a></sup> Other 10 members of this class are all Frizzled receptors (FZD1–10), which mediate Wnt signaling and are essential for embryonic development and adult organisms. FZDs together with cognate Hedgehog and Wnt signal are associated with a variety of diseases such as cancer, fibrosis, and neurodegeneration.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="Schulte, G. &amp; Wright, S. C. Frizzleds as GPCRs - more conventional than we thought! Trends Pharmacol. Sci. 39, 828–842 (2018)." href="/articles/s41392-020-00435-w#ref-CR59" id="ref-link-section-d122191348e2895">59</a></sup> They share a conserved CRD in the extracellular part and ECD structures of SMO and FZD2/4/5/7/8 were determined.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="Zhang, X., Dong, S. &amp; Xu, F. Structural and druggability landscape of Frizzled G protein-coupled receptors. Trends Biochem. Sci. 43, 1033–1046 (2018)." href="/articles/s41392-020-00435-w#ref-CR60" id="ref-link-section-d122191348e2899">60</a></sup> However, only SMO, FZD4, and FZD5 have TMD structures.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Yang, S. et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560, 666–670 (2018)." href="#ref-CR61" id="ref-link-section-d122191348e2903">61</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, X. et al. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat. Commun. 8, 15383 (2017)." href="#ref-CR62" id="ref-link-section-d122191348e2903_1">62</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife. 9, e58464 (2020)." href="/articles/s41392-020-00435-w#ref-CR63" id="ref-link-section-d122191348e2906">63</a></sup> Lack of full-length structures and complexity in signaling pathways impeded drug discovery initiatives.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="Zhang, X., Dong, S. &amp; Xu, F. Structural and druggability landscape of Frizzled G protein-coupled receptors. Trends Biochem. Sci. 43, 1033–1046 (2018)." href="/articles/s41392-020-00435-w#ref-CR60" id="ref-link-section-d122191348e2910">60</a></sup> Linking of Wnt with extracellular CRD would activate downstream signaling, while the dimerization process and the interaction between CRD and TMD remain elusive.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Schulte, G. Frizzleds and WNT/beta-catenin signaling–The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur. J. Pharmacol. 763, 191–195 (2015)." href="/articles/s41392-020-00435-w#ref-CR64" id="ref-link-section-d122191348e2915">64</a></sup> It is known that the downstream effectors of Wnt signaling consist of β-catenin, planar cell polarity, and Ca<sup>2+</sup> pathways, whereas receptor activation involves in Wnt, Norrin, FZD, LDL receptor-related protein 5/6, and many other co-factors.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Schulte, G. Frizzleds and WNT/beta-catenin signaling–The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur. J. Pharmacol. 763, 191–195 (2015)." href="/articles/s41392-020-00435-w#ref-CR64" id="ref-link-section-d122191348e2921">64</a></sup> Key breakthrough is thus required to advance our knowledge of these receptors.</p></div></div></section><section data-title="Medicinal chemistry of GPCR"><div class="c-article-section" id="Sec6-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec6">Medicinal chemistry of GPCR</h2><div class="c-article-section__content" id="Sec6-content"><h3 class="c-article__sub-heading" id="Sec7">Agent type</h3><p>Agents targeting GPCRs continue to expand in the past decades. Among them, exogenous small molecules, including traditionally developed synthetic organics, natural products, and inorganics, still dominate with a total percentage of 64% (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig2">2</a>). Nevertheless, the proportion of small molecules declines since 2010. In addition to traditional ligand discovery, several new modalities appear, though currently at the stage of academic research. Covalent ligands, with the embedding of reactive moieties that can be covalently linked to receptors, significantly enhance the weak binding of unoptimized leads.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="Yang, X. et al. Development of covalent ligands for G protein-coupled receptors: a case for the human adenosine A3 receptor. J. Med. Chem. 62, 3539–3552 (2019)." href="/articles/s41392-020-00435-w#ref-CR65" id="ref-link-section-d122191348e2941">65</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Weichert, D. &amp; Gmeiner, P. Covalent molecular probes for class A G protein-coupled receptors: advances and applications. ACS Chem. Biol. 10, 1376–1386 (2015)." href="/articles/s41392-020-00435-w#ref-CR66" id="ref-link-section-d122191348e2944">66</a></sup> Photoactive ligands, developed by the introduction of photo-responsive groups to drug candidates, bring a new interdisciplinary field, photopharmacology. Albeit in its infancy, it has already found in vivo applications.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="Ricart-Ortega, M., Font, J. &amp; Llebaria, A. GPCR photopharmacology. Mol. Cell. Endocrinol. 488, 36–51 (2019)." href="/articles/s41392-020-00435-w#ref-CR67" id="ref-link-section-d122191348e2948">67</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="Hull, K., Morstein, J. &amp; Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018)." href="/articles/s41392-020-00435-w#ref-CR68" id="ref-link-section-d122191348e2951">68</a></sup></p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="251"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Analysis on agents targeting GPCRs. Distribution of molecule type (left) and action mode (right). Positive, PAM; Negative, NAM</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>In comparison, biologicals, such as peptides, antibodies, and metabolites, become more and more visible in the list. Particularly, the number of approved peptide drugs occupies approximately one third of the whole repertoire, with many more in different clinical stages as the pipeline<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 41" title="Davenport, A. P. et al. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 19, 389–413 (2020)." href="/articles/s41392-020-00435-w#ref-CR41" id="ref-link-section-d122191348e2974">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="Muratspahic, E., Freissmuth, M. &amp; Gruber, C. W. Nature-derived peptides: a growing niche for GPCR ligand discovery. Trends Pharmacol. Sci. 40, 309–326 (2019)." href="/articles/s41392-020-00435-w#ref-CR69" id="ref-link-section-d122191348e2977">69</a></sup>—most of them target classes A and B GPCRs. Naturally occurring peptides have been continually discovered from plants, animals, fungi, and bacteria. Although they act as efficient chemical messengers to modulate cellular functions, these peptides suffer from unfavorable pharmacokinetic and pharmacodynamics properties, such as very short plasma half-lives and low plasma protein binding. Therefore, chemical modifications are required to promote the membrane permeability, brain penetration, and oral bioavailability.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020)." href="/articles/s41392-020-00435-w#ref-CR70" id="ref-link-section-d122191348e2981">70</a></sup> Available strategies include peptide cyclization, <i>N</i>-methylation, palmitoylation, unnatural amino acid insertion, peptide–small molecule conjugation, and peptide self-assembly. By the way, developing peptidic agents may offer a new approach to de-orphanize certain orphan GPCRs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="Davenport, A. P. et al. International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967–986 (2013)." href="/articles/s41392-020-00435-w#ref-CR71" id="ref-link-section-d122191348e2988">71</a></sup></p><p>mAbs represent a promising alternative in GPCR drug discovery.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Hutchings, C. J. A review of antibody-based therapeutics targeting G protein-coupled receptors: an update. Expert Opin. Biol. Ther. 20, 925–935 (2020)." href="/articles/s41392-020-00435-w#ref-CR72" id="ref-link-section-d122191348e2994">72</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="Hutchings, C. J., Koglin, M., Olson, W. C. &amp; Marshall, F. H. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat. Rev. Drug Discov. 16, 787–810 (2017)." href="/articles/s41392-020-00435-w#ref-CR73" id="ref-link-section-d122191348e2997">73</a></sup> Over small molecules, mAbs possess obvious advantages of improved specificity, affinity, and other pharmacological properties. Thus they are being developed against cancers, inflammation, and metabolic disorders. To date, three GPCR-targeting mAbs were approved (mogamulizumab, erenumab, and eptinezumab) while bi-specific antibodies, nanobodies, antibody–drug conjugates, and antibody–peptide conjugation are also in the development stage.</p><p>The emergence of many conceptually new molecular entities, such as RNA aptamer, provides not only powerful tool for biophysical study but also potential therapeutic candidates.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Kahsai, A. W. et al. Conformationally selective RNA aptamers allosterically modulate the beta2-adrenoceptor. Nat. Chem. Biol. 12, 709–716 (2016)." href="/articles/s41392-020-00435-w#ref-CR74" id="ref-link-section-d122191348e3004">74</a></sup> Usually, aptamer has great molecular diversity and little immunogenicity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Yoon, S. &amp; Rossi, J. J. Aptamers: uptake mechanisms and intracellular applications. Adv. Drug Deliv. Rev. 134, 22–35 (2018)." href="/articles/s41392-020-00435-w#ref-CR75" id="ref-link-section-d122191348e3008">75</a></sup> In addition, GPCRs are known to function by forming dimers (homodimers or heterodimers) and oligomers on the cell membrane.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 76" title="Limbird, L. E., Meyts, P. D. &amp; Lefkowitz, R. J. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 64, 1160–1168 (1975)." href="/articles/s41392-020-00435-w#ref-CR76" id="ref-link-section-d122191348e3012">76</a></sup> Therefore, strategies to induce receptor dimerization and/or oligomerization have received attention using scaffolds based on DNA (aptamer), small molecule, and physical stimuli.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 77" title="Li, J. et al. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem. Soc. Rev. 49, 1545–1568 (2020)." href="/articles/s41392-020-00435-w#ref-CR77" id="ref-link-section-d122191348e3016">77</a></sup></p><h3 class="c-article__sub-heading" id="Sec8">Structure–activity relationship (SAR)</h3><p>Studies of SARs are critical to the identification of drug-like molecules, especially when the crystal or cryo-EM structure of a drug target is not available. Given that many 3D GPCR structures have been solved in the past decade, most approved drugs were discovered without relevant structural information. Two examples are reviewed below to show the importance of SAR analysis.</p><p>Orexin-1 and orexin-2 receptors (also known as hypocretin receptors, OX<sub>1</sub>R and OX<sub>2</sub>R) are class A GPCRs for which two endogenous peptide ligands were identified, orexin A and orexin B (also known as hypocretin 1 and hypocretin 2). The orexin signaling system plays a crucial role in regulating the sleep/wake cycle—both OX<sub>1</sub>R and OX<sub>2</sub>R are involved while the precise contribution of each has yet to be defined. Therefore, dual antagonists were developed as potential treatment for insomnia.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 78" title="Roecker, A. J., Cox, C. D. &amp; Coleman, P. J. Orexin receptor antagonists: new therapeutic agents for the treatment of insomnia. J. Med. Chem. 59, 504–530 (2016)." href="/articles/s41392-020-00435-w#ref-CR78" id="ref-link-section-d122191348e3038">78</a></sup> Suvorexant (belsomra), the first-in-class dual orexin receptor antagonist, was launched in 2014.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 79" title="Coleman, P. J. et al. The discovery of suvorexant, the first orexin receptor drug for insomnia. Annu Rev. Pharmacol. Toxicol. 57, 509–533 (2017)." href="/articles/s41392-020-00435-w#ref-CR79" id="ref-link-section-d122191348e3043">79</a></sup> The second, lemborexant/E2006 (dayvigo) developed by Eisai, was approved by the FDA in 2020.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 80" title="Scott, L. J. Lemborexant: first approval. Drugs 80, 425–432 (2020)." href="/articles/s41392-020-00435-w#ref-CR80" id="ref-link-section-d122191348e3047">80</a></sup> It started from hit compound <b>1</b> (<b>6</b>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig3">3</a>) with modest binding affinity to OX<sub>2</sub>R (<i>K</i><sub>i</sub> = 8.7 µM) and no affinity for OX<sub>1</sub>R.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="Yoshida, Y. et al. Design, synthesis, and structure-activity relationships of a series of novel N-aryl-2-phenylcyclopropanecarboxamide that are potent and orally active orexin receptor antagonists. Bioorg. Med. Chem. 22, 6071–6088 (2014)." href="/articles/s41392-020-00435-w#ref-CR81" id="ref-link-section-d122191348e3069">81</a></sup> The first round of SAR studies revealed that changing the ketone group to an amide led to a remarkable enhancement (~1000-fold) of binding affinity at both OX<sub>1</sub>R and OX<sub>2</sub>R (compound <b>2</b>). Substitution of the aniline group with a 2-amino-5-cyano pyridine (compound <b>3</b>) maintained OX<sub>2</sub>R affinity and reduced OX<sub>1</sub>R activity, but physicochemical properties were improved compared to compound <b>2</b>.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 81" title="Yoshida, Y. et al. Design, synthesis, and structure-activity relationships of a series of novel N-aryl-2-phenylcyclopropanecarboxamide that are potent and orally active orexin receptor antagonists. Bioorg. Med. Chem. 22, 6071–6088 (2014)." href="/articles/s41392-020-00435-w#ref-CR81" id="ref-link-section-d122191348e3091">81</a></sup> Further SAR studies focused on the modification of all three aromatic substitutions in compound <b>3</b>.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="Yoshida, Y. et al. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methy1}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide(E2006): a potent and efficacious oral orexin receptor antagonist. J. Med. Chem. 58, 4648–4664 (2015)." href="/articles/s41392-020-00435-w#ref-CR82" id="ref-link-section-d122191348e3099">82</a></sup> Changing the <i>di</i>-OMe-phenyl substituent to a pyrimidine group resulted in a significant loss of binding affinity, as shown with compound <b>4</b>, but an improved overall profile due to reduced lipophilicity and enhanced solubility. Then replacing the cyano group to a fluorine regained the binding affinity for both receptors (compound <b>5</b>), and finally adding a second fluorine to the benzene group significantly improved OX<sub>1</sub>R affinity and led to lemborexant.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 82" title="Yoshida, Y. et al. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methy1}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide(E2006): a potent and efficacious oral orexin receptor antagonist. J. Med. Chem. 58, 4648–4664 (2015)." href="/articles/s41392-020-00435-w#ref-CR82" id="ref-link-section-d122191348e3115">82</a></sup> Clearly, slight structural modifications may cause significant change of compound activity, and SAR studies coupled with optimization of physicochemical properties are useful steps to obtain druggable candidates.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="402"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>SAR studies that led to the discovery of the dual orexin receptor antagonist lemborexant</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>CGRP is a 37-amino acid neuropeptide and its receptor is implicated in migraine.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 83" title="Bell, I. M. Calcitonin gene-related peptide receptor antagonists: new therapeutic agents for migraine. J. Med. Chem. 57, 7838–7858 (2014)." href="/articles/s41392-020-00435-w#ref-CR83" id="ref-link-section-d122191348e3139">83</a></sup> The benzodiazapinone compound <b>7</b> was identified as a hit compound with modest CGRP receptor binding affinity (<i>K</i><sub>i</sub> = 4.8 µM, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig4">4</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 84" title="Williams, T. M. et al. Non-peptide calcitonin gene-related peptide receptor antagonists from a benzodiazepinone lead. Bioorg. Med. Chem. Lett. 16, 2595–2598 (2006)." href="/articles/s41392-020-00435-w#ref-CR84" id="ref-link-section-d122191348e3153">84</a></sup> Replacing the right-hand spirohydantoin structure with piperidyldihydroquinazolinone, a privileged structure for CGRP receptor antagonists,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 85" title="Rudolf, K. et al. Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists.1-[N-2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonistfor clinical trials in acute migraine. J. Med. Chem. 48, 5921–5931 (2005)." href="/articles/s41392-020-00435-w#ref-CR85" id="ref-link-section-d122191348e3158">85</a></sup> an affinity boost of 100-fold was gained.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 84" title="Williams, T. M. et al. Non-peptide calcitonin gene-related peptide receptor antagonists from a benzodiazepinone lead. Bioorg. Med. Chem. Lett. 16, 2595–2598 (2006)." href="/articles/s41392-020-00435-w#ref-CR84" id="ref-link-section-d122191348e3162">84</a></sup> Further optimization of the benzodiazepinone core resulted in the caprolactam compound <b>9</b>, which showed a <i>K</i><sub>i</sub> of 25 nM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 86" title="Shaw, A. W. et al. Caprolactams as potent CGRP receptor antagonists for the treatment of migraine. Bioorg. Med. Chem. Lett. 17, 4795–4798 (2007)." href="/articles/s41392-020-00435-w#ref-CR86" id="ref-link-section-d122191348e3173">86</a></sup> Changing the piperidyldihydroquinazolinone moiety to a piperidylazabenzimidazolone led to compound <b>10</b>, with a binding affinity of 11 nM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 87" title="Paone, D. V. et al. Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974). J. Med. Chem. 50, 5564–5567 (2007)." href="/articles/s41392-020-00435-w#ref-CR87" id="ref-link-section-d122191348e3181">87</a></sup> Then by changing the N-substituent on the caprolactam and adding <i>di</i>-fluro substitutions on the lower benzene ring delivered compound MK-0974 (<b>11</b>, <i>K</i><sub>i</sub> = 0.77 nM, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig4">4</a>), which entered clinical trials. Compound <b>12</b> (BMS-846372) shares the same piperidylazabenzimidazolone and the lower diflurobenzene substructures with <b>11</b> but differs from the latter with a carbamate core structure and a pyridine-fused-cyclopentane in replacement of the caprolactam.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 88" title="Luo, G. et al. Discovery of BMS-846372, a potent and orally active human CGRP receptor antagonist for the treatment of migraine. ACS Med. Chem. Lett. 3, 337–341 (2012)." href="/articles/s41392-020-00435-w#ref-CR88" id="ref-link-section-d122191348e3205">88</a></sup> Compound <b>11</b> displayed high binding affinity while suffered from poor physicochemical properties, such as low solubility. To improve this, a hydroxyl group was attached to the cycloheptane ring and it was discovered that the (<i>S</i>)-isomer <b>13</b> was more potent than the (<i>R</i>)-OH compound <b>14</b>. The –OH was finally replaced with an -NH<sub>2</sub> group, which led to the clinical compound rimegepant.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 89" title="Luo, G. et al. Discovery of (5S,6S,9R)-5-amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyri din-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): an oral calcitonin gene-related peptide (CGRP) antagonist in clinical trials for treating migraine. J. Med. Chem. 55, 10644–10651 (2012)." href="/articles/s41392-020-00435-w#ref-CR89" id="ref-link-section-d122191348e3227">89</a></sup> The latter was further developed for better safety and efficacy profiles and obtained regulatory approval by the FDA in 2020.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="462"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>SAR studies that resulted in the discovery of CGRP antagonists</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The above examples demonstrate that, starting from a modest affinity hit compound, systematic SAR studies could successfully lead to very potent GPCR ligands that qualify as clinical candidates. Slight modifications of chemical structures sometimes cause remarkable changes of binding affinity or potency, which could not always be accurately predicted by conventional methods, such as docking. Therefore, SAR studies will continue to play a critical role in drug discovery.</p></div></div></section><section data-title="GPCR structure"><div class="c-article-section" id="Sec9-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec9">GPCR structure</h2><div class="c-article-section__content" id="Sec9-content"><p>The structure of GPCRs is a crucial determinant for understanding the molecular mechanisms underlying ligand recognition and receptor activation. It provides a foundation for drug discovery. The first crystal structure of inactive state rhodopsin purified from bovine eyes was solved in 2000.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 90" title="Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000)." href="/articles/s41392-020-00435-w#ref-CR90" id="ref-link-section-d122191348e3260">90</a></sup> Although tremendous efforts have been made, elucidation of GPCR structures remains challenging due to several bottlenecks, including low receptor expression level, difficulties in extraction, highly flexible conformation, lack of crystal contacts, etc. The first crystal structure of GPCR extracted from exogenously expressed host cells, the human β2-adrenergic receptor (β<sub>2</sub>AR, gene name: <i>ADRB2</i>) bound to an antagonist, was disclosed in 2007, representing a milestone in GPCR structural biology.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)." href="/articles/s41392-020-00435-w#ref-CR7" id="ref-link-section-d122191348e3269">7</a></sup> Several innovative methods, especially the incorporation of a soluble fusion partner and lipidic cubic phase (LCP) crystallization, facilitated subsequent studies. Further technological breakthroughs in protein expression and purification,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 91" title="Hanson, M. A. et al. Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr. Purif. 56, 85–92 (2007)." href="/articles/s41392-020-00435-w#ref-CR91" id="ref-link-section-d122191348e3273">91</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 92" title="Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003–1008 (2010)." href="/articles/s41392-020-00435-w#ref-CR92" id="ref-link-section-d122191348e3276">92</a></sup> receptor engineering,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007)." href="/articles/s41392-020-00435-w#ref-CR8" id="ref-link-section-d122191348e3281">8</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 93" title="Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012)." href="/articles/s41392-020-00435-w#ref-CR93" id="ref-link-section-d122191348e3284">93</a></sup> application of Fab fragment and nanobody,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 94" title="Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175–180 (2011)." href="/articles/s41392-020-00435-w#ref-CR94" id="ref-link-section-d122191348e3288">94</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 95" title="Rasmussen, S. G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007)." href="/articles/s41392-020-00435-w#ref-CR95" id="ref-link-section-d122191348e3291">95</a></sup> and GPCR crystallization<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 96" title="Caffrey, M. Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem. Soc. Trans. 39, 725–732 (2011)." href="/articles/s41392-020-00435-w#ref-CR96" id="ref-link-section-d122191348e3295">96</a></sup> led to an exponential growth of this field.</p><p>The crystal structure of β<sub>2</sub>AR in complex with stimulatory G protein (G<sub>s</sub>) solved in 2011<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 97" title="Rasmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011)." href="/articles/s41392-020-00435-w#ref-CR97" id="ref-link-section-d122191348e3306">97</a></sup> and rhodopsin bound to visual arrestin reported in 2015<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 98" title="Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015)." href="/articles/s41392-020-00435-w#ref-CR98" id="ref-link-section-d122191348e3310">98</a></sup> revealed the molecular mechanism of GPCR interaction with G protein and arrestin, respectively. Notably, the wave of resolution revolution in the single-particle cryo-EM has brought a significant impact on the determination of GPCR complexes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Safdari, H. A., Pandey, S., Shukla, A. K. &amp; Dutta, S. Illuminating GPCR signaling by cryo-EM. Trends Cell Biol. 28, 591–594 (2018)." href="/articles/s41392-020-00435-w#ref-CR10" id="ref-link-section-d122191348e3314">10</a></sup> Over 90% of GPCR–transducer complex structures were solved using cryo-EM (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab4">4</a>). To date, a total of 455 structures from 82 GPCRs belonging to all classes except B2 have been reported (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab4">4</a>). Although GPCRs show extensive sequence diversity, they share a conversed structural architecture of a TMD composed of seven helices embedded in the cell membrane. The transmembrane (TM) helices, essential for signal transduction across the cell membrane, are linked by three extracellular loops (ECLs) and three intracellular loops (ICLs). However, distinct structural features exist among members from different classes despite their overall structural similarity.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 List of GPCR structures</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Various ligands of class A GPCRs bind to similar orthosteric sites directly in the helix bundle. Structural variations in ECLs, TM helices, and side chains show a remarkable variety of sizes, shapes, and physicochemical properties of the ligand-binding pockets, leading to diversified mechanisms of ligand recognition.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Katritch, V., Cherezov, V. &amp; Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013)." href="/articles/s41392-020-00435-w#ref-CR99" id="ref-link-section-d122191348e5582">99</a></sup> For example, ligand binding, access, and selectivity are affected by ECL2.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 100" title="Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012)." href="/articles/s41392-020-00435-w#ref-CR100" id="ref-link-section-d122191348e5586">100</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 101" title="Zhang, H. et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J. Biol. Chem. 290, 29127–29139 (2015)." href="/articles/s41392-020-00435-w#ref-CR101" id="ref-link-section-d122191348e5589">101</a></sup> Many published GPCR structures are in an antagonist-bound inactive state, but the number of agonist-bound active state structures have been increased steadily in recent years due to the deployment of cryo-EM. Additionally, the structure of human M2R bound to a PAM (LY2119620) unveiled the allosteric ligand recognition mechanism.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013)." href="/articles/s41392-020-00435-w#ref-CR102" id="ref-link-section-d122191348e5593">102</a></sup> A summary of complicated recognition and modulation mechanisms of class A GPCRs bound to agonist, antagonist, and PAM is illustrated in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5a</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="347"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>Structural features and common activation mechanism of class A GPCRs. <b>a</b> Ligand-binding pockets. Agonist, antagonist, and allosteric ligand are indicated as sticks in yellow, green, and salmon, respectively. Ligands are shown from the following structures (PDB code): 2RH1, 3PWH, 3VW7, 4IAR, 4MQT, 4PHU, 4RWS, 4XEE, 4XNV, 4Z35, and 4ZJ8. <b>b</b>–<b>f</b> The common activation pathway of class A GPCRs as exampled by the structures of inactive (gray, PDB code 3NYA) and active β<sub>2</sub>AR (green, PDB code 3SN6). The conformational changes of conserved “micro-switches”, including CWxP (<b>b</b>), PIF (<b>c</b>), Na<sup>+</sup> pocket (<b>d</b>), NPxxY (<b>e</b>), and DRY (<b>f</b>), are highlighted. Side chains of residues in “micro-switches” are shown as sticks. Red arrows indicate the shift and swing directions of elements in the active β<sub>2</sub>AR structure relative to the inactive one</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Class A GPCRs are activated through a common pathway, which strings the conserved “micro-switches” together, including CWxP, PIF, Na<sup>+</sup> pocket, NPxxY, and DRY, thereby linking the ligand-binding pocket to the G protein-coupling region (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5b–f</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Katritch, V., Cherezov, V. &amp; Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013)." href="/articles/s41392-020-00435-w#ref-CR99" id="ref-link-section-d122191348e5657">99</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="Zhou, Q. et al. Common activation mechanism of class A GPCRs. Elife. 8, e50279 (2019)." href="/articles/s41392-020-00435-w#ref-CR103" id="ref-link-section-d122191348e5660">103</a></sup> The binding of diverse agonists triggers the rotameric switch of W<sup>6.48</sup>, a highly conserved residue in the “CWxP” motif, and the concomitant side chain rotation of F<sup>6.44</sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5b</a>). Upon stimulation by an agonist, conformational rearrangement occurs in the PIF (P<sup>5.50</sup>, I<sup>3.40</sup>, and F<sup>6.44</sup>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5c</a>) and the Na<sup>+</sup> pocket residues (D<sup>2.50</sup>, S<sup>3.39</sup>, N<sup>7.45</sup>, and N<sup>7.49</sup>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5d</a>). These reorganizations rigger the notable outward displacement of TM6, the hallmark of class A GPCR activation (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5b</a>). The repacking of Na<sup>+</sup> pocket residues initiates the TM7 movement toward TM3. Upon receptor activation, the “NPxxY” residue Y<sup>7.53</sup> changes its rotamer conformation and points toward TM3, rendering new contact formation between Y<sup>7.53</sup> and residues in TM3 (L<sup>3.43</sup>, I<sup>3.46</sup>, and R<sup>3.50</sup>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5e</a>) and subsequently the enhanced packing of TM3–TM7. Finally, “DRY”, one of the most conserved motifs in class A receptors, locates at the bottom of the 7TM and forms an intra-helical salt bridge between D/E<sup>3.49</sup> and R<sup>3.50</sup>. R<sup>3.50</sup> forms an additional inter-helical salt bridge with D<sup>6.30</sup>, known as the ionic lock, which connects the intracellular ends of TM3 and TM6 to stabilize receptors in an inactive state (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig5">5f</a>). These contacts are eliminated after agonist binding, and R<sup>3.50</sup> is released to interact with other residues to facilitate the G protein coupling. It is notable that an acidic residue at position 6.30 is less conserved in 30% of class A receptors. Alternatively, R<sup>3.50</sup> may form polar interactions with other polar residues in TM6 (i.e., T<sup>6.34</sup> in κ-OR and μ-OR) to mediate the activation. Collectively, these rearrangements and reorganizations of conserved motifs are critical to the activation of class A GPCRs.</p><p>Class B GPCRs contain a large ECD and a TMD bundle with the peptide ligand recognition by both domains. According to the two-domain-binding model, the C-terminus of the peptide interacts with the ECD and orient the N-terminus of the peptide toward the TMD bundle. It then engages with the TMD core to facilitate receptor activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 104" title="Karageorgos, V. et al. Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones 17, 45–59 (2018)." href="/articles/s41392-020-00435-w#ref-CR104" id="ref-link-section-d122191348e5737">104</a></sup> The most remarkable structural feature of this class is the swing of ECD, accompanied by the corresponding shift of the peptide C-terminus (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig6">6a, b</a>). Conversely, the N-terminus inserts into a V-shape cavity within the helix bundle with a similar binding pose. Compared to small molecule-binding pocket of class A, that of class B is more solvent-accessible with higher flexibility and larger volume to accommodate sizeable peptidic ligands.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017)." href="/articles/s41392-020-00435-w#ref-CR9" id="ref-link-section-d122191348e5744">9</a></sup> In addition, structural studies also reveal an antagonist-binding pocket deep in the TMD bundle of CRF1R<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 105" title="Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013)." href="/articles/s41392-020-00435-w#ref-CR105" id="ref-link-section-d122191348e5748">105</a></sup> and a common binding site for allosteric modulators of GCGR<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 106" title="Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016)." href="/articles/s41392-020-00435-w#ref-CR106" id="ref-link-section-d122191348e5752">106</a></sup> and GLP-1R<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017)." href="/articles/s41392-020-00435-w#ref-CR107" id="ref-link-section-d122191348e5757">107</a></sup> located outside the TMD bundle between TM6 and TM7 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig6">6c</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="774"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Structural features and common activation mechanism of class B GPCRs. <b>a</b>, <b>b</b> Structural features of the peptide-binding pocket. The shift of peptide C-terminus (<b>a</b>) and ECD (<b>b</b>) is indicated as red arrows. The peptides urocortin 1 (UCN1)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Insel, P. A. et al. GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol. Sci. 40, 378–387 (2019)." href="/articles/s41392-020-00435-w#ref-CR1" id="ref-link-section-d122191348e5786">1</a></sup> bound to CRF1R (light blue, PDB code: 6PB0), UCN1<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Sriram, K. &amp; Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018)." href="/articles/s41392-020-00435-w#ref-CR2" id="ref-link-section-d122191348e5791">2</a></sup> bound to CRF2R (salmon, PDB code: 6PB1), PACAP38 (red, PDB code: 6P9Y), long-acting PTH (LA-PTH, green, PDB code: 6NBF), GLP-1 (cyan, PDB code: 5VAI), sCT (yellow, PDB code: 6NIY), and CGRP (magenta, PDB code: 6PB1) are shown as cartoons. Binding poses of the antagonist (green) and allosteric ligand (salmon) are shown as sticks (<b>c</b>, PDB codes: 4K5Y, 5EE7, 4Z9G, 5VEW, and 5VEX). <b>d</b>, <b>e</b> The common activation mechanism of class B GPCRs as exampled by the structures of inactive GCGR (gray, PDB code 3NYA) and active VIP1R (green, PDB code 6VN7). Side chains of residues in three conserved polar network are shown in stick presentation. The conserved P<sup>6.47b</sup>xxG<sup>6.50b</sup> motifs in TM6 are shown as single red spheres</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>A comparison of the full-length active receptor structures with that in the inactive state reveals a general activation mechanism for class B GPCRs (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig6">6d, e</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017)." href="/articles/s41392-020-00435-w#ref-CR9" id="ref-link-section-d122191348e5822">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 108" title="Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat. Commun. 11, 4121 (2020)." href="/articles/s41392-020-00435-w#ref-CR108" id="ref-link-section-d122191348e5825">108</a></sup> The binding of a peptidic ligand causes a conformation rearrangement of the central polar network with simultaneous destabilization of the TM6 helix, thus initiating a sharp kink formation at the conserved motif P<sup>6.47b</sup>xxG<sup>6.50b</sup>. This central polar network is preserved across the class B receptors solved so far. However, the exact interactions may vary among different members in a ligand- and receptor-specific manner. The rearrangement of TM6 breaks the polar interaction of the conserved HETX motif and the TM2-6-7-helix 8 polar network, thereby inducing a notable outward displacement of TM6 and creating a cytoplasmic cavity to accommodate α5 helix of Gα<sub>s</sub> protein.</p><p>Class C GPCRs are distinguished by a characteristically large ECD that forms an obligate dimer. The ECD is distal to the TMD and contains an orthosteric ligand-binding pocket. It is composed of a ligand-binding VFT linked by the CRD to the TMD except for the metabotropic GABA<sub>B</sub> receptor (GABA<sub>B</sub>R), which lacks CRD (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7a–d</a>). This structural feature results in a potentially unique ligand recognition mechanism. The full-length structures of mGlu5 in <i>apo</i> and agonist-bound states,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019)." href="/articles/s41392-020-00435-w#ref-CR51" id="ref-link-section-d122191348e5848">51</a></sup> as well as several recently reported full-length structures of GABA<sub>B</sub>Rs,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="/articles/s41392-020-00435-w#ref-CR52" id="ref-link-section-d122191348e5855">52</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020)." href="/articles/s41392-020-00435-w#ref-CR53" id="ref-link-section-d122191348e5858">53</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Shaye, H. et al. Structural basis of the activation of a metabotropic GABA receptor. Nature 584, 298–303 (2020)." href="/articles/s41392-020-00435-w#ref-CR55" id="ref-link-section-d122191348e5861">55</a></sup> have significantly extended our understanding of the activation mechanism of the class C receptors. It is known that an agonist binds and stabilizes the conformation of the VFT, leading to compaction of the inter-subunit dimer interface and proximity of the CRD (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7a, b</a>). This conformation transition, in turn, triggers TMD rearrangement through interaction between ECL2 and CRD.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019)." href="#ref-CR51" id="ref-link-section-d122191348e5868">51</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="#ref-CR52" id="ref-link-section-d122191348e5868_1">52</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020)." href="/articles/s41392-020-00435-w#ref-CR53" id="ref-link-section-d122191348e5871">53</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Shaye, H. et al. Structural basis of the activation of a metabotropic GABA receptor. Nature 584, 298–303 (2020)." href="/articles/s41392-020-00435-w#ref-CR55" id="ref-link-section-d122191348e5874">55</a></sup> In contrast to mGlu5, the GABA<sub>B</sub>R undergoes a featured asymmetric activation. After the binding of agonist baclofen to GABA<sub>B1</sub> (GB1) subunit, the latter only exhibits a negligible conformational change. Additionally, due to lacking CRD in the GABA<sub>B</sub>Rs, the relatively shorter stalk and ECL2 region may rigidify their conformations and mediate the transduction of conformational changes from VFT to 7TM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020)." href="/articles/s41392-020-00435-w#ref-CR53" id="ref-link-section-d122191348e5885">53</a></sup> In contrast, substantial conformational alterations occur at the stalk and TM3/4/5-ICL3 regions at the cytoplasmic part of GB2 (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7c, d</a>), which predominantly couples to G<sub>i1</sub> heterotrimer. Interestingly, cholesterols are observed at the TMD interface of inactive GABA<sub>B</sub>Rs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="/articles/s41392-020-00435-w#ref-CR52" id="ref-link-section-d122191348e5896">52</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7c</a>), while two chained phospholipids occupy a binding site overlapped with the orthosteric binding pocket in class A GPCRs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="/articles/s41392-020-00435-w#ref-CR52" id="ref-link-section-d122191348e5904">52</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. Nature 584, 310–314 (2020)." href="/articles/s41392-020-00435-w#ref-CR53" id="ref-link-section-d122191348e5907">53</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7c, d</a>). These cholesterols and phospholipids may contribute to the activity regulation of the GABA<sub>B</sub>R. Noteworthy, in contrast to other allosteric modulators that bind to the TMD core of class C GPCRs (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7e</a>),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Dore, A. S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557–562 (2014)." href="#ref-CR109" id="ref-link-section-d122191348e5919">109</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Thal, D. M., Glukhova, A., Sexton, P. M. &amp; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018)." href="#ref-CR110" id="ref-link-section-d122191348e5919_1">110</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 111" title="Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014)." href="/articles/s41392-020-00435-w#ref-CR111" id="ref-link-section-d122191348e5922">111</a></sup> (+)-BHFF occupies a novel allosteric site at the interface of TMDs in GB1 and GB2 subunits<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020)." href="/articles/s41392-020-00435-w#ref-CR52" id="ref-link-section-d122191348e5927">52</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig7">7d</a>). This novel allosteric binding site may provide a promising template for the design of PAMs for GABA<sub>B</sub>Rs.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="259"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Structural features and activation mechanism of class C GPCRs. The structures of mGlu5 in resting state (<b>a</b>, PDB code: 6N52) and active state (<b>b</b>, PDB code: 6N51), as well as GABA<sub>B</sub>R in inactive (<b>c</b>, PDB code: 7C7S) and active states (<b>d</b>, PDB code: 7C7Q) are displayed, respectively. Agonists L-quisqualate (<b>b</b>, magenta) and antagonist CGP54626 (<b>c</b>, cyan) of mGlu5 as well as agonist baclofen (<b>d</b>, magenta) and allosteric modulator (+)-BHFF (<b>d</b>, yellow) of GABA<sub>B</sub>R are shown as spheres. Cholesterols (<b>c</b>, yellow) and phospholipids (<b>c</b>, <b>d</b>, salmon) are indicated as sticks. Binding of allosteric ligands to TMD of class C GPCR is indicated as salmon sticks (<b>e</b>, PDB codes: 4OR2, 4OO9, 5CGC, and 6FFH)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Class F GPCRs include SMO and 10 FZDs in humans. Besides a canonical TMD across all classes of GPCRs, class F is characterized by a large ECD composed of a CRD and an ECD linker domain to connect with TMD (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig8">8a, b</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 112" title="Schulte, G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 62, 632–667 (2010)." href="/articles/s41392-020-00435-w#ref-CR112" id="ref-link-section-d122191348e6002">112</a></sup> It was reported that SMO has a unique allosteric modulation mechanism.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016)." href="/articles/s41392-020-00435-w#ref-CR113" id="ref-link-section-d122191348e6006">113</a></sup> In fact, two ligand-binding sites have been identified: one in CRD and the other in TMD (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig8">8b</a>). SMO is activated by cholesterol via binding to CRD. The binding of an antagonist to TMD was proposed to trigger its conformation change thereby propagating to CRD and allosterically impeding the binding of cholesterol.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016)." href="/articles/s41392-020-00435-w#ref-CR113" id="ref-link-section-d122191348e6013">113</a></sup> Recent structural studies reveal that cholesterol and oxysterol that are critical for SMO activation are located deep within the 7TM domain of SMO (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig8">8b, c</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571, 284–288 (2019)." href="/articles/s41392-020-00435-w#ref-CR114" id="ref-link-section-d122191348e6021">114</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 115" title="Qi, X. et al. Cryo-EM structure of oxysterol-bound human smoothened coupled to a heterotrimeric Gi. Nature 571, 279–283 (2019)." href="/articles/s41392-020-00435-w#ref-CR115" id="ref-link-section-d122191348e6024">115</a></sup> CRD of FZD can interact with lipoglycoprotein Wnt and Norrin (specific ligand for FZD4) to mediate the Wnt signaling.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Yang, S. et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560, 666–670 (2018)." href="/articles/s41392-020-00435-w#ref-CR61" id="ref-link-section-d122191348e6028">61</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 116" title="Nusse, R. &amp; Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017)." href="/articles/s41392-020-00435-w#ref-CR116" id="ref-link-section-d122191348e6031">116</a></sup> Structures of CRD in complex with Wnt or Norrin provided molecular details of how they formed a symmetrical homodimer (2:2 complex) during ligand recognition (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig8">8d, e</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 117" title="Hirai, H. et al. Crystal structure of a mammalian Wnt-frizzled complex. Nat. Struct. Mol. Biol. 26, 372–379 (2019)." href="/articles/s41392-020-00435-w#ref-CR117" id="ref-link-section-d122191348e6038">117</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 118" title="Shen, G. et al. Structural basis of the Norrin-Frizzled 4 interaction. Cell Res. 25, 1078–1081 (2015)." href="/articles/s41392-020-00435-w#ref-CR118" id="ref-link-section-d122191348e6041">118</a></sup> In contrast to SMO, the ligand recognition and receptor activation mechanisms of FZD remains elusive due to the absence of the full-length FZD structures. So far, only two <i>apo</i> TMD structures of FZD4 and FZD5 have been reported (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig8">8f</a>).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Yang, S. et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560, 666–670 (2018)." href="/articles/s41392-020-00435-w#ref-CR61" id="ref-link-section-d122191348e6052">61</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife. 9, e58464 (2020)." href="/articles/s41392-020-00435-w#ref-CR63" id="ref-link-section-d122191348e6055">63</a></sup> Structures of the full-length FZD in a ligand-bound state are required awaiting to provide mechanistic explanations.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="250"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>Structural feature of class F GPCRs. <b>a</b> Superposition of SMO crystal structures bound to agonists (yellow sticks) and antagonists (green sticks). The following structures are shown (PDB codes): 4JKV, 4N4W, 4O9R, 4QIM, and 5V56. CRD and LD (linker domain) are highlighted; <b>b</b> A comparison of structures of full-length SMO in the active state (PDB codes: 5L7D and 6O3C). Cholesterols are indicated. SAG21K, the agonist of SMO, is shown as yellow spheres. <b>c</b> The cryo-EM structure of SMO TMD in complex with G<sub>i</sub> heterotrimer (PDB code: 6OT0). The agonist 24(S),25-epoxycholesterol is shown as magenta sticks. <b>d</b> Crystal structures of the Wnt3-FZD8 CRD complex. <b>e</b> Crystal structures of the Norrin-FZD4 CRD complex. <b>f</b> A comparison of the <i>apo</i> TMD structures of FZD4 (PDB code: 6BD4, yellow) and FZD5 (PDB code: 6WW2, green)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="GPCR pharmacology"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10">GPCR pharmacology</h2><div class="c-article-section__content" id="Sec10-content"><p>The explosion of 3D GPCR structures and computational simulations has revealed the dynamic conformations between inactive, intermediate, and active states of GPCRs. The detailed structural information illustrated that cholesterol, ion, lipids, and water also participate in receptor activation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 99" title="Katritch, V., Cherezov, V. &amp; Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013)." href="/articles/s41392-020-00435-w#ref-CR99" id="ref-link-section-d122191348e6109">99</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 119" title="Huang, P. et al. Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell 166, 1176.e14–1187.e14 (2016)." href="/articles/s41392-020-00435-w#ref-CR119" id="ref-link-section-d122191348e6112">119</a></sup> The flexibility of receptor-binding pocket endows the complex pharmacological mechanisms of ligand recognition and signal transduction. Biased signaling, allosteric modulation, and polypharmacology are helping us better understand how GPCRs bind to numerous ligands and how they transmit diverse signals to elicit physiological functions.</p><h3 class="c-article__sub-heading" id="Sec11">Polypharmacology</h3><p>Ligand binding to multiple targets leads to antagonism, additive, or synergism pharmacological responses that could be positive or negative based on the mechanism of action. The paradigm of one drug vs. multiple targets has outpaced the time and cost associated with the conventional therapy.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="Anighoro, A., Bajorath, J. &amp; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem. 57, 7874–7887 (2014)." href="/articles/s41392-020-00435-w#ref-CR120" id="ref-link-section-d122191348e6123">120</a></sup> Polypharmacology thus emerges to study acceptable degree of specificity toward multiple targets, interconnected signaling pathways that result in clinical benefit or cross-reactivity that may cause adverse events.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="Corbett, A., Williams, G. &amp; Ballard, C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals 6, 1304–1321 (2013)." href="/articles/s41392-020-00435-w#ref-CR121" id="ref-link-section-d122191348e6127">121</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 122" title="Ravikumar, B. &amp; Aittokallio, T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin. Drug Discov. 13, 179–192 (2018)." href="/articles/s41392-020-00435-w#ref-CR122" id="ref-link-section-d122191348e6130">122</a></sup> T2DM, obesity, cancer, and Alzheimer’s disease are major indications for GPCR modulators.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e6134">4</a></sup> These polygenic diseases are not completely treatable by a single agent, while desirable efficacies may be achieved for certain respiratory conditions, central nervous system (CNS) disorders, and cardiovascular diseases through modulators directed against β<sub>2</sub>AR, DRD2, and AGTR1,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 123" title="Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018)." href="/articles/s41392-020-00435-w#ref-CR123" id="ref-link-section-d122191348e6140">123</a></sup> respectively.</p><p>It was shown that 5-hydroxytryptamine receptor 2 (5-HT<sub>2</sub>) binds to selective inverse (ritanserin) and highly promiscuous (ergotamine) agonists but the interaction with ergotamine is broad.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 121" title="Corbett, A., Williams, G. &amp; Ballard, C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals 6, 1304–1321 (2013)." href="/articles/s41392-020-00435-w#ref-CR121" id="ref-link-section-d122191348e6149">121</a></sup> This feature allows the development of pan serotonin receptor modulators to treat different diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Palacios, J. M., Pazos, A. &amp; Hoyer, D. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology 234, 1395–1418 (2017)." href="#ref-CR124" id="ref-link-section-d122191348e6153">124</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Pogorelov, V. M. et al. 5-HT2C agonists modulate schizophrenia-like behaviors in mice. Neuropsychopharmacology 42, 2163–2177 (2017)." href="#ref-CR125" id="ref-link-section-d122191348e6153_1">125</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="McCorvy, J. D. &amp; Roth, B. L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 150, 129–142 (2015)." href="#ref-CR126" id="ref-link-section-d122191348e6153_2">126</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 127" title="Sexton, P. M. &amp; Christopoulos, A. To bind or not to bind: unravelling GPCR polypharmacology. Cell 172, 636–638 (2018)." href="/articles/s41392-020-00435-w#ref-CR127" id="ref-link-section-d122191348e6156">127</a></sup> For instance, zolmitriptan as an anti-migraine drug is also used for hyperesthesia via binding to off-target site,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="Anighoro, A., Bajorath, J. &amp; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem. 57, 7874–7887 (2014)." href="/articles/s41392-020-00435-w#ref-CR120" id="ref-link-section-d122191348e6160">120</a></sup> and lorcaserin (Belviq) is used to treat obesity while its therapeutic potential for depression, schizophrenia, and drug addiction is being investigated.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 128" title="Garland, S. L. Are GPCRs still a source of new targets? J. Biomol. Screen. 18, 947–966 (2013)." href="/articles/s41392-020-00435-w#ref-CR128" id="ref-link-section-d122191348e6164">128</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. J. Med. Chem. 61, 3218–3223 (2018)." href="/articles/s41392-020-00435-w#ref-CR129" id="ref-link-section-d122191348e6167">129</a></sup> However, off-target activity, hallucinations,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 130" title="Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016)." href="/articles/s41392-020-00435-w#ref-CR130" id="ref-link-section-d122191348e6172">130</a></sup> and cardiac valvulopathy related to 5-HT<sub>2A</sub> and 5-HT<sub>2B</sub> modulation<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. J. Med. Chem. 61, 3218–3223 (2018)." href="/articles/s41392-020-00435-w#ref-CR129" id="ref-link-section-d122191348e6180">129</a></sup> should be carefully monitored. Atypical antipsychotics are mainly targeting both dopamine and serotonin receptors, usually as antagonist for DRD2 and antagonist or inverse agonist for 5-HT<sub>2A.</sub><sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="Butini, S. et al. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol. 142, 68–103 (2016)." href="/articles/s41392-020-00435-w#ref-CR131" id="ref-link-section-d122191348e6185">131</a></sup> Exemplified by clozapine<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 120" title="Anighoro, A., Bajorath, J. &amp; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem. 57, 7874–7887 (2014)." href="/articles/s41392-020-00435-w#ref-CR120" id="ref-link-section-d122191348e6190">120</a></sup> and aripiprazole,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017)." href="/articles/s41392-020-00435-w#ref-CR132" id="ref-link-section-d122191348e6194">132</a></sup> haloperidol, amoxapine, and asenapine<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e6198">4</a></sup> display a diverse spectrum of receptor interaction. Additionally, carazolol, a member of aminergic division exerts its effects by interacting with multiple adrenergic receptors as inverse agonist or allosteric antagonist.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Basith, S. et al. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front. Pharmacol. 9, 128 (2018)." href="/articles/s41392-020-00435-w#ref-CR19" id="ref-link-section-d122191348e6202">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 129" title="Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. J. Med. Chem. 61, 3218–3223 (2018)." href="/articles/s41392-020-00435-w#ref-CR129" id="ref-link-section-d122191348e6205">129</a></sup> Istradefylline combined with L-DOPA/dopamine simultaneously target A<sub>2A</sub>R, DRD1 and DRD2 in animal model of Parkinson’s disease.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 131" title="Butini, S. et al. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol. 142, 68–103 (2016)." href="/articles/s41392-020-00435-w#ref-CR131" id="ref-link-section-d122191348e6211">131</a></sup> Amitryptyline, a tricyclic compound targeting muscarinic and histamine H1 receptors,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 133" title="Wu, Z. et al. Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches. Pharmacol. Res. 129, 400–413 (2018)." href="/articles/s41392-020-00435-w#ref-CR133" id="ref-link-section-d122191348e6216">133</a></sup> is used to treat depression and non-selective muscarinic receptor antagonists are trialed for bladder dysfunction.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017)." href="/articles/s41392-020-00435-w#ref-CR4" id="ref-link-section-d122191348e6220">4</a></sup> Lorazepam, indicated for anxiety due to interaction with GABA<sub>A</sub>R, is also an allosteric modulator of the proton-sensing GPCR (GPR68)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 134" title="Huang, X. P. et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527, 477–483 (2015)." href="/articles/s41392-020-00435-w#ref-CR134" id="ref-link-section-d122191348e6226">134</a></sup> and has been repurposed to treat pancreatic cancer.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Sriram, K. &amp; Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018)." href="/articles/s41392-020-00435-w#ref-CR2" id="ref-link-section-d122191348e6230">2</a></sup> 6’-Guanidinonaltrindole (6’-GNTI) is an agonist with higher selectivity for δ/κ-opioid receptor heterodimer but not homodimer. Importantly, 6’-GNTI is an analgesic that offers additional benefit. In cardiovascular diseases, β blockers decrease catecholamine-induced heart rate elevation via interaction with valsartan (AT1R-mediated signaling).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 135" title="Jacoby, E., Bouhelal, R., Gerspacher, M. &amp; Seuwen, K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 1, 761–782 (2006)." href="/articles/s41392-020-00435-w#ref-CR135" id="ref-link-section-d122191348e6234">135</a></sup> It is of note that mono-, dual-, and tri-agonists for the glucagon family of receptors (GLP-1R, GCGR, and GIPR) have been developed and trialed for weight loss and glucose control (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab3">3</a>). Successful outcome will determine whether unimolecular polypharmacology is a practical approach to translate safety and efficacy of multiple agents into a single molecule.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 136" title="Quinones, M. et al. Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opin. Drug Discov. 14, 421–431 (2019)." href="/articles/s41392-020-00435-w#ref-CR136" id="ref-link-section-d122191348e6242">136</a></sup></p><h3 class="c-article__sub-heading" id="Sec12">Biased agonism</h3><p>Activated GPCRs can recruit multiple transducers (such as heterotrimeric G proteins, GPCR kinases, and β-arrestin) and consequently produce distinct biological responses. Ligands that preferentially engage one signaling pathway over others are regarded as bias and may show improved therapeutic outcomes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 137" title="Smith, J. S., Lefkowitz, R. J. &amp; Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018)." href="/articles/s41392-020-00435-w#ref-CR137" id="ref-link-section-d122191348e6253">137</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 138" title="Tan, L., Yan, W., McCorvy, J. D. &amp; Cheng, J. Biased ligands of G protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. J. Med. Chem. 61, 9841–9878 (2018)." href="/articles/s41392-020-00435-w#ref-CR138" id="ref-link-section-d122191348e6256">138</a></sup> Biased signaling that has been applied to drug discovery involve AT2R, µ-OR, κ-OR, β-adrenergic receptors, DRD2, CTR, CCR, and adenosine receptors. µ-OR is the best studied receptor for biased agonism.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 137" title="Smith, J. S., Lefkowitz, R. J. &amp; Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018)." href="/articles/s41392-020-00435-w#ref-CR137" id="ref-link-section-d122191348e6260">137</a></sup> Compounds that stimulate Gα<sub>i</sub> coupling and cAMP production but not β-arrestin recruitment are preferable to retain analgesia and reduce opioid-related side effects.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 139" title="Ok, H. G. et al. Can oliceridine (TRV130), an ideal novel micro receptor G protein pathway selective (micro-GPS) modulator, provide analgesia without opioid-related adverse reactions? Korean J. Pain 31, 73–79 (2018)." href="/articles/s41392-020-00435-w#ref-CR139" id="ref-link-section-d122191348e6266">139</a></sup> This G protein bias was also demonstrated with widely used drug tramadol,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="Zebala, J. A., Schuler, A. D., Kahn, S. J. &amp; Maeda, D. Y. Desmetramadol is identified as a G-protein biased micro opioid receptor agonist. Front. Pharmacol. 10, 1680 (2019)." href="/articles/s41392-020-00435-w#ref-CR140" id="ref-link-section-d122191348e6270">140</a></sup> whose active metabolite, desmetramadol, elicited maximum cAMP production without affecting β-arrestin 2 recruitment compared to fentanyl and morphine. Safety profile is improved with less adverse effect such as respiratory depression.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 140" title="Zebala, J. A., Schuler, A. D., Kahn, S. J. &amp; Maeda, D. Y. Desmetramadol is identified as a G-protein biased micro opioid receptor agonist. Front. Pharmacol. 10, 1680 (2019)." href="/articles/s41392-020-00435-w#ref-CR140" id="ref-link-section-d122191348e6275">140</a></sup> Another µ-OR-biased ligand, oliceridine (TRV130, Olinvo<sup>TM</sup>), passed phase III clinical trial but did not get the FDA approval for safety concerns.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="Bedini, A. et al. Functional selectivity and antinociceptive effects of a novel KOPr agonist. Front. Pharmacol. 11, 188 (2020)." href="/articles/s41392-020-00435-w#ref-CR141" id="ref-link-section-d122191348e6281">141</a></sup> The NDA for oliceridine was resubmitted and a new counterpart, TRV734, is not only suitable for oral administration but also safer due to reduced dependency.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 142" title="James, I. E. et al. A first-in-human clinical study with TRV734, an orally bioavailable G-protein-biased ligand at the mu-opioid receptor. Clin. Pharmacol. Drug Dev. 9, 256–266 (2020)." href="/articles/s41392-020-00435-w#ref-CR142" id="ref-link-section-d122191348e6285">142</a></sup> A fourth µ-OR-biased ligand, PZM21, cross-reacts with κ-OR and failed to reduce respiratory depression in C57BL and CD-1 mice.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 143" title="Hill, R. et al. The novel mu-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. Br. J. Pharmacol. 175, 2653–2661 (2018)." href="/articles/s41392-020-00435-w#ref-CR143" id="ref-link-section-d122191348e6289">143</a></sup> Whether this relates to its residual but marked effect on β-arrestin 2 recruitment, as opposed to oliceridine whose action is negligible,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 144" title="Ehrlich, A. T. et al. Biased signaling of the mu opioid receptor revealed in native neurons. iScience 14, 47–57 (2019)." href="/articles/s41392-020-00435-w#ref-CR144" id="ref-link-section-d122191348e6293">144</a></sup> remains to be further studied.</p><p>Similar situation occurred with κ-OR as well whose agonists possess analgesic property and have a low risk of dependence and abuse but with adverse effects such as sedation, motor dysfunction, hallucination, and dysphoria.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 145" title="White, K. L. et al. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 352, 98–109 (2015)." href="/articles/s41392-020-00435-w#ref-CR145" id="ref-link-section-d122191348e6300">145</a></sup> G protein-biased agonists of κ-OR,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 146" title="Mores, K. L., Cummins, B. R., Cassell, R. J. &amp; van Rijn, R. M. A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front. Pharmacol. 10, 407 (2019)." href="/articles/s41392-020-00435-w#ref-CR146" id="ref-link-section-d122191348e6304">146</a></sup> including RB-64,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 145" title="White, K. L. et al. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 352, 98–109 (2015)." href="/articles/s41392-020-00435-w#ref-CR145" id="ref-link-section-d122191348e6308">145</a></sup> mesyl salvinorin B, triazole 1.1, diphenethylamines and LOR17,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 141" title="Bedini, A. et al. Functional selectivity and antinociceptive effects of a novel KOPr agonist. Front. Pharmacol. 11, 188 (2020)." href="/articles/s41392-020-00435-w#ref-CR141" id="ref-link-section-d122191348e6312">141</a></sup> were reported to minimize the adverse effects in preclinical settings. One of such, nalfurafine, was approved in Japan (2015) as an anti-pruritic agent for patients with chronic liver diseases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 147" title="Kozono, H., Yoshitani, H. &amp; Nakano, R. Post-marketing surveillance study of the safety and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 μg) in 3,762 hemodialysis patients with intractable pruritus. Int. J. Nephrol. Renovasc. Dis. 11, 9–24 (2018)." href="/articles/s41392-020-00435-w#ref-CR147" id="ref-link-section-d122191348e6316">147</a></sup></p><p>Carvedilol, known as a β1 and β2 adrenoceptor blocker, was found to be biased toward β-arrestin recruitment, G protein-coupled receptor kinase activation, and ERK1/2 phosphorylation. Joining its rank included alprenolol, bucindolol, and nebivolol, all are used to treat hypertension and congestive heart failure.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 148" title="Okeke, K., Michel-Reher, M. B., Gravas, S. &amp; Michel, M. C. Desensitization of cAMP accumulation via human beta3-adrenoceptors expressed in human embryonic kidney cells by full, partial, and biased agonists. Front. Pharmacol. 10, 596 (2019)." href="/articles/s41392-020-00435-w#ref-CR148" id="ref-link-section-d122191348e6322">148</a></sup> In the case of β3 adrenoceptor, CL316243 is cAMP-biased, whereas L748337 and SR59230 are ERK/p38 phosphorylation-biased.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 149" title="Cernecka, H., Sand, C. &amp; Michel, M. C. The odd sibling: features of beta3-adrenoceptor pharmacology. Mol. Pharmacol. 86, 479–484 (2014)." href="/articles/s41392-020-00435-w#ref-CR149" id="ref-link-section-d122191348e6326">149</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 150" title="Baker, J. G., Hill, S. J. &amp; Summers, R. J. Evolution of beta-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol. Sci. 32, 227–234 (2011)." href="/articles/s41392-020-00435-w#ref-CR150" id="ref-link-section-d122191348e6329">150</a></sup> Interestingly, CL316243 was also tested for treatment of obese mice.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 151" title="Xiao, C., Goldgof, M., Gavrilova, O. &amp; Reitman, M. L. Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity 23, 1450–1459 (2015)." href="/articles/s41392-020-00435-w#ref-CR151" id="ref-link-section-d122191348e6333">151</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 152" title="Lei, X. &amp; Wong, G. W. C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion. J. Biol. Chem. 294, 15638–15649 (2019)." href="/articles/s41392-020-00435-w#ref-CR152" id="ref-link-section-d122191348e6336">152</a></sup> However, none of them have advanced to the clinic.</p><p>In contrast to µ-OR, arrestin bias is desirable for AT1R to improve cardiac performance.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 153" title="Hoare, S. R. J., Tewson, P. H., Quinn, A. M. &amp; Hughes, T. E. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci. Rep. 10, 1766 (2020)." href="/articles/s41392-020-00435-w#ref-CR153" id="ref-link-section-d122191348e6343">153</a></sup> Nonetheless, clinical development of AT1R modulators either resulted in a phase IIb trial failure (TRV027) in 2017<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 154" title="Pang, P. S. et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur. Heart J. 38, 2364–2373 (2017)." href="/articles/s41392-020-00435-w#ref-CR154" id="ref-link-section-d122191348e6347">154</a></sup> or never reached to clinical stage (SBpa, SVdF, SI, sarmesin, saralasin, and SII).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 155" title="Namkung, Y. et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci. Signal. 11, eaat1631 (2018)." href="/articles/s41392-020-00435-w#ref-CR155" id="ref-link-section-d122191348e6351">155</a></sup> Of note is that biased molecules may show species preference. For instance, CL316243 is more active in mice than in humans,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 156" title="Schena, G. &amp; Caplan, M. J. Everything you always wanted to know about beta3-AR * (* but were afraid to ask). Cells 8, 357 (2019)." href="/articles/s41392-020-00435-w#ref-CR156" id="ref-link-section-d122191348e6355">156</a></sup> whereas nalfurafine works better in humans vs. rodents.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 157" title="Schattauer, S. S., Kuhar, J. R., Song, A. &amp; Chavkin, C. Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell Signal. 32, 59–65 (2017)." href="/articles/s41392-020-00435-w#ref-CR157" id="ref-link-section-d122191348e6359">157</a></sup> A list of therapeutic agents with biased signaling approved or advanced to clinical trials is shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab5">5</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Therapeutic agents with biased signaling approved or in clinical trials</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec13">Allosteric modulation</h3><p>In recent years, studies on allosteric GPCR modulators have gained unprecedented momentum.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Lindsley, C. W. et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem. Rev. 116, 6707–6741 (2016)." href="#ref-CR158" id="ref-link-section-d122191348e7530">158</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Congreve, M., Oswald, C. &amp; Marshall, F. H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol. Sci. 38, 837–847 (2017)." href="#ref-CR159" id="ref-link-section-d122191348e7530_1">159</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wold, E. A., Chen, J., Cunningham, K. A. &amp; Zhou, J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J. Med. Chem. 62, 88–127 (2019)." href="#ref-CR160" id="ref-link-section-d122191348e7530_2">160</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Wu, Y. et al. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol. 1163, 225–251 (2019)." href="/articles/s41392-020-00435-w#ref-CR161" id="ref-link-section-d122191348e7533">161</a></sup> An allosteric modulator is a ligand binding to a position other than the orthosteric site but can modify responses of a receptor to stimulus. Allosteric modulators that enhance agonist-mediated response are called PAMs, while those attenuate the response are called NAMs. This phenomenon is very common such that the Allosteric Database 2019 (ASD, <a href="http://mdl.shsmu.edu.cn/ASD">http://mdl.shsmu.edu.cn/ASD</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 162" title="Liu, X. et al. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res. 48, D394–D401 (2020)." href="/articles/s41392-020-00435-w#ref-CR162" id="ref-link-section-d122191348e7544">162</a></sup> records 37520 allosteric modulations on 118 GPCR members, covering all four classes.</p><p>Allosteric modulation is advantageous in terms of (i) using highly druggable pockets. In some cases, it is easier to design ligands at an allosteric site than the orthosteric site, such as class B GPCRs with orthosteric pockets wide open. For example, both PAM<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 163" title="Nolte, W. M. et al. A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. Nat. Chem. Biol. 10, 629–631 (2014)." href="/articles/s41392-020-00435-w#ref-CR163" id="ref-link-section-d122191348e7551">163</a></sup> and NAMs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017)." href="/articles/s41392-020-00435-w#ref-CR107" id="ref-link-section-d122191348e7555">107</a></sup> binding to the same position at the TMD of GLP-1R were reported; (ii) improving selectivity. The orthosteric site and cognate ligand are often highly conserved, making it hard to discover very selective orthosteric binders. Meanwhile, non-conserved allosteric sites would be a better choice evidenced by discovery of many subtype selective allosteric modulators of acetylcholine<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013)." href="/articles/s41392-020-00435-w#ref-CR102" id="ref-link-section-d122191348e7559">102</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 164" title="Bock, A., Schrage, R. &amp; Mohr, K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology 136, 427–437 (2018)." href="/articles/s41392-020-00435-w#ref-CR164" id="ref-link-section-d122191348e7562">164</a></sup> and cannabinoid receptors<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="Price, M. R. et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68, 1484–1495 (2005)." href="/articles/s41392-020-00435-w#ref-CR165" id="ref-link-section-d122191348e7566">165</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019)." href="/articles/s41392-020-00435-w#ref-CR166" id="ref-link-section-d122191348e7569">166</a></sup>; (iii) introducing signal bias. Allosteric modulators with biased signaling were developed for prostaglandin F2α receptor<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 167" title="Goupil, E. et al. A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2alpha-mediated Rho/ROCK signaling pathway. J. Biol. Chem. 285, 25624–25636 (2010)." href="/articles/s41392-020-00435-w#ref-CR167" id="ref-link-section-d122191348e7573">167</a></sup> and chemokine receptor CXCR4.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 168" title="Quoyer, J. et al. Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc. Natl Acad. Sci. USA 110, E5088–E5097 (2013)." href="/articles/s41392-020-00435-w#ref-CR168" id="ref-link-section-d122191348e7578">168</a></sup> Albeit still as an emerging concept, allosteric modulators have exhibited a great potential with some compounds being marketed or in clinical trials.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="Wold, E. A., Chen, J., Cunningham, K. A. &amp; Zhou, J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J. Med. Chem. 62, 88–127 (2019)." href="/articles/s41392-020-00435-w#ref-CR160" id="ref-link-section-d122191348e7582">160</a></sup></p><p>However, developing allosteric modulators of GPCRs remains challenging—molecules recorded in the ASD largely concentrate on two subfamilies, the mGluRs (8 members, 17,115 modulations), and mAChRs (5 members, 7666 modulations), accounting for nearly 2/3 of the total number. Some individual receptors also contribute a significant proportion, such as CB1 (1948 modulations), GABA<sub>B</sub> (1286 modulations), and follicle-stimulating hormone receptor (1233 modulations). Excluding these “easy cases,” allosteric modulators are few in number. Furthermore, the structural diversity of the allosteric modulators is quite low, for many derivatives would be included soon after a parent compound is identified. The difficulty in developing allosteric modulators is partly due to the limitation of detecting allosteric behavior: Not every newly discovered active compound could be tested for its effect on binding affinity or EC<sub>50</sub> of an orthosteric agonist, therefore some allosteric modulators were not correctly identified. For instance, BPTU in P2RY1, the first GPCR NAM solved in complex structure (PDB code: 4XNV),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 169" title="Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520, 317–321 (2015)." href="/articles/s41392-020-00435-w#ref-CR169" id="ref-link-section-d122191348e7592">169</a></sup> was not considered allosteric until the structure was obtained. To make things worse, NAMs may weaken the binding of an endogenous ligand thus behaving like a competitor, such as NDT9513727 in C5AR1<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 170" title="Brodbeck, R. M. et al. al. Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a novel, orally bioavailable C5a receptor inverse agonist. J. Pharmacol. Exp. Ther 327, 898–909 (2008)." href="/articles/s41392-020-00435-w#ref-CR170" id="ref-link-section-d122191348e7596">170</a></sup> (PDB code: 5O9H).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553, 111–114 (2018)." href="/articles/s41392-020-00435-w#ref-CR171" id="ref-link-section-d122191348e7600">171</a></sup></p><p>The most effective way to identify the binding site of an allosteric modulator on a GPCR is solving the complex structure. Crystallography is an effective technique, while rapidly deployment of cryo-EM has started to deliver its promise (PDB codes: 6OIK<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="Maeda, S. et al. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019)." href="/articles/s41392-020-00435-w#ref-CR172" id="ref-link-section-d122191348e7606">172</a></sup> and 6U1N<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 173" title="Staus, D. P. et al. Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020)." href="/articles/s41392-020-00435-w#ref-CR173" id="ref-link-section-d122191348e7610">173</a></sup>). To date, 17 GPCRs have reported structures in complex with allosteric modulators. Detailed analysis of complex structures before October 2018 was reported previously,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Wu, Y. et al. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol. 1163, 225–251 (2019)." href="/articles/s41392-020-00435-w#ref-CR161" id="ref-link-section-d122191348e7614">161</a></sup> and here we focus on insights provided by newly published results. The most unusual allosteric-binding sites on GPCRs are at the lipidic interface embedded in cell membrane. Five different positions were identified by crystal structures (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig9">9</a>): UP12, UP34, LOW34, LOW345, and LOW67. Four of them were recently reviewed.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Wu, Y. et al. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol. 1163, 225–251 (2019)." href="/articles/s41392-020-00435-w#ref-CR161" id="ref-link-section-d122191348e7621">161</a></sup> The LOW34 site was reported in 2019 for ORG27569 in CB1 (PDB code: 6KQI<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019)." href="/articles/s41392-020-00435-w#ref-CR166" id="ref-link-section-d122191348e7626">166</a></sup>; Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig10">10a</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig9_HTML.png?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="392"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>Schematic diagram of allosteric sites at the lipidic surface identified by complex structures. The binding sites are manually labeled on the crystal structure of β<sub>2</sub>AR (PDB code: 6OBA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 180" title="Liu, X. et al. An allosteric modulator binds to a conformational hub in the beta2 adrenergic receptor. Nat. Chem. Biol. 16, 749–755 (2020)." href="/articles/s41392-020-00435-w#ref-CR180" id="ref-link-section-d122191348e7645">180</a></sup>). Solid line, allosteric site at front side; dashed line, allosteric site at back side. UP, upper part aka close to the extracellular end; LOW, lower part aka close to the cytoplasmic end; numbers, main interacting transmembrane helices</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig10_HTML.png?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="396"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>Binding sites of allosteric modulators in GPCRs reported after October 2018, in comparison with related ligands. <b>a</b> NAM ORG27569 in CB1 (PDB code: 6KQI<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 166" title="Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019)." href="/articles/s41392-020-00435-w#ref-CR166" id="ref-link-section-d122191348e7670">166</a></sup>) in comparison with cholesterol (PDB code: 5XRA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 179" title="Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547, 468–471 (2017)." href="/articles/s41392-020-00435-w#ref-CR179" id="ref-link-section-d122191348e7674">179</a></sup>); <b>b</b> NAM AS408 (PDB code: 6OBA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 180" title="Liu, X. et al. An allosteric modulator binds to a conformational hub in the beta2 adrenergic receptor. Nat. Chem. Biol. 16, 749–755 (2020)." href="/articles/s41392-020-00435-w#ref-CR180" id="ref-link-section-d122191348e7681">180</a></sup>) and PAM Cmpd-6FA (PDB code: 6N48<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="Liu, X. et al. Mechanism of beta2AR regulation by an intracellular positive allosteric modulator. Science 364, 1283–1287 (2019)." href="/articles/s41392-020-00435-w#ref-CR181" id="ref-link-section-d122191348e7686">181</a></sup>) in β<sub>2</sub>AR, in comparison with NDT9513727 in C5AR1 (PDB code: 6C1Q<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. Nat. Struct. Mol. Biol. 25, 472–481 (2018)." href="/articles/s41392-020-00435-w#ref-CR182" id="ref-link-section-d122191348e7692">182</a></sup>) and PAM AP8 (PDB code: 5TZY<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="Glukhova, A. et al. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168, 867–877 e813 (2017)." href="/articles/s41392-020-00435-w#ref-CR183" id="ref-link-section-d122191348e7696">183</a></sup>); <b>c</b> NAM maraviroc in CCR5 (PDB code: 4MBS<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="Tan, Q. et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013)." href="/articles/s41392-020-00435-w#ref-CR187" id="ref-link-section-d122191348e7703">187</a></sup>) in comparison with chemokine analog antagonist [5P7]CCL5 (PDB code: 5UIW<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 188" title="Zheng, Y. et al. Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46, 1005–1017 e1005 (2017)." href="/articles/s41392-020-00435-w#ref-CR188" id="ref-link-section-d122191348e7708">188</a></sup>) and HIV envelope glycoprotein gp120 (PDB code: 6MEO<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318–323 (2019)." href="/articles/s41392-020-00435-w#ref-CR189" id="ref-link-section-d122191348e7712">189</a></sup>); <b>d</b> PAM TT-OAD2 in GLP-1R (PDB code: 6ORV<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 577, 432–436 (2020)." href="/articles/s41392-020-00435-w#ref-CR190" id="ref-link-section-d122191348e7719">190</a></sup>) in comparison with GLP-1 (PDB code: 5VAI<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017)." href="/articles/s41392-020-00435-w#ref-CR191" id="ref-link-section-d122191348e7723">191</a></sup>)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>ORG27569 attracted much attention for its distinctive function: increasing the binding of orthosteric agonist CP55940 but making it act as inverse agonist.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 165" title="Price, M. R. et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68, 1484–1495 (2005)." href="/articles/s41392-020-00435-w#ref-CR165" id="ref-link-section-d122191348e7739">165</a></sup> Many attempts were made to locate the binding site of ORG27569 by mutagenesis but the results are conflicting: one study showed that the effect of ORG27569 on CP55940-induced [<sup>35</sup>S]GTPγS binding was disturbed by mutations to multiple residues at the orthosteric site, leading to a hypothesis that ORG27569 stays in the same pocket close to CP55940.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 174" title="Shore, D. M. et al. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J. Biol. Chem. 289, 5828–5845 (2014)." href="/articles/s41392-020-00435-w#ref-CR174" id="ref-link-section-d122191348e7745">174</a></sup> Another study found that ORG27569 reduced the binding of a fluorescence-labeled orthosteric antagonist, and the effect was only disturbed by mutations at the lipidic interface close to the cytoplasmic end of CB1.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="Stornaiuolo, M. et al. Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. Sci. Rep. 5, 15453 (2015)." href="/articles/s41392-020-00435-w#ref-CR175" id="ref-link-section-d122191348e7749">175</a></sup> Besides, it was reported that the functions of ORG27569 were also affected by breaking a disulfide bond at the N-terminus<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 176" title="Fay, J. F. &amp; Farrens, D. L. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity. Biochemistry 52, 8286–8294 (2013)." href="/articles/s41392-020-00435-w#ref-CR176" id="ref-link-section-d122191348e7753">176</a></sup> or by constitutive active/inactive mutations at the cytoplasmic interface.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 174" title="Shore, D. M. et al. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J. Biol. Chem. 289, 5828–5845 (2014)." href="/articles/s41392-020-00435-w#ref-CR174" id="ref-link-section-d122191348e7758">174</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="Stornaiuolo, M. et al. Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. Sci. Rep. 5, 15453 (2015)." href="/articles/s41392-020-00435-w#ref-CR175" id="ref-link-section-d122191348e7761">175</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 177" title="Ahn, K. H., Mahmoud, M. M. &amp; Kendall, D. A. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J. Biol. Chem. 287, 12070–12082 (2012)." href="/articles/s41392-020-00435-w#ref-CR177" id="ref-link-section-d122191348e7764">177</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 178" title="Baillie, G. L. et al. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity. Mol. Pharmacol. 83, 322–338 (2013)." href="/articles/s41392-020-00435-w#ref-CR178" id="ref-link-section-d122191348e7767">178</a></sup> The crystal structure exhibited that the position of ORG27569 is considerably overlapped with a cholesterol captured in another intermediate state (PDB code: 5XRA,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 179" title="Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547, 468–471 (2017)." href="/articles/s41392-020-00435-w#ref-CR179" id="ref-link-section-d122191348e7771">179</a></sup> Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig10">10a</a>), consistent with the site located by the fluorescence-labeled orthosteric antagonist.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 175" title="Stornaiuolo, M. et al. Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. Sci. Rep. 5, 15453 (2015)." href="/articles/s41392-020-00435-w#ref-CR175" id="ref-link-section-d122191348e7778">175</a></sup> At this site, the higher selectivity to CB1 over CB2 could be explained. Interestingly, ORG27569 is the only allosteric modulator at lipidic interface forming no hydrogen bond to the receptor.</p><p>There have been three more complex structures of allosteric modulators at lipidic interface since October 2018, all obtained by crystallography. Two are β<sub>2</sub>AR, with a NAM AS408 (PDB code: 6OBA<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 180" title="Liu, X. et al. An allosteric modulator binds to a conformational hub in the beta2 adrenergic receptor. Nat. Chem. Biol. 16, 749–755 (2020)." href="/articles/s41392-020-00435-w#ref-CR180" id="ref-link-section-d122191348e7787">180</a></sup>) or a PAM Cmpd-6FA (PDB code: 6N48<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="Liu, X. et al. Mechanism of beta2AR regulation by an intracellular positive allosteric modulator. Science 364, 1283–1287 (2019)." href="/articles/s41392-020-00435-w#ref-CR181" id="ref-link-section-d122191348e7791">181</a></sup>). Both allosteric modulators bind to the LOW345 site (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig10">10b</a>). The NAM stays at a position very similar to NAMs in C5AR1 (PDB codes: 5O9H,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 171" title="Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553, 111–114 (2018)." href="/articles/s41392-020-00435-w#ref-CR171" id="ref-link-section-d122191348e7798">171</a></sup> 6C1R, and 6C1Q<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 182" title="Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. Nat. Struct. Mol. Biol. 25, 472–481 (2018)." href="/articles/s41392-020-00435-w#ref-CR182" id="ref-link-section-d122191348e7803">182</a></sup>) but the PAM is close to ICL2 and only partially overlaps with PAMs of FFAR1 (PDB codes: 5TZY<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 183" title="Glukhova, A. et al. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168, 867–877 e813 (2017)." href="/articles/s41392-020-00435-w#ref-CR183" id="ref-link-section-d122191348e7807">183</a></sup> and 5KW2<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 184" title="Ho, J. D. et al. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat. Commun. 9, 1645 (2018)." href="/articles/s41392-020-00435-w#ref-CR184" id="ref-link-section-d122191348e7811">184</a></sup>), showing a complex regulation nature at this site. The other complex structure is full-length GLP-1R with PF-06372222 (PDB code: 6LN2<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 185" title="Wu, F. et al. Full-length human GLP-1 receptor structure without orthosteric ligands. Nat. Commun. 11, 1272 (2020)." href="/articles/s41392-020-00435-w#ref-CR185" id="ref-link-section-d122191348e7815">185</a></sup>), a NAM previously used to co-crystallized with GLP-1R TMD (PDB code: 5VEW<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 107" title="Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017)." href="/articles/s41392-020-00435-w#ref-CR107" id="ref-link-section-d122191348e7819">107</a></sup>).</p><p>Even around the position of orthosteric ligands (among the helices and facing extracellular side), another ligand may occupy the space not taken by the endogenous ligand and act as an allosteric modulator. The very abundant PAMs/NAMs of mAChRs function in this mechanism. PAM LY2119620 in M2R (with the orthosteric agonist iperoxo and stabilized by a nanobody) was the first allosteric modulator to obtain complex structure with a class A GPCR (PDB code: 6MQT<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 102" title="Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013)." href="/articles/s41392-020-00435-w#ref-CR102" id="ref-link-section-d122191348e7826">102</a></sup>). Recently, LY2119620 was also observed in protein complexes of M2R with G protein (PDB code: 6OIK<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="Maeda, S. et al. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019)." href="/articles/s41392-020-00435-w#ref-CR172" id="ref-link-section-d122191348e7830">172</a></sup>) or arrestin (PDB code: 6U1N<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 173" title="Staus, D. P. et al. Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020)." href="/articles/s41392-020-00435-w#ref-CR173" id="ref-link-section-d122191348e7834">173</a></sup>) by cryo-EM.</p><p>CCR5 is a chemokine receptor and an important anti-HIV drug target. A marketed inhibitor, maraviroc, has long been recognized as a NAM of CCR5. There were hypotheses that small molecule NAMs, chemokine, and the HIV-binding protein have separate binding sites.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 186" title="Muniz-Medina, V. M. et al. The relative activity of &quot;function sparing&quot; HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol. Pharmacol. 75, 490–501 (2009)." href="/articles/s41392-020-00435-w#ref-CR186" id="ref-link-section-d122191348e7841">186</a></sup> However, structures of CCR5 in complex with maraviroc (PDB code: 4MBS<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 187" title="Tan, Q. et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013)." href="/articles/s41392-020-00435-w#ref-CR187" id="ref-link-section-d122191348e7845">187</a></sup>), chemokine analog antagonist (PDB code: 5UIW<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 188" title="Zheng, Y. et al. Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46, 1005–1017 e1005 (2017)." href="/articles/s41392-020-00435-w#ref-CR188" id="ref-link-section-d122191348e7849">188</a></sup>), or HIV envelope glycoprotein (PDB code: 6MEO<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 189" title="Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318–323 (2019)." href="/articles/s41392-020-00435-w#ref-CR189" id="ref-link-section-d122191348e7853">189</a></sup>) show that these ligands highly overlap in CCR5 pocket (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig10">10c</a>). Therefore, the noncompetitive behavior of maraviroc may be due to a very extensive interface of peptidic CCR5 agonist, thus a small molecule cannot diminish the binding even with this much collision. The results illustrate that allosteric behavior is not equal to totally separated binding positions, because partially overlapped sites with different key interactions are also allowed.</p><p>The last case of allosteric modulator in extracellular pocket is PAM TT-OAD2 of GLP-1R (PDB code: 6ORV<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 577, 432–436 (2020)." href="/articles/s41392-020-00435-w#ref-CR190" id="ref-link-section-d122191348e7863">190</a></sup>). This small molecule agonist only slightly collides with the endogenous peptide (PDB code: 5VAI<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 191" title="Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017)." href="/articles/s41392-020-00435-w#ref-CR191" id="ref-link-section-d122191348e7867">191</a></sup>, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig10">10d</a>), consistent with its behavior that only partially displaces an orthosteric probe.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 190" title="Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 577, 432–436 (2020)." href="/articles/s41392-020-00435-w#ref-CR190" id="ref-link-section-d122191348e7874">190</a></sup></p><p>The cytoplasmic interface, where a GPCR interacts with intracellular partners, including Gα and β-arrestin, contains pockets suitable for drug design. So far, four small molecules have been validated by crystallography to bind at this position. The targets are three chemokine receptors (CCR2, PDB code: 5T1A<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 192" title="Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016)." href="/articles/s41392-020-00435-w#ref-CR192" id="ref-link-section-d122191348e7880">192</a></sup>; CCR7, PDB code: 6QZH<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 193" title="Jaeger, K. et al. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell 178, 1222.e10–1230.e10 (2019)." href="/articles/s41392-020-00435-w#ref-CR193" id="ref-link-section-d122191348e7884">193</a></sup>; and CCR9, PDB code: 5LWE<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 194" title="Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016)." href="/articles/s41392-020-00435-w#ref-CR194" id="ref-link-section-d122191348e7888">194</a></sup>) and β<sub>2</sub>AR (PDB code: 5X7D<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 195" title="Liu, X. et al. Mechanism of intracellular allosteric beta2AR antagonist revealed by X-ray crystal structure. Nature 548, 480–484 (2017)." href="/articles/s41392-020-00435-w#ref-CR195" id="ref-link-section-d122191348e7894">195</a></sup>). These ligands are all NAMs and proximately share the same binding site (TM1, TM2, TM6, TM7, ICL1, and H8). Their binding position does not overlap with Gα, therefore they may stabilize the inactive state by blocking conformational changes required for receptor activation. This site is generally non-conserved in the GPCR superfamily, thus targeting here may provide some selectivity. Additionally, many nanobodies at the cytoplasmic interface were also developed for several receptors, including AGTR1 (PDB codes: 6DO1<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 196" title="Wingler, L. M. et al. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell 176, 479.e12–490.e12 (2019)." href="/articles/s41392-020-00435-w#ref-CR196" id="ref-link-section-d122191348e7899">196</a></sup> and 6OS0<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 197" title="Wingler, L. M. et al. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367, 888–892 (2020)." href="/articles/s41392-020-00435-w#ref-CR197" id="ref-link-section-d122191348e7903">197</a></sup>), β<sub>1</sub>AR (PDB code: 6IBL<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 198" title="Lee, Y. et al. Molecular basis of beta-arrestin coupling to formoterol-bound beta1-adrenoceptor. Nature 583, 862–866 (2020)." href="/articles/s41392-020-00435-w#ref-CR198" id="ref-link-section-d122191348e7909">198</a></sup>), β<sub>2</sub>AR (PDB code: 6N48<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 181" title="Liu, X. et al. Mechanism of beta2AR regulation by an intracellular positive allosteric modulator. Science 364, 1283–1287 (2019)." href="/articles/s41392-020-00435-w#ref-CR181" id="ref-link-section-d122191348e7915">181</a></sup>), and SMO (PDB code: 6O3C<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571, 284–288 (2019)." href="/articles/s41392-020-00435-w#ref-CR114" id="ref-link-section-d122191348e7920">114</a></sup>; for information before October 2018, see review<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Wu, Y. et al. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol. 1163, 225–251 (2019)." href="/articles/s41392-020-00435-w#ref-CR161" id="ref-link-section-d122191348e7924">161</a></sup>).</p><p>Multi-domain regulation is an interesting topic in allosteric modulator discovery. Class C GPCRs use ECDs to recognize their cognate ligands, leaving the classic pocket of TMD for allosteric modulating.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 161" title="Wu, Y. et al. GPCR allosteric modulator discovery. Adv. Exp. Med. Biol. 1163, 225–251 (2019)." href="/articles/s41392-020-00435-w#ref-CR161" id="ref-link-section-d122191348e7932">161</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 199" title="Leach, K. &amp; Gregory, K. J. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol. Res. 116, 105–118 (2017)." href="/articles/s41392-020-00435-w#ref-CR199" id="ref-link-section-d122191348e7935">199</a></sup> This is the major reason why this class has a large number of allosteric modulators. In the case of mGluRs, both PAMs and NAMs have been widely reported, but only NAMs obtained complex structures—there is no solved active state structure. The full-length structures of mGlu5 (PDB codes: 6N51 and 6N52<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019)." href="/articles/s41392-020-00435-w#ref-CR51" id="ref-link-section-d122191348e7939">51</a></sup>) displayed how the binding of orthosteric agonist to ECD triggers the change of interaction between two monomers, but the conformational change of TMD remains elusive.</p><p>SMO in class F is also a multi-domain receptor. The first reported ligand of SMO cyclopamine (an antagonist causing birth defects) binds to the classic TMD pocket (PDB code: 4O9R<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 200" title="Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014)." href="/articles/s41392-020-00435-w#ref-CR200" id="ref-link-section-d122191348e7946">200</a></sup>) shared by several other antagonists with different chemical scaffolds and an agonist (SAG).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="Zhang, X. et al. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat. Commun. 8, 15383 (2017)." href="/articles/s41392-020-00435-w#ref-CR62" id="ref-link-section-d122191348e7950">62</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016)." href="/articles/s41392-020-00435-w#ref-CR113" id="ref-link-section-d122191348e7953">113</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 201" title="Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338–343 (2013)." href="/articles/s41392-020-00435-w#ref-CR201" id="ref-link-section-d122191348e7956">201</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 202" title="Crowther, G. J. et al. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens. PLoS Negl. Trop. Dis. 8, e2628 (2014)." href="/articles/s41392-020-00435-w#ref-CR202" id="ref-link-section-d122191348e7959">202</a></sup> ALLO-1, an antagonist identified as allosteric modulator not competitive to cyclopamine, was recently found to bind at a deeper position in the pocket by photo-affinity labeling combined with mass spectrometry (MS).<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 203" title="Zhou, F. et al. Colocalization strategy unveils an underside binding site in the transmembrane domain of smoothened receptor. J. Med. Chem. 62, 9983–9989 (2019)." href="/articles/s41392-020-00435-w#ref-CR203" id="ref-link-section-d122191348e7963">203</a></sup> SMO has another pocket in ECD that interacts with steroids, including cholesterol (PDB codes: 5L7D<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 113" title="Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016)." href="/articles/s41392-020-00435-w#ref-CR113" id="ref-link-section-d122191348e7967">113</a></sup> and 6D35<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 204" title="Huang, P. et al. Structural basis of smoothened activation in Hedgehog signaling. Cell 174, 312.e16–324.e16 (2018)." href="/articles/s41392-020-00435-w#ref-CR204" id="ref-link-section-d122191348e7971">204</a></sup>) and 20(<i>S</i>)-hydroxycholesterol (PDB code: 5KZV<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 119" title="Huang, P. et al. Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell 166, 1176.e14–1187.e14 (2016)." href="/articles/s41392-020-00435-w#ref-CR119" id="ref-link-section-d122191348e7979">119</a></sup>). Since cholesterol has been the most favored candidate of SMO endogenous ligand, the ECD pocket is treated as orthosteric making the TMD pocket allosteric. However, newly obtained structures demonstrated that cholesterol or its analog can also bind to TMD pocket (PDB codes: 6O3C<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 114" title="Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571, 284–288 (2019)." href="/articles/s41392-020-00435-w#ref-CR114" id="ref-link-section-d122191348e7983">114</a></sup> and 6OT0<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 115" title="Qi, X. et al. Cryo-EM structure of oxysterol-bound human smoothened coupled to a heterotrimeric Gi. Nature 571, 279–283 (2019)." href="/articles/s41392-020-00435-w#ref-CR115" id="ref-link-section-d122191348e7987">115</a></sup>), leaving the question open for which is the true orthosteric site.</p><h3 class="c-article__sub-heading" id="Sec14">Disease indication</h3><p>GPCRs are involved in many human diseases and specific drug intervention is one of the most celebrating achievements in the pharmaceutical industry (Table <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM1">S3</a> and Fig. <a data-track="click" data-track-label="link" data-track-action="supplementary material anchor" href="/articles/s41392-020-00435-w#MOESM1">S1</a>). Among all available drugs targeting GPCRs, HRH1, DRD2, M1R, and ADRA1A are the most frequently addressed for indications such as hypertension, allergy, pain, and schizophrenia, and 33% of them have &gt;1 indication with an overall average of 1.5. Although CNS diseases are still popular accounting for 26% of all approved indications, development focuses have now been shifted to T2DM, obesity, multiple sclerosis, smoking cessation, short bowel syndrome, and hypocalcemia. Repurposing of existing drugs for new indications also emerged to supplement discovery efforts.</p></div></div></section><section data-title="Structure-based drug design"><div class="c-article-section" id="Sec15-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec15">Structure-based drug design</h2><div class="c-article-section__content" id="Sec15-content"><p>As two general types of computer-aided drug design techniques (Table <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Dalesio, N. M., Barreto Ortiz, S. F., Pluznick, J. L. &amp; Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. Front. Physiol. 9, 1673 (2018)." href="/articles/s41392-020-00435-w#ref-CR6" id="ref-link-section-d122191348e8015">6</a>),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 205" title="Yu, W. &amp; MacKerell, A. D. Jr. Computer-aided drug design methods. Methods Mol. Biol. 1520, 85–106 (2017)." href="/articles/s41392-020-00435-w#ref-CR205" id="ref-link-section-d122191348e8019">205</a></sup> SBDD and ligand-based drug design, exploit the structural information of protein targets and the knowledge of known ligands, respectively (Table <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Dalesio, N. M., Barreto Ortiz, S. F., Pluznick, J. L. &amp; Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. Front. Physiol. 9, 1673 (2018)." href="/articles/s41392-020-00435-w#ref-CR6" id="ref-link-section-d122191348e8022">6</a>). SBDD, on the basis of crystal/cryo-EM/NMR structures or homology models, first identifies key sites and important interactions responsible for target functions, then screens large virtual library/designed agents that disrupt or enhance such interactions to modulate relevant biological processes and/or signaling pathways by molecular docking, and finally discovers active leads with desired pharmacological properties.</p><p>Clearly, the past decade is a golden age for SBDD on GPCR. With the year of 2011 (when LPC crystallization,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 206" title="Caffrey, M. &amp; Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009)." href="/articles/s41392-020-00435-w#ref-CR206" id="ref-link-section-d122191348e8029">206</a></sup> fusion proteins,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007)." href="/articles/s41392-020-00435-w#ref-CR8" id="ref-link-section-d122191348e8033">8</a></sup> and other key techniques collaborated to launch the outbreak of GPCR structure determination including the landmark β<sub>2</sub>AR-G<sub>s</sub>) for watershed,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 207" title="Erlandson, S. C., McMahon, C. &amp; Kruse, A. C. Structural basis for G protein-coupled receptor signaling. Annu. Rev. Biophys. 47, 1–18 (2018)." href="/articles/s41392-020-00435-w#ref-CR207" id="ref-link-section-d122191348e8041">207</a></sup> SBDD of GPCR evolves two distinct stages: rhodopsin-based homology model and truly authentic structure of individual receptors. Boosted by the fast-increasing number of high-quality GPCR structures, improved accuracy of combinational computational approaches, and better understanding of activation mechanism and pharmacology, SBDD is developing rapidly with fruitful scientific reports and increasing GPCR-targeted drugs contributed by this approach. Considering the length of time required for a drug to be available on the market (10–15 years) and the chance of applying structural biology information to hit discovery and lead optimization in the first 2–3 years of a drug discovery program, it is probably too early to see the approval of GPCR-targeted drugs being developed with the aid of a structure, and such situation is likely to change as the tremendous efforts from both academia and industry start to bear the fruits of successes. The following is a brief account of recent advances in three main aspects of SBDD (chemical space, receptor dynamics, and pose evaluation) in the context of their application in GPCR pharmacology.</p><h3 class="c-article__sub-heading" id="Sec16">Optimized virtual library</h3><p>Despite the vast chemical space (&gt;10<sup>63</sup> drug-like molecules), only a nominal fraction has been explored by SBDD, where both the compound availability and insufficient diversity limited the number of screened ligands. To overcome these problems, ultra-large<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019)." href="#ref-CR208" id="ref-link-section-d122191348e8054">208</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020)." href="#ref-CR209" id="ref-link-section-d122191348e8054_1">209</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 210" title="Ballante, F. et al. Docking finds GPCR ligands in dark chemical matter. J. Med. Chem. 63, 613–620 (2020)." href="/articles/s41392-020-00435-w#ref-CR210" id="ref-link-section-d122191348e8057">210</a></sup> and focused libraries<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ranganathan, A. et al. Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries. ACS Chem. Biol. 12, 735–745 (2017)." href="#ref-CR211" id="ref-link-section-d122191348e8061">211</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liu, X. et al. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors. Sci. Rep. 8, 8084 (2018)." href="#ref-CR212" id="ref-link-section-d122191348e8061_1">212</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 213" title="Bissantz, C., Schalon, C., Guba, W. &amp; Stahl, M. Focused library design in GPCR projects on the example of 5-HT(2c) agonists: comparison of structure-based virtual screening with ligand-based search methods. Proteins 61, 938–952 (2005)." href="/articles/s41392-020-00435-w#ref-CR213" id="ref-link-section-d122191348e8064">213</a></sup> were employed. Lyu and colleagues<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 208" title="Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019)." href="/articles/s41392-020-00435-w#ref-CR208" id="ref-link-section-d122191348e8068">208</a></sup> presented an excellent model of “bigger is better” in virtual drug screening. Based on the 130 well-characterized reactions, they generated 170 million make-on-demand compounds (<a href="http://zinc15.docking.org/">http://zinc15.docking.org/</a>), the resulting library is remarkably diverse with &gt;10.7 million scaffolds unavailable before. By docking 138 million molecules against DRD4, they discovered 81 new chemotypes (24% hit rate), 30 of them showed submicromolar activity, including a 180-pM subtype-selective and G<sub>i</sub>-biased DRD4 agonist. This ultra-large library docking study provides important information: (i) hit rate fell almost monotonically with docking score; (ii) hit rate vs. score curve of DRD4 predicted that 1 from every 873 compounds may have a minimum affinity of 1 μM; and (iii) human visual evaluation improved the selected compound with higher affinities, efficacies, and potencies but not the hit rate. A follow-up study on MT<sub>1</sub> by docking &gt;150 million “lead-like” molecules<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 209" title="Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020)." href="/articles/s41392-020-00435-w#ref-CR209" id="ref-link-section-d122191348e8084">209</a></sup> identified 15 active leads (39% hit rate) with potencies ranging from 470 pM to 6 μM. Alternatively, focused library<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ballante, F. et al. Docking finds GPCR ligands in dark chemical matter. J. Med. Chem. 63, 613–620 (2020)." href="#ref-CR210" id="ref-link-section-d122191348e8088">210</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ranganathan, A. et al. Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries. ACS Chem. Biol. 12, 735–745 (2017)." href="#ref-CR211" id="ref-link-section-d122191348e8088_1">211</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Liu, X. et al. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors. Sci. Rep. 8, 8084 (2018)." href="#ref-CR212" id="ref-link-section-d122191348e8088_2">212</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Bissantz, C., Schalon, C., Guba, W. &amp; Stahl, M. Focused library design in GPCR projects on the example of 5-HT(2c) agonists: comparison of structure-based virtual screening with ligand-based search methods. Proteins 61, 938–952 (2005)." href="#ref-CR213" id="ref-link-section-d122191348e8088_3">213</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mannel, B. et al. Structure-guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library. ACS Chem. Biol. 12, 2652–2661 (2017)." href="#ref-CR214" id="ref-link-section-d122191348e8088_4">214</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 215" title="Guo, T. &amp; Hobbs, D. W. Privileged structure-based combinatorial libraries targeting G protein-coupled receptors. Assay Drug Dev. Technol. 1, 579–592 (2003)." href="/articles/s41392-020-00435-w#ref-CR215" id="ref-link-section-d122191348e8091">215</a></sup> including scaffold library, natural products, dark chemical matter (i.e., chemicals that have never shown bioactivity tested in over 100 assays), and fragment- and lead-like libraries were introduced in virtual screening (VS) for dozens of receptors. Focused on compound library of traditional Chinese medicine (TCM), Liu et al. found that salvianolic acids A and C antagonized the activity of both P2RY1 and P2RY12 purinoceptors in the low µM range, while salvianolic acid B antagonized the P2RY12 purinoceptor. Remarkably, these three salvianolic acids are major active components of the broadly used hemorheologic TCM Danshen (<i>Salvia militorrhiza</i>). Taking NTSR1 as an example, Ranganathan et al. found that the fragment library tended to have higher hit rate than that of the lead-like library (19%) but the affinities were <span class="stix">∼</span>100-fold weaker. Collectively, these results demonstrate the importance and advantages of ultra-large and tailored libraries in discovering potent GPCR modulators.</p><h3 class="c-article__sub-heading" id="Sec17">Receptor dynamics</h3><p>Emerging evidence from crystallography, spectroscopy, and molecular dynamics (MD) simulations have demonstrated the crucial roles of GPCR dynamics involved in ligand recognition, receptor activation, and allosteric modulation.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Latorraca, N. R., Venkatakrishnan, A. J. &amp; Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017)." href="#ref-CR216" id="ref-link-section-d122191348e8106">216</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Lee, Y., Lazim, R., Macalino, S. J. Y. &amp; Choi, S. Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr. Opin. Struct. Biol. 55, 147–153 (2019)." href="#ref-CR217" id="ref-link-section-d122191348e8106_1">217</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 218" title="Hilger, D., Masureel, M. &amp; Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018)." href="/articles/s41392-020-00435-w#ref-CR218" id="ref-link-section-d122191348e8109">218</a></sup> To consider the protein flexibility during GPCR-related SBDD, many computational approaches<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="Lee, Y., Lazim, R., Macalino, S. J. Y. &amp; Choi, S. Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr. Opin. Struct. Biol. 55, 147–153 (2019)." href="/articles/s41392-020-00435-w#ref-CR217" id="ref-link-section-d122191348e8113">217</a></sup> including rotamer sampling, induced-fit docking, and ensemble docking have been employed showing a great promise, especially in the search of biased, bi-topic, or allosteric modulators. During ensemble docking,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 212" title="Liu, X. et al. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors. Sci. Rep. 8, 8084 (2018)." href="/articles/s41392-020-00435-w#ref-CR212" id="ref-link-section-d122191348e8117">212</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 217" title="Lee, Y., Lazim, R., Macalino, S. J. Y. &amp; Choi, S. Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr. Opin. Struct. Biol. 55, 147–153 (2019)." href="/articles/s41392-020-00435-w#ref-CR217" id="ref-link-section-d122191348e8120">217</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Vilar, S. &amp; Costanzi, S. In G Protein Coupled Receptors: Modeling, Activation, Interactions and Virtual Screening. Methods in Enzymology, Vol. 522 (ed. Conn P. M.) 263–278 (Elsevier Academic Press, 2013)." href="#ref-CR219" id="ref-link-section-d122191348e8123">219</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Coudrat, T., Christopoulos, A., Sexton, P. M. &amp; Wootten, D. Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE 12, e0174719 (2017)." href="#ref-CR220" id="ref-link-section-d122191348e8123_1">220</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 221" title="Miao, Y. et al. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl Acad. Sci. USA 113, E5675–5684 (2016)." href="/articles/s41392-020-00435-w#ref-CR221" id="ref-link-section-d122191348e8126">221</a></sup> ligands are docked into multiple structures representing different possible conformational states rather than a single structure, where the targets could be multiple crystal structures or extracted from MD/Monte Carlo (MC) simulations or normal mode analysis (NMA). By evaluating the known ligand enrichment, as well as selectivity for agonists or antagonists on seven GPCR/ligand co-structures, Coudrat et al. found that small variations in structural features are responsible for their success in VS, while a combination of ligand/receptor interaction patterns and predicted interaction strength is associated with the predictive power of binding pockets in VS.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 220" title="Coudrat, T., Christopoulos, A., Sexton, P. M. &amp; Wootten, D. Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE 12, e0174719 (2017)." href="/articles/s41392-020-00435-w#ref-CR220" id="ref-link-section-d122191348e8130">220</a></sup> Compared to the Glide VS workflow, the combination of accelerated MD simulations and Glide induced fit docking of M2R by Miao et al. provided much-improved enrichment factors and identified four PAMs and one NAM with unprecedented chemical diversity.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 221" title="Miao, Y. et al. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl Acad. Sci. USA 113, E5675–5684 (2016)." href="/articles/s41392-020-00435-w#ref-CR221" id="ref-link-section-d122191348e8134">221</a></sup> For 5-HT<sub>1A</sub> whose crystal structure is not available, Warszycki et al. applied MC and NMA to generate an ensemble of binding pockets with the input of a homology template and known active compounds and finally discovered two new active ligands through VS.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 222" title="Warszycki, D. et al. From homology models to a set of predictive binding pockets-a 5-HT1A receptor case study. J. Chem. Inf. Model. 57, 311–321 (2017)." href="/articles/s41392-020-00435-w#ref-CR222" id="ref-link-section-d122191348e8141">222</a></sup></p><h3 class="c-article__sub-heading" id="Sec18">Pose evaluation</h3><p>Correctly selecting and ranking poses of docked compounds in the ligand-binding pockets have been a challenge for SBDD, especially for GPCR that is embedded in the cell membrane with significant conformational adaptability. To address this problem, many physics-based scoring functions<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="de Graaf, C. et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J. Med. Chem. 54, 8195–8206 (2011)." href="#ref-CR223" id="ref-link-section-d122191348e8153">223</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="David, L., Nielsen, P. A., Hedstrom, M. &amp; Norden, B. Scope and limitation of ligand docking: methods, scoring functions and protein targets. Curr. Comput. Aided Drug Des. 1, 275–306 (2005)." href="#ref-CR224" id="ref-link-section-d122191348e8153_1">224</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kooistra, A. J. et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci. Rep. 6, 28288 (2016)." href="#ref-CR225" id="ref-link-section-d122191348e8153_2">225</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 226" title="Bartuzi, D., Kaczor, A. A., Targowska-Duda, K. M. &amp; Matosiuk, D. Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules 22, 23 (2017)." href="/articles/s41392-020-00435-w#ref-CR226" id="ref-link-section-d122191348e8156">226</a></sup> integrated with some user-friendly computer programs (e.g., Dock, GOLD, AutoDock, Glide, and rDock) were routinely adopted in SBDD. Recently, precise computational approaches including free energy calculation methods like molecular mechanics/Poisson–Boltzmann surface area (MM/PB(GB)SA),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 227" title="Zhou, Y. et al. Structure-based discovery of novel and selective 5-hydroxytryptamine 2B receptor antagonists for the treatment of irritable bowel syndrome. J. Med. Chem. 59, 707–720 (2016)." href="/articles/s41392-020-00435-w#ref-CR227" id="ref-link-section-d122191348e8160">227</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 228" title="Rastelli, G. &amp; Pinzi, L. Refinement and rescoring of virtual screening results. Front. Chem. 7, 498 (2019)." href="/articles/s41392-020-00435-w#ref-CR228" id="ref-link-section-d122191348e8163">228</a></sup> free energy perturbation (FEP),<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 229" title="Lenselink, E. B. et al. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega 1, 293–304 (2016)." href="/articles/s41392-020-00435-w#ref-CR229" id="ref-link-section-d122191348e8167">229</a></sup> quantum mechanical/MM calculations,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 230" title="Kim, M. &amp; Cho, A. E. Incorporating QM and solvation into docking for applications to GPCR targets. Phys. Chem. Chem. Phys. 18, 28281–28289 (2016)." href="/articles/s41392-020-00435-w#ref-CR230" id="ref-link-section-d122191348e8171">230</a></sup> and fragment molecular orbital<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 231" title="Heifetz, A. et al. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions. Biochem. Soc. Trans. 44, 574–581 (2016)." href="/articles/s41392-020-00435-w#ref-CR231" id="ref-link-section-d122191348e8175">231</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 232" title="Heifetz, A. et al. The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J. Chem. Inf. Model. 56, 159–172 (2016)." href="/articles/s41392-020-00435-w#ref-CR232" id="ref-link-section-d122191348e8178">232</a></sup> have been employed with improved performance. Compared to the empirical scoring functions, MM/PB(GB)SA and FEP are physically more rigorous free-energy calculation methods with an increased computational cost and have been adopted in the studies of DNA–ligand, protein–ligand, and protein–protein interactions.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 233" title="Zhou, Q. et al. Exploring the mutational robustness of nucleic acids by searching genotype neighborhoods in sequence space. J. Phys. Chem. Lett. 8, 407–414 (2017)." href="/articles/s41392-020-00435-w#ref-CR233" id="ref-link-section-d122191348e8183">233</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 234" title="Hou, T., Wang, J., Li, Y. &amp; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51, 69–82 (2011)." href="/articles/s41392-020-00435-w#ref-CR234" id="ref-link-section-d122191348e8186">234</a></sup> By introducing of the minimization-based MM/GBSA refining and rescoring of docked poses, Zhou et al. identified seven 5-HT<sub>2B</sub> antagonists with novel chemical scaffolds and the most potent one has an IC<sub>50</sub> of 27.3 nM in a cellular assay.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 227" title="Zhou, Y. et al. Structure-based discovery of novel and selective 5-hydroxytryptamine 2B receptor antagonists for the treatment of irritable bowel syndrome. J. Med. Chem. 59, 707–720 (2016)." href="/articles/s41392-020-00435-w#ref-CR227" id="ref-link-section-d122191348e8194">227</a></sup> Lenselink et al. used FEP to design A<sub>2A</sub>R antagonists and identified a highly potent molecule with <i>K</i><sub>i</sub> of 1.2 nM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 232" title="Heifetz, A. et al. The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J. Chem. Inf. Model. 56, 159–172 (2016)." href="/articles/s41392-020-00435-w#ref-CR232" id="ref-link-section-d122191348e8205">232</a></sup> However, computational investigation across 20 class A crystal structures and 934 known ligands demonstrated that the correlations between predicted binding free energy by MM/PBSA and experimental data varied significantly. The observed variations exist between individual receptors and are highly system specific,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 235" title="Yau, M. Q. et al. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. J. Comput. Aided Mol. Des. 33, 487–496 (2019)." href="/articles/s41392-020-00435-w#ref-CR235" id="ref-link-section-d122191348e8209">235</a></sup> indicating that successful application of MM/PBSA may require additional efforts in validation of experimental data and optimization of simulation/calculation parameters. Alternatively, protein–ligand interaction fingerprints exacted from available crystal structures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 225" title="Kooistra, A. J. et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci. Rep. 6, 28288 (2016)." href="/articles/s41392-020-00435-w#ref-CR225" id="ref-link-section-d122191348e8213">225</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="Kooistra, A. J., Leurs, R., de Esch, I. J. &amp; de Graaf, C. Structure-based prediction of G-protein-coupled receptor ligand function: a beta-adrenoceptor case study. J. Chem. Inf. Model. 55, 1045–1061 (2015)." href="/articles/s41392-020-00435-w#ref-CR236" id="ref-link-section-d122191348e8216">236</a></sup> fueled docking score with protein–ligand-binding mode information and resulted in improved VS virtual hit rates for β<sub>2</sub>AR (53%) and HRH1 (73%) with up to nM affinities and potencies.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 225" title="Kooistra, A. J. et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci. Rep. 6, 28288 (2016)." href="/articles/s41392-020-00435-w#ref-CR225" id="ref-link-section-d122191348e8222">225</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 236" title="Kooistra, A. J., Leurs, R., de Esch, I. J. &amp; de Graaf, C. Structure-based prediction of G-protein-coupled receptor ligand function: a beta-adrenoceptor case study. J. Chem. Inf. Model. 55, 1045–1061 (2015)." href="/articles/s41392-020-00435-w#ref-CR236" id="ref-link-section-d122191348e8225">236</a></sup></p><p>Collectively, innovation in VS and pose evaluation, along with evolution of computational hardware, has significantly advanced SBDD and is expected to lift the discovery efficiency to a new height, since GPCRs have multiple downstream signaling pathways responsible for distinct functions or consequences. The high degree of sequence and pocket similarities between different subtypes demands for novel ligands with superior specificity and selectivity. In this regard, allosteric and biased modulators may offer additional pharmacological benefits.</p><h3 class="c-article__sub-heading" id="Sec19">Subtype selectivity</h3><p>It is known that GPCR subtypes share high sequence identities in orthosteric sites with distinct distribution and downstream signaling profiles. Cross-reactivity among subtypes could cause undesired side effects. For example, five MR subtypes display different G protein coupling features (G<sub>q/11</sub>: M1R, M3R and M5R; G<sub>i/o</sub>: M2R and M4R) and organ distribution (CNS, M1R; peripheral tissues such as heart and colon, M2R), while their sequence identify (64–82%) and similarity (82–92%) in TMD are quite conserved.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 172" title="Maeda, S. et al. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019)." href="/articles/s41392-020-00435-w#ref-CR172" id="ref-link-section-d122191348e8243">172</a></sup> Similar observations were seen among dopamine receptors (DRD1 to DRD5), histamine receptors (HRH1 to HRH4), and adenosine receptors (A<sub>1</sub>AR, A<sub>2A</sub>R, A<sub>2B</sub>R, and A<sub>3</sub>AR). Guided by structural information, rational design of subtype selective compounds progresses steadily. Using an extended DRD2-specific binding pocket from the haloperidol-bound DRD2 crystal structure, Fan et al. discovered two highly selective DRD2 agonists (O4SE6 and O8LE6) that specifically activate DRD2 (EC<sub>50</sub> = 1 µM) after screening of 320 non-olfactory GPCRs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 237" title="Fan, L. et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat. Commun. 11, 1074 (2020)." href="/articles/s41392-020-00435-w#ref-CR237" id="ref-link-section-d122191348e8258">237</a></sup> Through VS of 3.1 million molecules against M2 and M3, Kruse et al. identified a partial M3 agonist without measurable M2 agonism, capable of stimulating insulin release from a mouse β-cell line.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 238" title="Kruse, A. C. et al. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol. Pharmacol. 84, 528–540 (2013)." href="/articles/s41392-020-00435-w#ref-CR238" id="ref-link-section-d122191348e8262">238</a></sup> Wei et al. reported a multistage VS of the ChemDiv library (1,492,362 compounds) toward A<sub>1</sub>AR and discovered four novel antagonists with good affinity and selectively (&gt;100-fold) over A<sub>2A</sub>R.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 239" title="Wei, Y. et al. Identification of new potent A1 adenosine receptor antagonists using a multistage virtual screening approach. Eur. J. Med. Chem. 187, 111936 (2020)." href="/articles/s41392-020-00435-w#ref-CR239" id="ref-link-section-d122191348e8271">239</a></sup></p><h3 class="c-article__sub-heading" id="Sec20">Biased signaling</h3><p>Recently, Suomivuori et al. performed extensive MD simulations to identify two major signaling conformations that couple effectively to arrestin or G protein, respectively. They then designed ligands via minor chemical modification resulting in strong arrestin-biased or G<sub>q</sub>-biased signal transduction.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 240" title="Suomivuori, C. M. et al. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science 367, 881–887 (2020)." href="/articles/s41392-020-00435-w#ref-CR240" id="ref-link-section-d122191348e8284">240</a></sup> Meanwhile, McCorvy and colleagues discovered that specific ECL2–ligand contacts are associated with β-arrestin recruitment, whereas blockage of TM5 interaction reduces the G<sub>i/o</sub> signaling. An arrestin-biased DRD2 modulator was thus made exhibiting a calculated bias factor of 20 relative to quinpirole.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 241" title="McCorvy, J. D. et al. Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 14, 126–134 (2018)." href="/articles/s41392-020-00435-w#ref-CR241" id="ref-link-section-d122191348e8290">241</a></sup> In addition, Mannel et al. conducted a VS of a tailored virtual library bearing 2,3-dichlorophenylpiperazine for DRD2 and found that 18 compounds occupy both orthosteric and allosteric sites, and 4 of them stimulated β-arrestin recruitment (EC<sub>50</sub> = 320 nM, <i>E</i><sub>max</sub> = 16%) without detectable G protein signaling.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 214" title="Mannel, B. et al. Structure-guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library. ACS Chem. Biol. 12, 2652–2661 (2017)." href="/articles/s41392-020-00435-w#ref-CR214" id="ref-link-section-d122191348e8301">214</a></sup></p><h3 class="c-article__sub-heading" id="Sec21">Allosterism</h3><p>In the past 5 years, an increasing number of receptor–allosteric modulator complex structures revealed diversified positions of allosteric sites and a variety of binding modes, thereby deepening our understanding of allosteric modulation in terms of underlying mechanisms and structural basis. Further to conventional orthosteric ligands, allosteric modulators affect receptor function in different ways. While PAM may enhance maximal efficacy, NAM could reduce agonist signaling strength.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 159" title="Congreve, M., Oswald, C. &amp; Marshall, F. H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol. Sci. 38, 837–847 (2017)." href="/articles/s41392-020-00435-w#ref-CR159" id="ref-link-section-d122191348e8312">159</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 160" title="Wold, E. A., Chen, J., Cunningham, K. A. &amp; Zhou, J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J. Med. Chem. 62, 88–127 (2019)." href="/articles/s41392-020-00435-w#ref-CR160" id="ref-link-section-d122191348e8315">160</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 242" title="Lu, S. &amp; Zhang, J. Small molecule allosteric modulators of G-protein-coupled receptors: drug-target interactions. J. Med. Chem. 62, 24–45 (2019)." href="/articles/s41392-020-00435-w#ref-CR242" id="ref-link-section-d122191348e8318">242</a></sup> It was reported that a PAM of M2R is located above the orthosteric site and interacts with ECLs. Korczynska et al. screened 4.6 million molecules against the allosteric sites of M2R and identified a PAM that potentiated the action of antagonist <i>N</i>-methyl scopolamine (NMS). Subsequent optimization led to a subtype-selective compound <b>628</b> that increased NMS binding with a co-operativity factor of 5.5 and a <i>K</i><sub>B</sub> of 1.1 µM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Korczynska, M. et al. Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 115, E2419–E2428 (2018)." href="/articles/s41392-020-00435-w#ref-CR16" id="ref-link-section-d122191348e8332">16</a></sup> Alternatively, Lückmann et al. carried out MD simulations of agonist-removed FFAR1 and found that closure of a potential allosteric site is associated with agonist binding—compounds that bind to this site to prevent the closure functions as allosteric agonists.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 243" title="Luckmann, M. et al. Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. Proc. Natl Acad. Sci. USA 116, 7123–7128 (2019)." href="/articles/s41392-020-00435-w#ref-CR243" id="ref-link-section-d122191348e8337">243</a></sup> Obviously, aided by &gt;400 structures from 82 receptors, SBDD is now entering into a new era with substantial knowledge of GPCR signaling<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 103" title="Zhou, Q. et al. Common activation mechanism of class A GPCRs. Elife. 8, e50279 (2019)." href="/articles/s41392-020-00435-w#ref-CR103" id="ref-link-section-d122191348e8341">103</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 110" title="Thal, D. M., Glukhova, A., Sexton, P. M. &amp; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018)." href="/articles/s41392-020-00435-w#ref-CR110" id="ref-link-section-d122191348e8344">110</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 244" title="Weis, W. I. &amp; Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018)." href="/articles/s41392-020-00435-w#ref-CR244" id="ref-link-section-d122191348e8347">244</a></sup> and drug candidate attributes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 245" title="Raschka, S. Automated discovery of GPCR bioactive ligands. Curr. Opin. Struct. Biol. 55, 17–24 (2019)." href="/articles/s41392-020-00435-w#ref-CR245" id="ref-link-section-d122191348e8351">245</a></sup></p></div></div></section><section data-title="Novel screening technology"><div class="c-article-section" id="Sec22-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec22">Novel screening technology</h2><div class="c-article-section__content" id="Sec22-content"><p>As GPCRs represent the most prominent family of therapeutic targets,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 132" title="Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017)." href="/articles/s41392-020-00435-w#ref-CR132" id="ref-link-section-d122191348e8363">132</a></sup> innumerable efforts have been made in both industry and academia to screen for novel ligands that can modulate the activity of a specified GPCR and serve as lead compounds for drug development.</p><p>A diverse array of experimental technologies suitable for assaying protein–ligand interactions have been directly applied or tailored to GPCR-targeted ligand screening, and they can be classified into three main categories: binding-based, stability-based, and cell signaling-based assays (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab6">7</a>). Binding-based assays monitor the physical interactions between a GPCR protein typically in a purified recombinant form with individual test compounds. Cell signaling-based assays measure downstream effectors (e.g., cAMP, Ca<sup>2+</sup>, IP1/IP3) of specific intracellular signaling pathways known to be mediated by GPCR, which reflect the functional outcome of ligand binding to the receptor. Stability-based assays assess the variation of thermal stability for a purified protein when treated by test compounds. These different techniques vary in the ligand screening throughput and binding characteristics (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab6">7</a>). In the lead discovery stage, both binding- and signaling/activity-based assays are implemented in a parallel or sequential manner, as the multipronged use of complementary techniques would reduce the overall false-positive and false-negative rates.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 246" title="Kumari, P., Ghosh, E. &amp; Shukla, A. K. Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol. Med. 21, 687–701 (2015)." href="/articles/s41392-020-00435-w#ref-CR246" id="ref-link-section-d122191348e8378">246</a></sup></p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Comparison of the advantages and disadvantages of various computer-aided drug design approaches</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Here we summarize about 20 experimental screening technologies adapted to GPCR ligand discovery (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab6">7</a>) and highlight the most recent development of binding-based approaches. Notably, an update of assays assessing GPCR activation and signaling has been provided in a previous review<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 247" title="Chen, L., Jin, L. &amp; Zhou, N. An update of novel screening methods for GPCR in drug discovery. Expert Opin. Drug Discov. 7, 791–806 (2012)." href="/articles/s41392-020-00435-w#ref-CR247" id="ref-link-section-d122191348e8599">247</a></sup> and will not be elaborated here. The structure-based VS is covered in the above section. Structural elucidation technologies (e.g., X-ray crystallography, single-particle cryo-EM, NMR, and HDX-MS) not suitable for high-throughput screening (HTS) are also excluded.</p><h3 class="c-article__sub-heading" id="Sec23">DNA-encoded library (DEL)</h3><p>Impressive technological advances have been made for binding-based ligand screening over the past decade. Specifically, DEL has emerged as a powerful approach to drug discovery.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Neri, D. &amp; Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018)." href="#ref-CR248" id="ref-link-section-d122191348e8610">248</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kleiner, R. E., Dumelin, C. E. &amp; Liu, D. R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev. 40, 5707–5717 (2011)." href="#ref-CR249" id="ref-link-section-d122191348e8610_1">249</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Goodnow, R. A. Jr., Dumelin, C. E. &amp; Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017)." href="#ref-CR250" id="ref-link-section-d122191348e8610_2">250</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 251" title="Kodadek, T., Paciaroni, N. G., Balzarini, M. &amp; Dickson, P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem. Commun. 55, 13330–13341 (2019)." href="/articles/s41392-020-00435-w#ref-CR251" id="ref-link-section-d122191348e8613">251</a></sup> Created by split and pool synthesis, DEL usually contains hundreds of thousands to billions of distinct small molecule–DNA conjugates. A majority of DEL-based HTS reported to date involve incubation of an immobilized target protein with the library before the protein–ligand complexes are isolated. Encoding DNA tags associated with the immobilized target are then amplified and sequenced to assign relevant chemical structures.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 250" title="Goodnow, R. A. Jr., Dumelin, C. E. &amp; Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017)." href="/articles/s41392-020-00435-w#ref-CR250" id="ref-link-section-d122191348e8617">250</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 251" title="Kodadek, T., Paciaroni, N. G., Balzarini, M. &amp; Dickson, P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem. Commun. 55, 13330–13341 (2019)." href="/articles/s41392-020-00435-w#ref-CR251" id="ref-link-section-d122191348e8620">251</a></sup> Although DEL was predominantly applied to ligand screening against soluble proteins such as enzymes, successful adaptation of this technique to GPCRs was reported in a few cases.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ahn, S. et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017)." href="#ref-CR252" id="ref-link-section-d122191348e8624">252</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ahn, S. et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. Mol. Pharmacol. 94, 850–861 (2018)." href="#ref-CR253" id="ref-link-section-d122191348e8624_1">253</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Brown, D. G. et al. Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target. SLAS Discov. 23, 429–436 (2018)." href="#ref-CR254" id="ref-link-section-d122191348e8624_2">254</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 255" title="Wu, Z. et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb. Sci. 17, 722–731 (2015)." href="/articles/s41392-020-00435-w#ref-CR255" id="ref-link-section-d122191348e8627">255</a></sup> Lefkowitz group reported the discovery of a NAM for β<sub>2</sub>AR by screening a DEL of 190 million.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 252" title="Ahn, S. et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017)." href="/articles/s41392-020-00435-w#ref-CR252" id="ref-link-section-d122191348e8633">252</a></sup> This NAM not only has a unique chemotype but also exhibits low μM affinity and inhibits cAMP production as well as β-arrestin recruitment. Later on, the same team discovered the first small molecule PAM for β<sub>2</sub>AR through HTS of &gt;500 million DEL compounds.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 253" title="Ahn, S. et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. Mol. Pharmacol. 94, 850–861 (2018)." href="/articles/s41392-020-00435-w#ref-CR253" id="ref-link-section-d122191348e8640">253</a></sup> Both NAM and PAM demonstrated high selectivity. Of note is that the NAM was found using unliganded β<sub>2</sub>AR, whereas the PAM was unmasked via intentional application of β<sub>2</sub>AR with its orthosteric site occupied by an agonist thereby shifting the receptor to the active state.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 252" title="Ahn, S. et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017)." href="/articles/s41392-020-00435-w#ref-CR252" id="ref-link-section-d122191348e8648">252</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 253" title="Ahn, S. et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. Mol. Pharmacol. 94, 850–861 (2018)." href="/articles/s41392-020-00435-w#ref-CR253" id="ref-link-section-d122191348e8651">253</a></sup> These two studies elegantly demonstrated a proof-of-concept strategy for binding-based screening of allosteric modulators targeting different conformational states.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 253" title="Ahn, S. et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. Mol. Pharmacol. 94, 850–861 (2018)." href="/articles/s41392-020-00435-w#ref-CR253" id="ref-link-section-d122191348e8655">253</a></sup></p><p>The power of DEL in the discovery of allosteric GPCR modulators was further demonstrated for PAR2.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 254" title="Brown, D. G. et al. Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target. SLAS Discov. 23, 429–436 (2018)." href="/articles/s41392-020-00435-w#ref-CR254" id="ref-link-section-d122191348e8661">254</a></sup> Screening a billion-size library with a thermostabilized PAR2 mutant resulted in the identification of several agonists and antagonists, and some of them bind to an allosteric pocket in the TMD of PAR2. A similar approach was used to discover tachykinin receptor neurokinin-3 (NK3) antagonists of low nM potency involving NK3 overexpressing cells and a library containing tens of millions DNA-encoded compounds.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 255" title="Wu, Z. et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb. Sci. 17, 722–731 (2015)." href="/articles/s41392-020-00435-w#ref-CR255" id="ref-link-section-d122191348e8665">255</a></sup> Clearly, DEL-based ligand screening against GPCRs and other integral membrane proteins offers great promises as it circumvents difficulties in receptor purification.</p><h3 class="c-article__sub-heading" id="Sec24">Affinity selection MS</h3><p>Due to the high sensitivity and high selectivity of modern MS for both protein and small molecule analysis, versatile MS-based technologies have been developed in the past two decades for screening ligands of a given protein target or characterization of ligand-binding properties (Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41392-020-00435-w#Tab7">7</a>). Almost all of them were originally developed for measuring ligand interactions with soluble proteins,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Annis, A., Chuang, C. C. &amp; Nazef, N. In Mass Spectrometry in Medicinal Chemistry: Applications in Drug Discovery. Methods and Principles in Medicinal Chemistry (eds Wanner, K. T. &amp; Höfner, G.) 121–156 (Wiley, 2007)." href="#ref-CR256" id="ref-link-section-d122191348e8681">256</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="O’Connell, T. N. et al. Solution-based indirect affinity selection mass spectrometry–a general tool for high-throughput screening of pharmaceutical compound libraries. Anal. Chem. 86, 7413–7420 (2014)." href="#ref-CR257" id="ref-link-section-d122191348e8681_1">257</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Chen, X. et al. Identification of inhibitors of the antibiotic-resistance target New Delhi metallo-beta-lactamase 1 by both nanoelectrospray ionization mass spectrometry and ultrafiltration liquid chromatography/mass spectrometry approaches. Anal. Chem. 85, 7957–7965 (2013)." href="#ref-CR258" id="ref-link-section-d122191348e8681_2">258</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Chen, X. et al. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. Sci. Rep. 5, 8361 (2015)." href="#ref-CR259" id="ref-link-section-d122191348e8681_3">259</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Qin, S. et al. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Anal. Chim. Acta 886, 98–106 (2015)." href="#ref-CR260" id="ref-link-section-d122191348e8681_4">260</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 261" title="Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018)." href="/articles/s41392-020-00435-w#ref-CR261" id="ref-link-section-d122191348e8684">261</a></sup> and recently they have been adapted to more challenging GPCR drug discovery. The majority of MS-based technologies (e.g., automated ligand identification system (ALIS), ultrafiltration–liquid chromatography/MS, frontal affinity chromatography–MS, membrane-based affinity MS, and competitive MS binding) employ a methodology very similar to DEL as they all capture and detect ligands physically associated with a given GPCR,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Whitehurst, C. E. et al. Application of affinity selection-mass spectrometry assays to purification and affinity-based screening of the chemokine receptor CXCR4. Comb. Chem. High Throughput Screen. 15, 473–485 (2012)." href="#ref-CR262" id="ref-link-section-d122191348e8688">262</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Ma, J. et al. Ligand identification of the adenosine A2A receptor in self-assembled nanodiscs by affinity mass spectrometry. Anal. Methods 9, 5851–5858 (2017)." href="#ref-CR263" id="ref-link-section-d122191348e8688_1">263</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Calleri, E. et al. Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor. J. Med. Chem. 53, 3489–3501 (2010)." href="#ref-CR264" id="ref-link-section-d122191348e8688_2">264</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Temporini, C. et al. Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS. Anal. Bioanal. Chem. 405, 837–845 (2013)." href="#ref-CR265" id="ref-link-section-d122191348e8688_3">265</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Qin, S. et al. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chem. Sci. 9, 3192–3199 (2018)." href="#ref-CR266" id="ref-link-section-d122191348e8688_4">266</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 267" title="Massink, A. et al. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. Purinergic Signal. 11, 581–594 (2015)." href="/articles/s41392-020-00435-w#ref-CR267" id="ref-link-section-d122191348e8691">267</a></sup> except that native MS analyzes the entire ligand-bound receptor complexes.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 268" title="Yen, H. Y. et al. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. Sci. Adv. 3, e1701016 (2017)." href="/articles/s41392-020-00435-w#ref-CR268" id="ref-link-section-d122191348e8695">268</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 269" title="Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018)." href="/articles/s41392-020-00435-w#ref-CR269" id="ref-link-section-d122191348e8698">269</a></sup> In general, these methods have several advantages over ligand binding or cell signaling assays: (i) unbiased and direct detection of ligand–receptor binding facilitates the identification of both orthosteric and allosteric modulators; (ii) confirmation of ligand identity with accurate mass measurement; (iii) no chemical labeling or DNA encoding of test compounds; and (iv) quantitative MS analysis enables ranking of ligand affinity or evaluation of binding characteristics.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-7"><figure><figcaption class="c-article-table__figcaption"><b id="Tab7" data-test="table-caption">Table 7 Diverse GPCR ligand screening technologies classified into three categories</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41392-020-00435-w/tables/7" aria-label="Full size table 7"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p><i>ALIS</i> is currently the most prevailing MS-based technique employed in pharmaceutical companies for HTS of large-scale synthetic compound libraries.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 256" title="Annis, A., Chuang, C. C. &amp; Nazef, N. In Mass Spectrometry in Medicinal Chemistry: Applications in Drug Discovery. Methods and Principles in Medicinal Chemistry (eds Wanner, K. T. &amp; Höfner, G.) 121–156 (Wiley, 2007)." href="/articles/s41392-020-00435-w#ref-CR256" id="ref-link-section-d122191348e9513">256</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 261" title="Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018)." href="/articles/s41392-020-00435-w#ref-CR261" id="ref-link-section-d122191348e9516">261</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Deng, Y. et al. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase. J. Med. Chem. 57, 8817–8826 (2014)." href="#ref-CR270" id="ref-link-section-d122191348e9519">270</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Zhang, T. et al. Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure-activity relationships and guide drug design in a factor IXa inhibitor program. J. Med. Chem. 59, 1818–1829 (2016)." href="#ref-CR271" id="ref-link-section-d122191348e9519_1">271</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kutilek, V. D. et al. Integration of affinity selection-mass spectrometry and functional cell-based assays to rapidly triage druggable target space within the NF-kappaB pathway. J. Biomol. Screen. 21, 608–619 (2016)." href="#ref-CR272" id="ref-link-section-d122191348e9519_2">272</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 273" title="Walker, S. S. et al. Affinity selection-mass spectrometry identifies a novel antibacterial RNA polymerase inhibitor. ACS Chem. Biol. 12, 1346–1352 (2017)." href="/articles/s41392-020-00435-w#ref-CR273" id="ref-link-section-d122191348e9522">273</a></sup> This system integrates size exclusion chromatography for isolating protein–ligand complexes and reverse-phase chromatography for dissociating bound ligands, which are then identified by high-resolution MS. Not surprisingly, the application of ALIS to ligand screening for GPCRs substantially lagged behind soluble proteins due to difficulties in obtaining membrane receptors of sufficient purity and stability. The earliest application was ligand screening for M2R,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 274" title="Whitehurst, C. E. et al. Discovery and characterization of orthosteric and allosteric muscarinic M2 acetylcholine receptor ligands by affinity selection-mass spectrometry. J. Biomol. Screen. 11, 194–207 (2006)." href="/articles/s41392-020-00435-w#ref-CR274" id="ref-link-section-d122191348e9526">274</a></sup> in which purified M2R was incubated with a 1500-compound pool in each round of affinity selection. After screening a total of 350,000 compounds, one orthosteric antagonist and one allosteric modulator were identified for AChR. Later on, a similar strategy was implemented to screen ligands for CXCR4 using two libraries comprised of 48,000 and 2.75 million compounds, respectively. Each reaction consumed 250 ng purified receptor incubated with a pool of 100 or 2000 compounds. Out of the 362 primary hits, 34 were subsequently confirmed to be new antagonists.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 262" title="Whitehurst, C. E. et al. Application of affinity selection-mass spectrometry assays to purification and affinity-based screening of the chemokine receptor CXCR4. Comb. Chem. High Throughput Screen. 15, 473–485 (2012)." href="/articles/s41392-020-00435-w#ref-CR262" id="ref-link-section-d122191348e9530">262</a></sup></p><p><i>Membrane-based affinity MS</i> developed by Shui’s group enables ligand screening toward wild-type active GPCRs embedded in the cell membrane.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 266" title="Qin, S. et al. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chem. Sci. 9, 3192–3199 (2018)." href="/articles/s41392-020-00435-w#ref-CR266" id="ref-link-section-d122191348e9538">266</a></sup> It features isolation of membrane fractions from cells expressing a GPCR at high yield and incubation of the cell membrane with a compound cocktail, thus keeping the receptor in its native conformation and eliminating the need of protein purification. Compounds associated with the receptor were then released and subjected to high-resolution MS for structural assignment (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig11">11a</a>). Each incubation consumed about 2 µg membrane-embedded GPCR protein with a pool of 480 compounds. Primary hits were selected based on the binding index (BI) derived from quantitative MS signals used to distinguish putative ligands from non-specific binders (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig11">11b</a>). Screening a small compound library with this approach led to the discovery of an antagonist for the 5-HT<sub>2C</sub> receptor and four PAMs for GLP-1R that are not reported previously<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 266" title="Qin, S. et al. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chem. Sci. 9, 3192–3199 (2018)." href="/articles/s41392-020-00435-w#ref-CR266" id="ref-link-section-d122191348e9550">266</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig11">11c</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="819"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>Developing affinity MS approaches for GPCR ligand screening. <b>a</b> Experimental workflow of membrane-based affinity MS. <b>b</b> Membrane-based affinity MS screening of 4333 compounds split into 9 cocktails against GLP-1R. Initial hits are indicated by red dots, while gray dots represent negatives. <b>c</b> Binding of one new ligand to 5-HT<sub>2C</sub> (upper) and four new ligands to GLP-1R (lower) were validated by a radioligand-binding assay. <b>d</b> Experimental workflow of affinity MS-based screening of natural herb extracts. <b>e</b> Initial hits from screening fractionated herbal extracts toward 5-HT<sub>2C</sub>. Aporphines are annotated with larger pink dots. BI binding index. <b>f</b> Structural validation of 1857 by MSMS analysis. <b>g</b> 1857 displayed selective agonism at 5-HT<sub>2C</sub>. Source: adapted from Qin et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 266" title="Qin, S. et al. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chem. Sci. 9, 3192–3199 (2018)." href="/articles/s41392-020-00435-w#ref-CR266" id="ref-link-section-d122191348e9596">266</a></sup> and Zhang et al.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 282" title="Zhang, B. et al. A novel G protein-biased and subtype-selective agonist for a G protein-coupled receptor discovered from screening herbal extracts. ACS Cent. Sci. 6, 213–225 (2020)." href="/articles/s41392-020-00435-w#ref-CR282" id="ref-link-section-d122191348e9601">282</a></sup></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41392-020-00435-w/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>More recently, the same team devised another affinity MS strategy that enabled screening of 20,000 compounds in one pool.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="Lu, Y. et al. Accelerating the throughput of affinity mass spectrometry-based ligand screening toward a G protein-coupled receptor. Anal. Chem. 91, 8162–8169 (2019)." href="/articles/s41392-020-00435-w#ref-CR275" id="ref-link-section-d122191348e9615">275</a></sup> Specifically, they modified the workflow by performing iterative rounds of affinity selection for compounds associated with A<sub>2A</sub>R. Similar to the previously described single-round affinity MS screening assay, quantitative measurement of BI renders detection of high-affinity ligands in this experiment. By comparing the selection of 16 benchmark A<sub>2A</sub>R ligands from screening compound pools of 480-mix, 2400-mix, 4800-mix, and 20K-mix, they demonstrated that this accelerated affinity MS screening approach, using either the purified receptor or receptor-expressing cell membranes, allowed detection of most high-affinity A<sub>2A</sub>R ligands (<i>K</i><sub>d</sub> or <i>K</i><sub>i</sub> &lt;5 µM), and significant reduction of protein consumption and MS instrument time.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="Lu, Y. et al. Accelerating the throughput of affinity mass spectrometry-based ligand screening toward a G protein-coupled receptor. Anal. Chem. 91, 8162–8169 (2019)." href="/articles/s41392-020-00435-w#ref-CR275" id="ref-link-section-d122191348e9634">275</a></sup> Three new antagonists for A<sub>2A</sub>R were identified as a result. It is likely that the throughput of this method could be further increased to assay close to or above 1 million compounds in one pool.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 275" title="Lu, Y. et al. Accelerating the throughput of affinity mass spectrometry-based ligand screening toward a G protein-coupled receptor. Anal. Chem. 91, 8162–8169 (2019)." href="/articles/s41392-020-00435-w#ref-CR275" id="ref-link-section-d122191348e9640">275</a></sup></p><p>The affinity MS technique has been widely employed to fish out and identify putative ligands toward various enzyme targets from complex extracts of natural products, which could promote lead discovery from TCM.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Choi, Y. et al. Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS. Anal. Chem. 83, 1048–1052 (2011)." href="#ref-CR276" id="ref-link-section-d122191348e9647">276</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Yang, Z. et al. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Anal. Chim. Acta 719, 87–95 (2012)." href="#ref-CR277" id="ref-link-section-d122191348e9647_1">277</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Song, H. P. et al. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. Chem. Commun. 51, 1494–1497 (2015)." href="#ref-CR278" id="ref-link-section-d122191348e9647_2">278</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Fu, X. et al. Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Sci. Rep. 6, 29680 (2016)." href="#ref-CR279" id="ref-link-section-d122191348e9647_3">279</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wang, L. et al. Quickly screening for potential alpha-glucosidase inhibitors from guava leaves tea by bioaffinity ultrafiltration coupled with HPLC-ESI-TOF/MS method. J. Agric. Food Chem. 66, 1576–1582 (2018)." href="#ref-CR280" id="ref-link-section-d122191348e9647_4">280</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 281" title="Wang, Z. et al. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Analyst 144, 2881–2890 (2019)." href="/articles/s41392-020-00435-w#ref-CR281" id="ref-link-section-d122191348e9650">281</a></sup> Indeed, this technique was successfully extended to GPCR ligand screening from herbal extracts. It involved the optimization of receptor construct and integration of affinity MS with metabolomics data mining workflow for sensitive and accurate ligand identification<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 282" title="Zhang, B. et al. A novel G protein-biased and subtype-selective agonist for a G protein-coupled receptor discovered from screening herbal extracts. ACS Cent. Sci. 6, 213–225 (2020)." href="/articles/s41392-020-00435-w#ref-CR282" id="ref-link-section-d122191348e9654">282</a></sup> (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig11">11d</a>). After screening a panel of herbal extracts, a naturally occurring aporphine compound (1857) displaying strong subtype selectivity for 5-HT<sub>2C</sub> without affecting 5-HT<sub>2A</sub> or 5-HT<sub>2B</sub> was discovered (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41392-020-00435-w#Fig11">11e–g</a>). Moreover, this new lead exhibited exclusive bias toward G protein signaling and showed in vivo efficacy for food intake suppression and weight loss.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 282" title="Zhang, B. et al. A novel G protein-biased and subtype-selective agonist for a G protein-coupled receptor discovered from screening herbal extracts. ACS Cent. Sci. 6, 213–225 (2020)." href="/articles/s41392-020-00435-w#ref-CR282" id="ref-link-section-d122191348e9671">282</a></sup></p><p>Although not directly applied to GPCRs, a previously reported cell-based assay vascular endothelial growth factor receptor 2 (VEGFR2) is interesting.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 283" title="Udugamasooriya, D. G., Dineen, S. P., Brekken, R. A. &amp; Kodadek, T. A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J. Am. Chem. Soc. 130, 5744–5752 (2008)." href="/articles/s41392-020-00435-w#ref-CR283" id="ref-link-section-d122191348e9677">283</a></sup> It used a special one-bead-one-compound library of peptoids and cells overexpressing VEGFR2. Beads bound to the color-coded VEGFR2-expressing cells were selected under fluorescence microscopy and the attached ligands decoded by tandem MS analysis. Hits with low μM affinity to the soluble VEGFR2 ectodomain were identified subsequently. We envision that these membrane-based or cell-based screening platforms will make a major impact on GPCR drug discovery, especially when they are fully integrated.</p><p><i>Competitive MS binding assay</i> employs a non-radioactive ligand to compete the binding of a test compound to a protein target. It resembles radioligand-binding assays but avoids the use of radioisotope.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hofner, G. &amp; Wanner, K. T. Competitive binding assays made easy with a native marker and mass spectrometric quantification. Angew. Chem. Int. Ed. 42, 5235–5237 (2003)." href="#ref-CR284" id="ref-link-section-d122191348e9686">284</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Niessen, K. V., Hofner, G. &amp; Wanner, K. T. Competitive MS binding assays for dopamine D2 receptors employing spiperone as a native marker. ChemBioChem 6, 1769–1775 (2005)." href="#ref-CR285" id="ref-link-section-d122191348e9686_1">285</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 286" title="Zepperitz, C., Hofner, G. &amp; Wanner, K. T. MS-binding assays: kinetic, saturation, and competitive experiments based on quantitation of bound marker as exemplified by the GABA transporter mGAT1. ChemMedChem 1, 208–217 (2006)." href="/articles/s41392-020-00435-w#ref-CR286" id="ref-link-section-d122191348e9689">286</a></sup> When assaying, the marker ligand liberated from the target is measured by an multiple reaction monitoring-based MS method of high sensitivity and selectivity for compound detection. Not only established for a number of transporters and ion channels,<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Grimm, S. H., Hofner, G. &amp; Wanner, K. T. MS binding assays for the three monoamine transporters using the triple reuptake inhibitor (1R,3S)-indatraline as native marker. ChemMedChem 10, 1027–1039 (2015)." href="#ref-CR287" id="ref-link-section-d122191348e9693">287</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kern, F. T. &amp; Wanner, K. T. Generation and screening of oxime libraries addressing the neuronal GABA transporter GAT1. ChemMedChem 10, 396–410 (2015)." href="#ref-CR288" id="ref-link-section-d122191348e9693_1">288</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 289" title="Sichler, S. et al. Development of MS binding assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor. Toxicol. Lett. 293, 172–183 (2018)." href="/articles/s41392-020-00435-w#ref-CR289" id="ref-link-section-d122191348e9696">289</a></sup> this approach is equally effective in addressing GPCRs as recently exemplified on A<sub>1</sub>AR/A<sub>2A</sub>R and DRD1/2/5.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 267" title="Massink, A. et al. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. Purinergic Signal. 11, 581–594 (2015)." href="/articles/s41392-020-00435-w#ref-CR267" id="ref-link-section-d122191348e9704">267</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 285" title="Niessen, K. V., Hofner, G. &amp; Wanner, K. T. Competitive MS binding assays for dopamine D2 receptors employing spiperone as a native marker. ChemBioChem 6, 1769–1775 (2005)." href="/articles/s41392-020-00435-w#ref-CR285" id="ref-link-section-d122191348e9707">285</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 290" title="Neiens, P., Hofner, G. &amp; Wanner, K. T. MS binding assays for D1 and D5 dopamine receptors. ChemMedChem 10, 1924–1931 (2015)." href="/articles/s41392-020-00435-w#ref-CR290" id="ref-link-section-d122191348e9710">290</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 291" title="Schuller, M., Hofner, G. &amp; Wanner, K. T. Simultaneous multiple MS binding assays addressing D1 and D2 dopamine receptors. ChemMedChem 12, 1585–1594 (2017)." href="/articles/s41392-020-00435-w#ref-CR291" id="ref-link-section-d122191348e9713">291</a></sup> It was shown that unlabeled marker compounds could substitute their radiolabeled counterparts in all types of ligand-binding characterization studies, including saturation, displacement, dissociation, and competitive association, yielding results in excellent accordance with classic radioligand-binding assays.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 267" title="Massink, A. et al. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. Purinergic Signal. 11, 581–594 (2015)." href="/articles/s41392-020-00435-w#ref-CR267" id="ref-link-section-d122191348e9718">267</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 290" title="Neiens, P., Hofner, G. &amp; Wanner, K. T. MS binding assays for D1 and D5 dopamine receptors. ChemMedChem 10, 1924–1931 (2015)." href="/articles/s41392-020-00435-w#ref-CR290" id="ref-link-section-d122191348e9721">290</a></sup></p></div></div></section><section data-title="Emerging opportunities and prospects"><div class="c-article-section" id="Sec25-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec25">Emerging opportunities and prospects</h2><div class="c-article-section__content" id="Sec25-content"><p>Recent scientific and technological advancements in GPCR biology have provided an enormous amount of information that will benefit our current and future efforts in rational drug design. Integration and refinement of massive data by artificial intelligence is a clear direction to guide both virtual and experimental screening of efficacious therapeutic agents with new scaffolds and of novel chemotypes for all classes of GPCRs.</p><p>However, as described in this review, factors that influence GPCR drug discovery include, but not limited to, therapeutic target, chemical diversity, mechanism of signaling, ligand-binding site, mode of action, clinical indication, polypharmacology, etc. Future opportunities may arise from: (i) de-orphanization of orphan GPCRs to provide novel targets; (ii) new indication for drug intervention via discovery and/or repurposing efforts; (iii) development of lead compounds targeting classes B2 and F GPCRs to address unmet medical needs; and (iv) validation of polypharmacology may lead to improved drug therapies.</p></div></div></section> </div> <div> <div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Insel, P. A. et al. GPCRomics: an approach to discover GPCR drug targets. <i>Trends Pharmacol. Sci.</i> <b>40</b>, 378–387 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2019.04.001" data-track-item_id="10.1016/j.tips.2019.04.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2019.04.001" aria-label="Article reference 1" data-doi="10.1016/j.tips.2019.04.001">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXotFWrsr0%3D" aria-label="CAS reference 1">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31078319" aria-label="PubMed reference 1">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604616" aria-label="PubMed Central reference 1">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCRomics%3A%20an%20approach%20to%20discover%20GPCR%20drug%20targets&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2019.04.001&amp;volume=40&amp;pages=378-387&amp;publication_year=2019&amp;author=Insel%2CPA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Sriram, K. &amp; Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? <i>Mol. Pharmacol.</i> <b>93</b>, 251–258 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.117.111062" data-track-item_id="10.1124/mol.117.111062" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.117.111062" aria-label="Article reference 2" data-doi="10.1124/mol.117.111062">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhs12qsr3O" aria-label="CAS reference 2">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29298813" aria-label="PubMed reference 2">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820538" aria-label="PubMed Central reference 2">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=G%20protein-coupled%20receptors%20as%20targets%20for%20approved%20drugs%3A%20how%20many%20targets%20and%20how%20many%20drugs%3F&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.117.111062&amp;volume=93&amp;pages=251-258&amp;publication_year=2018&amp;author=Sriram%2CK&amp;author=Insel%2CPA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Wootten, D. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors. <i>Nat. Rev. Mol. Cell Biol.</i> <b>19</b>, 638–653 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41580-018-0049-3" data-track-item_id="10.1038/s41580-018-0049-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41580-018-0049-3" aria-label="Article reference 3" data-doi="10.1038/s41580-018-0049-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFSqtbzO" aria-label="CAS reference 3">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30104700" aria-label="PubMed reference 3">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=Mechanisms%20of%20signalling%20and%20biased%20agonism%20in%20G%20protein-coupled%20receptors&amp;journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&amp;doi=10.1038%2Fs41580-018-0049-3&amp;volume=19&amp;pages=638-653&amp;publication_year=2018&amp;author=Wootten%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Hauser, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications. <i>Nat. Rev. Drug Discov.</i> <b>16</b>, 829–842 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2017.178" data-track-item_id="10.1038/nrd.2017.178" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2017.178" aria-label="Article reference 4" data-doi="10.1038/nrd.2017.178">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslansbzF" aria-label="CAS reference 4">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29075003" aria-label="PubMed reference 4">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882681" aria-label="PubMed Central reference 4">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Trends%20in%20GPCR%20drug%20discovery%3A%20new%20agents%2C%20targets%20and%20indications&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2017.178&amp;volume=16&amp;pages=829-842&amp;publication_year=2017&amp;author=Hauser%2CAS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Shimada, I. et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. <i>Nat. Rev. Drug Discov.</i> <b>18</b>, 59–82 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2018.180" data-track-item_id="10.1038/nrd.2018.180" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2018.180" aria-label="Article reference 5" data-doi="10.1038/nrd.2018.180">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitFejtLzN" aria-label="CAS reference 5">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30410121" aria-label="PubMed reference 5">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR%20drug%20discovery%3A%20integrating%20solution%20NMR%20data%20with%20crystal%20and%20cryo-EM%20structures&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2018.180&amp;volume=18&amp;pages=59-82&amp;publication_year=2019&amp;author=Shimada%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Dalesio, N. M., Barreto Ortiz, S. F., Pluznick, J. L. &amp; Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. <i>Front. Physiol.</i> <b>9</b>, 1673 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphys.2018.01673" data-track-item_id="10.3389/fphys.2018.01673" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphys.2018.01673" aria-label="Article reference 6" data-doi="10.3389/fphys.2018.01673">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30542293" aria-label="PubMed reference 6">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278613" aria-label="PubMed Central reference 6">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=Olfactory%2C%20taste%2C%20and%20photo%20sensory%20receptors%20in%20non-sensory%20organs%3A%20it%20just%20makes%20sense&amp;journal=Front.%20Physiol.&amp;doi=10.3389%2Ffphys.2018.01673&amp;volume=9&amp;publication_year=2018&amp;author=Dalesio%2CNM&amp;author=Barreto%20Ortiz%2CSF&amp;author=Pluznick%2CJL&amp;author=Berkowitz%2CDE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. <i>Science</i> <b>318</b>, 1258–1265 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1150577" data-track-item_id="10.1126/science.1150577" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1150577" aria-label="Article reference 7" data-doi="10.1126/science.1150577">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtlGmur7I" aria-label="CAS reference 7">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17962520" aria-label="PubMed reference 7">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103" aria-label="PubMed Central reference 7">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=High-resolution%20crystal%20structure%20of%20an%20engineered%20human%20beta2-adrenergic%20G%20protein-coupled%20receptor&amp;journal=Science&amp;doi=10.1126%2Fscience.1150577&amp;volume=318&amp;pages=1258-1265&amp;publication_year=2007&amp;author=Cherezov%2CV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. <i>Science</i> <b>318</b>, 1266–1273 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1150609" data-track-item_id="10.1126/science.1150609" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1150609" aria-label="Article reference 8" data-doi="10.1126/science.1150609">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtlGmur7J" aria-label="CAS reference 8">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17962519" aria-label="PubMed reference 8">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR%20engineering%20yields%20high-resolution%20structural%20insights%20into%20beta2-adrenergic%20receptor%20function&amp;journal=Science&amp;doi=10.1126%2Fscience.1150609&amp;volume=318&amp;pages=1266-1273&amp;publication_year=2007&amp;author=Rosenbaum%2CDM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. <i>Nature</i> <b>546</b>, 118–123 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature22327" data-track-item_id="10.1038/nature22327" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature22327" aria-label="Article reference 9" data-doi="10.1038/nature22327">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXmslehs7w%3D" aria-label="CAS reference 9">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28437792" aria-label="PubMed reference 9">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832441" aria-label="PubMed Central reference 9">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Phase-plate%20cryo-EM%20structure%20of%20a%20class%20B%20GPCR-G-protein%20complex&amp;journal=Nature&amp;doi=10.1038%2Fnature22327&amp;volume=546&amp;pages=118-123&amp;publication_year=2017&amp;author=Liang%2CYL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Safdari, H. A., Pandey, S., Shukla, A. K. &amp; Dutta, S. Illuminating GPCR signaling by cryo-EM. <i>Trends Cell Biol.</i> <b>28</b>, 591–594 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tcb.2018.06.002" data-track-item_id="10.1016/j.tcb.2018.06.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tcb.2018.06.002" aria-label="Article reference 10" data-doi="10.1016/j.tcb.2018.06.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtF2jt7vJ" aria-label="CAS reference 10">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29945844" aria-label="PubMed reference 10">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Illuminating%20GPCR%20signaling%20by%20cryo-EM&amp;journal=Trends%20Cell%20Biol.&amp;doi=10.1016%2Fj.tcb.2018.06.002&amp;volume=28&amp;pages=591-594&amp;publication_year=2018&amp;author=Safdari%2CHA&amp;author=Pandey%2CS&amp;author=Shukla%2CAK&amp;author=Dutta%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Congreve, M., de Graaf, C., Swain, N. A. &amp; Tate, C. G. Impact of GPCR structures on drug discovery. <i>Cell</i> <b>181</b>, 81–91 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2020.03.003" data-track-item_id="10.1016/j.cell.2020.03.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2020.03.003" aria-label="Article reference 11" data-doi="10.1016/j.cell.2020.03.003">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXmsVSksLk%3D" aria-label="CAS reference 11">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32243800" aria-label="PubMed reference 11">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=Impact%20of%20GPCR%20structures%20on%20drug%20discovery&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2020.03.003&amp;volume=181&amp;pages=81-91&amp;publication_year=2020&amp;author=Congreve%2CM&amp;author=Graaf%2CC&amp;author=Swain%2CNA&amp;author=Tate%2CCG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Wootten, D. et al. Allostery and biased agonism at class B G protein-coupled receptors. <i>Chem. Rev.</i> <b>117</b>, 111–138 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.chemrev.6b00049" data-track-item_id="10.1021/acs.chemrev.6b00049" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.chemrev.6b00049" aria-label="Article reference 12" data-doi="10.1021/acs.chemrev.6b00049">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xlt1yqsr0%3D" aria-label="CAS reference 12">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27040440" aria-label="PubMed reference 12">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Allostery%20and%20biased%20agonism%20at%20class%20B%20G%20protein-coupled%20receptors&amp;journal=Chem.%20Rev.&amp;doi=10.1021%2Facs.chemrev.6b00049&amp;volume=117&amp;pages=111-138&amp;publication_year=2017&amp;author=Wootten%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. <i>Cell</i> <b>177</b>, 1933–1947. e1925 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2019.04.044" data-track-item_id="10.1016/j.cell.2019.04.044" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2019.04.044" aria-label="Article reference 13" data-doi="10.1016/j.cell.2019.04.044">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFOrs7nE" aria-label="CAS reference 13">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31160049" aria-label="PubMed reference 13">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773469" aria-label="PubMed Central reference 13">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Illuminating%20G-protein-coupling%20selectivity%20of%20GPCRs&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2019.04.044&amp;volume=177&amp;pages=1933-1947.%20e1925&amp;publication_year=2019&amp;author=Inoue%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Lane, J. R. et al. A kinetic view of GPCR allostery and biased agonism. <i>Nat. Chem. Biol.</i> <b>13</b>, 929–937 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.2431" data-track-item_id="10.1038/nchembio.2431" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.2431" aria-label="Article reference 14" data-doi="10.1038/nchembio.2431">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtlGktbrO" aria-label="CAS reference 14">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28820879" aria-label="PubMed reference 14">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20kinetic%20view%20of%20GPCR%20allostery%20and%20biased%20agonism&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fnchembio.2431&amp;volume=13&amp;pages=929-937&amp;publication_year=2017&amp;author=Lane%2CJR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. <i>Nature</i> <b>537</b>, 185–190 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature19112" data-track-item_id="10.1038/nature19112" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature19112" aria-label="Article reference 15" data-doi="10.1038/nature19112">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlKmsbvI" aria-label="CAS reference 15">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27533032" aria-label="PubMed reference 15">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161585" aria-label="PubMed Central reference 15">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-based%20discovery%20of%20opioid%20analgesics%20with%20reduced%20side%20effects&amp;journal=Nature&amp;doi=10.1038%2Fnature19112&amp;volume=537&amp;pages=185-190&amp;publication_year=2016&amp;author=Manglik%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Korczynska, M. et al. Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. <i>Proc. Natl Acad. Sci. USA</i> <b>115</b>, E2419–E2428 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1718037115" data-track-item_id="10.1073/pnas.1718037115" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1718037115" aria-label="Article reference 16" data-doi="10.1073/pnas.1718037115">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1egtrvK" aria-label="CAS reference 16">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29453275" aria-label="PubMed reference 16">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877965" aria-label="PubMed Central reference 16">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-based%20discovery%20of%20selective%20positive%20allosteric%20modulators%20of%20antagonists%20for%20the%20M2%20muscarinic%20acetylcholine%20receptor&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1718037115&amp;volume=115&amp;pages=E2419-E2428&amp;publication_year=2018&amp;author=Korczynska%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. <i>Cell</i> <b>179</b>, 895–908. e821 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2019.10.010" data-track-item_id="10.1016/j.cell.2019.10.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2019.10.010" aria-label="Article reference 17" data-doi="10.1016/j.cell.2019.10.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFSjsrrO" aria-label="CAS reference 17">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31675498" aria-label="PubMed reference 17">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838683" aria-label="PubMed Central reference 17">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20of%20human%20signaling%20systems%3A%20pairing%20peptides%20to%20G%20protein-coupled%20receptors&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2019.10.010&amp;volume=179&amp;pages=895-908.%20e821&amp;publication_year=2019&amp;author=Foster%2CSR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Hu, G. M., Mai, T. L. &amp; Chen, C. M. Visualizing the GPCR network: classification and evolution. <i>Sci. Rep.</i> <b>7</b>, 15495 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-017-15707-9" data-track-item_id="10.1038/s41598-017-15707-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-017-15707-9" aria-label="Article reference 18" data-doi="10.1038/s41598-017-15707-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29138525" aria-label="PubMed reference 18">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686146" aria-label="PubMed Central reference 18">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFWju7vP" aria-label="CAS reference 18">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&amp;title=Visualizing%20the%20GPCR%20network%3A%20classification%20and%20evolution&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-017-15707-9&amp;volume=7&amp;publication_year=2017&amp;author=Hu%2CGM&amp;author=Mai%2CTL&amp;author=Chen%2CCM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Basith, S. et al. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. <i>Front. Pharmacol.</i> <b>9</b>, 128 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphar.2018.00128" data-track-item_id="10.3389/fphar.2018.00128" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphar.2018.00128" aria-label="Article reference 19" data-doi="10.3389/fphar.2018.00128">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29593527" aria-label="PubMed reference 19">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854945" aria-label="PubMed Central reference 19">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlKnsrzI" aria-label="CAS reference 19">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=Exploring%20G%20protein-coupled%20receptors%20%28GPCRs%29%20ligand%20space%20via%20cheminformatics%20approaches%3A%20impact%20on%20rational%20drug%20design&amp;journal=Front.%20Pharmacol.&amp;doi=10.3389%2Ffphar.2018.00128&amp;volume=9&amp;publication_year=2018&amp;author=Basith%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. <i>Nucleic Acids Res.</i> <b>46</b>, D1074–D1082 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/nar/gkx1037" data-track-item_id="10.1093/nar/gkx1037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fnar%2Fgkx1037" aria-label="Article reference 20" data-doi="10.1093/nar/gkx1037">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlGisbvI" aria-label="CAS reference 20">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29126136" aria-label="PubMed reference 20">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=DrugBank%205.0%3A%20a%20major%20update%20to%20the%20DrugBank%20database%20for%202018&amp;journal=Nucleic%20Acids%20Res.&amp;doi=10.1093%2Fnar%2Fgkx1037&amp;volume=46&amp;pages=D1074-D1082&amp;publication_year=2018&amp;author=Wishart%2CDS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Alexander, S. P. H. et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. <i>Br. J. Pharmacol.</i> <b>176</b>, S21–S141 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31710717" aria-label="PubMed reference 21">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844580" aria-label="PubMed Central reference 21">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20concise%20guide%20to%20pharmacology%202019%2F20%3A%20G%20protein-coupled%20receptors&amp;journal=Br.%20J.%20Pharmacol.&amp;volume=176&amp;pages=S21-S141&amp;publication_year=2019&amp;author=Alexander%2CSPH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Bhudia, N. et al. G protein-coupling of adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and activation of G protein signalling by an anti-EMR2 antibody. <i>Sci. Rep.</i> <b>10</b>, 1004 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-57989-6" data-track-item_id="10.1038/s41598-020-57989-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-57989-6" aria-label="Article reference 22" data-doi="10.1038/s41598-020-57989-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXkslajs7Y%3D" aria-label="CAS reference 22">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31969668" aria-label="PubMed reference 22">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976652" aria-label="PubMed Central reference 22">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&amp;title=G%20protein-coupling%20of%20adhesion%20GPCRs%20ADGRE2%2FEMR2%20and%20ADGRE5%2FCD97%2C%20and%20activation%20of%20G%20protein%20signalling%20by%20an%20anti-EMR2%20antibody&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-020-57989-6&amp;volume=10&amp;publication_year=2020&amp;author=Bhudia%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Pal, K., Melcher, K. &amp; Xu, H. E. Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. <i>Acta Pharmacol. Sin.</i> <b>33</b>, 300–311 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/aps.2011.170" data-track-item_id="10.1038/aps.2011.170" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Faps.2011.170" aria-label="Article reference 23" data-doi="10.1038/aps.2011.170">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xjt1egtLw%3D" aria-label="CAS reference 23">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22266723" aria-label="PubMed reference 23">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690506" aria-label="PubMed Central reference 23">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20and%20mechanism%20for%20recognition%20of%20peptide%20hormones%20by%20class%20B%20G-protein-coupled%20receptors&amp;journal=Acta%20Pharmacol.%20Sin.&amp;doi=10.1038%2Faps.2011.170&amp;volume=33&amp;pages=300-311&amp;publication_year=2012&amp;author=Pal%2CK&amp;author=Melcher%2CK&amp;author=Xu%2CHE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Bondarev, A. D. et al. Opportunities and challenges for drug discovery in modulating adhesion G protein-coupled receptor (GPCR) functions. <i>Expert Opin. Drug Discov.</i> <b>15</b>, 1291–1307 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/17460441.2020.1791075" data-track-item_id="10.1080/17460441.2020.1791075" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F17460441.2020.1791075" aria-label="Article reference 24" data-doi="10.1080/17460441.2020.1791075">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsVGls7bL" aria-label="CAS reference 24">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32648789" aria-label="PubMed reference 24">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=Opportunities%20and%20challenges%20for%20drug%20discovery%20in%20modulating%20adhesion%20G%20protein-coupled%20receptor%20%28GPCR%29%20functions&amp;journal=Expert%20Opin.%20Drug%20Discov.&amp;doi=10.1080%2F17460441.2020.1791075&amp;volume=15&amp;pages=1291-1307&amp;publication_year=2020&amp;author=Bondarev%2CAD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Vizurraga, A. et al. Mechanisms of adhesion G protein-coupled receptor activation. <i>J. Biol. Chem.</i> <b>295</b>, 14065–14083 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.REV120.007423" data-track-item_id="10.1074/jbc.REV120.007423" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.REV120.007423" aria-label="Article reference 25" data-doi="10.1074/jbc.REV120.007423">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXit1CntL7F" aria-label="CAS reference 25">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32763969" aria-label="PubMed reference 25">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549034" aria-label="PubMed Central reference 25">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=Mechanisms%20of%20adhesion%20G%20protein-coupled%20receptor%20activation&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.REV120.007423&amp;volume=295&amp;pages=14065-14083&amp;publication_year=2020&amp;author=Vizurraga%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). <i>Mol. Metab.</i> <b>30</b>, 72–130 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molmet.2019.09.010" data-track-item_id="10.1016/j.molmet.2019.09.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molmet.2019.09.010" aria-label="Article reference 26" data-doi="10.1016/j.molmet.2019.09.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:STN:280:DC%2BB3MfjtFGnug%3D%3D" aria-label="CAS reference 26">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31767182" aria-label="PubMed reference 26">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812410" aria-label="PubMed Central reference 26">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&amp;title=Glucagon-like%20peptide%201%20%28GLP-1%29&amp;journal=Mol.%20Metab.&amp;doi=10.1016%2Fj.molmet.2019.09.010&amp;volume=30&amp;pages=72-130&amp;publication_year=2019&amp;author=Muller%2CTD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Sekar, R., Singh, K., Arokiaraj, A. W. &amp; Chow, B. K. Pharmacological actions of glucagon-like peptide-1, gastric inhibitory polypeptide, and glucagon. <i>Int. Rev. Cell Mol. Biol.</i> <b>326</b>, 279–341 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/bs.ircmb.2016.05.002" data-track-item_id="10.1016/bs.ircmb.2016.05.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fbs.ircmb.2016.05.002" aria-label="Article reference 27" data-doi="10.1016/bs.ircmb.2016.05.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslCjsbs%3D" aria-label="CAS reference 27">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27572131" aria-label="PubMed reference 27">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&amp;title=Pharmacological%20actions%20of%20glucagon-like%20peptide-1%2C%20gastric%20inhibitory%20polypeptide%2C%20and%20glucagon&amp;journal=Int.%20Rev.%20Cell%20Mol.%20Biol.&amp;doi=10.1016%2Fbs.ircmb.2016.05.002&amp;volume=326&amp;pages=279-341&amp;publication_year=2016&amp;author=Sekar%2CR&amp;author=Singh%2CK&amp;author=Arokiaraj%2CAW&amp;author=Chow%2CBK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Yu, M. et al. Battle of GLP-1 delivery technologies. <i>Adv. Drug Deliv. Rev.</i> <b>130</b>, 113–130 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.addr.2018.07.009" data-track-item_id="10.1016/j.addr.2018.07.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.addr.2018.07.009" aria-label="Article reference 28" data-doi="10.1016/j.addr.2018.07.009">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlKmtbjM" aria-label="CAS reference 28">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30009885" aria-label="PubMed reference 28">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843995" aria-label="PubMed Central reference 28">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=Battle%20of%20GLP-1%20delivery%20technologies&amp;journal=Adv.%20Drug%20Deliv.%20Rev.&amp;doi=10.1016%2Fj.addr.2018.07.009&amp;volume=130&amp;pages=113-130&amp;publication_year=2018&amp;author=Yu%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. <i>Cell Metab.</i> <b>27</b>, 740–756 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cmet.2018.03.001" data-track-item_id="10.1016/j.cmet.2018.03.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cmet.2018.03.001" aria-label="Article reference 29" data-doi="10.1016/j.cmet.2018.03.001">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXntVKqs7k%3D" aria-label="CAS reference 29">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29617641" aria-label="PubMed reference 29">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&amp;title=Mechanisms%20of%20action%20and%20therapeutic%20application%20of%20glucagon-like%20peptide-1&amp;journal=Cell%20Metab.&amp;doi=10.1016%2Fj.cmet.2018.03.001&amp;volume=27&amp;pages=740-756&amp;publication_year=2018&amp;author=Drucker%2CDJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. <i>Lancet</i> <b>394</b>, 39–50 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/S0140-6736(19)31271-1" data-track-item_id="10.1016/S0140-6736(19)31271-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2FS0140-6736%2819%2931271-1" aria-label="Article reference 30" data-doi="10.1016/S0140-6736(19)31271-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFGjtLfE" aria-label="CAS reference 30">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31186120" aria-label="PubMed reference 30">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&amp;title=Oral%20semaglutide%20versus%20subcutaneous%20liraglutide%20and%20placebo%20in%20type%202%20diabetes%20%28PIONEER%204%29%3A%20a%20randomised%2C%20double-blind%2C%20phase%203a%20trial&amp;journal=Lancet&amp;doi=10.1016%2FS0140-6736%2819%2931271-1&amp;volume=394&amp;pages=39-50&amp;publication_year=2019&amp;author=Pratley%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Blundell, J. et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. <i>Diabetes Obes. Metab.</i> <b>19</b>, 1242–1251 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/dom.12932" data-track-item_id="10.1111/dom.12932" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fdom.12932" aria-label="Article reference 31" data-doi="10.1111/dom.12932">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtlKntr%2FE" aria-label="CAS reference 31">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28266779" aria-label="PubMed reference 31">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573908" aria-label="PubMed Central reference 31">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&amp;title=Effects%20of%20once-weekly%20semaglutide%20on%20appetite%2C%20energy%20intake%2C%20control%20of%20eating%2C%20food%20preference%20and%20body%20weight%20in%20subjects%20with%20obesity&amp;journal=Diabetes%20Obes.%20Metab.&amp;doi=10.1111%2Fdom.12932&amp;volume=19&amp;pages=1242-1251&amp;publication_year=2017&amp;author=Blundell%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Williams, D. M., Nawaz, A. &amp; Evans, M. Drug therapy in obesity: a review of current and emerging treatments. <i>Diabetes Ther.</i> <b>11</b>, 1199–1216 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13300-020-00816-y" data-track-item_id="10.1007/s13300-020-00816-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13300-020-00816-y" aria-label="Article reference 32" data-doi="10.1007/s13300-020-00816-y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32297119" aria-label="PubMed reference 32">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261312" aria-label="PubMed Central reference 32">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&amp;title=Drug%20therapy%20in%20obesity%3A%20a%20review%20of%20current%20and%20emerging%20treatments&amp;journal=Diabetes%20Ther.&amp;doi=10.1007%2Fs13300-020-00816-y&amp;volume=11&amp;pages=1199-1216&amp;publication_year=2020&amp;author=Williams%2CDM&amp;author=Nawaz%2CA&amp;author=Evans%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Knerr, P. J. et al. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. <i>Peptides</i> <b>125</b>, 170225 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.peptides.2019.170225" data-track-item_id="10.1016/j.peptides.2019.170225" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.peptides.2019.170225" aria-label="Article reference 33" data-doi="10.1016/j.peptides.2019.170225">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXitlOmtbrN" aria-label="CAS reference 33">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31786282" aria-label="PubMed reference 33">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&amp;title=Selection%20and%20progression%20of%20unimolecular%20agonists%20at%20the%20GIP%2C%20GLP-1%2C%20and%20glucagon%20receptors%20as%20drug%20candidates&amp;journal=Peptides&amp;doi=10.1016%2Fj.peptides.2019.170225&amp;volume=125&amp;publication_year=2020&amp;author=Knerr%2CPJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Frias, J. P. et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. <i>Cell Metab.</i> <b>26</b>, 343–352 e342 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cmet.2017.07.011" data-track-item_id="10.1016/j.cmet.2017.07.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cmet.2017.07.011" aria-label="Article reference 34" data-doi="10.1016/j.cmet.2017.07.011">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXht1OiurvM" aria-label="CAS reference 34">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28768173" aria-label="PubMed reference 34">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20sustained%20effects%20of%20a%20dual%20GIP%2FGLP-1%20receptor%20agonist%2C%20NNC0090-2746%2C%20in%20patients%20with%20type%202%20diabetes&amp;journal=Cell%20Metab.&amp;doi=10.1016%2Fj.cmet.2017.07.011&amp;volume=26&amp;pages=343-352%20e342&amp;publication_year=2017&amp;author=Frias%2CJP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Parker, V. E. R. et al. Efficacy, safety, and mechanistic insights of cotadutide, a dual receptor glucagon-like peptide-1 and glucagon agonist. <i>J. Clin. Endocrinol. Metab</i>. <b>105</b>, dgz047 (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Visentin, R. et al. Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes. <i>Diabetes Obes. Metab.</i> <b>22</b>, 640–647 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/dom.13939" data-track-item_id="10.1111/dom.13939" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fdom.13939" aria-label="Article reference 36" data-doi="10.1111/dom.13939">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXkt1Ois7g%3D" aria-label="CAS reference 36">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31808298" aria-label="PubMed reference 36">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&amp;title=Dual%20glucagon-like%20peptide-1%20receptor%2Fglucagon%20receptor%20agonist%20SAR425899%20improves%20beta-cell%20function%20in%20type%202%20diabetes&amp;journal=Diabetes%20Obes.%20Metab.&amp;doi=10.1111%2Fdom.13939&amp;volume=22&amp;pages=640-647&amp;publication_year=2020&amp;author=Visentin%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. <i>Diabetes Obes. Metab.</i> <b>21</b>, 120–128 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/dom.13494" data-track-item_id="10.1111/dom.13494" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fdom.13494" aria-label="Article reference 37" data-doi="10.1111/dom.13494">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisVylsbjM" aria-label="CAS reference 37">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30091218" aria-label="PubMed reference 37">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20novel%20dual%20glucagon-like%20peptide%20and%20glucagon%20receptor%20agonist%20SAR425899%3A%20results%20of%20randomized%2C%20placebo-controlled%20first-in-human%20and%20first-in-patient%20trials&amp;journal=Diabetes%20Obes.%20Metab.&amp;doi=10.1111%2Fdom.13494&amp;volume=21&amp;pages=120-128&amp;publication_year=2019&amp;author=Tillner%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Armstrong, D. et al. Colon polyps in patients with short bowel syndrome before and after teduglutide: post hoc analysis of the STEPS study series. <i>Clin. Nutr.</i> <b>39</b>, 1774–1777 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.clnu.2019.08.020" data-track-item_id="10.1016/j.clnu.2019.08.020" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.clnu.2019.08.020" aria-label="Article reference 38" data-doi="10.1016/j.clnu.2019.08.020">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhslWgtLrP" aria-label="CAS reference 38">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31522784" aria-label="PubMed reference 38">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&amp;title=Colon%20polyps%20in%20patients%20with%20short%20bowel%20syndrome%20before%20and%20after%20teduglutide%3A%20post%20hoc%20analysis%20of%20the%20STEPS%20study%20series&amp;journal=Clin.%20Nutr.&amp;doi=10.1016%2Fj.clnu.2019.08.020&amp;volume=39&amp;pages=1774-1777&amp;publication_year=2020&amp;author=Armstrong%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Gingell, J. J., Hendrikse, E. R. &amp; Hay, D. L. New insights into the regulation of CGRP-family receptors. <i>Trends Pharmacol. Sci.</i> <b>40</b>, 71–83 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2018.11.005" data-track-item_id="10.1016/j.tips.2018.11.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2018.11.005" aria-label="Article reference 39" data-doi="10.1016/j.tips.2018.11.005">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1ymt73P" aria-label="CAS reference 39">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30527443" aria-label="PubMed reference 39">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&amp;title=New%20insights%20into%20the%20regulation%20of%20CGRP-family%20receptors&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2018.11.005&amp;volume=40&amp;pages=71-83&amp;publication_year=2019&amp;author=Gingell%2CJJ&amp;author=Hendrikse%2CER&amp;author=Hay%2CDL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Hay, D. L., Garelja, M. L., Poyner, D. R. &amp; Walker, C. S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. <i>Br. J. Pharmacol.</i> <b>175</b>, 3–17 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/bph.14075" data-track-item_id="10.1111/bph.14075" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fbph.14075" aria-label="Article reference 40" data-doi="10.1111/bph.14075">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVOjsrzJ" aria-label="CAS reference 40">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29059473" aria-label="PubMed reference 40">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&amp;title=Update%20on%20the%20pharmacology%20of%20calcitonin%2FCGRP%20family%20of%20peptides%3A%20IUPHAR%20Review%2025&amp;journal=Br.%20J.%20Pharmacol.&amp;doi=10.1111%2Fbph.14075&amp;volume=175&amp;pages=3-17&amp;publication_year=2018&amp;author=Hay%2CDL&amp;author=Garelja%2CML&amp;author=Poyner%2CDR&amp;author=Walker%2CCS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Davenport, A. P. et al. Advances in therapeutic peptides targeting G protein-coupled receptors. <i>Nat. Rev. Drug Discov.</i> <b>19</b>, 389–413 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41573-020-0062-z" data-track-item_id="10.1038/s41573-020-0062-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41573-020-0062-z" aria-label="Article reference 41" data-doi="10.1038/s41573-020-0062-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXlt1Ciu70%3D" aria-label="CAS reference 41">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32494050" aria-label="PubMed reference 41">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&amp;title=Advances%20in%20therapeutic%20peptides%20targeting%20G%20protein-coupled%20receptors&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fs41573-020-0062-z&amp;volume=19&amp;pages=389-413&amp;publication_year=2020&amp;author=Davenport%2CAP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Dolgin, E. First GPCR-directed antibody passes approval milestone. <i>Nat. Rev. Drug Discov.</i> <b>17</b>, 457–459 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2018.103" data-track-item_id="10.1038/nrd.2018.103" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2018.103" aria-label="Article reference 42" data-doi="10.1038/nrd.2018.103">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1Sqtr3L" aria-label="CAS reference 42">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29950713" aria-label="PubMed reference 42">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&amp;title=First%20GPCR-directed%20antibody%20passes%20approval%20milestone&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2018.103&amp;volume=17&amp;pages=457-459&amp;publication_year=2018&amp;author=Dolgin%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Edvinsson, L., Haanes, K. A., Warfvinge, K. &amp; Krause, D. N. CGRP as the target of new migraine therapies - successful translation from bench to clinic. <i>Nat. Rev. Neurol.</i> <b>14</b>, 338–350 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41582-018-0003-1" data-track-item_id="10.1038/s41582-018-0003-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41582-018-0003-1" aria-label="Article reference 43" data-doi="10.1038/s41582-018-0003-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXos1Knsrk%3D" aria-label="CAS reference 43">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29691490" aria-label="PubMed reference 43">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&amp;title=CGRP%20as%20the%20target%20of%20new%20migraine%20therapies%20-%20successful%20translation%20from%20bench%20to%20clinic&amp;journal=Nat.%20Rev.%20Neurol.&amp;doi=10.1038%2Fs41582-018-0003-1&amp;volume=14&amp;pages=338-350&amp;publication_year=2018&amp;author=Edvinsson%2CL&amp;author=Haanes%2CKA&amp;author=Warfvinge%2CK&amp;author=Krause%2CDN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Ishida, J. et al. Growth hormone secretagogues: history, mechanism of action, and clinical development. <i>JCSM Rapid Commun.</i> <b>3</b>, 25–37 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/rco2.9" data-track-item_id="10.1002/rco2.9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Frco2.9" aria-label="Article reference 44" data-doi="10.1002/rco2.9">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&amp;title=Growth%20hormone%20secretagogues%3A%20history%2C%20mechanism%20of%20action%2C%20and%20clinical%20development&amp;journal=JCSM%20Rapid%20Commun.&amp;doi=10.1002%2Frco2.9&amp;volume=3&amp;pages=25-37&amp;publication_year=2020&amp;author=Ishida%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Karageorgiadis, A. S. et al. Ectopic adrenocorticotropic hormone and corticotropin-releasing hormone co-secreting tumors in children and adolescents causing cushing syndrome: a diagnostic dilemma and how to solve it. <i>J. Clin. Endocrinol. Metab.</i> <b>100</b>, 141–148 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1210/jc.2014-2945" data-track-item_id="10.1210/jc.2014-2945" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1210%2Fjc.2014-2945" aria-label="Article reference 45" data-doi="10.1210/jc.2014-2945">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtlOru7w%3D" aria-label="CAS reference 45">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25291050" aria-label="PubMed reference 45">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&amp;title=Ectopic%20adrenocorticotropic%20hormone%20and%20corticotropin-releasing%20hormone%20co-secreting%20tumors%20in%20children%20and%20adolescents%20causing%20cushing%20syndrome%3A%20a%20diagnostic%20dilemma%20and%20how%20to%20solve%20it&amp;journal=J.%20Clin.%20Endocrinol.%20Metab.&amp;doi=10.1210%2Fjc.2014-2945&amp;volume=100&amp;pages=141-148&amp;publication_year=2015&amp;author=Karageorgiadis%2CAS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Leder, B. Z. et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. <i>J. Clin. Endocrinol. Metab.</i> <b>100</b>, 697–706 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1210/jc.2014-3718" data-track-item_id="10.1210/jc.2014-3718" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1210%2Fjc.2014-3718" aria-label="Article reference 46" data-doi="10.1210/jc.2014-3718">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXjtVWqtLw%3D" aria-label="CAS reference 46">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25393645" aria-label="PubMed reference 46">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&amp;title=Effects%20of%20abaloparatide%2C%20a%20human%20parathyroid%20hormone-related%20peptide%20analog%2C%20on%20bone%20mineral%20density%20in%20postmenopausal%20women%20with%20osteoporosis&amp;journal=J.%20Clin.%20Endocrinol.%20Metab.&amp;doi=10.1210%2Fjc.2014-3718&amp;volume=100&amp;pages=697-706&amp;publication_year=2015&amp;author=Leder%2CBZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Overington, J. P., Al-Lazikani, B. &amp; Hopkins, A. L. How many drug targets are there? <i>Nat. Rev. Drug Discov.</i> <b>5</b>, 993–996 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd2199" data-track-item_id="10.1038/nrd2199" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd2199" aria-label="Article reference 47" data-doi="10.1038/nrd2199">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28Xht1Kju7jM" aria-label="CAS reference 47">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17139284" aria-label="PubMed reference 47">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&amp;title=How%20many%20drug%20targets%20are%20there%3F&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd2199&amp;volume=5&amp;pages=993-996&amp;publication_year=2006&amp;author=Overington%2CJP&amp;author=Al-Lazikani%2CB&amp;author=Hopkins%2CAL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Niswender, C. M. &amp; Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. <i>Annu. Rev. Pharmacol. Toxicol.</i> <b>50</b>, 295–322 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev.pharmtox.011008.145533" data-track-item_id="10.1146/annurev.pharmtox.011008.145533" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev.pharmtox.011008.145533" aria-label="Article reference 48" data-doi="10.1146/annurev.pharmtox.011008.145533">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXisVelurg%3D" aria-label="CAS reference 48">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=20055706" aria-label="PubMed reference 48">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904507" aria-label="PubMed Central reference 48">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&amp;title=Metabotropic%20glutamate%20receptors%3A%20physiology%2C%20pharmacology%2C%20and%20disease&amp;journal=Annu.%20Rev.%20Pharmacol.%20Toxicol.&amp;doi=10.1146%2Fannurev.pharmtox.011008.145533&amp;volume=50&amp;pages=295-322&amp;publication_year=2010&amp;author=Niswender%2CCM&amp;author=Conn%2CPJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">Pin, J. P. et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. <i>FEBS J.</i> <b>272</b>, 2947–2955 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/j.1742-4658.2005.04728.x" data-track-item_id="10.1111/j.1742-4658.2005.04728.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fj.1742-4658.2005.04728.x" aria-label="Article reference 49" data-doi="10.1111/j.1742-4658.2005.04728.x">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXlslCiur4%3D" aria-label="CAS reference 49">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=15955055" aria-label="PubMed reference 49">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20functioning%20of%20dimeric%20class%20C%20G-protein-coupled%20receptors&amp;journal=FEBS%20J.&amp;doi=10.1111%2Fj.1742-4658.2005.04728.x&amp;volume=272&amp;pages=2947-2955&amp;publication_year=2005&amp;author=Pin%2CJP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Geng, Y. et al. Structural mechanism of ligand activation in human GABA(B) receptor. <i>Nature</i> <b>504</b>, 254–259 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature12725" data-track-item_id="10.1038/nature12725" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature12725" aria-label="Article reference 50" data-doi="10.1038/nature12725">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFaru7vE" aria-label="CAS reference 50">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24305054" aria-label="PubMed reference 50">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865065" aria-label="PubMed Central reference 50">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20mechanism%20of%20ligand%20activation%20in%20human%20GABA%28B%29%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature12725&amp;volume=504&amp;pages=254-259&amp;publication_year=2013&amp;author=Geng%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. <i>Nature</i> <b>566</b>, 79–84 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-0881-4" data-track-item_id="10.1038/s41586-019-0881-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-0881-4" aria-label="Article reference 51" data-doi="10.1038/s41586-019-0881-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmtVyjtLk%3D" aria-label="CAS reference 51">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30675062" aria-label="PubMed reference 51">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709600" aria-label="PubMed Central reference 51">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20insights%20into%20the%20activation%20of%20metabotropic%20glutamate%20receptors&amp;journal=Nature&amp;doi=10.1038%2Fs41586-019-0881-4&amp;volume=566&amp;pages=79-84&amp;publication_year=2019&amp;author=Koehl%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. <i>Cell Res.</i> <b>30</b>, 564–573 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41422-020-0350-5" data-track-item_id="10.1038/s41422-020-0350-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41422-020-0350-5" aria-label="Article reference 52" data-doi="10.1038/s41422-020-0350-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFCms7%2FP" aria-label="CAS reference 52">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32494023" aria-label="PubMed reference 52">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343782" aria-label="PubMed Central reference 52">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&amp;title=Cryo-EM%20structures%20of%20inactive%20and%20active%20GABAB%20receptor&amp;journal=Cell%20Res.&amp;doi=10.1038%2Fs41422-020-0350-5&amp;volume=30&amp;pages=564-573&amp;publication_year=2020&amp;author=Mao%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Papasergi-Scott, M. M. et al. Structures of metabotropic GABAB receptor. <i>Nature</i> <b>584</b>, 310–314 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-2469-4" data-track-item_id="10.1038/s41586-020-2469-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-2469-4" aria-label="Article reference 53" data-doi="10.1038/s41586-020-2469-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsFegtb%2FF" aria-label="CAS reference 53">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32580208" aria-label="PubMed reference 53">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429364" aria-label="PubMed Central reference 53">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&amp;title=Structures%20of%20metabotropic%20GABAB%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-2469-4&amp;volume=584&amp;pages=310-314&amp;publication_year=2020&amp;author=Papasergi-Scott%2CMM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Park, J. et al. Structure of human GABAB receptor in an inactive state. <i>Nature</i> <b>584</b>, 304–309 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-2452-0" data-track-item_id="10.1038/s41586-020-2452-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-2452-0" aria-label="Article reference 54" data-doi="10.1038/s41586-020-2452-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1Cmu7vO" aria-label="CAS reference 54">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32581365" aria-label="PubMed reference 54">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725281" aria-label="PubMed Central reference 54">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20human%20GABAB%20receptor%20in%20an%20inactive%20state&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-2452-0&amp;volume=584&amp;pages=304-309&amp;publication_year=2020&amp;author=Park%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Shaye, H. et al. Structural basis of the activation of a metabotropic GABA receptor. <i>Nature</i> <b>584</b>, 298–303 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-2408-4" data-track-item_id="10.1038/s41586-020-2408-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-2408-4" aria-label="Article reference 55" data-doi="10.1038/s41586-020-2408-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtF2is7fK" aria-label="CAS reference 55">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32555460" aria-label="PubMed reference 55">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020835" aria-label="PubMed Central reference 55">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20of%20the%20activation%20of%20a%20metabotropic%20GABA%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-2408-4&amp;volume=584&amp;pages=298-303&amp;publication_year=2020&amp;author=Shaye%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">De Witte, P., Littleton, J., Parot, P. &amp; Koob, G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. <i>CNS Drugs</i> <b>19</b>, 517–537 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2165/00023210-200519060-00004" data-track-item_id="10.2165/00023210-200519060-00004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2165%2F00023210-200519060-00004" aria-label="Article reference 56" data-doi="10.2165/00023210-200519060-00004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=15963001" aria-label="PubMed reference 56">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&amp;title=Neuroprotective%20and%20abstinence-promoting%20effects%20of%20acamprosate%3A%20elucidating%20the%20mechanism%20of%20action&amp;journal=CNS%20Drugs&amp;doi=10.2165%2F00023210-200519060-00004&amp;volume=19&amp;pages=517-537&amp;publication_year=2005&amp;author=Witte%2CP&amp;author=Littleton%2CJ&amp;author=Parot%2CP&amp;author=Koob%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Messa, P., Alfieri, C. &amp; Brezzi, B. Cinacalcet: pharmacological and clinical aspects. <i>Expert Opin. Drug Metab. Toxicol.</i> <b>4</b>, 1551–1560 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1517/17425250802587017" data-track-item_id="10.1517/17425250802587017" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1517%2F17425250802587017" aria-label="Article reference 57" data-doi="10.1517/17425250802587017">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsVent7zP" aria-label="CAS reference 57">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=19040330" aria-label="PubMed reference 57">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&amp;title=Cinacalcet%3A%20pharmacological%20and%20clinical%20aspects&amp;journal=Expert%20Opin.%20Drug%20Metab.%20Toxicol.&amp;doi=10.1517%2F17425250802587017&amp;volume=4&amp;pages=1551-1560&amp;publication_year=2008&amp;author=Messa%2CP&amp;author=Alfieri%2CC&amp;author=Brezzi%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">Ruat, M., Hoch, L., Faure, H. &amp; Rognan, D. Targeting of smoothened for therapeutic gain. <i>Trends Pharmacol. Sci.</i> <b>35</b>, 237–246 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2014.03.002" data-track-item_id="10.1016/j.tips.2014.03.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2014.03.002" aria-label="Article reference 58" data-doi="10.1016/j.tips.2014.03.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXltl2ms7s%3D" aria-label="CAS reference 58">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24703627" aria-label="PubMed reference 58">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&amp;title=Targeting%20of%20smoothened%20for%20therapeutic%20gain&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2014.03.002&amp;volume=35&amp;pages=237-246&amp;publication_year=2014&amp;author=Ruat%2CM&amp;author=Hoch%2CL&amp;author=Faure%2CH&amp;author=Rognan%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">Schulte, G. &amp; Wright, S. C. Frizzleds as GPCRs - more conventional than we thought! <i>Trends Pharmacol. Sci.</i> <b>39</b>, 828–842 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2018.07.001" data-track-item_id="10.1016/j.tips.2018.07.001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2018.07.001" aria-label="Article reference 59" data-doi="10.1016/j.tips.2018.07.001">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlartrvO" aria-label="CAS reference 59">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30049420" aria-label="PubMed reference 59">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&amp;title=Frizzleds%20as%20GPCRs%20-%20more%20conventional%20than%20we%20thought%21&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2018.07.001&amp;volume=39&amp;pages=828-842&amp;publication_year=2018&amp;author=Schulte%2CG&amp;author=Wright%2CSC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">Zhang, X., Dong, S. &amp; Xu, F. Structural and druggability landscape of Frizzled G protein-coupled receptors. <i>Trends Biochem. Sci.</i> <b>43</b>, 1033–1046 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tibs.2018.09.002" data-track-item_id="10.1016/j.tibs.2018.09.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tibs.2018.09.002" aria-label="Article reference 60" data-doi="10.1016/j.tibs.2018.09.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslyru7zI" aria-label="CAS reference 60">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30309741" aria-label="PubMed reference 60">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20and%20druggability%20landscape%20of%20Frizzled%20G%20protein-coupled%20receptors&amp;journal=Trends%20Biochem.%20Sci.&amp;doi=10.1016%2Fj.tibs.2018.09.002&amp;volume=43&amp;pages=1033-1046&amp;publication_year=2018&amp;author=Zhang%2CX&amp;author=Dong%2CS&amp;author=Xu%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">Yang, S. et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. <i>Nature</i> <b>560</b>, 666–670 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0447-x" data-track-item_id="10.1038/s41586-018-0447-x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0447-x" aria-label="Article reference 61" data-doi="10.1038/s41586-018-0447-x">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFOgsL3E" aria-label="CAS reference 61">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30135577" aria-label="PubMed reference 61">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20the%20Frizzled%204%20receptor%20in%20a%20ligand-free%20state&amp;journal=Nature&amp;doi=10.1038%2Fs41586-018-0447-x&amp;volume=560&amp;pages=666-670&amp;publication_year=2018&amp;author=Yang%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">Zhang, X. et al. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. <i>Nat. Commun.</i> <b>8</b>, 15383 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms15383" data-track-item_id="10.1038/ncomms15383" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms15383" aria-label="Article reference 62" data-doi="10.1038/ncomms15383">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXnvFGls78%3D" aria-label="CAS reference 62">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28513578" aria-label="PubMed reference 62">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442369" aria-label="PubMed Central reference 62">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20a%20multi-domain%20human%20smoothened%20receptor%20in%20complex%20with%20a%20super%20stabilizing%20ligand&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fncomms15383&amp;volume=8&amp;publication_year=2017&amp;author=Zhang%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. <i>Elife</i>. <b>9</b>, e58464 (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">Schulte, G. Frizzleds and WNT/beta-catenin signaling–The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. <i>Eur. J. Pharmacol.</i> <b>763</b>, 191–195 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ejphar.2015.05.031" data-track-item_id="10.1016/j.ejphar.2015.05.031" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ejphar.2015.05.031" aria-label="Article reference 64" data-doi="10.1016/j.ejphar.2015.05.031">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXpsVykt74%3D" aria-label="CAS reference 64">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26003275" aria-label="PubMed reference 64">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&amp;title=Frizzleds%20and%20WNT%2Fbeta-catenin%20signaling%E2%80%93The%20black%20box%20of%20ligand-receptor%20selectivity%2C%20complex%20stoichiometry%20and%20activation%20kinetics&amp;journal=Eur.%20J.%20Pharmacol.&amp;doi=10.1016%2Fj.ejphar.2015.05.031&amp;volume=763&amp;pages=191-195&amp;publication_year=2015&amp;author=Schulte%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">Yang, X. et al. Development of covalent ligands for G protein-coupled receptors: a case for the human adenosine A3 receptor. <i>J. Med. Chem.</i> <b>62</b>, 3539–3552 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.8b02026" data-track-item_id="10.1021/acs.jmedchem.8b02026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.8b02026" aria-label="Article reference 65" data-doi="10.1021/acs.jmedchem.8b02026">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXkvF2gsr0%3D" aria-label="CAS reference 65">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30869893" aria-label="PubMed reference 65">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466477" aria-label="PubMed Central reference 65">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&amp;title=Development%20of%20covalent%20ligands%20for%20G%20protein-coupled%20receptors%3A%20a%20case%20for%20the%20human%20adenosine%20A3%20receptor&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.8b02026&amp;volume=62&amp;pages=3539-3552&amp;publication_year=2019&amp;author=Yang%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">Weichert, D. &amp; Gmeiner, P. Covalent molecular probes for class A G protein-coupled receptors: advances and applications. <i>ACS Chem. Biol.</i> <b>10</b>, 1376–1386 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acschembio.5b00070" data-track-item_id="10.1021/acschembio.5b00070" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facschembio.5b00070" aria-label="Article reference 66" data-doi="10.1021/acschembio.5b00070">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXmtlamsrw%3D" aria-label="CAS reference 66">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25860503" aria-label="PubMed reference 66">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 66" href="http://scholar.google.com/scholar_lookup?&amp;title=Covalent%20molecular%20probes%20for%20class%20A%20G%20protein-coupled%20receptors%3A%20advances%20and%20applications&amp;journal=ACS%20Chem.%20Biol.&amp;doi=10.1021%2Facschembio.5b00070&amp;volume=10&amp;pages=1376-1386&amp;publication_year=2015&amp;author=Weichert%2CD&amp;author=Gmeiner%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">Ricart-Ortega, M., Font, J. &amp; Llebaria, A. GPCR photopharmacology. <i>Mol. Cell. Endocrinol.</i> <b>488</b>, 36–51 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.mce.2019.03.003" data-track-item_id="10.1016/j.mce.2019.03.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.mce.2019.03.003" aria-label="Article reference 67" data-doi="10.1016/j.mce.2019.03.003">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXltVSgu7g%3D" aria-label="CAS reference 67">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30862498" aria-label="PubMed reference 67">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR%20photopharmacology&amp;journal=Mol.%20Cell.%20Endocrinol.&amp;doi=10.1016%2Fj.mce.2019.03.003&amp;volume=488&amp;pages=36-51&amp;publication_year=2019&amp;author=Ricart-Ortega%2CM&amp;author=Font%2CJ&amp;author=Llebaria%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">Hull, K., Morstein, J. &amp; Trauner, D. In vivo photopharmacology. <i>Chem. Rev.</i> <b>118</b>, 10710–10747 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.chemrev.8b00037" data-track-item_id="10.1021/acs.chemrev.8b00037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.chemrev.8b00037" aria-label="Article reference 68" data-doi="10.1021/acs.chemrev.8b00037">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1OmsrrK" aria-label="CAS reference 68">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29985590" aria-label="PubMed reference 68">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&amp;title=In%20vivo%20photopharmacology&amp;journal=Chem.%20Rev.&amp;doi=10.1021%2Facs.chemrev.8b00037&amp;volume=118&amp;pages=10710-10747&amp;publication_year=2018&amp;author=Hull%2CK&amp;author=Morstein%2CJ&amp;author=Trauner%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">Muratspahic, E., Freissmuth, M. &amp; Gruber, C. W. Nature-derived peptides: a growing niche for GPCR ligand discovery. <i>Trends Pharmacol. Sci.</i> <b>40</b>, 309–326 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2019.03.004" data-track-item_id="10.1016/j.tips.2019.03.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2019.03.004" aria-label="Article reference 69" data-doi="10.1016/j.tips.2019.03.004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXlvVWnsr8%3D" aria-label="CAS reference 69">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30955896" aria-label="PubMed reference 69">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624132" aria-label="PubMed Central reference 69">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&amp;title=Nature-derived%20peptides%3A%20a%20growing%20niche%20for%20GPCR%20ligand%20discovery&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2019.03.004&amp;volume=40&amp;pages=309-326&amp;publication_year=2019&amp;author=Muratspahic%2CE&amp;author=Freissmuth%2CM&amp;author=Gruber%2CCW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">Drucker, D. J. Advances in oral peptide therapeutics. <i>Nat. Rev. Drug Discov.</i> <b>19</b>, 277–289 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41573-019-0053-0" data-track-item_id="10.1038/s41573-019-0053-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41573-019-0053-0" aria-label="Article reference 70" data-doi="10.1038/s41573-019-0053-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVWks77E" aria-label="CAS reference 70">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31848464" aria-label="PubMed reference 70">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&amp;title=Advances%20in%20oral%20peptide%20therapeutics&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fs41573-019-0053-0&amp;volume=19&amp;pages=277-289&amp;publication_year=2020&amp;author=Drucker%2CDJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">Davenport, A. P. et al. International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. <i>Pharmacol. Rev.</i> <b>65</b>, 967–986 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/pr.112.007179" data-track-item_id="10.1124/pr.112.007179" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fpr.112.007179" aria-label="Article reference 71" data-doi="10.1124/pr.112.007179">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtVyrtLvN" aria-label="CAS reference 71">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23686350" aria-label="PubMed reference 71">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698937" aria-label="PubMed Central reference 71">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&amp;title=International%20union%20of%20basic%20and%20clinical%20pharmacology.%20LXXXVIII.%20G%20protein-coupled%20receptor%20list%3A%20recommendations%20for%20new%20pairings%20with%20cognate%20ligands&amp;journal=Pharmacol.%20Rev.&amp;doi=10.1124%2Fpr.112.007179&amp;volume=65&amp;pages=967-986&amp;publication_year=2013&amp;author=Davenport%2CAP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Hutchings, C. J. A review of antibody-based therapeutics targeting G protein-coupled receptors: an update. <i>Expert Opin. Biol. Ther.</i> <b>20</b>, 925–935 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/14712598.2020.1745770" data-track-item_id="10.1080/14712598.2020.1745770" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F14712598.2020.1745770" aria-label="Article reference 72" data-doi="10.1080/14712598.2020.1745770">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXnsVGjsrk%3D" aria-label="CAS reference 72">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32264722" aria-label="PubMed reference 72">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20antibody-based%20therapeutics%20targeting%20G%20protein-coupled%20receptors%3A%20an%20update&amp;journal=Expert%20Opin.%20Biol.%20Ther.&amp;doi=10.1080%2F14712598.2020.1745770&amp;volume=20&amp;pages=925-935&amp;publication_year=2020&amp;author=Hutchings%2CCJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Hutchings, C. J., Koglin, M., Olson, W. C. &amp; Marshall, F. H. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. <i>Nat. Rev. Drug Discov.</i> <b>16</b>, 787–810 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2017.91" data-track-item_id="10.1038/nrd.2017.91" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2017.91" aria-label="Article reference 73" data-doi="10.1038/nrd.2017.91">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFOrsb%2FK" aria-label="CAS reference 73">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28706220" aria-label="PubMed reference 73">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&amp;title=Opportunities%20for%20therapeutic%20antibodies%20directed%20at%20G-protein-coupled%20receptors&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2017.91&amp;volume=16&amp;pages=787-810&amp;publication_year=2017&amp;author=Hutchings%2CCJ&amp;author=Koglin%2CM&amp;author=Olson%2CWC&amp;author=Marshall%2CFH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">Kahsai, A. W. et al. Conformationally selective RNA aptamers allosterically modulate the beta2-adrenoceptor. <i>Nat. Chem. Biol.</i> <b>12</b>, 709–716 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.2126" data-track-item_id="10.1038/nchembio.2126" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.2126" aria-label="Article reference 74" data-doi="10.1038/nchembio.2126">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xht1Kmu7rK" aria-label="CAS reference 74">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27398998" aria-label="PubMed reference 74">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990464" aria-label="PubMed Central reference 74">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=Conformationally%20selective%20RNA%20aptamers%20allosterically%20modulate%20the%20beta2-adrenoceptor&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fnchembio.2126&amp;volume=12&amp;pages=709-716&amp;publication_year=2016&amp;author=Kahsai%2CAW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">Yoon, S. &amp; Rossi, J. J. Aptamers: uptake mechanisms and intracellular applications. <i>Adv. Drug Deliv. Rev.</i> <b>134</b>, 22–35 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.addr.2018.07.003" data-track-item_id="10.1016/j.addr.2018.07.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.addr.2018.07.003" aria-label="Article reference 75" data-doi="10.1016/j.addr.2018.07.003">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlensLvE" aria-label="CAS reference 75">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29981799" aria-label="PubMed reference 75">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126894" aria-label="PubMed Central reference 75">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&amp;title=Aptamers%3A%20uptake%20mechanisms%20and%20intracellular%20applications&amp;journal=Adv.%20Drug%20Deliv.%20Rev.&amp;doi=10.1016%2Fj.addr.2018.07.003&amp;volume=134&amp;pages=22-35&amp;publication_year=2018&amp;author=Yoon%2CS&amp;author=Rossi%2CJJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="76."><p class="c-article-references__text" id="ref-CR76">Limbird, L. E., Meyts, P. D. &amp; Lefkowitz, R. J. Beta-adrenergic receptors: evidence for negative cooperativity. <i>Biochem. Biophys. Res. Commun.</i> <b>64</b>, 1160–1168 (1975).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/0006-291X(75)90815-3" data-track-item_id="10.1016/0006-291X(75)90815-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2F0006-291X%2875%2990815-3" aria-label="Article reference 76" data-doi="10.1016/0006-291X(75)90815-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaE2MXlt1KlsLY%3D" aria-label="CAS reference 76">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=1137592" aria-label="PubMed reference 76">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&amp;title=Beta-adrenergic%20receptors%3A%20evidence%20for%20negative%20cooperativity&amp;journal=Biochem.%20Biophys.%20Res.%20Commun.&amp;doi=10.1016%2F0006-291X%2875%2990815-3&amp;volume=64&amp;pages=1160-1168&amp;publication_year=1975&amp;author=Limbird%2CLE&amp;author=Meyts%2CPD&amp;author=Lefkowitz%2CRJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="77."><p class="c-article-references__text" id="ref-CR77">Li, J. et al. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. <i>Chem. Soc. Rev.</i> <b>49</b>, 1545–1568 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C9CS00473D" data-track-item_id="10.1039/C9CS00473D" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC9CS00473D" aria-label="Article reference 77" data-doi="10.1039/C9CS00473D">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXjt12murY%3D" aria-label="CAS reference 77">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32040109" aria-label="PubMed reference 77">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&amp;title=Nongenetic%20engineering%20strategies%20for%20regulating%20receptor%20oligomerization%20in%20living%20cells&amp;journal=Chem.%20Soc.%20Rev.&amp;doi=10.1039%2FC9CS00473D&amp;volume=49&amp;pages=1545-1568&amp;publication_year=2020&amp;author=Li%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="78."><p class="c-article-references__text" id="ref-CR78">Roecker, A. J., Cox, C. D. &amp; Coleman, P. J. Orexin receptor antagonists: new therapeutic agents for the treatment of insomnia. <i>J. Med. Chem.</i> <b>59</b>, 504–530 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.5b00832" data-track-item_id="10.1021/acs.jmedchem.5b00832" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.5b00832" aria-label="Article reference 78" data-doi="10.1021/acs.jmedchem.5b00832">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVahsrbO" aria-label="CAS reference 78">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26317591" aria-label="PubMed reference 78">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 78" href="http://scholar.google.com/scholar_lookup?&amp;title=Orexin%20receptor%20antagonists%3A%20new%20therapeutic%20agents%20for%20the%20treatment%20of%20insomnia&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.5b00832&amp;volume=59&amp;pages=504-530&amp;publication_year=2016&amp;author=Roecker%2CAJ&amp;author=Cox%2CCD&amp;author=Coleman%2CPJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="79."><p class="c-article-references__text" id="ref-CR79">Coleman, P. J. et al. The discovery of suvorexant, the first orexin receptor drug for insomnia. <i>Annu Rev. Pharmacol. Toxicol.</i> <b>57</b>, 509–533 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-pharmtox-010716-104837" data-track-item_id="10.1146/annurev-pharmtox-010716-104837" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-pharmtox-010716-104837" aria-label="Article reference 79" data-doi="10.1146/annurev-pharmtox-010716-104837">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhvV2hsrbL" aria-label="CAS reference 79">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27860547" aria-label="PubMed reference 79">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 79" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20discovery%20of%20suvorexant%2C%20the%20first%20orexin%20receptor%20drug%20for%20insomnia&amp;journal=Annu%20Rev.%20Pharmacol.%20Toxicol.&amp;doi=10.1146%2Fannurev-pharmtox-010716-104837&amp;volume=57&amp;pages=509-533&amp;publication_year=2017&amp;author=Coleman%2CPJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="80."><p class="c-article-references__text" id="ref-CR80">Scott, L. J. Lemborexant: first approval. <i>Drugs</i> <b>80</b>, 425–432 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s40265-020-01276-1" data-track-item_id="10.1007/s40265-020-01276-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s40265-020-01276-1" aria-label="Article reference 80" data-doi="10.1007/s40265-020-01276-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXlslCltro%3D" aria-label="CAS reference 80">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32096020" aria-label="PubMed reference 80">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 80" href="http://scholar.google.com/scholar_lookup?&amp;title=Lemborexant%3A%20first%20approval&amp;journal=Drugs&amp;doi=10.1007%2Fs40265-020-01276-1&amp;volume=80&amp;pages=425-432&amp;publication_year=2020&amp;author=Scott%2CLJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="81."><p class="c-article-references__text" id="ref-CR81">Yoshida, Y. et al. Design, synthesis, and structure-activity relationships of a series of novel N-aryl-2-phenylcyclopropanecarboxamide that are potent and orally active orexin receptor antagonists. <i>Bioorg. Med. Chem.</i> <b>22</b>, 6071–6088 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bmc.2014.08.034" data-track-item_id="10.1016/j.bmc.2014.08.034" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bmc.2014.08.034" aria-label="Article reference 81" data-doi="10.1016/j.bmc.2014.08.034">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsFCnsbnE" aria-label="CAS reference 81">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25267004" aria-label="PubMed reference 81">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 81" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%2C%20synthesis%2C%20and%20structure-activity%20relationships%20of%20a%20series%20of%20novel%20N-aryl-2-phenylcyclopropanecarboxamide%20that%20are%20potent%20and%20orally%20active%20orexin%20receptor%20antagonists&amp;journal=Bioorg.%20Med.%20Chem.&amp;doi=10.1016%2Fj.bmc.2014.08.034&amp;volume=22&amp;pages=6071-6088&amp;publication_year=2014&amp;author=Yoshida%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="82."><p class="c-article-references__text" id="ref-CR82">Yoshida, Y. et al. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methy1}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide(E2006): a potent and efficacious oral orexin receptor antagonist. <i>J. Med. Chem.</i> <b>58</b>, 4648–4664 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.5b00217" data-track-item_id="10.1021/acs.jmedchem.5b00217" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.5b00217" aria-label="Article reference 82" data-doi="10.1021/acs.jmedchem.5b00217">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXotVSntbk%3D" aria-label="CAS reference 82">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25953512" aria-label="PubMed reference 82">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20of%20%281R%2C2S%29-2-%7B%5B%282%2C4-Dimethylpyrimidin-5-yl%29oxy%5Dmethy1%7D-2-%283-fluorophenyl%29-N-%285-fluoropyridin-2-yl%29cyclopropanecarboxamide%28E2006%29%3A%20a%20potent%20and%20efficacious%20oral%20orexin%20receptor%20antagonist&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.5b00217&amp;volume=58&amp;pages=4648-4664&amp;publication_year=2015&amp;author=Yoshida%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="83."><p class="c-article-references__text" id="ref-CR83">Bell, I. M. Calcitonin gene-related peptide receptor antagonists: new therapeutic agents for migraine. <i>J. Med. Chem.</i> <b>57</b>, 7838–7858 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm500364u" data-track-item_id="10.1021/jm500364u" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm500364u" aria-label="Article reference 83" data-doi="10.1021/jm500364u">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtVentb7O" aria-label="CAS reference 83">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24960305" aria-label="PubMed reference 83">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&amp;title=Calcitonin%20gene-related%20peptide%20receptor%20antagonists%3A%20new%20therapeutic%20agents%20for%20migraine&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm500364u&amp;volume=57&amp;pages=7838-7858&amp;publication_year=2014&amp;author=Bell%2CIM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="84."><p class="c-article-references__text" id="ref-CR84">Williams, T. M. et al. Non-peptide calcitonin gene-related peptide receptor antagonists from a benzodiazepinone lead. <i>Bioorg. Med. Chem. Lett.</i> <b>16</b>, 2595–2598 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bmcl.2006.02.051" data-track-item_id="10.1016/j.bmcl.2006.02.051" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bmcl.2006.02.051" aria-label="Article reference 84" data-doi="10.1016/j.bmcl.2006.02.051">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XjtFGisL0%3D" aria-label="CAS reference 84">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16527483" aria-label="PubMed reference 84">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 84" href="http://scholar.google.com/scholar_lookup?&amp;title=Non-peptide%20calcitonin%20gene-related%20peptide%20receptor%20antagonists%20from%20a%20benzodiazepinone%20lead&amp;journal=Bioorg.%20Med.%20Chem.%20Lett.&amp;doi=10.1016%2Fj.bmcl.2006.02.051&amp;volume=16&amp;pages=2595-2598&amp;publication_year=2006&amp;author=Williams%2CTM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="85."><p class="c-article-references__text" id="ref-CR85">Rudolf, K. et al. Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists.1-[N-2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-L-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonistfor clinical trials in acute migraine. <i>J. Med. Chem.</i> <b>48</b>, 5921–5931 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm0490641" data-track-item_id="10.1021/jm0490641" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm0490641" aria-label="Article reference 85" data-doi="10.1021/jm0490641">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXpt1WhsL8%3D" aria-label="CAS reference 85">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16161996" aria-label="PubMed reference 85">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&amp;title=Development%20of%20human%20calcitonin%20gene-related%20peptide%20%28CGRP%29%20receptor%20antagonists.%201.%20Potent%20and%20selective%20small%20molecule%20CGRP%20antagonists.1-%5BN-2-%5B3%2C5-dibromo-N-%5B%5B4-%283%2C4-dihydro-2%281H%29-oxoquinazolin-3-yl%29-1-piperidinyl%5Dcarbonyl%5D-D-tyrosyl%5D-L-lysyl%5D-4-%284-pyridinyl%29piperazine%3A%20the%20first%20CGRP%20antagonistfor%20clinical%20trials%20in%20acute%20migraine&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm0490641&amp;volume=48&amp;pages=5921-5931&amp;publication_year=2005&amp;author=Rudolf%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="86."><p class="c-article-references__text" id="ref-CR86">Shaw, A. W. et al. Caprolactams as potent CGRP receptor antagonists for the treatment of migraine. <i>Bioorg. Med. Chem. Lett.</i> <b>17</b>, 4795–4798 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bmcl.2007.06.062" data-track-item_id="10.1016/j.bmcl.2007.06.062" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bmcl.2007.06.062" aria-label="Article reference 86" data-doi="10.1016/j.bmcl.2007.06.062">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXos1ansbk%3D" aria-label="CAS reference 86">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17616394" aria-label="PubMed reference 86">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&amp;title=Caprolactams%20as%20potent%20CGRP%20receptor%20antagonists%20for%20the%20treatment%20of%20migraine&amp;journal=Bioorg.%20Med.%20Chem.%20Lett.&amp;doi=10.1016%2Fj.bmcl.2007.06.062&amp;volume=17&amp;pages=4795-4798&amp;publication_year=2007&amp;author=Shaw%2CAW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="87."><p class="c-article-references__text" id="ref-CR87">Paone, D. V. et al. Potent, orally bioavailable calcitonin gene-related peptide receptor antagonists for the treatment of migraine: discovery of N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide (MK-0974). <i>J. Med. Chem.</i> <b>50</b>, 5564–5567 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm070668p" data-track-item_id="10.1021/jm070668p" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm070668p" aria-label="Article reference 87" data-doi="10.1021/jm070668p">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtFCisbfO" aria-label="CAS reference 87">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17929795" aria-label="PubMed reference 87">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&amp;title=Potent%2C%20orally%20bioavailable%20calcitonin%20gene-related%20peptide%20receptor%20antagonists%20for%20the%20treatment%20of%20migraine%3A%20discovery%20of%20N-%5B%283R%2C6S%29-6-%282%2C3-difluorophenyl%29-2-oxo-1-%282%2C2%2C2-trifluoroethyl%29azepan-3-yl%5D-4-%282-oxo-2%2C3-dihydro-1H-imidazo%5B4%2C5-b%5Dpyridin-1-yl%29piperidine-1-carboxamide%20%28MK-0974%29&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm070668p&amp;volume=50&amp;pages=5564-5567&amp;publication_year=2007&amp;author=Paone%2CDV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="88."><p class="c-article-references__text" id="ref-CR88">Luo, G. et al. Discovery of BMS-846372, a potent and orally active human CGRP receptor antagonist for the treatment of migraine. <i>ACS Med. Chem. Lett.</i> <b>3</b>, 337–341 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ml300021s" data-track-item_id="10.1021/ml300021s" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fml300021s" aria-label="Article reference 88" data-doi="10.1021/ml300021s">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XivVCmtL4%3D" aria-label="CAS reference 88">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24900474" aria-label="PubMed reference 88">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025799" aria-label="PubMed Central reference 88">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 88" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20of%20BMS-846372%2C%20a%20potent%20and%20orally%20active%20human%20CGRP%20receptor%20antagonist%20for%20the%20treatment%20of%20migraine&amp;journal=ACS%20Med.%20Chem.%20Lett.&amp;doi=10.1021%2Fml300021s&amp;volume=3&amp;pages=337-341&amp;publication_year=2012&amp;author=Luo%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="89."><p class="c-article-references__text" id="ref-CR89">Luo, G. et al. Discovery of (5S,6S,9R)-5-amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyri din-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): an oral calcitonin gene-related peptide (CGRP) antagonist in clinical trials for treating migraine. <i>J. Med. Chem.</i> <b>55</b>, 10644–10651 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm3013147" data-track-item_id="10.1021/jm3013147" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm3013147" aria-label="Article reference 89" data-doi="10.1021/jm3013147">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1WgsbjI" aria-label="CAS reference 89">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23153230" aria-label="PubMed reference 89">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20of%20%285S%2C6S%2C9R%29-5-amino-6-%282%2C3-difluorophenyl%29-6%2C7%2C8%2C9-tetrahydro-5H-cyclohepta%5Bb%5Dpyri%20din-9-yl%204-%282-oxo-2%2C3-dihydro-1H-imidazo%5B4%2C5-b%5Dpyridin-1-yl%29piperidine-1-carboxylate%20%28BMS-927711%29%3A%20an%20oral%20calcitonin%20gene-related%20peptide%20%28CGRP%29%20antagonist%20in%20clinical%20trials%20for%20treating%20migraine&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm3013147&amp;volume=55&amp;pages=10644-10651&amp;publication_year=2012&amp;author=Luo%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="90."><p class="c-article-references__text" id="ref-CR90">Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. <i>Science</i> <b>289</b>, 739–745 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.289.5480.739" data-track-item_id="10.1126/science.289.5480.739" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.289.5480.739" aria-label="Article reference 90" data-doi="10.1126/science.289.5480.739">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXlslOqs78%3D" aria-label="CAS reference 90">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=10926528" aria-label="PubMed reference 90">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20rhodopsin%3A%20a%20G%20protein-coupled%20receptor&amp;journal=Science&amp;doi=10.1126%2Fscience.289.5480.739&amp;volume=289&amp;pages=739-745&amp;publication_year=2000&amp;author=Palczewski%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="91."><p class="c-article-references__text" id="ref-CR91">Hanson, M. A. et al. Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. <i>Protein Expr. Purif.</i> <b>56</b>, 85–92 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.pep.2007.06.003" data-track-item_id="10.1016/j.pep.2007.06.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.pep.2007.06.003" aria-label="Article reference 91" data-doi="10.1016/j.pep.2007.06.003">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtFersr3L" aria-label="CAS reference 91">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17723307" aria-label="PubMed reference 91">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274776" aria-label="PubMed Central reference 91">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 91" href="http://scholar.google.com/scholar_lookup?&amp;title=Profiling%20of%20membrane%20protein%20variants%20in%20a%20baculovirus%20system%20by%20coupling%20cell-surface%20detection%20with%20small-scale%20parallel%20expression&amp;journal=Protein%20Expr.%20Purif.&amp;doi=10.1016%2Fj.pep.2007.06.003&amp;volume=56&amp;pages=85-92&amp;publication_year=2007&amp;author=Hanson%2CMA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="92."><p class="c-article-references__text" id="ref-CR92">Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. <i>Nat. Methods</i> <b>7</b>, 1003–1008 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nmeth.1526" data-track-item_id="10.1038/nmeth.1526" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnmeth.1526" aria-label="Article reference 92" data-doi="10.1038/nmeth.1526">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtlGrsL3P" aria-label="CAS reference 92">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21037590" aria-label="PubMed reference 92">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063152" aria-label="PubMed Central reference 92">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 92" href="http://scholar.google.com/scholar_lookup?&amp;title=Maltose-neopentyl%20glycol%20%28MNG%29%20amphiphiles%20for%20solubilization%2C%20stabilization%20and%20crystallization%20of%20membrane%20proteins&amp;journal=Nat.%20Methods&amp;doi=10.1038%2Fnmeth.1526&amp;volume=7&amp;pages=1003-1008&amp;publication_year=2010&amp;author=Chae%2CPS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="93."><p class="c-article-references__text" id="ref-CR93">Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. <i>Structure</i> <b>20</b>, 967–976 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.str.2012.04.010" data-track-item_id="10.1016/j.str.2012.04.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.str.2012.04.010" aria-label="Article reference 93" data-doi="10.1016/j.str.2012.04.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xot12gsL8%3D" aria-label="CAS reference 93">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22681902" aria-label="PubMed reference 93">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375611" aria-label="PubMed Central reference 93">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 93" href="http://scholar.google.com/scholar_lookup?&amp;title=Fusion%20partner%20toolchest%20for%20the%20stabilization%20and%20crystallization%20of%20G%20protein-coupled%20receptors&amp;journal=Structure&amp;doi=10.1016%2Fj.str.2012.04.010&amp;volume=20&amp;pages=967-976&amp;publication_year=2012&amp;author=Chun%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="94."><p class="c-article-references__text" id="ref-CR94">Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. <i>Nature</i> <b>469</b>, 175–180 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature09648" data-track-item_id="10.1038/nature09648" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature09648" aria-label="Article reference 94" data-doi="10.1038/nature09648">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXkvFartA%3D%3D" aria-label="CAS reference 94">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21228869" aria-label="PubMed reference 94">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308" aria-label="PubMed Central reference 94">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 94" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20a%20nanobody-stabilized%20active%20state%20of%20the%20beta%282%29%20adrenoceptor&amp;journal=Nature&amp;doi=10.1038%2Fnature09648&amp;volume=469&amp;pages=175-180&amp;publication_year=2011&amp;author=Rasmussen%2CSG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="95."><p class="c-article-references__text" id="ref-CR95">Rasmussen, S. G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. <i>Nature</i> <b>450</b>, 383–387 (2007).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature06325" data-track-item_id="10.1038/nature06325" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature06325" aria-label="Article reference 95" data-doi="10.1038/nature06325">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtlajs77N" aria-label="CAS reference 95">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=17952055" aria-label="PubMed reference 95">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 95" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20the%20human%20beta2%20adrenergic%20G-protein-coupled%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature06325&amp;volume=450&amp;pages=383-387&amp;publication_year=2007&amp;author=Rasmussen%2CSG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="96."><p class="c-article-references__text" id="ref-CR96">Caffrey, M. Crystallizing membrane proteins for structure-function studies using lipidic mesophases. <i>Biochem. Soc. Trans.</i> <b>39</b>, 725–732 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1042/BST0390725" data-track-item_id="10.1042/BST0390725" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1042%2FBST0390725" aria-label="Article reference 96" data-doi="10.1042/BST0390725">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXmslKisLg%3D" aria-label="CAS reference 96">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21599641" aria-label="PubMed reference 96">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739445" aria-label="PubMed Central reference 96">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 96" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystallizing%20membrane%20proteins%20for%20structure-function%20studies%20using%20lipidic%20mesophases&amp;journal=Biochem.%20Soc.%20Trans.&amp;doi=10.1042%2FBST0390725&amp;volume=39&amp;pages=725-732&amp;publication_year=2011&amp;author=Caffrey%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="97."><p class="c-article-references__text" id="ref-CR97">Rasmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. <i>Nature</i> <b>477</b>, 549–555 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature10361" data-track-item_id="10.1038/nature10361" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature10361" aria-label="Article reference 97" data-doi="10.1038/nature10361">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXht1equrrL" aria-label="CAS reference 97">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21772288" aria-label="PubMed reference 97">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184188" aria-label="PubMed Central reference 97">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 97" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20the%20beta2%20adrenergic%20receptor-Gs%20protein%20complex&amp;journal=Nature&amp;doi=10.1038%2Fnature10361&amp;volume=477&amp;pages=549-555&amp;publication_year=2011&amp;author=Rasmussen%2CSG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="98."><p class="c-article-references__text" id="ref-CR98">Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. <i>Nature</i> <b>523</b>, 561–567 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature14656" data-track-item_id="10.1038/nature14656" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature14656" aria-label="Article reference 98" data-doi="10.1038/nature14656">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1WksrvK" aria-label="CAS reference 98">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26200343" aria-label="PubMed reference 98">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999" aria-label="PubMed Central reference 98">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 98" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20rhodopsin%20bound%20to%20arrestin%20by%20femtosecond%20X-ray%20laser&amp;journal=Nature&amp;doi=10.1038%2Fnature14656&amp;volume=523&amp;pages=561-567&amp;publication_year=2015&amp;author=Kang%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="99."><p class="c-article-references__text" id="ref-CR99">Katritch, V., Cherezov, V. &amp; Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. <i>Annu. Rev. Pharmacol. Toxicol.</i> <b>53</b>, 531–556 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-pharmtox-032112-135923" data-track-item_id="10.1146/annurev-pharmtox-032112-135923" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-pharmtox-032112-135923" aria-label="Article reference 99" data-doi="10.1146/annurev-pharmtox-032112-135923">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXjt1Wgurc%3D" aria-label="CAS reference 99">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23140243" aria-label="PubMed reference 99">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-function%20of%20the%20G%20protein-coupled%20receptor%20superfamily&amp;journal=Annu.%20Rev.%20Pharmacol.%20Toxicol.&amp;doi=10.1146%2Fannurev-pharmtox-032112-135923&amp;volume=53&amp;pages=531-556&amp;publication_year=2013&amp;author=Katritch%2CV&amp;author=Cherezov%2CV&amp;author=Stevens%2CRC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="100."><p class="c-article-references__text" id="ref-CR100">Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. <i>Nature</i> <b>482</b>, 552–556 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature10867" data-track-item_id="10.1038/nature10867" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature10867" aria-label="Article reference 100" data-doi="10.1038/nature10867">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xis1eqs7k%3D" aria-label="CAS reference 100">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22358844" aria-label="PubMed reference 100">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529910" aria-label="PubMed Central reference 100">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 100" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20and%20dynamics%20of%20the%20M3%20muscarinic%20acetylcholine%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature10867&amp;volume=482&amp;pages=552-556&amp;publication_year=2012&amp;author=Kruse%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="101."><p class="c-article-references__text" id="ref-CR101">Zhang, H. et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. <i>J. Biol. Chem.</i> <b>290</b>, 29127–29139 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M115.689000" data-track-item_id="10.1074/jbc.M115.689000" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M115.689000" aria-label="Article reference 101" data-doi="10.1074/jbc.M115.689000">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvFGku77P" aria-label="CAS reference 101">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26420482" aria-label="PubMed reference 101">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705918" aria-label="PubMed Central reference 101">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 101" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20for%20ligand%20recognition%20and%20functional%20selectivity%20at%20angiotensin%20receptor&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M115.689000&amp;volume=290&amp;pages=29127-29139&amp;publication_year=2015&amp;author=Zhang%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="102."><p class="c-article-references__text" id="ref-CR102">Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. <i>Nature</i> <b>504</b>, 101–106 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature12735" data-track-item_id="10.1038/nature12735" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature12735" aria-label="Article reference 102" data-doi="10.1038/nature12735">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvVyisLjP" aria-label="CAS reference 102">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24256733" aria-label="PubMed reference 102">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020789" aria-label="PubMed Central reference 102">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 102" href="http://scholar.google.com/scholar_lookup?&amp;title=Activation%20and%20allosteric%20modulation%20of%20a%20muscarinic%20acetylcholine%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature12735&amp;volume=504&amp;pages=101-106&amp;publication_year=2013&amp;author=Kruse%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="103."><p class="c-article-references__text" id="ref-CR103">Zhou, Q. et al. Common activation mechanism of class A GPCRs. <i>Elife</i>. <b>8</b>, e50279 (2019).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="104."><p class="c-article-references__text" id="ref-CR104">Karageorgos, V. et al. Current understanding of the structure and function of family B GPCRs to design novel drugs. <i>Hormones</i> <b>17</b>, 45–59 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s42000-018-0009-5" data-track-item_id="10.1007/s42000-018-0009-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s42000-018-0009-5" aria-label="Article reference 104" data-doi="10.1007/s42000-018-0009-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29858864" aria-label="PubMed reference 104">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 104" href="http://scholar.google.com/scholar_lookup?&amp;title=Current%20understanding%20of%20the%20structure%20and%20function%20of%20family%20B%20GPCRs%20to%20design%20novel%20drugs&amp;journal=Hormones&amp;doi=10.1007%2Fs42000-018-0009-5&amp;volume=17&amp;pages=45-59&amp;publication_year=2018&amp;author=Karageorgos%2CV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="105."><p class="c-article-references__text" id="ref-CR105">Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. <i>Nature</i> <b>499</b>, 438–443 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature12357" data-track-item_id="10.1038/nature12357" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature12357" aria-label="Article reference 105" data-doi="10.1038/nature12357">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFWku7nN" aria-label="CAS reference 105">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23863939" aria-label="PubMed reference 105">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 105" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20class%20B%20GPCR%20corticotropin-releasing%20factor%20receptor%201&amp;journal=Nature&amp;doi=10.1038%2Fnature12357&amp;volume=499&amp;pages=438-443&amp;publication_year=2013&amp;author=Hollenstein%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="106."><p class="c-article-references__text" id="ref-CR106">Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. <i>Nature</i> <b>533</b>, 274–277 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature17414" data-track-item_id="10.1038/nature17414" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature17414" aria-label="Article reference 106" data-doi="10.1038/nature17414">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XmvVGnt7w%3D" aria-label="CAS reference 106">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27111510" aria-label="PubMed reference 106">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 106" href="http://scholar.google.com/scholar_lookup?&amp;title=Extra-helical%20binding%20site%20of%20a%20glucagon%20receptor%20antagonist&amp;journal=Nature&amp;doi=10.1038%2Fnature17414&amp;volume=533&amp;pages=274-277&amp;publication_year=2016&amp;author=Jazayeri%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="107."><p class="c-article-references__text" id="ref-CR107">Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. <i>Nature</i> <b>546</b>, 312–315 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature22378" data-track-item_id="10.1038/nature22378" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature22378" aria-label="Article reference 107" data-doi="10.1038/nature22378">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXnvVCrs78%3D" aria-label="CAS reference 107">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28514449" aria-label="PubMed reference 107">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 107" href="http://scholar.google.com/scholar_lookup?&amp;title=Human%20GLP-1%20receptor%20transmembrane%20domain%20structure%20in%20complex%20with%20allosteric%20modulators&amp;journal=Nature&amp;doi=10.1038%2Fnature22378&amp;volume=546&amp;pages=312-315&amp;publication_year=2017&amp;author=Song%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="108."><p class="c-article-references__text" id="ref-CR108">Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. <i>Nat. Commun.</i> <b>11</b>, 4121 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-020-17933-8" data-track-item_id="10.1038/s41467-020-17933-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-020-17933-8" aria-label="Article reference 108" data-doi="10.1038/s41467-020-17933-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1Crt77K" aria-label="CAS reference 108">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32807782" aria-label="PubMed reference 108">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431577" aria-label="PubMed Central reference 108">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 108" href="http://scholar.google.com/scholar_lookup?&amp;title=Cryo-EM%20structure%20of%20an%20activated%20VIP1%20receptor-G%20protein%20complex%20revealed%20by%20a%20NanoBiT%20tethering%20strategy&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-020-17933-8&amp;volume=11&amp;publication_year=2020&amp;author=Duan%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="109."><p class="c-article-references__text" id="ref-CR109">Dore, A. S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. <i>Nature</i> <b>511</b>, 557–562 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature13396" data-track-item_id="10.1038/nature13396" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature13396" aria-label="Article reference 109" data-doi="10.1038/nature13396">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXht1ChurnK" aria-label="CAS reference 109">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25042998" aria-label="PubMed reference 109">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 109" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20class%20C%20GPCR%20metabotropic%20glutamate%20receptor%205%20transmembrane%20domain&amp;journal=Nature&amp;doi=10.1038%2Fnature13396&amp;volume=511&amp;pages=557-562&amp;publication_year=2014&amp;author=Dore%2CAS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="110."><p class="c-article-references__text" id="ref-CR110">Thal, D. M., Glukhova, A., Sexton, P. M. &amp; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. <i>Nature</i> <b>559</b>, 45–53 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0259-z" data-track-item_id="10.1038/s41586-018-0259-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0259-z" aria-label="Article reference 110" data-doi="10.1038/s41586-018-0259-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1Ojt7rF" aria-label="CAS reference 110">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29973731" aria-label="PubMed reference 110">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 110" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20insights%20into%20G-protein-coupled%20receptor%20allostery&amp;journal=Nature&amp;doi=10.1038%2Fs41586-018-0259-z&amp;volume=559&amp;pages=45-53&amp;publication_year=2018&amp;author=Thal%2CDM&amp;author=Glukhova%2CA&amp;author=Sexton%2CPM&amp;author=Christopoulos%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="111."><p class="c-article-references__text" id="ref-CR111">Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. <i>Science</i> <b>344</b>, 58–64 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1249489" data-track-item_id="10.1126/science.1249489" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1249489" aria-label="Article reference 111" data-doi="10.1126/science.1249489">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXlt1eht78%3D" aria-label="CAS reference 111">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24603153" aria-label="PubMed reference 111">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565" aria-label="PubMed Central reference 111">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 111" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20a%20class%20C%20GPCR%20metabotropic%20glutamate%20receptor%201%20bound%20to%20an%20allosteric%20modulator&amp;journal=Science&amp;doi=10.1126%2Fscience.1249489&amp;volume=344&amp;pages=58-64&amp;publication_year=2014&amp;author=Wu%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="112."><p class="c-article-references__text" id="ref-CR112">Schulte, G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. <i>Pharmacol. Rev.</i> <b>62</b>, 632–667 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/pr.110.002931" data-track-item_id="10.1124/pr.110.002931" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fpr.110.002931" aria-label="Article reference 112" data-doi="10.1124/pr.110.002931">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXktleq" aria-label="CAS reference 112">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21079039" aria-label="PubMed reference 112">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 112" href="http://scholar.google.com/scholar_lookup?&amp;title=International%20Union%20of%20Basic%20and%20Clinical%20Pharmacology.%20LXXX.%20The%20class%20Frizzled%20receptors&amp;journal=Pharmacol.%20Rev.&amp;doi=10.1124%2Fpr.110.002931&amp;volume=62&amp;pages=632-667&amp;publication_year=2010&amp;author=Schulte%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="113."><p class="c-article-references__text" id="ref-CR113">Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. <i>Nature</i> <b>535</b>, 517–522 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature18934" data-track-item_id="10.1038/nature18934" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature18934" aria-label="Article reference 113" data-doi="10.1038/nature18934">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xht1Ont73O" aria-label="CAS reference 113">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27437577" aria-label="PubMed reference 113">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970916" aria-label="PubMed Central reference 113">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 113" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20of%20smoothened%20regulation%20by%20its%20extracellular%20domains&amp;journal=Nature&amp;doi=10.1038%2Fnature18934&amp;volume=535&amp;pages=517-522&amp;publication_year=2016&amp;author=Byrne%2CEFX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="114."><p class="c-article-references__text" id="ref-CR114">Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. <i>Nature</i> <b>571</b>, 284–288 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-1355-4" data-track-item_id="10.1038/s41586-019-1355-4" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-1355-4" aria-label="Article reference 114" data-doi="10.1038/s41586-019-1355-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXht1yktLrE" aria-label="CAS reference 114">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31263273" aria-label="PubMed reference 114">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709672" aria-label="PubMed Central reference 114">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 114" href="http://scholar.google.com/scholar_lookup?&amp;title=Smoothened%20stimulation%20by%20membrane%20sterols%20drives%20Hedgehog%20pathway%20activity&amp;journal=Nature&amp;doi=10.1038%2Fs41586-019-1355-4&amp;volume=571&amp;pages=284-288&amp;publication_year=2019&amp;author=Deshpande%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="115."><p class="c-article-references__text" id="ref-CR115">Qi, X. et al. Cryo-EM structure of oxysterol-bound human smoothened coupled to a heterotrimeric Gi. <i>Nature</i> <b>571</b>, 279–283 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-1286-0" data-track-item_id="10.1038/s41586-019-1286-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-1286-0" aria-label="Article reference 115" data-doi="10.1038/s41586-019-1286-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFWqtLbL" aria-label="CAS reference 115">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31168089" aria-label="PubMed reference 115">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777001" aria-label="PubMed Central reference 115">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 115" href="http://scholar.google.com/scholar_lookup?&amp;title=Cryo-EM%20structure%20of%20oxysterol-bound%20human%20smoothened%20coupled%20to%20a%20heterotrimeric%20Gi&amp;journal=Nature&amp;doi=10.1038%2Fs41586-019-1286-0&amp;volume=571&amp;pages=279-283&amp;publication_year=2019&amp;author=Qi%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="116."><p class="c-article-references__text" id="ref-CR116">Nusse, R. &amp; Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. <i>Cell</i> <b>169</b>, 985–999 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.05.016" data-track-item_id="10.1016/j.cell.2017.05.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.05.016" aria-label="Article reference 116" data-doi="10.1016/j.cell.2017.05.016">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXpt1agsro%3D" aria-label="CAS reference 116">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28575679" aria-label="PubMed reference 116">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 116" href="http://scholar.google.com/scholar_lookup?&amp;title=Wnt%2Fbeta-catenin%20signaling%2C%20disease%2C%20and%20emerging%20therapeutic%20modalities&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2017.05.016&amp;volume=169&amp;pages=985-999&amp;publication_year=2017&amp;author=Nusse%2CR&amp;author=Clevers%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="117."><p class="c-article-references__text" id="ref-CR117">Hirai, H. et al. Crystal structure of a mammalian Wnt-frizzled complex. <i>Nat. Struct. Mol. Biol.</i> <b>26</b>, 372–379 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41594-019-0216-z" data-track-item_id="10.1038/s41594-019-0216-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41594-019-0216-z" aria-label="Article reference 117" data-doi="10.1038/s41594-019-0216-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXosFKqtrY%3D" aria-label="CAS reference 117">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31036956" aria-label="PubMed reference 117">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 117" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure%20of%20a%20mammalian%20Wnt-frizzled%20complex&amp;journal=Nat.%20Struct.%20Mol.%20Biol.&amp;doi=10.1038%2Fs41594-019-0216-z&amp;volume=26&amp;pages=372-379&amp;publication_year=2019&amp;author=Hirai%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="118."><p class="c-article-references__text" id="ref-CR118">Shen, G. et al. Structural basis of the Norrin-Frizzled 4 interaction. <i>Cell Res.</i> <b>25</b>, 1078–1081 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/cr.2015.92" data-track-item_id="10.1038/cr.2015.92" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fcr.2015.92" aria-label="Article reference 118" data-doi="10.1038/cr.2015.92">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1KhsrvE" aria-label="CAS reference 118">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26227961" aria-label="PubMed reference 118">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559814" aria-label="PubMed Central reference 118">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 118" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20of%20the%20Norrin-Frizzled%204%20interaction&amp;journal=Cell%20Res.&amp;doi=10.1038%2Fcr.2015.92&amp;volume=25&amp;pages=1078-1081&amp;publication_year=2015&amp;author=Shen%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="119."><p class="c-article-references__text" id="ref-CR119">Huang, P. et al. Cellular cholesterol directly activates smoothened in Hedgehog signaling. <i>Cell</i> <b>166</b>, 1176.e14–1187.e14 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 119" href="http://scholar.google.com/scholar_lookup?&amp;title=Cellular%20cholesterol%20directly%20activates%20smoothened%20in%20Hedgehog%20signaling&amp;journal=Cell&amp;volume=166&amp;pages=1176.e14-1187.e14&amp;publication_year=2016&amp;author=Huang%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="120."><p class="c-article-references__text" id="ref-CR120">Anighoro, A., Bajorath, J. &amp; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. <i>J. Med. Chem.</i> <b>57</b>, 7874–7887 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm5006463" data-track-item_id="10.1021/jm5006463" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm5006463" aria-label="Article reference 120" data-doi="10.1021/jm5006463">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtVShsL3I" aria-label="CAS reference 120">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24946140" aria-label="PubMed reference 120">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 120" href="http://scholar.google.com/scholar_lookup?&amp;title=Polypharmacology%3A%20challenges%20and%20opportunities%20in%20drug%20discovery&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm5006463&amp;volume=57&amp;pages=7874-7887&amp;publication_year=2014&amp;author=Anighoro%2CA&amp;author=Bajorath%2CJ&amp;author=Rastelli%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="121."><p class="c-article-references__text" id="ref-CR121">Corbett, A., Williams, G. &amp; Ballard, C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. <i>Pharmaceuticals</i> <b>6</b>, 1304–1321 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/ph6101304" data-track-item_id="10.3390/ph6101304" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fph6101304" aria-label="Article reference 121" data-doi="10.3390/ph6101304">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24275851" aria-label="PubMed reference 121">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817602" aria-label="PubMed Central reference 121">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXlsVGmtrg%3D" aria-label="CAS reference 121">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 121" href="http://scholar.google.com/scholar_lookup?&amp;title=Drug%20repositioning%3A%20an%20opportunity%20to%20develop%20novel%20treatments%20for%20Alzheimer%E2%80%99s%20disease&amp;journal=Pharmaceuticals&amp;doi=10.3390%2Fph6101304&amp;volume=6&amp;pages=1304-1321&amp;publication_year=2013&amp;author=Corbett%2CA&amp;author=Williams%2CG&amp;author=Ballard%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="122."><p class="c-article-references__text" id="ref-CR122">Ravikumar, B. &amp; Aittokallio, T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. <i>Expert Opin. Drug Discov.</i> <b>13</b>, 179–192 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/17460441.2018.1413089" data-track-item_id="10.1080/17460441.2018.1413089" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F17460441.2018.1413089" aria-label="Article reference 122" data-doi="10.1080/17460441.2018.1413089">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvFOntrfM" aria-label="CAS reference 122">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29233023" aria-label="PubMed reference 122">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 122" href="http://scholar.google.com/scholar_lookup?&amp;title=Improving%20the%20efficacy-safety%20balance%20of%20polypharmacology%20in%20multi-target%20drug%20discovery&amp;journal=Expert%20Opin.%20Drug%20Discov.&amp;doi=10.1080%2F17460441.2018.1413089&amp;volume=13&amp;pages=179-192&amp;publication_year=2018&amp;author=Ravikumar%2CB&amp;author=Aittokallio%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="123."><p class="c-article-references__text" id="ref-CR123">Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. <i>Nat. Rev. Drug Discov.</i> <b>17</b>, 317–332 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2018.14" data-track-item_id="10.1038/nrd.2018.14" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2018.14" aria-label="Article reference 123" data-doi="10.1038/nrd.2018.14">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXjtFOhtrc%3D" aria-label="CAS reference 123">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29472638" aria-label="PubMed reference 123">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339563" aria-label="PubMed Central reference 123">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 123" href="http://scholar.google.com/scholar_lookup?&amp;title=Unexplored%20therapeutic%20opportunities%20in%20the%20human%20genome&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2018.14&amp;volume=17&amp;pages=317-332&amp;publication_year=2018&amp;author=Oprea%2CTI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="124."><p class="c-article-references__text" id="ref-CR124">Palacios, J. M., Pazos, A. &amp; Hoyer, D. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. <i>Psychopharmacology</i> <b>234</b>, 1395–1418 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00213-017-4545-5" data-track-item_id="10.1007/s00213-017-4545-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00213-017-4545-5" aria-label="Article reference 124" data-doi="10.1007/s00213-017-4545-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvVahsr0%3D" aria-label="CAS reference 124">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28265714" aria-label="PubMed reference 124">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 124" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20short%20history%20of%20the%205-HT2C%20receptor%3A%20from%20the%20choroid%20plexus%20to%20depression%2C%20obesity%20and%20addiction%20treatment&amp;journal=Psychopharmacology&amp;doi=10.1007%2Fs00213-017-4545-5&amp;volume=234&amp;pages=1395-1418&amp;publication_year=2017&amp;author=Palacios%2CJM&amp;author=Pazos%2CA&amp;author=Hoyer%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="125."><p class="c-article-references__text" id="ref-CR125">Pogorelov, V. M. et al. 5-HT2C agonists modulate schizophrenia-like behaviors in mice. <i>Neuropsychopharmacology</i> <b>42</b>, 2163–2177 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/npp.2017.52" data-track-item_id="10.1038/npp.2017.52" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnpp.2017.52" aria-label="Article reference 125" data-doi="10.1038/npp.2017.52">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlvFWrtL0%3D" aria-label="CAS reference 125">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28294132" aria-label="PubMed reference 125">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603814" aria-label="PubMed Central reference 125">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 125" href="http://scholar.google.com/scholar_lookup?&amp;title=5-HT2C%20agonists%20modulate%20schizophrenia-like%20behaviors%20in%20mice&amp;journal=Neuropsychopharmacology&amp;doi=10.1038%2Fnpp.2017.52&amp;volume=42&amp;pages=2163-2177&amp;publication_year=2017&amp;author=Pogorelov%2CVM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="126."><p class="c-article-references__text" id="ref-CR126">McCorvy, J. D. &amp; Roth, B. L. Structure and function of serotonin G protein-coupled receptors. <i>Pharmacol. Ther.</i> <b>150</b>, 129–142 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.pharmthera.2015.01.009" data-track-item_id="10.1016/j.pharmthera.2015.01.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.pharmthera.2015.01.009" aria-label="Article reference 126" data-doi="10.1016/j.pharmthera.2015.01.009">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVeisbs%3D" aria-label="CAS reference 126">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25601315" aria-label="PubMed reference 126">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414735" aria-label="PubMed Central reference 126">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 126" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20and%20function%20of%20serotonin%20G%20protein-coupled%20receptors&amp;journal=Pharmacol.%20Ther.&amp;doi=10.1016%2Fj.pharmthera.2015.01.009&amp;volume=150&amp;pages=129-142&amp;publication_year=2015&amp;author=McCorvy%2CJD&amp;author=Roth%2CBL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="127."><p class="c-article-references__text" id="ref-CR127">Sexton, P. M. &amp; Christopoulos, A. To bind or not to bind: unravelling GPCR polypharmacology. <i>Cell</i> <b>172</b>, 636–638 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.01.018" data-track-item_id="10.1016/j.cell.2018.01.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.01.018" aria-label="Article reference 127" data-doi="10.1016/j.cell.2018.01.018">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXis1amsbc%3D" aria-label="CAS reference 127">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29425482" aria-label="PubMed reference 127">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 127" href="http://scholar.google.com/scholar_lookup?&amp;title=To%20bind%20or%20not%20to%20bind%3A%20unravelling%20GPCR%20polypharmacology&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2018.01.018&amp;volume=172&amp;pages=636-638&amp;publication_year=2018&amp;author=Sexton%2CPM&amp;author=Christopoulos%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="128."><p class="c-article-references__text" id="ref-CR128">Garland, S. L. Are GPCRs still a source of new targets? <i>J. Biomol. Screen.</i> <b>18</b>, 947–966 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1177/1087057113498418" data-track-item_id="10.1177/1087057113498418" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1177%2F1087057113498418" aria-label="Article reference 128" data-doi="10.1177/1087057113498418">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslWitrzK" aria-label="CAS reference 128">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23945874" aria-label="PubMed reference 128">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 128" href="http://scholar.google.com/scholar_lookup?&amp;title=Are%20GPCRs%20still%20a%20source%20of%20new%20targets%3F&amp;journal=J.%20Biomol.%20Screen.&amp;doi=10.1177%2F1087057113498418&amp;volume=18&amp;pages=947-966&amp;publication_year=2013&amp;author=Garland%2CSL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="129."><p class="c-article-references__text" id="ref-CR129">Yang, P. Y. et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models. <i>J. Med. Chem.</i> <b>61</b>, 3218–3223 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.7b00768" data-track-item_id="10.1021/acs.jmedchem.7b00768" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.7b00768" aria-label="Article reference 129" data-doi="10.1021/acs.jmedchem.7b00768">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXktlGhsrw%3D" aria-label="CAS reference 129">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29528634" aria-label="PubMed reference 129">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 129" href="http://scholar.google.com/scholar_lookup?&amp;title=Stapled%2C%20long-acting%20glucagon-like%20peptide%202%20analog%20with%20efficacy%20in%20dextran%20sodium%20sulfate%20induced%20mouse%20colitis%20models&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.7b00768&amp;volume=61&amp;pages=3218-3223&amp;publication_year=2018&amp;author=Yang%2CPY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="130."><p class="c-article-references__text" id="ref-CR130">Nichols, D. E. Psychedelics. <i>Pharmacol. Rev.</i> <b>68</b>, 264–355 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/pr.115.011478" data-track-item_id="10.1124/pr.115.011478" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fpr.115.011478" aria-label="Article reference 130" data-doi="10.1124/pr.115.011478">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXlsVCltrg%3D" aria-label="CAS reference 130">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26841800" aria-label="PubMed reference 130">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813425" aria-label="PubMed Central reference 130">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 130" href="http://scholar.google.com/scholar_lookup?&amp;title=Psychedelics&amp;journal=Pharmacol.%20Rev.&amp;doi=10.1124%2Fpr.115.011478&amp;volume=68&amp;pages=264-355&amp;publication_year=2016&amp;author=Nichols%2CDE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="131."><p class="c-article-references__text" id="ref-CR131">Butini, S. et al. Polypharmacology of dopamine receptor ligands. <i>Prog. Neurobiol.</i> <b>142</b>, 68–103 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.pneurobio.2016.03.011" data-track-item_id="10.1016/j.pneurobio.2016.03.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.pneurobio.2016.03.011" aria-label="Article reference 131" data-doi="10.1016/j.pneurobio.2016.03.011">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XptVCmsLk%3D" aria-label="CAS reference 131">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27234980" aria-label="PubMed reference 131">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 131" href="http://scholar.google.com/scholar_lookup?&amp;title=Polypharmacology%20of%20dopamine%20receptor%20ligands&amp;journal=Prog.%20Neurobiol.&amp;doi=10.1016%2Fj.pneurobio.2016.03.011&amp;volume=142&amp;pages=68-103&amp;publication_year=2016&amp;author=Butini%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="132."><p class="c-article-references__text" id="ref-CR132">Santos, R. et al. A comprehensive map of molecular drug targets. <i>Nat. Rev. Drug Discov.</i> <b>16</b>, 19–34 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2016.230" data-track-item_id="10.1038/nrd.2016.230" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2016.230" aria-label="Article reference 132" data-doi="10.1038/nrd.2016.230">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitVSms7rK" aria-label="CAS reference 132">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27910877" aria-label="PubMed reference 132">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 132" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20comprehensive%20map%20of%20molecular%20drug%20targets&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2016.230&amp;volume=16&amp;pages=19-34&amp;publication_year=2017&amp;author=Santos%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="133."><p class="c-article-references__text" id="ref-CR133">Wu, Z. et al. Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches. <i>Pharmacol. Res.</i> <b>129</b>, 400–413 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.phrs.2017.11.005" data-track-item_id="10.1016/j.phrs.2017.11.005" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.phrs.2017.11.005" aria-label="Article reference 133" data-doi="10.1016/j.phrs.2017.11.005">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29133212" aria-label="PubMed reference 133">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVeisLbK" aria-label="CAS reference 133">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 133" href="http://scholar.google.com/scholar_lookup?&amp;title=Quantitative%20and%20systems%20pharmacology%202.%20In%20silico%20polypharmacology%20of%20G%20protein-coupled%20receptor%20ligands%20via%20network-based%20approaches&amp;journal=Pharmacol.%20Res.&amp;doi=10.1016%2Fj.phrs.2017.11.005&amp;volume=129&amp;pages=400-413&amp;publication_year=2018&amp;author=Wu%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="134."><p class="c-article-references__text" id="ref-CR134">Huang, X. P. et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. <i>Nature</i> <b>527</b>, 477–483 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature15699" data-track-item_id="10.1038/nature15699" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature15699" aria-label="Article reference 134" data-doi="10.1038/nature15699">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVWmsrjJ" aria-label="CAS reference 134">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26550826" aria-label="PubMed reference 134">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796946" aria-label="PubMed Central reference 134">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 134" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20ligands%20for%20the%20pharmacologically%20dark%20receptors%20GPR68%20and%20GPR65&amp;journal=Nature&amp;doi=10.1038%2Fnature15699&amp;volume=527&amp;pages=477-483&amp;publication_year=2015&amp;author=Huang%2CXP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="135."><p class="c-article-references__text" id="ref-CR135">Jacoby, E., Bouhelal, R., Gerspacher, M. &amp; Seuwen, K. The 7 TM G-protein-coupled receptor target family. <i>ChemMedChem</i> <b>1</b>, 761–782 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.200600134" data-track-item_id="10.1002/cmdc.200600134" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.200600134" aria-label="Article reference 135" data-doi="10.1002/cmdc.200600134">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16902930" aria-label="PubMed reference 135">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2sXjsVCmtbw%3D" aria-label="CAS reference 135">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 135" href="http://scholar.google.com/scholar_lookup?&amp;title=The%207%20TM%20G-protein-coupled%20receptor%20target%20family&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.200600134&amp;volume=1&amp;pages=761-782&amp;publication_year=2006&amp;author=Jacoby%2CE&amp;author=Bouhelal%2CR&amp;author=Gerspacher%2CM&amp;author=Seuwen%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="136."><p class="c-article-references__text" id="ref-CR136">Quinones, M. et al. Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. <i>Expert Opin. Drug Discov.</i> <b>14</b>, 421–431 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/17460441.2019.1583642" data-track-item_id="10.1080/17460441.2019.1583642" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F17460441.2019.1583642" aria-label="Article reference 136" data-doi="10.1080/17460441.2019.1583642">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXjvFGhsr0%3D" aria-label="CAS reference 136">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30821530" aria-label="PubMed reference 136">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 136" href="http://scholar.google.com/scholar_lookup?&amp;title=Exciting%20advances%20in%20GPCR-based%20drugs%20discovery%20for%20treating%20metabolic%20disease%20and%20future%20perspectives&amp;journal=Expert%20Opin.%20Drug%20Discov.&amp;doi=10.1080%2F17460441.2019.1583642&amp;volume=14&amp;pages=421-431&amp;publication_year=2019&amp;author=Quinones%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="137."><p class="c-article-references__text" id="ref-CR137">Smith, J. S., Lefkowitz, R. J. &amp; Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. <i>Nat. Rev. Drug Discov.</i> <b>17</b>, 243–260 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2017.229" data-track-item_id="10.1038/nrd.2017.229" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2017.229" aria-label="Article reference 137" data-doi="10.1038/nrd.2017.229">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXjvFentw%3D%3D" aria-label="CAS reference 137">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29302067" aria-label="PubMed reference 137">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936084" aria-label="PubMed Central reference 137">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 137" href="http://scholar.google.com/scholar_lookup?&amp;title=Biased%20signalling%3A%20from%20simple%20switches%20to%20allosteric%20microprocessors&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2017.229&amp;volume=17&amp;pages=243-260&amp;publication_year=2018&amp;author=Smith%2CJS&amp;author=Lefkowitz%2CRJ&amp;author=Rajagopal%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="138."><p class="c-article-references__text" id="ref-CR138">Tan, L., Yan, W., McCorvy, J. D. &amp; Cheng, J. Biased ligands of G protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. <i>J. Med. Chem.</i> <b>61</b>, 9841–9878 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.8b00435" data-track-item_id="10.1021/acs.jmedchem.8b00435" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.8b00435" aria-label="Article reference 138" data-doi="10.1021/acs.jmedchem.8b00435">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1Snu73N" aria-label="CAS reference 138">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29939744" aria-label="PubMed reference 138">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 138" href="http://scholar.google.com/scholar_lookup?&amp;title=Biased%20ligands%20of%20G%20protein-coupled%20receptors%20%28GPCRs%29%3A%20structure-functional%20selectivity%20relationships%20%28SFSRs%29%20and%20therapeutic%20potential&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.8b00435&amp;volume=61&amp;pages=9841-9878&amp;publication_year=2018&amp;author=Tan%2CL&amp;author=Yan%2CW&amp;author=McCorvy%2CJD&amp;author=Cheng%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="139."><p class="c-article-references__text" id="ref-CR139">Ok, H. G. et al. Can oliceridine (TRV130), an ideal novel micro receptor G protein pathway selective (micro-GPS) modulator, provide analgesia without opioid-related adverse reactions? <i>Korean J. Pain</i> <b>31</b>, 73–79 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3344/kjp.2018.31.2.73" data-track-item_id="10.3344/kjp.2018.31.2.73" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3344%2Fkjp.2018.31.2.73" aria-label="Article reference 139" data-doi="10.3344/kjp.2018.31.2.73">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsVClsb%2FJ" aria-label="CAS reference 139">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29686804" aria-label="PubMed reference 139">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904350" aria-label="PubMed Central reference 139">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 139" href="http://scholar.google.com/scholar_lookup?&amp;title=Can%20oliceridine%20%28TRV130%29%2C%20an%20ideal%20novel%20micro%20receptor%20G%20protein%20pathway%20selective%20%28micro-GPS%29%20modulator%2C%20provide%20analgesia%20without%20opioid-related%20adverse%20reactions%3F&amp;journal=Korean%20J.%20Pain&amp;doi=10.3344%2Fkjp.2018.31.2.73&amp;volume=31&amp;pages=73-79&amp;publication_year=2018&amp;author=Ok%2CHG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="140."><p class="c-article-references__text" id="ref-CR140">Zebala, J. A., Schuler, A. D., Kahn, S. J. &amp; Maeda, D. Y. Desmetramadol is identified as a G-protein biased micro opioid receptor agonist. <i>Front. Pharmacol.</i> <b>10</b>, 1680 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphar.2019.01680" data-track-item_id="10.3389/fphar.2019.01680" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphar.2019.01680" aria-label="Article reference 140" data-doi="10.3389/fphar.2019.01680">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslyktr%2FI" aria-label="CAS reference 140">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32116679" aria-label="PubMed reference 140">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 140" href="http://scholar.google.com/scholar_lookup?&amp;title=Desmetramadol%20is%20identified%20as%20a%20G-protein%20biased%20micro%20opioid%20receptor%20agonist&amp;journal=Front.%20Pharmacol.&amp;doi=10.3389%2Ffphar.2019.01680&amp;volume=10&amp;publication_year=2019&amp;author=Zebala%2CJA&amp;author=Schuler%2CAD&amp;author=Kahn%2CSJ&amp;author=Maeda%2CDY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="141."><p class="c-article-references__text" id="ref-CR141">Bedini, A. et al. Functional selectivity and antinociceptive effects of a novel KOPr agonist. <i>Front. Pharmacol.</i> <b>11</b>, 188 (2020).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="142."><p class="c-article-references__text" id="ref-CR142">James, I. E. et al. A first-in-human clinical study with TRV734, an orally bioavailable G-protein-biased ligand at the mu-opioid receptor. <i>Clin. Pharmacol. Drug Dev.</i> <b>9</b>, 256–266 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cpdd.721" data-track-item_id="10.1002/cpdd.721" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcpdd.721" aria-label="Article reference 142" data-doi="10.1002/cpdd.721">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFajs7w%3D" aria-label="CAS reference 142">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31286645" aria-label="PubMed reference 142">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 142" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20first-in-human%20clinical%20study%20with%20TRV734%2C%20an%20orally%20bioavailable%20G-protein-biased%20ligand%20at%20the%20mu-opioid%20receptor&amp;journal=Clin.%20Pharmacol.%20Drug%20Dev.&amp;doi=10.1002%2Fcpdd.721&amp;volume=9&amp;pages=256-266&amp;publication_year=2020&amp;author=James%2CIE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="143."><p class="c-article-references__text" id="ref-CR143">Hill, R. et al. The novel mu-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. <i>Br. J. Pharmacol.</i> <b>175</b>, 2653–2661 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/bph.14224" data-track-item_id="10.1111/bph.14224" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fbph.14224" aria-label="Article reference 143" data-doi="10.1111/bph.14224">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXpsVCmt7o%3D" aria-label="CAS reference 143">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29582414" aria-label="PubMed reference 143">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003631" aria-label="PubMed Central reference 143">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 143" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20novel%20mu-opioid%20receptor%20agonist%20PZM21%20depresses%20respiration%20and%20induces%20tolerance%20to%20antinociception&amp;journal=Br.%20J.%20Pharmacol.&amp;doi=10.1111%2Fbph.14224&amp;volume=175&amp;pages=2653-2661&amp;publication_year=2018&amp;author=Hill%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="144."><p class="c-article-references__text" id="ref-CR144">Ehrlich, A. T. et al. Biased signaling of the mu opioid receptor revealed in native neurons. <i>iScience</i> <b>14</b>, 47–57 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.isci.2019.03.011" data-track-item_id="10.1016/j.isci.2019.03.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.isci.2019.03.011" aria-label="Article reference 144" data-doi="10.1016/j.isci.2019.03.011">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmslWgsbw%3D" aria-label="CAS reference 144">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30925410" aria-label="PubMed reference 144">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439305" aria-label="PubMed Central reference 144">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 144" href="http://scholar.google.com/scholar_lookup?&amp;title=Biased%20signaling%20of%20the%20mu%20opioid%20receptor%20revealed%20in%20native%20neurons&amp;journal=iScience&amp;doi=10.1016%2Fj.isci.2019.03.011&amp;volume=14&amp;pages=47-57&amp;publication_year=2019&amp;author=Ehrlich%2CAT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="145."><p class="c-article-references__text" id="ref-CR145">White, K. L. et al. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. <i>J. Pharmacol. Exp. Ther.</i> <b>352</b>, 98–109 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/jpet.114.216820" data-track-item_id="10.1124/jpet.114.216820" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fjpet.114.216820" aria-label="Article reference 145" data-doi="10.1124/jpet.114.216820">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25320048" aria-label="PubMed reference 145">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279099" aria-label="PubMed Central reference 145">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXitFOlu7bM" aria-label="CAS reference 145">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 145" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20G%20protein-biased%20kappa-opioid%20receptor%20agonist%20RB-64%20is%20analgesic%20with%20a%20unique%20spectrum%20of%20activities%20in%20vivo&amp;journal=J.%20Pharmacol.%20Exp.%20Ther.&amp;doi=10.1124%2Fjpet.114.216820&amp;volume=352&amp;pages=98-109&amp;publication_year=2015&amp;author=White%2CKL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="146."><p class="c-article-references__text" id="ref-CR146">Mores, K. L., Cummins, B. R., Cassell, R. J. &amp; van Rijn, R. M. A review of the therapeutic potential of recently developed G protein-biased kappa agonists. <i>Front. Pharmacol.</i> <b>10</b>, 407 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphar.2019.00407" data-track-item_id="10.3389/fphar.2019.00407" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphar.2019.00407" aria-label="Article reference 146" data-doi="10.3389/fphar.2019.00407">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVGksb%2FL" aria-label="CAS reference 146">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31057409" aria-label="PubMed reference 146">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478756" aria-label="PubMed Central reference 146">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 146" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20review%20of%20the%20therapeutic%20potential%20of%20recently%20developed%20G%20protein-biased%20kappa%20agonists&amp;journal=Front.%20Pharmacol.&amp;doi=10.3389%2Ffphar.2019.00407&amp;volume=10&amp;publication_year=2019&amp;author=Mores%2CKL&amp;author=Cummins%2CBR&amp;author=Cassell%2CRJ&amp;author=Rijn%2CRM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="147."><p class="c-article-references__text" id="ref-CR147">Kozono, H., Yoshitani, H. &amp; Nakano, R. Post-marketing surveillance study of the safety and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 μg) in 3,762 hemodialysis patients with intractable pruritus. <i>Int. J. Nephrol. Renovasc. Dis.</i> <b>11</b>, 9–24 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2147/IJNRD.S145720" data-track-item_id="10.2147/IJNRD.S145720" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2147%2FIJNRD.S145720" aria-label="Article reference 147" data-doi="10.2147/IJNRD.S145720">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXht1Crtb%2FJ" aria-label="CAS reference 147">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29391822" aria-label="PubMed reference 147">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774492" aria-label="PubMed Central reference 147">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 147" href="http://scholar.google.com/scholar_lookup?&amp;title=Post-marketing%20surveillance%20study%20of%20the%20safety%20and%20efficacy%20of%20nalfurafine%20hydrochloride%20%28Remitch%C2%AE%20capsules%202.5%20%CE%BCg%29%20in%203%2C762%20hemodialysis%20patients%20with%20intractable%20pruritus&amp;journal=Int.%20J.%20Nephrol.%20Renovasc.%20Dis.&amp;doi=10.2147%2FIJNRD.S145720&amp;volume=11&amp;pages=9-24&amp;publication_year=2018&amp;author=Kozono%2CH&amp;author=Yoshitani%2CH&amp;author=Nakano%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="148."><p class="c-article-references__text" id="ref-CR148">Okeke, K., Michel-Reher, M. B., Gravas, S. &amp; Michel, M. C. Desensitization of cAMP accumulation via human beta3-adrenoceptors expressed in human embryonic kidney cells by full, partial, and biased agonists. <i>Front. Pharmacol.</i> <b>10</b>, 596 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphar.2019.00596" data-track-item_id="10.3389/fphar.2019.00596" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphar.2019.00596" aria-label="Article reference 148" data-doi="10.3389/fphar.2019.00596">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXktlGqtrk%3D" aria-label="CAS reference 148">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31263412" aria-label="PubMed reference 148">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590479" aria-label="PubMed Central reference 148">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 148" href="http://scholar.google.com/scholar_lookup?&amp;title=Desensitization%20of%20cAMP%20accumulation%20via%20human%20beta3-adrenoceptors%20expressed%20in%20human%20embryonic%20kidney%20cells%20by%20full%2C%20partial%2C%20and%20biased%20agonists&amp;journal=Front.%20Pharmacol.&amp;doi=10.3389%2Ffphar.2019.00596&amp;volume=10&amp;publication_year=2019&amp;author=Okeke%2CK&amp;author=Michel-Reher%2CMB&amp;author=Gravas%2CS&amp;author=Michel%2CMC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="149."><p class="c-article-references__text" id="ref-CR149">Cernecka, H., Sand, C. &amp; Michel, M. C. The odd sibling: features of beta3-adrenoceptor pharmacology. <i>Mol. Pharmacol.</i> <b>86</b>, 479–484 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.114.092817" data-track-item_id="10.1124/mol.114.092817" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.114.092817" aria-label="Article reference 149" data-doi="10.1124/mol.114.092817">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24890609" aria-label="PubMed reference 149">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslamurjN" aria-label="CAS reference 149">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 149" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20odd%20sibling%3A%20features%20of%20beta3-adrenoceptor%20pharmacology&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.114.092817&amp;volume=86&amp;pages=479-484&amp;publication_year=2014&amp;author=Cernecka%2CH&amp;author=Sand%2CC&amp;author=Michel%2CMC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="150."><p class="c-article-references__text" id="ref-CR150">Baker, J. G., Hill, S. J. &amp; Summers, R. J. Evolution of beta-blockers: from anti-anginal drugs to ligand-directed signalling. <i>Trends Pharmacol. Sci.</i> <b>32</b>, 227–234 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2011.02.010" data-track-item_id="10.1016/j.tips.2011.02.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2011.02.010" aria-label="Article reference 150" data-doi="10.1016/j.tips.2011.02.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXksFGrurg%3D" aria-label="CAS reference 150">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21429598" aria-label="PubMed reference 150">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081074" aria-label="PubMed Central reference 150">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 150" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20of%20beta-blockers%3A%20from%20anti-anginal%20drugs%20to%20ligand-directed%20signalling&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2011.02.010&amp;volume=32&amp;pages=227-234&amp;publication_year=2011&amp;author=Baker%2CJG&amp;author=Hill%2CSJ&amp;author=Summers%2CRJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="151."><p class="c-article-references__text" id="ref-CR151">Xiao, C., Goldgof, M., Gavrilova, O. &amp; Reitman, M. L. Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. <i>Obesity</i> <b>23</b>, 1450–1459 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/oby.21124" data-track-item_id="10.1002/oby.21124" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Foby.21124" aria-label="Article reference 151" data-doi="10.1002/oby.21124">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtVOms7vE" aria-label="CAS reference 151">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26053335" aria-label="PubMed reference 151">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 151" href="http://scholar.google.com/scholar_lookup?&amp;title=Anti-obesity%20and%20metabolic%20efficacy%20of%20the%20beta3-adrenergic%20agonist%2C%20CL316243%2C%20in%20mice%20at%20thermoneutrality%20compared%20to%2022%20degrees%20C&amp;journal=Obesity&amp;doi=10.1002%2Foby.21124&amp;volume=23&amp;pages=1450-1459&amp;publication_year=2015&amp;author=Xiao%2CC&amp;author=Goldgof%2CM&amp;author=Gavrilova%2CO&amp;author=Reitman%2CML"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="152."><p class="c-article-references__text" id="ref-CR152">Lei, X. &amp; Wong, G. W. C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion. <i>J. Biol. Chem.</i> <b>294</b>, 15638–15649 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.RA119.009230" data-track-item_id="10.1074/jbc.RA119.009230" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.RA119.009230" aria-label="Article reference 152" data-doi="10.1074/jbc.RA119.009230">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXitVGlsL%2FK" aria-label="CAS reference 152">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31439668" aria-label="PubMed reference 152">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816104" aria-label="PubMed Central reference 152">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 152" href="http://scholar.google.com/scholar_lookup?&amp;title=C1q%2FTNF-related%20protein%202%20%28CTRP2%29%20deletion%20promotes%20adipose%20tissue%20lipolysis%20and%20hepatic%20triglyceride%20secretion&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.RA119.009230&amp;volume=294&amp;pages=15638-15649&amp;publication_year=2019&amp;author=Lei%2CX&amp;author=Wong%2CGW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="153."><p class="c-article-references__text" id="ref-CR153">Hoare, S. R. J., Tewson, P. H., Quinn, A. M. &amp; Hughes, T. E. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. <i>Sci. Rep.</i> <b>10</b>, 1766 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-58421-9" data-track-item_id="10.1038/s41598-020-58421-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-58421-9" aria-label="Article reference 153" data-doi="10.1038/s41598-020-58421-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvVWqtL4%3D" aria-label="CAS reference 153">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32019973" aria-label="PubMed reference 153">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000712" aria-label="PubMed Central reference 153">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 153" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20kinetic%20method%20for%20measuring%20agonist%20efficacy%20and%20ligand%20bias%20using%20high%20resolution%20biosensors%20and%20a%20kinetic%20data%20analysis%20framework&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-020-58421-9&amp;volume=10&amp;publication_year=2020&amp;author=Hoare%2CSRJ&amp;author=Tewson%2CPH&amp;author=Quinn%2CAM&amp;author=Hughes%2CTE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="154."><p class="c-article-references__text" id="ref-CR154">Pang, P. S. et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). <i>Eur. Heart J.</i> <b>38</b>, 2364–2373 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/eurheartj/ehx196" data-track-item_id="10.1093/eurheartj/ehx196" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Feurheartj%2Fehx196" aria-label="Article reference 154" data-doi="10.1093/eurheartj/ehx196">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitFGksbvO" aria-label="CAS reference 154">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28459958" aria-label="PubMed reference 154">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837312" aria-label="PubMed Central reference 154">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 154" href="http://scholar.google.com/scholar_lookup?&amp;title=Biased%20ligand%20of%20the%20angiotensin%20II%20type%201%20receptor%20in%20patients%20with%20acute%20heart%20failure%3A%20a%20randomized%2C%20double-blind%2C%20placebo-controlled%2C%20phase%20IIB%2C%20dose%20ranging%20trial%20%28BLAST-AHF%29&amp;journal=Eur.%20Heart%20J.&amp;doi=10.1093%2Feurheartj%2Fehx196&amp;volume=38&amp;pages=2364-2373&amp;publication_year=2017&amp;author=Pang%2CPS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="155."><p class="c-article-references__text" id="ref-CR155">Namkung, Y. et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. <i>Sci. Signal.</i> <b>11</b>, eaat1631 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/scisignal.aat1631" data-track-item_id="10.1126/scisignal.aat1631" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscisignal.aat1631" aria-label="Article reference 155" data-doi="10.1126/scisignal.aat1631">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFSrsbbJ" aria-label="CAS reference 155">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30514808" aria-label="PubMed reference 155">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 155" href="http://scholar.google.com/scholar_lookup?&amp;title=Functional%20selectivity%20profiling%20of%20the%20angiotensin%20II%20type%201%20receptor%20using%20pathway-wide%20BRET%20signaling%20sensors&amp;journal=Sci.%20Signal.&amp;doi=10.1126%2Fscisignal.aat1631&amp;volume=11&amp;publication_year=2018&amp;author=Namkung%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="156."><p class="c-article-references__text" id="ref-CR156">Schena, G. &amp; Caplan, M. J. Everything you always wanted to know about beta3-AR * (* but were afraid to ask). <i>Cells</i> <b>8</b>, 357 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/cells8040357" data-track-item_id="10.3390/cells8040357" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fcells8040357" aria-label="Article reference 156" data-doi="10.3390/cells8040357">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvF2hsLc%3D" aria-label="CAS reference 156">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523418" aria-label="PubMed Central reference 156">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 156" href="http://scholar.google.com/scholar_lookup?&amp;title=Everything%20you%20always%20wanted%20to%20know%20about%20beta3-AR%20%2A%20%28%2A%20but%20were%20afraid%20to%20ask%29&amp;journal=Cells&amp;doi=10.3390%2Fcells8040357&amp;volume=8&amp;publication_year=2019&amp;author=Schena%2CG&amp;author=Caplan%2CMJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="157."><p class="c-article-references__text" id="ref-CR157">Schattauer, S. S., Kuhar, J. R., Song, A. &amp; Chavkin, C. Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. <i>Cell Signal.</i> <b>32</b>, 59–65 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cellsig.2017.01.016" data-track-item_id="10.1016/j.cellsig.2017.01.016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cellsig.2017.01.016" aria-label="Article reference 157" data-doi="10.1016/j.cellsig.2017.01.016">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtlCrtL8%3D" aria-label="CAS reference 157">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28088389" aria-label="PubMed reference 157">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779083" aria-label="PubMed Central reference 157">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 157" href="http://scholar.google.com/scholar_lookup?&amp;title=Nalfurafine%20is%20a%20G-protein%20biased%20agonist%20having%20significantly%20greater%20bias%20at%20the%20human%20than%20rodent%20form%20of%20the%20kappa%20opioid%20receptor&amp;journal=Cell%20Signal.&amp;doi=10.1016%2Fj.cellsig.2017.01.016&amp;volume=32&amp;pages=59-65&amp;publication_year=2017&amp;author=Schattauer%2CSS&amp;author=Kuhar%2CJR&amp;author=Song%2CA&amp;author=Chavkin%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="158."><p class="c-article-references__text" id="ref-CR158">Lindsley, C. W. et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. <i>Chem. Rev.</i> <b>116</b>, 6707–6741 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.chemrev.5b00656" data-track-item_id="10.1021/acs.chemrev.5b00656" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.chemrev.5b00656" aria-label="Article reference 158" data-doi="10.1021/acs.chemrev.5b00656">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XisFahsr8%3D" aria-label="CAS reference 158">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26882314" aria-label="PubMed reference 158">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988345" aria-label="PubMed Central reference 158">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 158" href="http://scholar.google.com/scholar_lookup?&amp;title=Practical%20strategies%20and%20concepts%20in%20GPCR%20allosteric%20modulator%20discovery%3A%20recent%20advances%20with%20metabotropic%20glutamate%20receptors&amp;journal=Chem.%20Rev.&amp;doi=10.1021%2Facs.chemrev.5b00656&amp;volume=116&amp;pages=6707-6741&amp;publication_year=2016&amp;author=Lindsley%2CCW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="159."><p class="c-article-references__text" id="ref-CR159">Congreve, M., Oswald, C. &amp; Marshall, F. H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. <i>Trends Pharmacol. Sci.</i> <b>38</b>, 837–847 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.tips.2017.05.010" data-track-item_id="10.1016/j.tips.2017.05.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.tips.2017.05.010" aria-label="Article reference 159" data-doi="10.1016/j.tips.2017.05.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVWrt7jE" aria-label="CAS reference 159">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28648526" aria-label="PubMed reference 159">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 159" href="http://scholar.google.com/scholar_lookup?&amp;title=Applying%20structure-based%20drug%20design%20approaches%20to%20allosteric%20modulators%20of%20GPCRs&amp;journal=Trends%20Pharmacol.%20Sci.&amp;doi=10.1016%2Fj.tips.2017.05.010&amp;volume=38&amp;pages=837-847&amp;publication_year=2017&amp;author=Congreve%2CM&amp;author=Oswald%2CC&amp;author=Marshall%2CFH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="160."><p class="c-article-references__text" id="ref-CR160">Wold, E. A., Chen, J., Cunningham, K. A. &amp; Zhou, J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. <i>J. Med. Chem.</i> <b>62</b>, 88–127 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.8b00875" data-track-item_id="10.1021/acs.jmedchem.8b00875" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.8b00875" aria-label="Article reference 160" data-doi="10.1021/acs.jmedchem.8b00875">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsV2lsLbK" aria-label="CAS reference 160">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30106578" aria-label="PubMed reference 160">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 160" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20modulation%20of%20class%20A%20GPCRs%3A%20targets%2C%20agents%2C%20and%20emerging%20concepts&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.8b00875&amp;volume=62&amp;pages=88-127&amp;publication_year=2019&amp;author=Wold%2CEA&amp;author=Chen%2CJ&amp;author=Cunningham%2CKA&amp;author=Zhou%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="161."><p class="c-article-references__text" id="ref-CR161">Wu, Y. et al. GPCR allosteric modulator discovery. <i>Adv. Exp. Med. Biol.</i> <b>1163</b>, 225–251 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-981-13-8719-7_10" data-track-item_id="10.1007/978-981-13-8719-7_10" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/978-981-13-8719-7_10" aria-label="Article reference 161" data-doi="10.1007/978-981-13-8719-7_10">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXosFehur0%3D" aria-label="CAS reference 161">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31707706" aria-label="PubMed reference 161">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 161" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR%20allosteric%20modulator%20discovery&amp;journal=Adv.%20Exp.%20Med.%20Biol.&amp;doi=10.1007%2F978-981-13-8719-7_10&amp;volume=1163&amp;pages=225-251&amp;publication_year=2019&amp;author=Wu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="162."><p class="c-article-references__text" id="ref-CR162">Liu, X. et al. Unraveling allosteric landscapes of allosterome with ASD. <i>Nucleic Acids Res.</i> <b>48</b>, D394–D401 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslWltLrJ" aria-label="CAS reference 162">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31665428" aria-label="PubMed reference 162">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 162" href="http://scholar.google.com/scholar_lookup?&amp;title=Unraveling%20allosteric%20landscapes%20of%20allosterome%20with%20ASD&amp;journal=Nucleic%20Acids%20Res.&amp;volume=48&amp;pages=D394-D401&amp;publication_year=2020&amp;author=Liu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="163."><p class="c-article-references__text" id="ref-CR163">Nolte, W. M. et al. A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. <i>Nat. Chem. Biol.</i> <b>10</b>, 629–631 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.1581" data-track-item_id="10.1038/nchembio.1581" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.1581" aria-label="Article reference 163" data-doi="10.1038/nchembio.1581">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtFSlsLrO" aria-label="CAS reference 163">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24997604" aria-label="PubMed reference 163">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 163" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20potentiator%20of%20orthosteric%20ligand%20activity%20at%20GLP-1R%20acts%20via%20covalent%20modification&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fnchembio.1581&amp;volume=10&amp;pages=629-631&amp;publication_year=2014&amp;author=Nolte%2CWM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="164."><p class="c-article-references__text" id="ref-CR164">Bock, A., Schrage, R. &amp; Mohr, K. Allosteric modulators targeting CNS muscarinic receptors. <i>Neuropharmacology</i> <b>136</b>, 427–437 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neuropharm.2017.09.024" data-track-item_id="10.1016/j.neuropharm.2017.09.024" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neuropharm.2017.09.024" aria-label="Article reference 164" data-doi="10.1016/j.neuropharm.2017.09.024">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1aisLfP" aria-label="CAS reference 164">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28935216" aria-label="PubMed reference 164">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 164" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20modulators%20targeting%20CNS%20muscarinic%20receptors&amp;journal=Neuropharmacology&amp;doi=10.1016%2Fj.neuropharm.2017.09.024&amp;volume=136&amp;pages=427-437&amp;publication_year=2018&amp;author=Bock%2CA&amp;author=Schrage%2CR&amp;author=Mohr%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="165."><p class="c-article-references__text" id="ref-CR165">Price, M. R. et al. Allosteric modulation of the cannabinoid CB1 receptor. <i>Mol. Pharmacol.</i> <b>68</b>, 1484–1495 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.105.016162" data-track-item_id="10.1124/mol.105.016162" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.105.016162" aria-label="Article reference 165" data-doi="10.1124/mol.105.016162">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtF2it7nM" aria-label="CAS reference 165">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16113085" aria-label="PubMed reference 165">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 165" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20modulation%20of%20the%20cannabinoid%20CB1%20receptor&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.105.016162&amp;volume=68&amp;pages=1484-1495&amp;publication_year=2005&amp;author=Price%2CMR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="166."><p class="c-article-references__text" id="ref-CR166">Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. <i>Nat. Chem. Biol.</i> <b>15</b>, 1199–1205 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41589-019-0387-2" data-track-item_id="10.1038/s41589-019-0387-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41589-019-0387-2" aria-label="Article reference 166" data-doi="10.1038/s41589-019-0387-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXitVCksLnM" aria-label="CAS reference 166">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31659318" aria-label="PubMed reference 166">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 166" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20an%20allosteric%20modulator%20bound%20to%20the%20CB1%20cannabinoid%20receptor&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fs41589-019-0387-2&amp;volume=15&amp;pages=1199-1205&amp;publication_year=2019&amp;author=Shao%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="167."><p class="c-article-references__text" id="ref-CR167">Goupil, E. et al. A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2alpha-mediated Rho/ROCK signaling pathway. <i>J. Biol. Chem.</i> <b>285</b>, 25624–25636 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M110.115196" data-track-item_id="10.1074/jbc.M110.115196" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M110.115196" aria-label="Article reference 167" data-doi="10.1074/jbc.M110.115196">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXpslKjtbk%3D" aria-label="CAS reference 167">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=20551320" aria-label="PubMed reference 167">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919126" aria-label="PubMed Central reference 167">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 167" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20novel%20biased%20allosteric%20compound%20inhibitor%20of%20parturition%20selectively%20impedes%20the%20prostaglandin%20F2alpha-mediated%20Rho%2FROCK%20signaling%20pathway&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M110.115196&amp;volume=285&amp;pages=25624-25636&amp;publication_year=2010&amp;author=Goupil%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="168."><p class="c-article-references__text" id="ref-CR168">Quoyer, J. et al. Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. <i>Proc. Natl Acad. Sci. USA</i> <b>110</b>, E5088–E5097 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1312515110" data-track-item_id="10.1073/pnas.1312515110" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1312515110" aria-label="Article reference 168" data-doi="10.1073/pnas.1312515110">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXns1SjtQ%3D%3D" aria-label="CAS reference 168">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24309376" aria-label="PubMed reference 168">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876208" aria-label="PubMed Central reference 168">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 168" href="http://scholar.google.com/scholar_lookup?&amp;title=Pepducin%20targeting%20the%20C-X-C%20chemokine%20receptor%20type%204%20acts%20as%20a%20biased%20agonist%20favoring%20activation%20of%20the%20inhibitory%20G%20protein&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1312515110&amp;volume=110&amp;pages=E5088-E5097&amp;publication_year=2013&amp;author=Quoyer%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="169."><p class="c-article-references__text" id="ref-CR169">Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y1 receptor. <i>Nature</i> <b>520</b>, 317–321 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature14287" data-track-item_id="10.1038/nature14287" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature14287" aria-label="Article reference 169" data-doi="10.1038/nature14287">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXlsFekt7Y%3D" aria-label="CAS reference 169">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25822790" aria-label="PubMed reference 169">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408927" aria-label="PubMed Central reference 169">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 169" href="http://scholar.google.com/scholar_lookup?&amp;title=Two%20disparate%20ligand-binding%20sites%20in%20the%20human%20P2Y1%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature14287&amp;volume=520&amp;pages=317-321&amp;publication_year=2015&amp;author=Zhang%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="170."><p class="c-article-references__text" id="ref-CR170">Brodbeck, R. M. et al. al. Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a novel, orally bioavailable C5a receptor inverse agonist. <i>J. Pharmacol. Exp. Ther</i> <b>327</b>, 898–909 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/jpet.108.141572" data-track-item_id="10.1124/jpet.108.141572" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fjpet.108.141572" aria-label="Article reference 170" data-doi="10.1124/jpet.108.141572">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsVCjtLjF" aria-label="CAS reference 170">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=18753409" aria-label="PubMed reference 170">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 170" href="http://scholar.google.com/scholar_lookup?&amp;title=al.%20Identification%20and%20characterization%20of%20NDT%209513727%20%5BN%2CN-bis%281%2C3-benzodioxol-5-ylmethyl%29-1-butyl-2%2C4-diphenyl-1H-imidazole-5-methanamine%5D%2C%20a%20novel%2C%20orally%20bioavailable%20C5a%20receptor%20inverse%20agonist.&amp;journal=J.%20Pharmacol.%20Exp.%20Ther&amp;doi=10.1124%2Fjpet.108.141572&amp;volume=327&amp;pages=898-909&amp;publication_year=2008&amp;author=Brodbeck%2CRM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="171."><p class="c-article-references__text" id="ref-CR171">Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. <i>Nature</i> <b>553</b>, 111–114 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature25025" data-track-item_id="10.1038/nature25025" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature25025" aria-label="Article reference 171" data-doi="10.1038/nature25025">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXjsVOksA%3D%3D" aria-label="CAS reference 171">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29300009" aria-label="PubMed reference 171">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 171" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20the%20complement%20C5a%20receptor%20bound%20to%20the%20extra-helical%20antagonist%20NDT9513727&amp;journal=Nature&amp;doi=10.1038%2Fnature25025&amp;volume=553&amp;pages=111-114&amp;publication_year=2018&amp;author=Robertson%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="172."><p class="c-article-references__text" id="ref-CR172">Maeda, S. et al. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. <i>Science</i> <b>364</b>, 552–557 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aaw5188" data-track-item_id="10.1126/science.aaw5188" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aaw5188" aria-label="Article reference 172" data-doi="10.1126/science.aaw5188">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXptFaks70%3D" aria-label="CAS reference 172">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31073061" aria-label="PubMed reference 172">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034192" aria-label="PubMed Central reference 172">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 172" href="http://scholar.google.com/scholar_lookup?&amp;title=Structures%20of%20the%20M1%20and%20M2%20muscarinic%20acetylcholine%20receptor%2FG-protein%20complexes&amp;journal=Science&amp;doi=10.1126%2Fscience.aaw5188&amp;volume=364&amp;pages=552-557&amp;publication_year=2019&amp;author=Maeda%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="173."><p class="c-article-references__text" id="ref-CR173">Staus, D. P. et al. Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. <i>Nature</i> <b>579</b>, 297–302 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-1954-0" data-track-item_id="10.1038/s41586-020-1954-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-1954-0" aria-label="Article reference 173" data-doi="10.1038/s41586-020-1954-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXjvFynsrY%3D" aria-label="CAS reference 173">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31945772" aria-label="PubMed reference 173">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367492" aria-label="PubMed Central reference 173">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 173" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20the%20M2%20muscarinic%20receptor-beta-arrestin%20complex%20in%20a%20lipid%20nanodisc&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-1954-0&amp;volume=579&amp;pages=297-302&amp;publication_year=2020&amp;author=Staus%2CDP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="174."><p class="c-article-references__text" id="ref-CR174">Shore, D. M. et al. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. <i>J. Biol. Chem.</i> <b>289</b>, 5828–5845 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M113.478495" data-track-item_id="10.1074/jbc.M113.478495" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M113.478495" aria-label="Article reference 174" data-doi="10.1074/jbc.M113.478495">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXjsVKrsbY%3D" aria-label="CAS reference 174">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24366865" aria-label="PubMed reference 174">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 174" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20modulation%20of%20a%20cannabinoid%20G%20protein-coupled%20receptor%3A%20binding%20site%20elucidation%20and%20relationship%20to%20G%20protein%20signaling&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M113.478495&amp;volume=289&amp;pages=5828-5845&amp;publication_year=2014&amp;author=Shore%2CDM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="175."><p class="c-article-references__text" id="ref-CR175">Stornaiuolo, M. et al. Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. <i>Sci. Rep.</i> <b>5</b>, 15453 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep15453" data-track-item_id="10.1038/srep15453" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep15453" aria-label="Article reference 175" data-doi="10.1038/srep15453">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhslSmsL7F" aria-label="CAS reference 175">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26482099" aria-label="PubMed reference 175">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612305" aria-label="PubMed Central reference 175">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 175" href="http://scholar.google.com/scholar_lookup?&amp;title=Endogenous%20vs%20exogenous%20allosteric%20modulators%20in%20GPCRs%3A%20a%20dispute%20for%20shuttling%20CB1%20among%20different%20membrane%20microenvironments&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fsrep15453&amp;volume=5&amp;publication_year=2015&amp;author=Stornaiuolo%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="176."><p class="c-article-references__text" id="ref-CR176">Fay, J. F. &amp; Farrens, D. L. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity. <i>Biochemistry</i> <b>52</b>, 8286–8294 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/bi400842k" data-track-item_id="10.1021/bi400842k" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fbi400842k" aria-label="Article reference 176" data-doi="10.1021/bi400842k">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhslCgtLrJ" aria-label="CAS reference 176">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24206272" aria-label="PubMed reference 176">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 176" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20membrane%20proximal%20region%20of%20the%20cannabinoid%20receptor%20CB1%20N-terminus%20can%20allosterically%20modulate%20ligand%20affinity&amp;journal=Biochemistry&amp;doi=10.1021%2Fbi400842k&amp;volume=52&amp;pages=8286-8294&amp;publication_year=2013&amp;author=Fay%2CJF&amp;author=Farrens%2CDL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="177."><p class="c-article-references__text" id="ref-CR177">Ahn, K. H., Mahmoud, M. M. &amp; Kendall, D. A. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. <i>J. Biol. Chem.</i> <b>287</b>, 12070–12082 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M111.316463" data-track-item_id="10.1074/jbc.M111.316463" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M111.316463" aria-label="Article reference 177" data-doi="10.1074/jbc.M111.316463">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XltVyksLc%3D" aria-label="CAS reference 177">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22343625" aria-label="PubMed reference 177">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320953" aria-label="PubMed Central reference 177">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 177" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20modulator%20ORG27569%20induces%20CB1%20cannabinoid%20receptor%20high%20affinity%20agonist%20binding%20state%2C%20receptor%20internalization%2C%20and%20Gi%20protein-independent%20ERK1%2F2%20kinase%20activation&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M111.316463&amp;volume=287&amp;pages=12070-12082&amp;publication_year=2012&amp;author=Ahn%2CKH&amp;author=Mahmoud%2CMM&amp;author=Kendall%2CDA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="178."><p class="c-article-references__text" id="ref-CR178">Baillie, G. L. et al. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity. <i>Mol. Pharmacol.</i> <b>83</b>, 322–338 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.112.080879" data-track-item_id="10.1124/mol.112.080879" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.112.080879" aria-label="Article reference 178" data-doi="10.1124/mol.112.080879">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsFKns7c%3D" aria-label="CAS reference 178">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23160940" aria-label="PubMed reference 178">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558808" aria-label="PubMed Central reference 178">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 178" href="http://scholar.google.com/scholar_lookup?&amp;title=CB%281%29%20receptor%20allosteric%20modulators%20display%20both%20agonist%20and%20signaling%20pathway%20specificity&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.112.080879&amp;volume=83&amp;pages=322-338&amp;publication_year=2013&amp;author=Baillie%2CGL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="179."><p class="c-article-references__text" id="ref-CR179">Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. <i>Nature</i> <b>547</b>, 468–471 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature23272" data-track-item_id="10.1038/nature23272" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature23272" aria-label="Article reference 179" data-doi="10.1038/nature23272">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtFaqt73E" aria-label="CAS reference 179">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28678776" aria-label="PubMed reference 179">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793864" aria-label="PubMed Central reference 179">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 179" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structures%20of%20agonist-bound%20human%20cannabinoid%20receptor%20CB1&amp;journal=Nature&amp;doi=10.1038%2Fnature23272&amp;volume=547&amp;pages=468-471&amp;publication_year=2017&amp;author=Hua%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="180."><p class="c-article-references__text" id="ref-CR180">Liu, X. et al. An allosteric modulator binds to a conformational hub in the beta2 adrenergic receptor. <i>Nat. Chem. Biol.</i> <b>16</b>, 749–755 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41589-020-0549-2" data-track-item_id="10.1038/s41589-020-0549-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41589-020-0549-2" aria-label="Article reference 180" data-doi="10.1038/s41589-020-0549-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVGmtbrE" aria-label="CAS reference 180">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32483378" aria-label="PubMed reference 180">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816728" aria-label="PubMed Central reference 180">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 180" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20allosteric%20modulator%20binds%20to%20a%20conformational%20hub%20in%20the%20beta2%20adrenergic%20receptor&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fs41589-020-0549-2&amp;volume=16&amp;pages=749-755&amp;publication_year=2020&amp;author=Liu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="181."><p class="c-article-references__text" id="ref-CR181">Liu, X. et al. Mechanism of beta2AR regulation by an intracellular positive allosteric modulator. <i>Science</i> <b>364</b>, 1283–1287 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aaw8981" data-track-item_id="10.1126/science.aaw8981" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aaw8981" aria-label="Article reference 181" data-doi="10.1126/science.aaw8981">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtlWjtL3P" aria-label="CAS reference 181">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31249059" aria-label="PubMed reference 181">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705129" aria-label="PubMed Central reference 181">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 181" href="http://scholar.google.com/scholar_lookup?&amp;title=Mechanism%20of%20beta2AR%20regulation%20by%20an%20intracellular%20positive%20allosteric%20modulator&amp;journal=Science&amp;doi=10.1126%2Fscience.aaw8981&amp;volume=364&amp;pages=1283-1287&amp;publication_year=2019&amp;author=Liu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="182."><p class="c-article-references__text" id="ref-CR182">Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. <i>Nat. Struct. Mol. Biol.</i> <b>25</b>, 472–481 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41594-018-0067-z" data-track-item_id="10.1038/s41594-018-0067-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41594-018-0067-z" aria-label="Article reference 182" data-doi="10.1038/s41594-018-0067-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlKqu7bN" aria-label="CAS reference 182">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29867214" aria-label="PubMed reference 182">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 182" href="http://scholar.google.com/scholar_lookup?&amp;title=Orthosteric%20and%20allosteric%20action%20of%20the%20C5a%20receptor%20antagonists&amp;journal=Nat.%20Struct.%20Mol.%20Biol.&amp;doi=10.1038%2Fs41594-018-0067-z&amp;volume=25&amp;pages=472-481&amp;publication_year=2018&amp;author=Liu%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="183."><p class="c-article-references__text" id="ref-CR183">Glukhova, A. et al. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. <i>Cell</i> <b>168</b>, 867–877 e813 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2017.01.042" data-track-item_id="10.1016/j.cell.2017.01.042" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2017.01.042" aria-label="Article reference 183" data-doi="10.1016/j.cell.2017.01.042">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvVWrsrg%3D" aria-label="CAS reference 183">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28235198" aria-label="PubMed reference 183">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 183" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20the%20adenosine%20A1%20receptor%20reveals%20the%20basis%20for%20subtype%20selectivity&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2017.01.042&amp;volume=168&amp;pages=867-877%20e813&amp;publication_year=2017&amp;author=Glukhova%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="184."><p class="c-article-references__text" id="ref-CR184">Ho, J. D. et al. Structural basis for GPR40 allosteric agonism and incretin stimulation. <i>Nat. Commun.</i> <b>9</b>, 1645 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-017-01240-w" data-track-item_id="10.1038/s41467-017-01240-w" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-017-01240-w" aria-label="Article reference 184" data-doi="10.1038/s41467-017-01240-w">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29695780" aria-label="PubMed reference 184">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917010" aria-label="PubMed Central reference 184">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhs1KgsbrO" aria-label="CAS reference 184">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 184" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20for%20GPR40%20allosteric%20agonism%20and%20incretin%20stimulation&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-017-01240-w&amp;volume=9&amp;publication_year=2018&amp;author=Ho%2CJD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="185."><p class="c-article-references__text" id="ref-CR185">Wu, F. et al. Full-length human GLP-1 receptor structure without orthosteric ligands. <i>Nat. Commun.</i> <b>11</b>, 1272 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-020-14934-5" data-track-item_id="10.1038/s41467-020-14934-5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-020-14934-5" aria-label="Article reference 185" data-doi="10.1038/s41467-020-14934-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXlt1Shur0%3D" aria-label="CAS reference 185">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32152292" aria-label="PubMed reference 185">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062719" aria-label="PubMed Central reference 185">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 185" href="http://scholar.google.com/scholar_lookup?&amp;title=Full-length%20human%20GLP-1%20receptor%20structure%20without%20orthosteric%20ligands&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-020-14934-5&amp;volume=11&amp;publication_year=2020&amp;author=Wu%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="186."><p class="c-article-references__text" id="ref-CR186">Muniz-Medina, V. M. et al. The relative activity of "function sparing" HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? <i>Mol. Pharmacol.</i> <b>75</b>, 490–501 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.108.052555" data-track-item_id="10.1124/mol.108.052555" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.108.052555" aria-label="Article reference 186" data-doi="10.1124/mol.108.052555">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXis1Wqu7s%3D" aria-label="CAS reference 186">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=19064629" aria-label="PubMed reference 186">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 186" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20relative%20activity%20of%20%22function%20sparing%22%20HIV-1%20entry%20inhibitors%20on%20viral%20entry%20and%20CCR5%20internalization%3A%20is%20allosteric%20functional%20selectivity%20a%20valuable%20therapeutic%20property%3F&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.108.052555&amp;volume=75&amp;pages=490-501&amp;publication_year=2009&amp;author=Muniz-Medina%2CVM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="187."><p class="c-article-references__text" id="ref-CR187">Tan, Q. et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. <i>Science</i> <b>341</b>, 1387–1390 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1241475" data-track-item_id="10.1126/science.1241475" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1241475" aria-label="Article reference 187" data-doi="10.1126/science.1241475">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVCmu7vJ" aria-label="CAS reference 187">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24030490" aria-label="PubMed reference 187">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 187" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20the%20CCR5%20chemokine%20receptor-HIV%20entry%20inhibitor%20maraviroc%20complex&amp;journal=Science&amp;doi=10.1126%2Fscience.1241475&amp;volume=341&amp;pages=1387-1390&amp;publication_year=2013&amp;author=Tan%2CQ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="188."><p class="c-article-references__text" id="ref-CR188">Zheng, Y. et al. Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. <i>Immunity</i> <b>46</b>, 1005–1017 e1005 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.immuni.2017.05.002" data-track-item_id="10.1016/j.immuni.2017.05.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.immuni.2017.05.002" aria-label="Article reference 188" data-doi="10.1016/j.immuni.2017.05.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVequ77J" aria-label="CAS reference 188">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28636951" aria-label="PubMed reference 188">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572563" aria-label="PubMed Central reference 188">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 188" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20CC%20chemokine%20receptor%205%20with%20a%20potent%20chemokine%20antagonist%20reveals%20mechanisms%20of%20chemokine%20recognition%20and%20molecular%20mimicry%20by%20HIV&amp;journal=Immunity&amp;doi=10.1016%2Fj.immuni.2017.05.002&amp;volume=46&amp;pages=1005-1017%20e1005&amp;publication_year=2017&amp;author=Zheng%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="189."><p class="c-article-references__text" id="ref-CR189">Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. <i>Nature</i> <b>565</b>, 318–323 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0804-9" data-track-item_id="10.1038/s41586-018-0804-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0804-9" aria-label="Article reference 189" data-doi="10.1038/s41586-018-0804-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisFSmsbzK" aria-label="CAS reference 189">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30542158" aria-label="PubMed reference 189">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 189" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20of%20coreceptor%20recognition%20by%20HIV-1%20envelope%20spike&amp;journal=Nature&amp;doi=10.1038%2Fs41586-018-0804-9&amp;volume=565&amp;pages=318-323&amp;publication_year=2019&amp;author=Shaik%2CMM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="190."><p class="c-article-references__text" id="ref-CR190">Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptidic agonist. <i>Nature</i> <b>577</b>, 432–436 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-1902-z" data-track-item_id="10.1038/s41586-019-1902-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-1902-z" aria-label="Article reference 190" data-doi="10.1038/s41586-019-1902-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXlslejuw%3D%3D" aria-label="CAS reference 190">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31915381" aria-label="PubMed reference 190">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 190" href="http://scholar.google.com/scholar_lookup?&amp;title=Activation%20of%20the%20GLP-1%20receptor%20by%20a%20non-peptidic%20agonist&amp;journal=Nature&amp;doi=10.1038%2Fs41586-019-1902-z&amp;volume=577&amp;pages=432-436&amp;publication_year=2020&amp;author=Zhao%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="191."><p class="c-article-references__text" id="ref-CR191">Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. <i>Nature</i> <b>546</b>, 248–253 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature22394" data-track-item_id="10.1038/nature22394" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature22394" aria-label="Article reference 191" data-doi="10.1038/nature22394">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXosVagtLo%3D" aria-label="CAS reference 191">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28538729" aria-label="PubMed reference 191">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587415" aria-label="PubMed Central reference 191">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 191" href="http://scholar.google.com/scholar_lookup?&amp;title=Cryo-EM%20structure%20of%20the%20activated%20GLP-1%20receptor%20in%20complex%20with%20a%20G%20protein&amp;journal=Nature&amp;doi=10.1038%2Fnature22394&amp;volume=546&amp;pages=248-253&amp;publication_year=2017&amp;author=Zhang%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="192."><p class="c-article-references__text" id="ref-CR192">Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. <i>Nature</i> <b>540</b>, 458–461 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature20605" data-track-item_id="10.1038/nature20605" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature20605" aria-label="Article reference 192" data-doi="10.1038/nature20605">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitVWmurbP" aria-label="CAS reference 192">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27926736" aria-label="PubMed reference 192">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159191" aria-label="PubMed Central reference 192">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 192" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20CC%20chemokine%20receptor%202%20with%20orthosteric%20and%20allosteric%20antagonists&amp;journal=Nature&amp;doi=10.1038%2Fnature20605&amp;volume=540&amp;pages=458-461&amp;publication_year=2016&amp;author=Zheng%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="193."><p class="c-article-references__text" id="ref-CR193">Jaeger, K. et al. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. <i>Cell</i> <b>178</b>, 1222.e10–1230.e10 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2019.07.028" data-track-item_id="10.1016/j.cell.2019.07.028" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2019.07.028" aria-label="Article reference 193" data-doi="10.1016/j.cell.2019.07.028">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhs1GjurzI" aria-label="CAS reference 193">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 193" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20for%20allosteric%20ligand%20recognition%20in%20the%20human%20CC%20chemokine%20receptor%207&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2019.07.028&amp;volume=178&amp;pages=1222.e10-1230.e10&amp;publication_year=2019&amp;author=Jaeger%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="194."><p class="c-article-references__text" id="ref-CR194">Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. <i>Nature</i> <b>540</b>, 462–465 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature20606" data-track-item_id="10.1038/nature20606" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature20606" aria-label="Article reference 194" data-doi="10.1038/nature20606">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitVWmurbM" aria-label="CAS reference 194">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27926729" aria-label="PubMed reference 194">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 194" href="http://scholar.google.com/scholar_lookup?&amp;title=Intracellular%20allosteric%20antagonism%20of%20the%20CCR9%20receptor&amp;journal=Nature&amp;doi=10.1038%2Fnature20606&amp;volume=540&amp;pages=462-465&amp;publication_year=2016&amp;author=Oswald%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="195."><p class="c-article-references__text" id="ref-CR195">Liu, X. et al. Mechanism of intracellular allosteric beta2AR antagonist revealed by X-ray crystal structure. <i>Nature</i> <b>548</b>, 480–484 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature23652" data-track-item_id="10.1038/nature23652" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature23652" aria-label="Article reference 195" data-doi="10.1038/nature23652">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtlGktrvI" aria-label="CAS reference 195">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28813418" aria-label="PubMed reference 195">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818265" aria-label="PubMed Central reference 195">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 195" href="http://scholar.google.com/scholar_lookup?&amp;title=Mechanism%20of%20intracellular%20allosteric%20beta2AR%20antagonist%20revealed%20by%20X-ray%20crystal%20structure&amp;journal=Nature&amp;doi=10.1038%2Fnature23652&amp;volume=548&amp;pages=480-484&amp;publication_year=2017&amp;author=Liu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="196."><p class="c-article-references__text" id="ref-CR196">Wingler, L. M. et al. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. <i>Cell</i> <b>176</b>, 479.e12–490.e12 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 196" href="http://scholar.google.com/scholar_lookup?&amp;title=Distinctive%20activation%20mechanism%20for%20angiotensin%20receptor%20revealed%20by%20a%20synthetic%20nanobody&amp;journal=Cell&amp;volume=176&amp;pages=479.e12-490.e12&amp;publication_year=2019&amp;author=Wingler%2CLM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="197."><p class="c-article-references__text" id="ref-CR197">Wingler, L. M. et al. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. <i>Science</i> <b>367</b>, 888–892 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aay9813" data-track-item_id="10.1126/science.aay9813" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aay9813" aria-label="Article reference 197" data-doi="10.1126/science.aay9813">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXjs1KnsrY%3D" aria-label="CAS reference 197">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32079768" aria-label="PubMed reference 197">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171558" aria-label="PubMed Central reference 197">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 197" href="http://scholar.google.com/scholar_lookup?&amp;title=Angiotensin%20and%20biased%20analogs%20induce%20structurally%20distinct%20active%20conformations%20within%20a%20GPCR&amp;journal=Science&amp;doi=10.1126%2Fscience.aay9813&amp;volume=367&amp;pages=888-892&amp;publication_year=2020&amp;author=Wingler%2CLM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="198."><p class="c-article-references__text" id="ref-CR198">Lee, Y. et al. Molecular basis of beta-arrestin coupling to formoterol-bound beta1-adrenoceptor. <i>Nature</i> <b>583</b>, 862–866 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-2419-1" data-track-item_id="10.1038/s41586-020-2419-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-2419-1" aria-label="Article reference 198" data-doi="10.1038/s41586-020-2419-1">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtF2ju7jM" aria-label="CAS reference 198">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32555462" aria-label="PubMed reference 198">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115876" aria-label="PubMed Central reference 198">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 198" href="http://scholar.google.com/scholar_lookup?&amp;title=Molecular%20basis%20of%20beta-arrestin%20coupling%20to%20formoterol-bound%20beta1-adrenoceptor&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-2419-1&amp;volume=583&amp;pages=862-866&amp;publication_year=2020&amp;author=Lee%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="199."><p class="c-article-references__text" id="ref-CR199">Leach, K. &amp; Gregory, K. J. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. <i>Pharmacol. Res.</i> <b>116</b>, 105–118 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.phrs.2016.12.006" data-track-item_id="10.1016/j.phrs.2016.12.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.phrs.2016.12.006" aria-label="Article reference 199" data-doi="10.1016/j.phrs.2016.12.006">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitFWlsb%2FF" aria-label="CAS reference 199">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27965032" aria-label="PubMed reference 199">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 199" href="http://scholar.google.com/scholar_lookup?&amp;title=Molecular%20insights%20into%20allosteric%20modulation%20of%20Class%20C%20G%20protein-coupled%20receptors&amp;journal=Pharmacol.%20Res.&amp;doi=10.1016%2Fj.phrs.2016.12.006&amp;volume=116&amp;pages=105-118&amp;publication_year=2017&amp;author=Leach%2CK&amp;author=Gregory%2CKJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="200."><p class="c-article-references__text" id="ref-CR200">Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. <i>Nat. Commun.</i> <b>5</b>, 3309 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms4309" data-track-item_id="10.1038/ncomms4309" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms4309" aria-label="Article reference 200" data-doi="10.1038/ncomms4309">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24525480" aria-label="PubMed reference 200">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXjt1WltrY%3D" aria-label="CAS reference 200">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 200" href="http://scholar.google.com/scholar_lookup?&amp;title=Lipidic%20cubic%20phase%20injector%20facilitates%20membrane%20protein%20serial%20femtosecond%20crystallography&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fncomms4309&amp;volume=5&amp;publication_year=2014&amp;author=Weierstall%2CU"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="201."><p class="c-article-references__text" id="ref-CR201">Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. <i>Nature</i> <b>497</b>, 338–343 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nature12167" data-track-item_id="10.1038/nature12167" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnature12167" aria-label="Article reference 201" data-doi="10.1038/nature12167">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXmvFylsb0%3D" aria-label="CAS reference 201">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23636324" aria-label="PubMed reference 201">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657389" aria-label="PubMed Central reference 201">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 201" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20of%20the%20human%20smoothened%20receptor%20bound%20to%20an%20antitumour%20agent&amp;journal=Nature&amp;doi=10.1038%2Fnature12167&amp;volume=497&amp;pages=338-343&amp;publication_year=2013&amp;author=Wang%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="202."><p class="c-article-references__text" id="ref-CR202">Crowther, G. J. et al. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens. <i>PLoS Negl. Trop. Dis.</i> <b>8</b>, e2628 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pntd.0002628" data-track-item_id="10.1371/journal.pntd.0002628" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pntd.0002628" aria-label="Article reference 202" data-doi="10.1371/journal.pntd.0002628">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=24416464" aria-label="PubMed reference 202">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886921" aria-label="PubMed Central reference 202">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXptFGhsL8%3D" aria-label="CAS reference 202">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 202" href="http://scholar.google.com/scholar_lookup?&amp;title=Cofactor-independent%20phosphoglycerate%20mutase%20from%20nematodes%20has%20limited%20druggability%2C%20as%20revealed%20by%20two%20high-throughput%20screens&amp;journal=PLoS%20Negl.%20Trop.%20Dis.&amp;doi=10.1371%2Fjournal.pntd.0002628&amp;volume=8&amp;publication_year=2014&amp;author=Crowther%2CGJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="203."><p class="c-article-references__text" id="ref-CR203">Zhou, F. et al. Colocalization strategy unveils an underside binding site in the transmembrane domain of smoothened receptor. <i>J. Med. Chem.</i> <b>62</b>, 9983–9989 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.9b00283" data-track-item_id="10.1021/acs.jmedchem.9b00283" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.9b00283" aria-label="Article reference 203" data-doi="10.1021/acs.jmedchem.9b00283">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsFOqtLvO" aria-label="CAS reference 203">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31408335" aria-label="PubMed reference 203">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 203" href="http://scholar.google.com/scholar_lookup?&amp;title=Colocalization%20strategy%20unveils%20an%20underside%20binding%20site%20in%20the%20transmembrane%20domain%20of%20smoothened%20receptor&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.9b00283&amp;volume=62&amp;pages=9983-9989&amp;publication_year=2019&amp;author=Zhou%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="204."><p class="c-article-references__text" id="ref-CR204">Huang, P. et al. Structural basis of smoothened activation in Hedgehog signaling. <i>Cell</i> <b>174</b>, 312.e16–324.e16 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.cell.2018.04.029" data-track-item_id="10.1016/j.cell.2018.04.029" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.cell.2018.04.029" aria-label="Article reference 204" data-doi="10.1016/j.cell.2018.04.029">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVajurjM" aria-label="CAS reference 204">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 204" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20of%20smoothened%20activation%20in%20Hedgehog%20signaling&amp;journal=Cell&amp;doi=10.1016%2Fj.cell.2018.04.029&amp;volume=174&amp;pages=312.e16-324.e16&amp;publication_year=2018&amp;author=Huang%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="205."><p class="c-article-references__text" id="ref-CR205">Yu, W. &amp; MacKerell, A. D. Jr. Computer-aided drug design methods. <i>Methods Mol. Biol.</i> <b>1520</b>, 85–106 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-1-4939-6634-9_5" data-track-item_id="10.1007/978-1-4939-6634-9_5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/978-1-4939-6634-9_5" aria-label="Article reference 205" data-doi="10.1007/978-1-4939-6634-9_5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXjtl2hsrc%3D" aria-label="CAS reference 205">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27873247" aria-label="PubMed reference 205">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248982" aria-label="PubMed Central reference 205">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 205" href="http://scholar.google.com/scholar_lookup?&amp;title=Computer-aided%20drug%20design%20methods&amp;journal=Methods%20Mol.%20Biol.&amp;doi=10.1007%2F978-1-4939-6634-9_5&amp;volume=1520&amp;pages=85-106&amp;publication_year=2017&amp;author=Yu%2CW&amp;author=MacKerell%2CAD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="206."><p class="c-article-references__text" id="ref-CR206">Caffrey, M. &amp; Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. <i>Nat. Protoc.</i> <b>4</b>, 706–731 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nprot.2009.31" data-track-item_id="10.1038/nprot.2009.31" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnprot.2009.31" aria-label="Article reference 206" data-doi="10.1038/nprot.2009.31">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXlvVWjsrs%3D" aria-label="CAS reference 206">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=19390528" aria-label="PubMed reference 206">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732203" aria-label="PubMed Central reference 206">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 206" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystallizing%20membrane%20proteins%20using%20lipidic%20mesophases&amp;journal=Nat.%20Protoc.&amp;doi=10.1038%2Fnprot.2009.31&amp;volume=4&amp;pages=706-731&amp;publication_year=2009&amp;author=Caffrey%2CM&amp;author=Cherezov%2CV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="207."><p class="c-article-references__text" id="ref-CR207">Erlandson, S. C., McMahon, C. &amp; Kruse, A. C. Structural basis for G protein-coupled receptor signaling. <i>Annu. Rev. Biophys.</i> <b>47</b>, 1–18 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-biophys-070317-032931" data-track-item_id="10.1146/annurev-biophys-070317-032931" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-biophys-070317-032931" aria-label="Article reference 207" data-doi="10.1146/annurev-biophys-070317-032931">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXjs1Oisrc%3D" aria-label="CAS reference 207">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29498889" aria-label="PubMed reference 207">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 207" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20for%20G%20protein-coupled%20receptor%20signaling&amp;journal=Annu.%20Rev.%20Biophys.&amp;doi=10.1146%2Fannurev-biophys-070317-032931&amp;volume=47&amp;pages=1-18&amp;publication_year=2018&amp;author=Erlandson%2CSC&amp;author=McMahon%2CC&amp;author=Kruse%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="208."><p class="c-article-references__text" id="ref-CR208">Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. <i>Nature</i> <b>566</b>, 224–229 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-019-0917-9" data-track-item_id="10.1038/s41586-019-0917-9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-019-0917-9" aria-label="Article reference 208" data-doi="10.1038/s41586-019-0917-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmt1yns70%3D" aria-label="CAS reference 208">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30728502" aria-label="PubMed reference 208">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383769" aria-label="PubMed Central reference 208">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 208" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultra-large%20library%20docking%20for%20discovering%20new%20chemotypes&amp;journal=Nature&amp;doi=10.1038%2Fs41586-019-0917-9&amp;volume=566&amp;pages=224-229&amp;publication_year=2019&amp;author=Lyu%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="209."><p class="c-article-references__text" id="ref-CR209">Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. <i>Nature</i> <b>579</b>, 609–614 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-020-2027-0" data-track-item_id="10.1038/s41586-020-2027-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-020-2027-0" aria-label="Article reference 209" data-doi="10.1038/s41586-020-2027-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXltF2jsbo%3D" aria-label="CAS reference 209">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32040955" aria-label="PubMed reference 209">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134359" aria-label="PubMed Central reference 209">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 209" href="http://scholar.google.com/scholar_lookup?&amp;title=Virtual%20discovery%20of%20melatonin%20receptor%20ligands%20to%20modulate%20circadian%20rhythms&amp;journal=Nature&amp;doi=10.1038%2Fs41586-020-2027-0&amp;volume=579&amp;pages=609-614&amp;publication_year=2020&amp;author=Stein%2CRM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="210."><p class="c-article-references__text" id="ref-CR210">Ballante, F. et al. Docking finds GPCR ligands in dark chemical matter. <i>J. Med. Chem.</i> <b>63</b>, 613–620 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.9b01560" data-track-item_id="10.1021/acs.jmedchem.9b01560" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.9b01560" aria-label="Article reference 210" data-doi="10.1021/acs.jmedchem.9b01560">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVWqsL%2FJ" aria-label="CAS reference 210">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31846328" aria-label="PubMed reference 210">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 210" href="http://scholar.google.com/scholar_lookup?&amp;title=Docking%20finds%20GPCR%20ligands%20in%20dark%20chemical%20matter&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.9b01560&amp;volume=63&amp;pages=613-620&amp;publication_year=2020&amp;author=Ballante%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="211."><p class="c-article-references__text" id="ref-CR211">Ranganathan, A. et al. Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries. <i>ACS Chem. Biol.</i> <b>12</b>, 735–745 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acschembio.6b00646" data-track-item_id="10.1021/acschembio.6b00646" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facschembio.6b00646" aria-label="Article reference 211" data-doi="10.1021/acschembio.6b00646">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitFOitbfK" aria-label="CAS reference 211">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28032980" aria-label="PubMed reference 211">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 211" href="http://scholar.google.com/scholar_lookup?&amp;title=Ligand%20discovery%20for%20a%20peptide-binding%20GPCR%20by%20structure-based%20screening%20of%20fragment-%20and%20lead-like%20chemical%20libraries&amp;journal=ACS%20Chem.%20Biol.&amp;doi=10.1021%2Facschembio.6b00646&amp;volume=12&amp;pages=735-745&amp;publication_year=2017&amp;author=Ranganathan%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="212."><p class="c-article-references__text" id="ref-CR212">Liu, X. et al. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors. <i>Sci. Rep.</i> <b>8</b>, 8084 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-018-26577-0" data-track-item_id="10.1038/s41598-018-26577-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-018-26577-0" aria-label="Article reference 212" data-doi="10.1038/s41598-018-26577-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29795391" aria-label="PubMed reference 212">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967328" aria-label="PubMed Central reference 212">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslyjsL7L" aria-label="CAS reference 212">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 212" href="http://scholar.google.com/scholar_lookup?&amp;title=Salvianolic%20acids%20from%20antithrombotic%20Traditional%20Chinese%20Medicine%20Danshen%20are%20antagonists%20of%20human%20P2Y1%20and%20P2Y12%20receptors&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-018-26577-0&amp;volume=8&amp;publication_year=2018&amp;author=Liu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="213."><p class="c-article-references__text" id="ref-CR213">Bissantz, C., Schalon, C., Guba, W. &amp; Stahl, M. Focused library design in GPCR projects on the example of 5-HT(2c) agonists: comparison of structure-based virtual screening with ligand-based search methods. <i>Proteins</i> <b>61</b>, 938–952 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/prot.20651" data-track-item_id="10.1002/prot.20651" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fprot.20651" aria-label="Article reference 213" data-doi="10.1002/prot.20651">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtlaltLfP" aria-label="CAS reference 213">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16224780" aria-label="PubMed reference 213">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 213" href="http://scholar.google.com/scholar_lookup?&amp;title=Focused%20library%20design%20in%20GPCR%20projects%20on%20the%20example%20of%205-HT%282c%29%20agonists%3A%20comparison%20of%20structure-based%20virtual%20screening%20with%20ligand-based%20search%20methods&amp;journal=Proteins&amp;doi=10.1002%2Fprot.20651&amp;volume=61&amp;pages=938-952&amp;publication_year=2005&amp;author=Bissantz%2CC&amp;author=Schalon%2CC&amp;author=Guba%2CW&amp;author=Stahl%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="214."><p class="c-article-references__text" id="ref-CR214">Mannel, B. et al. Structure-guided screening for functionally selective D<sub>2</sub> dopamine receptor ligands from a virtual chemical library. <i>ACS Chem. Biol.</i> <b>12</b>, 2652–2661 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acschembio.7b00493" data-track-item_id="10.1021/acschembio.7b00493" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facschembio.7b00493" aria-label="Article reference 214" data-doi="10.1021/acschembio.7b00493">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28846380" aria-label="PubMed reference 214">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtl2gsrzF" aria-label="CAS reference 214">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 214" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-guided%20screening%20for%20functionally%20selective%20D2%20dopamine%20receptor%20ligands%20from%20a%20virtual%20chemical%20library&amp;journal=ACS%20Chem.%20Biol.&amp;doi=10.1021%2Facschembio.7b00493&amp;volume=12&amp;pages=2652-2661&amp;publication_year=2017&amp;author=Mannel%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="215."><p class="c-article-references__text" id="ref-CR215">Guo, T. &amp; Hobbs, D. W. Privileged structure-based combinatorial libraries targeting G protein-coupled receptors. <i>Assay Drug Dev. Technol.</i> <b>1</b>, 579–592 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1089/154065803322302835" data-track-item_id="10.1089/154065803322302835" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1089%2F154065803322302835" aria-label="Article reference 215" data-doi="10.1089/154065803322302835">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXntFSjtbg%3D" aria-label="CAS reference 215">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=15090254" aria-label="PubMed reference 215">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 215" href="http://scholar.google.com/scholar_lookup?&amp;title=Privileged%20structure-based%20combinatorial%20libraries%20targeting%20G%20protein-coupled%20receptors&amp;journal=Assay%20Drug%20Dev.%20Technol.&amp;doi=10.1089%2F154065803322302835&amp;volume=1&amp;pages=579-592&amp;publication_year=2003&amp;author=Guo%2CT&amp;author=Hobbs%2CDW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="216."><p class="c-article-references__text" id="ref-CR216">Latorraca, N. R., Venkatakrishnan, A. J. &amp; Dror, R. O. GPCR dynamics: structures in motion. <i>Chem. Rev.</i> <b>117</b>, 139–155 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.chemrev.6b00177" data-track-item_id="10.1021/acs.chemrev.6b00177" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.chemrev.6b00177" aria-label="Article reference 216" data-doi="10.1021/acs.chemrev.6b00177">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsV2iurjF" aria-label="CAS reference 216">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27622975" aria-label="PubMed reference 216">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 216" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR%20dynamics%3A%20structures%20in%20motion&amp;journal=Chem.%20Rev.&amp;doi=10.1021%2Facs.chemrev.6b00177&amp;volume=117&amp;pages=139-155&amp;publication_year=2017&amp;author=Latorraca%2CNR&amp;author=Venkatakrishnan%2CAJ&amp;author=Dror%2CRO"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="217."><p class="c-article-references__text" id="ref-CR217">Lee, Y., Lazim, R., Macalino, S. J. Y. &amp; Choi, S. Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). <i>Curr. Opin. Struct. Biol.</i> <b>55</b>, 147–153 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.sbi.2019.03.015" data-track-item_id="10.1016/j.sbi.2019.03.015" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.sbi.2019.03.015" aria-label="Article reference 217" data-doi="10.1016/j.sbi.2019.03.015">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXovVOqt7o%3D" aria-label="CAS reference 217">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31102980" aria-label="PubMed reference 217">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 217" href="http://scholar.google.com/scholar_lookup?&amp;title=Importance%20of%20protein%20dynamics%20in%20the%20structure-based%20drug%20discovery%20of%20class%20A%20G%20protein-coupled%20receptors%20%28GPCRs%29&amp;journal=Curr.%20Opin.%20Struct.%20Biol.&amp;doi=10.1016%2Fj.sbi.2019.03.015&amp;volume=55&amp;pages=147-153&amp;publication_year=2019&amp;author=Lee%2CY&amp;author=Lazim%2CR&amp;author=Macalino%2CSJY&amp;author=Choi%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="218."><p class="c-article-references__text" id="ref-CR218">Hilger, D., Masureel, M. &amp; Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. <i>Nat. Struct. Mol. Biol.</i> <b>25</b>, 4–12 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41594-017-0011-7" data-track-item_id="10.1038/s41594-017-0011-7" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41594-017-0011-7" aria-label="Article reference 218" data-doi="10.1038/s41594-017-0011-7">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlCqu7jM" aria-label="CAS reference 218">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29323277" aria-label="PubMed reference 218">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535338" aria-label="PubMed Central reference 218">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 218" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure%20and%20dynamics%20of%20GPCR%20signaling%20complexes&amp;journal=Nat.%20Struct.%20Mol.%20Biol.&amp;doi=10.1038%2Fs41594-017-0011-7&amp;volume=25&amp;pages=4-12&amp;publication_year=2018&amp;author=Hilger%2CD&amp;author=Masureel%2CM&amp;author=Kobilka%2CBK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="219."><p class="c-article-references__text" id="ref-CR219">Vilar, S. &amp; Costanzi, S. In <i>G Protein Coupled Receptors: Modeling, Activation, Interactions and Virtual Screening</i>. <i>Methods in Enzymology</i>, Vol. 522 (ed. Conn P. M.) 263–278 (Elsevier Academic Press, 2013).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="220."><p class="c-article-references__text" id="ref-CR220">Coudrat, T., Christopoulos, A., Sexton, P. M. &amp; Wootten, D. Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. <i>PLoS ONE</i> <b>12</b>, e0174719 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pone.0174719" data-track-item_id="10.1371/journal.pone.0174719" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pone.0174719" aria-label="Article reference 220" data-doi="10.1371/journal.pone.0174719">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28380046" aria-label="PubMed reference 220">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381884" aria-label="PubMed Central reference 220">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsVGgtrjN" aria-label="CAS reference 220">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 220" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20features%20embedded%20in%20G%20protein-coupled%20receptor%20co-crystal%20structures%20are%20key%20to%20their%20success%20in%20virtual%20screening&amp;journal=PLoS%20ONE&amp;doi=10.1371%2Fjournal.pone.0174719&amp;volume=12&amp;publication_year=2017&amp;author=Coudrat%2CT&amp;author=Christopoulos%2CA&amp;author=Sexton%2CPM&amp;author=Wootten%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="221."><p class="c-article-references__text" id="ref-CR221">Miao, Y. et al. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. <i>Proc. Natl Acad. Sci. USA</i> <b>113</b>, E5675–5684 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1612353113" data-track-item_id="10.1073/pnas.1612353113" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1612353113" aria-label="Article reference 221" data-doi="10.1073/pnas.1612353113">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsVKhsbzF" aria-label="CAS reference 221">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27601651" aria-label="PubMed reference 221">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035859" aria-label="PubMed Central reference 221">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 221" href="http://scholar.google.com/scholar_lookup?&amp;title=Accelerated%20structure-based%20design%20of%20chemically%20diverse%20allosteric%20modulators%20of%20a%20muscarinic%20G%20protein-coupled%20receptor&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1612353113&amp;volume=113&amp;pages=E5675-5684&amp;publication_year=2016&amp;author=Miao%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="222."><p class="c-article-references__text" id="ref-CR222">Warszycki, D. et al. From homology models to a set of predictive binding pockets-a 5-HT1A receptor case study. <i>J. Chem. Inf. Model.</i> <b>57</b>, 311–321 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jcim.6b00263" data-track-item_id="10.1021/acs.jcim.6b00263" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jcim.6b00263" aria-label="Article reference 222" data-doi="10.1021/acs.jcim.6b00263">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXjsF2gug%3D%3D" aria-label="CAS reference 222">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28055203" aria-label="PubMed reference 222">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361891" aria-label="PubMed Central reference 222">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 222" href="http://scholar.google.com/scholar_lookup?&amp;title=From%20homology%20models%20to%20a%20set%20of%20predictive%20binding%20pockets-a%205-HT1A%20receptor%20case%20study&amp;journal=J.%20Chem.%20Inf.%20Model.&amp;doi=10.1021%2Facs.jcim.6b00263&amp;volume=57&amp;pages=311-321&amp;publication_year=2017&amp;author=Warszycki%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="223."><p class="c-article-references__text" id="ref-CR223">de Graaf, C. et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. <i>J. Med. Chem.</i> <b>54</b>, 8195–8206 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm2011589" data-track-item_id="10.1021/jm2011589" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm2011589" aria-label="Article reference 223" data-doi="10.1021/jm2011589">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22007643" aria-label="PubMed reference 223">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228891" aria-label="PubMed Central reference 223">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlaltbnL" aria-label="CAS reference 223">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 223" href="http://scholar.google.com/scholar_lookup?&amp;title=Crystal%20structure-based%20virtual%20screening%20for%20fragment-like%20ligands%20of%20the%20human%20histamine%20H%281%29%20receptor&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm2011589&amp;volume=54&amp;pages=8195-8206&amp;publication_year=2011&amp;author=Graaf%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="224."><p class="c-article-references__text" id="ref-CR224">David, L., Nielsen, P. A., Hedstrom, M. &amp; Norden, B. Scope and limitation of ligand docking: methods, scoring functions and protein targets. <i>Curr. Comput. Aided Drug Des.</i> <b>1</b>, 275–306 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2174/1573409054367682" data-track-item_id="10.2174/1573409054367682" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2174%2F1573409054367682" aria-label="Article reference 224" data-doi="10.2174/1573409054367682">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXmsVehsbg%3D" aria-label="CAS reference 224">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 224" href="http://scholar.google.com/scholar_lookup?&amp;title=Scope%20and%20limitation%20of%20ligand%20docking%3A%20methods%2C%20scoring%20functions%20and%20protein%20targets&amp;journal=Curr.%20Comput.%20Aided%20Drug%20Des.&amp;doi=10.2174%2F1573409054367682&amp;volume=1&amp;pages=275-306&amp;publication_year=2005&amp;author=David%2CL&amp;author=Nielsen%2CPA&amp;author=Hedstrom%2CM&amp;author=Norden%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="225."><p class="c-article-references__text" id="ref-CR225">Kooistra, A. J. et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. <i>Sci. Rep.</i> <b>6</b>, 28288 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep28288" data-track-item_id="10.1038/srep28288" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep28288" aria-label="Article reference 225" data-doi="10.1038/srep28288">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhtVKitbfK" aria-label="CAS reference 225">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27339552" aria-label="PubMed reference 225">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919634" aria-label="PubMed Central reference 225">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 225" href="http://scholar.google.com/scholar_lookup?&amp;title=Function-specific%20virtual%20screening%20for%20GPCR%20ligands%20using%20a%20combined%20scoring%20method&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fsrep28288&amp;volume=6&amp;publication_year=2016&amp;author=Kooistra%2CAJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="226."><p class="c-article-references__text" id="ref-CR226">Bartuzi, D., Kaczor, A. A., Targowska-Duda, K. M. &amp; Matosiuk, D. Recent advances and applications of molecular docking to G protein-coupled receptors. <i>Molecules</i> <b>22</b>, 23 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 226" href="http://scholar.google.com/scholar_lookup?&amp;title=Recent%20advances%20and%20applications%20of%20molecular%20docking%20to%20G%20protein-coupled%20receptors&amp;journal=Molecules&amp;volume=22&amp;publication_year=2017&amp;author=Bartuzi%2CD&amp;author=Kaczor%2CAA&amp;author=Targowska-Duda%2CKM&amp;author=Matosiuk%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="227."><p class="c-article-references__text" id="ref-CR227">Zhou, Y. et al. Structure-based discovery of novel and selective 5-hydroxytryptamine 2B receptor antagonists for the treatment of irritable bowel syndrome. <i>J. Med. Chem.</i> <b>59</b>, 707–720 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.5b01631" data-track-item_id="10.1021/acs.jmedchem.5b01631" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.5b01631" aria-label="Article reference 227" data-doi="10.1021/acs.jmedchem.5b01631">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXitVygsb%2FE" aria-label="CAS reference 227">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26700945" aria-label="PubMed reference 227">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 227" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-based%20discovery%20of%20novel%20and%20selective%205-hydroxytryptamine%202B%20receptor%20antagonists%20for%20the%20treatment%20of%20irritable%20bowel%20syndrome&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.5b01631&amp;volume=59&amp;pages=707-720&amp;publication_year=2016&amp;author=Zhou%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="228."><p class="c-article-references__text" id="ref-CR228">Rastelli, G. &amp; Pinzi, L. Refinement and rescoring of virtual screening results. <i>Front. Chem.</i> <b>7</b>, 498 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fchem.2019.00498" data-track-item_id="10.3389/fchem.2019.00498" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffchem.2019.00498" aria-label="Article reference 228" data-doi="10.3389/fchem.2019.00498">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsFGgt7w%3D" aria-label="CAS reference 228">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31355188" aria-label="PubMed reference 228">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637856" aria-label="PubMed Central reference 228">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 228" href="http://scholar.google.com/scholar_lookup?&amp;title=Refinement%20and%20rescoring%20of%20virtual%20screening%20results&amp;journal=Front.%20Chem.&amp;doi=10.3389%2Ffchem.2019.00498&amp;volume=7&amp;publication_year=2019&amp;author=Rastelli%2CG&amp;author=Pinzi%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="229."><p class="c-article-references__text" id="ref-CR229">Lenselink, E. B. et al. Predicting binding affinities for GPCR ligands using free-energy perturbation. <i>ACS Omega</i> <b>1</b>, 293–304 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acsomega.6b00086" data-track-item_id="10.1021/acsomega.6b00086" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facsomega.6b00086" aria-label="Article reference 229" data-doi="10.1021/acsomega.6b00086">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsVWrsLbE" aria-label="CAS reference 229">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30023478" aria-label="PubMed reference 229">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044636" aria-label="PubMed Central reference 229">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 229" href="http://scholar.google.com/scholar_lookup?&amp;title=Predicting%20binding%20affinities%20for%20GPCR%20ligands%20using%20free-energy%20perturbation&amp;journal=ACS%20Omega&amp;doi=10.1021%2Facsomega.6b00086&amp;volume=1&amp;pages=293-304&amp;publication_year=2016&amp;author=Lenselink%2CEB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="230."><p class="c-article-references__text" id="ref-CR230">Kim, M. &amp; Cho, A. E. Incorporating QM and solvation into docking for applications to GPCR targets. <i>Phys. Chem. Chem. Phys.</i> <b>18</b>, 28281–28289 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C6CP04742D" data-track-item_id="10.1039/C6CP04742D" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC6CP04742D" aria-label="Article reference 230" data-doi="10.1039/C6CP04742D">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFWlsLbE" aria-label="CAS reference 230">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27711562" aria-label="PubMed reference 230">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 230" href="http://scholar.google.com/scholar_lookup?&amp;title=Incorporating%20QM%20and%20solvation%20into%20docking%20for%20applications%20to%20GPCR%20targets&amp;journal=Phys.%20Chem.%20Chem.%20Phys.&amp;doi=10.1039%2FC6CP04742D&amp;volume=18&amp;pages=28281-28289&amp;publication_year=2016&amp;author=Kim%2CM&amp;author=Cho%2CAE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="231."><p class="c-article-references__text" id="ref-CR231">Heifetz, A. et al. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions. <i>Biochem. Soc. Trans.</i> <b>44</b>, 574–581 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1042/BST20150250" data-track-item_id="10.1042/BST20150250" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1042%2FBST20150250" aria-label="Article reference 231" data-doi="10.1042/BST20150250">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XlslyqtL4%3D" aria-label="CAS reference 231">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27068972" aria-label="PubMed reference 231">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264495" aria-label="PubMed Central reference 231">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 231" href="http://scholar.google.com/scholar_lookup?&amp;title=Using%20the%20fragment%20molecular%20orbital%20method%20to%20investigate%20agonist-orexin-2%20receptor%20interactions&amp;journal=Biochem.%20Soc.%20Trans.&amp;doi=10.1042%2FBST20150250&amp;volume=44&amp;pages=574-581&amp;publication_year=2016&amp;author=Heifetz%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="232."><p class="c-article-references__text" id="ref-CR232">Heifetz, A. et al. The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. <i>J. Chem. Inf. Model.</i> <b>56</b>, 159–172 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jcim.5b00644" data-track-item_id="10.1021/acs.jcim.5b00644" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jcim.5b00644" aria-label="Article reference 232" data-doi="10.1021/acs.jcim.5b00644">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvFKhs77F" aria-label="CAS reference 232">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26642258" aria-label="PubMed reference 232">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 232" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20fragment%20molecular%20orbital%20method%20reveals%20new%20insight%20into%20the%20chemical%20nature%20of%20GPCR-ligand%20interactions&amp;journal=J.%20Chem.%20Inf.%20Model.&amp;doi=10.1021%2Facs.jcim.5b00644&amp;volume=56&amp;pages=159-172&amp;publication_year=2016&amp;author=Heifetz%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="233."><p class="c-article-references__text" id="ref-CR233">Zhou, Q. et al. Exploring the mutational robustness of nucleic acids by searching genotype neighborhoods in sequence space. <i>J. Phys. Chem. Lett.</i> <b>8</b>, 407–414 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jpclett.6b02769" data-track-item_id="10.1021/acs.jpclett.6b02769" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jpclett.6b02769" aria-label="Article reference 233" data-doi="10.1021/acs.jpclett.6b02769">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXit1aqsg%3D%3D" aria-label="CAS reference 233">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28045264" aria-label="PubMed reference 233">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 233" href="http://scholar.google.com/scholar_lookup?&amp;title=Exploring%20the%20mutational%20robustness%20of%20nucleic%20acids%20by%20searching%20genotype%20neighborhoods%20in%20sequence%20space&amp;journal=J.%20Phys.%20Chem.%20Lett.&amp;doi=10.1021%2Facs.jpclett.6b02769&amp;volume=8&amp;pages=407-414&amp;publication_year=2017&amp;author=Zhou%2CQ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="234."><p class="c-article-references__text" id="ref-CR234">Hou, T., Wang, J., Li, Y. &amp; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. <i>J. Chem. Inf. Model.</i> <b>51</b>, 69–82 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ci100275a" data-track-item_id="10.1021/ci100275a" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fci100275a" aria-label="Article reference 234" data-doi="10.1021/ci100275a">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXhsVyrsrrK" aria-label="CAS reference 234">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21117705" aria-label="PubMed reference 234">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 234" href="http://scholar.google.com/scholar_lookup?&amp;title=Assessing%20the%20performance%20of%20the%20MM%2FPBSA%20and%20MM%2FGBSA%20methods.%201.%20The%20accuracy%20of%20binding%20free%20energy%20calculations%20based%20on%20molecular%20dynamics%20simulations&amp;journal=J.%20Chem.%20Inf.%20Model.&amp;doi=10.1021%2Fci100275a&amp;volume=51&amp;pages=69-82&amp;publication_year=2011&amp;author=Hou%2CT&amp;author=Wang%2CJ&amp;author=Li%2CY&amp;author=Wang%2CW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="235."><p class="c-article-references__text" id="ref-CR235">Yau, M. Q. et al. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. <i>J. Comput. Aided Mol. Des.</i> <b>33</b>, 487–496 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10822-019-00201-3" data-track-item_id="10.1007/s10822-019-00201-3" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10822-019-00201-3" aria-label="Article reference 235" data-doi="10.1007/s10822-019-00201-3">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXosF2ru7o%3D" aria-label="CAS reference 235">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30989574" aria-label="PubMed reference 235">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 235" href="http://scholar.google.com/scholar_lookup?&amp;title=Evaluating%20the%20performance%20of%20MM%2FPBSA%20for%20binding%20affinity%20prediction%20using%20class%20A%20GPCR%20crystal%20structures&amp;journal=J.%20Comput.%20Aided%20Mol.%20Des.&amp;doi=10.1007%2Fs10822-019-00201-3&amp;volume=33&amp;pages=487-496&amp;publication_year=2019&amp;author=Yau%2CMQ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="236."><p class="c-article-references__text" id="ref-CR236">Kooistra, A. J., Leurs, R., de Esch, I. J. &amp; de Graaf, C. Structure-based prediction of G-protein-coupled receptor ligand function: a beta-adrenoceptor case study. <i>J. Chem. Inf. Model.</i> <b>55</b>, 1045–1061 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jcim.5b00066" data-track-item_id="10.1021/acs.jcim.5b00066" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jcim.5b00066" aria-label="Article reference 236" data-doi="10.1021/acs.jcim.5b00066">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXlvFenuro%3D" aria-label="CAS reference 236">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25848966" aria-label="PubMed reference 236">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 236" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-based%20prediction%20of%20G-protein-coupled%20receptor%20ligand%20function%3A%20a%20beta-adrenoceptor%20case%20study&amp;journal=J.%20Chem.%20Inf.%20Model.&amp;doi=10.1021%2Facs.jcim.5b00066&amp;volume=55&amp;pages=1045-1061&amp;publication_year=2015&amp;author=Kooistra%2CAJ&amp;author=Leurs%2CR&amp;author=Esch%2CIJ&amp;author=Graaf%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="237."><p class="c-article-references__text" id="ref-CR237">Fan, L. et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. <i>Nat. Commun.</i> <b>11</b>, 1074 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-020-14884-y" data-track-item_id="10.1038/s41467-020-14884-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-020-14884-y" aria-label="Article reference 237" data-doi="10.1038/s41467-020-14884-y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvFaiu7s%3D" aria-label="CAS reference 237">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32103023" aria-label="PubMed reference 237">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044277" aria-label="PubMed Central reference 237">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 237" href="http://scholar.google.com/scholar_lookup?&amp;title=Haloperidol%20bound%20D2%20dopamine%20receptor%20structure%20inspired%20the%20discovery%20of%20subtype%20selective%20ligands&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-020-14884-y&amp;volume=11&amp;publication_year=2020&amp;author=Fan%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="238."><p class="c-article-references__text" id="ref-CR238">Kruse, A. C. et al. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. <i>Mol. Pharmacol.</i> <b>84</b>, 528–540 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.113.087551" data-track-item_id="10.1124/mol.113.087551" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.113.087551" aria-label="Article reference 238" data-doi="10.1124/mol.113.087551">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVygt7%2FL" aria-label="CAS reference 238">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23887926" aria-label="PubMed reference 238">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781386" aria-label="PubMed Central reference 238">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 238" href="http://scholar.google.com/scholar_lookup?&amp;title=Muscarinic%20receptors%20as%20model%20targets%20and%20antitargets%20for%20structure-based%20ligand%20discovery&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.113.087551&amp;volume=84&amp;pages=528-540&amp;publication_year=2013&amp;author=Kruse%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="239."><p class="c-article-references__text" id="ref-CR239">Wei, Y. et al. Identification of new potent A1 adenosine receptor antagonists using a multistage virtual screening approach. <i>Eur. J. Med. Chem.</i> <b>187</b>, 111936 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ejmech.2019.111936" data-track-item_id="10.1016/j.ejmech.2019.111936" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ejmech.2019.111936" aria-label="Article reference 239" data-doi="10.1016/j.ejmech.2019.111936">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVKgtL7J" aria-label="CAS reference 239">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31855793" aria-label="PubMed reference 239">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 239" href="http://scholar.google.com/scholar_lookup?&amp;title=Identification%20of%20new%20potent%20A1%20adenosine%20receptor%20antagonists%20using%20a%20multistage%20virtual%20screening%20approach&amp;journal=Eur.%20J.%20Med.%20Chem.&amp;doi=10.1016%2Fj.ejmech.2019.111936&amp;volume=187&amp;publication_year=2020&amp;author=Wei%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="240."><p class="c-article-references__text" id="ref-CR240">Suomivuori, C. M. et al. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. <i>Science</i> <b>367</b>, 881–887 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.aaz0326" data-track-item_id="10.1126/science.aaz0326" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.aaz0326" aria-label="Article reference 240" data-doi="10.1126/science.aaz0326">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXjs1Kns70%3D" aria-label="CAS reference 240">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32079767" aria-label="PubMed reference 240">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259329" aria-label="PubMed Central reference 240">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 240" href="http://scholar.google.com/scholar_lookup?&amp;title=Molecular%20mechanism%20of%20biased%20signaling%20in%20a%20prototypical%20G%20protein-coupled%20receptor&amp;journal=Science&amp;doi=10.1126%2Fscience.aaz0326&amp;volume=367&amp;pages=881-887&amp;publication_year=2020&amp;author=Suomivuori%2CCM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="241."><p class="c-article-references__text" id="ref-CR241">McCorvy, J. D. et al. Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs. <i>Nat. Chem. Biol.</i> <b>14</b>, 126–134 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nchembio.2527" data-track-item_id="10.1038/nchembio.2527" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnchembio.2527" aria-label="Article reference 241" data-doi="10.1038/nchembio.2527">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvFGmur3I" aria-label="CAS reference 241">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29227473" aria-label="PubMed reference 241">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 241" href="http://scholar.google.com/scholar_lookup?&amp;title=Structure-inspired%20design%20of%20beta-arrestin-biased%20ligands%20for%20aminergic%20GPCRs&amp;journal=Nat.%20Chem.%20Biol.&amp;doi=10.1038%2Fnchembio.2527&amp;volume=14&amp;pages=126-134&amp;publication_year=2018&amp;author=McCorvy%2CJD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="242."><p class="c-article-references__text" id="ref-CR242">Lu, S. &amp; Zhang, J. Small molecule allosteric modulators of G-protein-coupled receptors: drug-target interactions. <i>J. Med. Chem.</i> <b>62</b>, 24–45 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.7b01844" data-track-item_id="10.1021/acs.jmedchem.7b01844" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.7b01844" aria-label="Article reference 242" data-doi="10.1021/acs.jmedchem.7b01844">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXivFCgtb0%3D" aria-label="CAS reference 242">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29457894" aria-label="PubMed reference 242">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 242" href="http://scholar.google.com/scholar_lookup?&amp;title=Small%20molecule%20allosteric%20modulators%20of%20G-protein-coupled%20receptors%3A%20drug-target%20interactions&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.7b01844&amp;volume=62&amp;pages=24-45&amp;publication_year=2019&amp;author=Lu%2CS&amp;author=Zhang%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="243."><p class="c-article-references__text" id="ref-CR243">Luckmann, M. et al. Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. <i>Proc. Natl Acad. Sci. USA</i> <b>116</b>, 7123–7128 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1811066116" data-track-item_id="10.1073/pnas.1811066116" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1811066116" aria-label="Article reference 243" data-doi="10.1073/pnas.1811066116">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30872479" aria-label="PubMed reference 243">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmsFeqt7w%3D" aria-label="CAS reference 243">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452680" aria-label="PubMed Central reference 243">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 243" href="http://scholar.google.com/scholar_lookup?&amp;title=Molecular%20dynamics-guided%20discovery%20of%20an%20ago-allosteric%20modulator%20for%20GPR40%2FFFAR1&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1811066116&amp;volume=116&amp;pages=7123-7128&amp;publication_year=2019&amp;author=Luckmann%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="244."><p class="c-article-references__text" id="ref-CR244">Weis, W. I. &amp; Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. <i>Annu. Rev. Biochem.</i> <b>87</b>, 897–919 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-biochem-060614-033910" data-track-item_id="10.1146/annurev-biochem-060614-033910" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-biochem-060614-033910" aria-label="Article reference 244" data-doi="10.1146/annurev-biochem-060614-033910">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtFOrsrvM" aria-label="CAS reference 244">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29925258" aria-label="PubMed reference 244">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535337" aria-label="PubMed Central reference 244">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 244" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20molecular%20basis%20of%20G%20protein-coupled%20receptor%20activation&amp;journal=Annu.%20Rev.%20Biochem.&amp;doi=10.1146%2Fannurev-biochem-060614-033910&amp;volume=87&amp;pages=897-919&amp;publication_year=2018&amp;author=Weis%2CWI&amp;author=Kobilka%2CBK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="245."><p class="c-article-references__text" id="ref-CR245">Raschka, S. Automated discovery of GPCR bioactive ligands. <i>Curr. Opin. Struct. Biol.</i> <b>55</b>, 17–24 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.sbi.2019.02.011" data-track-item_id="10.1016/j.sbi.2019.02.011" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.sbi.2019.02.011" aria-label="Article reference 245" data-doi="10.1016/j.sbi.2019.02.011">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXltVSgsbc%3D" aria-label="CAS reference 245">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30909105" aria-label="PubMed reference 245">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 245" href="http://scholar.google.com/scholar_lookup?&amp;title=Automated%20discovery%20of%20GPCR%20bioactive%20ligands&amp;journal=Curr.%20Opin.%20Struct.%20Biol.&amp;doi=10.1016%2Fj.sbi.2019.02.011&amp;volume=55&amp;pages=17-24&amp;publication_year=2019&amp;author=Raschka%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="246."><p class="c-article-references__text" id="ref-CR246">Kumari, P., Ghosh, E. &amp; Shukla, A. K. Emerging approaches to GPCR ligand screening for drug discovery. <i>Trends Mol. Med.</i> <b>21</b>, 687–701 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.molmed.2015.09.002" data-track-item_id="10.1016/j.molmed.2015.09.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.molmed.2015.09.002" aria-label="Article reference 246" data-doi="10.1016/j.molmed.2015.09.002">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhs1Squ7jJ" aria-label="CAS reference 246">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26481827" aria-label="PubMed reference 246">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 246" href="http://scholar.google.com/scholar_lookup?&amp;title=Emerging%20approaches%20to%20GPCR%20ligand%20screening%20for%20drug%20discovery&amp;journal=Trends%20Mol.%20Med.&amp;doi=10.1016%2Fj.molmed.2015.09.002&amp;volume=21&amp;pages=687-701&amp;publication_year=2015&amp;author=Kumari%2CP&amp;author=Ghosh%2CE&amp;author=Shukla%2CAK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="247."><p class="c-article-references__text" id="ref-CR247">Chen, L., Jin, L. &amp; Zhou, N. An update of novel screening methods for GPCR in drug discovery. <i>Expert Opin. Drug Discov.</i> <b>7</b>, 791–806 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1517/17460441.2012.699036" data-track-item_id="10.1517/17460441.2012.699036" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1517%2F17460441.2012.699036" aria-label="Article reference 247" data-doi="10.1517/17460441.2012.699036">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1Gmur3E" aria-label="CAS reference 247">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22716301" aria-label="PubMed reference 247">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 247" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20update%20of%20novel%20screening%20methods%20for%20GPCR%20in%20drug%20discovery&amp;journal=Expert%20Opin.%20Drug%20Discov.&amp;doi=10.1517%2F17460441.2012.699036&amp;volume=7&amp;pages=791-806&amp;publication_year=2012&amp;author=Chen%2CL&amp;author=Jin%2CL&amp;author=Zhou%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="248."><p class="c-article-references__text" id="ref-CR248">Neri, D. &amp; Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. <i>Annu. Rev. Biochem.</i> <b>87</b>, 479–502 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1146/annurev-biochem-062917-012550" data-track-item_id="10.1146/annurev-biochem-062917-012550" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1146%2Fannurev-biochem-062917-012550" aria-label="Article reference 248" data-doi="10.1146/annurev-biochem-062917-012550">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXovVCrsg%3D%3D" aria-label="CAS reference 248">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29328784" aria-label="PubMed reference 248">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080696" aria-label="PubMed Central reference 248">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 248" href="http://scholar.google.com/scholar_lookup?&amp;title=DNA-encoded%20chemical%20libraries%3A%20a%20selection%20system%20based%20on%20endowing%20organic%20compounds%20with%20amplifiable%20information&amp;journal=Annu.%20Rev.%20Biochem.&amp;doi=10.1146%2Fannurev-biochem-062917-012550&amp;volume=87&amp;pages=479-502&amp;publication_year=2018&amp;author=Neri%2CD&amp;author=Lerner%2CRA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="249."><p class="c-article-references__text" id="ref-CR249">Kleiner, R. E., Dumelin, C. E. &amp; Liu, D. R. Small-molecule discovery from DNA-encoded chemical libraries. <i>Chem. Soc. Rev.</i> <b>40</b>, 5707–5717 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/c1cs15076f" data-track-item_id="10.1039/c1cs15076f" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2Fc1cs15076f" aria-label="Article reference 249" data-doi="10.1039/c1cs15076f">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsVGrsb3F" aria-label="CAS reference 249">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21674077" aria-label="PubMed reference 249">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435721" aria-label="PubMed Central reference 249">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 249" href="http://scholar.google.com/scholar_lookup?&amp;title=Small-molecule%20discovery%20from%20DNA-encoded%20chemical%20libraries&amp;journal=Chem.%20Soc.%20Rev.&amp;doi=10.1039%2Fc1cs15076f&amp;volume=40&amp;pages=5707-5717&amp;publication_year=2011&amp;author=Kleiner%2CRE&amp;author=Dumelin%2CCE&amp;author=Liu%2CDR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="250."><p class="c-article-references__text" id="ref-CR250">Goodnow, R. A. Jr., Dumelin, C. E. &amp; Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. <i>Nat. Rev. Drug Discov.</i> <b>16</b>, 131–147 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nrd.2016.213" data-track-item_id="10.1038/nrd.2016.213" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnrd.2016.213" aria-label="Article reference 250" data-doi="10.1038/nrd.2016.213">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitVKkurjM" aria-label="CAS reference 250">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27932801" aria-label="PubMed reference 250">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 250" href="http://scholar.google.com/scholar_lookup?&amp;title=DNA-encoded%20chemistry%3A%20enabling%20the%20deeper%20sampling%20of%20chemical%20space&amp;journal=Nat.%20Rev.%20Drug%20Discov.&amp;doi=10.1038%2Fnrd.2016.213&amp;volume=16&amp;pages=131-147&amp;publication_year=2017&amp;author=Goodnow%2CRA&amp;author=Dumelin%2CCE&amp;author=Keefe%2CAD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="251."><p class="c-article-references__text" id="ref-CR251">Kodadek, T., Paciaroni, N. G., Balzarini, M. &amp; Dickson, P. Beyond protein binding: recent advances in screening DNA-encoded libraries. <i>Chem. Commun.</i> <b>55</b>, 13330–13341 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C9CC06256D" data-track-item_id="10.1039/C9CC06256D" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC9CC06256D" aria-label="Article reference 251" data-doi="10.1039/C9CC06256D">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvF2rtLfP" aria-label="CAS reference 251">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 251" href="http://scholar.google.com/scholar_lookup?&amp;title=Beyond%20protein%20binding%3A%20recent%20advances%20in%20screening%20DNA-encoded%20libraries&amp;journal=Chem.%20Commun.&amp;doi=10.1039%2FC9CC06256D&amp;volume=55&amp;pages=13330-13341&amp;publication_year=2019&amp;author=Kodadek%2CT&amp;author=Paciaroni%2CNG&amp;author=Balzarini%2CM&amp;author=Dickson%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="252."><p class="c-article-references__text" id="ref-CR252">Ahn, S. et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. <i>Proc. Natl Acad. Sci. USA</i> <b>114</b>, 1708–1713 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1620645114" data-track-item_id="10.1073/pnas.1620645114" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1620645114" aria-label="Article reference 252" data-doi="10.1073/pnas.1620645114">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Kjsbs%3D" aria-label="CAS reference 252">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28130548" aria-label="PubMed reference 252">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321036" aria-label="PubMed Central reference 252">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 252" href="http://scholar.google.com/scholar_lookup?&amp;title=Allosteric%20%E2%80%9Cbeta-blocker%E2%80%9D%20isolated%20from%20a%20DNA-encoded%20small%20molecule%20library&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1620645114&amp;volume=114&amp;pages=1708-1713&amp;publication_year=2017&amp;author=Ahn%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="253."><p class="c-article-references__text" id="ref-CR253">Ahn, S. et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. <i>Mol. Pharmacol.</i> <b>94</b>, 850–861 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.118.111948" data-track-item_id="10.1124/mol.118.111948" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.118.111948" aria-label="Article reference 253" data-doi="10.1124/mol.118.111948">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVGgsr7O" aria-label="CAS reference 253">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29769246" aria-label="PubMed reference 253">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022804" aria-label="PubMed Central reference 253">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 253" href="http://scholar.google.com/scholar_lookup?&amp;title=Small-molecule%20positive%20allosteric%20modulators%20of%20the%20beta2-adrenoceptor%20isolated%20from%20DNA-encoded%20libraries&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.118.111948&amp;volume=94&amp;pages=850-861&amp;publication_year=2018&amp;author=Ahn%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="254."><p class="c-article-references__text" id="ref-CR254">Brown, D. G. et al. Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target. <i>SLAS Discov.</i> <b>23</b>, 429–436 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXpvFKgs74%3D" aria-label="CAS reference 254">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29316408" aria-label="PubMed reference 254">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 254" href="http://scholar.google.com/scholar_lookup?&amp;title=Agonists%20and%20antagonists%20of%20protease-activated%20receptor%202%20discovered%20within%20a%20DNA-encoded%20chemical%20library%20using%20mutational%20stabilization%20of%20the%20target&amp;journal=SLAS%20Discov.&amp;volume=23&amp;pages=429-436&amp;publication_year=2018&amp;author=Brown%2CDG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="255."><p class="c-article-references__text" id="ref-CR255">Wu, Z. et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. <i>ACS Comb. Sci.</i> <b>17</b>, 722–731 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acscombsci.5b00124" data-track-item_id="10.1021/acscombsci.5b00124" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facscombsci.5b00124" aria-label="Article reference 255" data-doi="10.1021/acscombsci.5b00124">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVaht7jM" aria-label="CAS reference 255">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26562224" aria-label="PubMed reference 255">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 255" href="http://scholar.google.com/scholar_lookup?&amp;title=Cell-based%20selection%20expands%20the%20utility%20of%20DNA-encoded%20small-molecule%20library%20technology%20to%20cell%20surface%20drug%20targets%3A%20identification%20of%20novel%20antagonists%20of%20the%20NK3%20tachykinin%20receptor&amp;journal=ACS%20Comb.%20Sci.&amp;doi=10.1021%2Facscombsci.5b00124&amp;volume=17&amp;pages=722-731&amp;publication_year=2015&amp;author=Wu%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="256."><p class="c-article-references__text" id="ref-CR256">Annis, A., Chuang, C. C. &amp; Nazef, N. In <i>Mass Spectrometry in Medicinal Chemistry: Applications in Drug Discovery. Methods and Principles in Medicinal Chemistry</i> (eds Wanner, K. T. &amp; Höfner, G.) 121–156 (Wiley, 2007).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="257."><p class="c-article-references__text" id="ref-CR257">O’Connell, T. N. et al. Solution-based indirect affinity selection mass spectrometry–a general tool for high-throughput screening of pharmaceutical compound libraries. <i>Anal. Chem.</i> <b>86</b>, 7413–7420 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ac500938y" data-track-item_id="10.1021/ac500938y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fac500938y" aria-label="Article reference 257" data-doi="10.1021/ac500938y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25033415" aria-label="PubMed reference 257">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtFOqt7vO" aria-label="CAS reference 257">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 257" href="http://scholar.google.com/scholar_lookup?&amp;title=Solution-based%20indirect%20affinity%20selection%20mass%20spectrometry%E2%80%93a%20general%20tool%20for%20high-throughput%20screening%20of%20pharmaceutical%20compound%20libraries&amp;journal=Anal.%20Chem.&amp;doi=10.1021%2Fac500938y&amp;volume=86&amp;pages=7413-7420&amp;publication_year=2014&amp;author=O%E2%80%99Connell%2CTN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="258."><p class="c-article-references__text" id="ref-CR258">Chen, X. et al. Identification of inhibitors of the antibiotic-resistance target New Delhi metallo-beta-lactamase 1 by both nanoelectrospray ionization mass spectrometry and ultrafiltration liquid chromatography/mass spectrometry approaches. <i>Anal. Chem.</i> <b>85</b>, 7957–7965 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ac401732d" data-track-item_id="10.1021/ac401732d" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fac401732d" aria-label="Article reference 258" data-doi="10.1021/ac401732d">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFamsLvN" aria-label="CAS reference 258">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23863032" aria-label="PubMed reference 258">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 258" href="http://scholar.google.com/scholar_lookup?&amp;title=Identification%20of%20inhibitors%20of%20the%20antibiotic-resistance%20target%20New%20Delhi%20metallo-beta-lactamase%201%20by%20both%20nanoelectrospray%20ionization%20mass%20spectrometry%20and%20ultrafiltration%20liquid%20chromatography%2Fmass%20spectrometry%20approaches&amp;journal=Anal.%20Chem.&amp;doi=10.1021%2Fac401732d&amp;volume=85&amp;pages=7957-7965&amp;publication_year=2013&amp;author=Chen%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="259."><p class="c-article-references__text" id="ref-CR259">Chen, X. et al. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. <i>Sci. Rep.</i> <b>5</b>, 8361 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep08361" data-track-item_id="10.1038/srep08361" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep08361" aria-label="Article reference 259" data-doi="10.1038/srep08361">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXosVCrtbs%3D" aria-label="CAS reference 259">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25666181" aria-label="PubMed reference 259">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322365" aria-label="PubMed Central reference 259">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 259" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20ligand-observed%20mass%20spectrometry%20approach%20integrated%20into%20the%20fragment%20based%20lead%20discovery%20pipeline&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fsrep08361&amp;volume=5&amp;publication_year=2015&amp;author=Chen%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="260."><p class="c-article-references__text" id="ref-CR260">Qin, S. et al. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. <i>Anal. Chim. Acta</i> <b>886</b>, 98–106 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.aca.2015.06.017" data-track-item_id="10.1016/j.aca.2015.06.017" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.aca.2015.06.017" aria-label="Article reference 260" data-doi="10.1016/j.aca.2015.06.017">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1OnsbjM" aria-label="CAS reference 260">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26320641" aria-label="PubMed reference 260">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 260" href="http://scholar.google.com/scholar_lookup?&amp;title=Multiple%20ligand%20detection%20and%20affinity%20measurement%20by%20ultrafiltration%20and%20mass%20spectrometry%20analysis%20applied%20to%20fragment%20mixture%20screening&amp;journal=Anal.%20Chim.%20Acta&amp;doi=10.1016%2Fj.aca.2015.06.017&amp;volume=886&amp;pages=98-106&amp;publication_year=2015&amp;author=Qin%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="261."><p class="c-article-references__text" id="ref-CR261">Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. <i>Nature</i> <b>557</b>, 228–232 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0056-8" data-track-item_id="10.1038/s41586-018-0056-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0056-8" aria-label="Article reference 261" data-doi="10.1038/s41586-018-0056-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXosVCgu7s%3D" aria-label="CAS reference 261">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29686415" aria-label="PubMed reference 261">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 261" href="http://scholar.google.com/scholar_lookup?&amp;title=Nanoscale%20synthesis%20and%20affinity%20ranking&amp;journal=Nature&amp;doi=10.1038%2Fs41586-018-0056-8&amp;volume=557&amp;pages=228-232&amp;publication_year=2018&amp;author=Gesmundo%2CNJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="262."><p class="c-article-references__text" id="ref-CR262">Whitehurst, C. E. et al. Application of affinity selection-mass spectrometry assays to purification and affinity-based screening of the chemokine receptor CXCR4. <i>Comb. Chem. High Throughput Screen.</i> <b>15</b>, 473–485 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2174/138620712800563945" data-track-item_id="10.2174/138620712800563945" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2174%2F138620712800563945" aria-label="Article reference 262" data-doi="10.2174/138620712800563945">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XovFalt7o%3D" aria-label="CAS reference 262">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22651846" aria-label="PubMed reference 262">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 262" href="http://scholar.google.com/scholar_lookup?&amp;title=Application%20of%20affinity%20selection-mass%20spectrometry%20assays%20to%20purification%20and%20affinity-based%20screening%20of%20the%20chemokine%20receptor%20CXCR4&amp;journal=Comb.%20Chem.%20High%20Throughput%20Screen.&amp;doi=10.2174%2F138620712800563945&amp;volume=15&amp;pages=473-485&amp;publication_year=2012&amp;author=Whitehurst%2CCE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="263."><p class="c-article-references__text" id="ref-CR263">Ma, J. et al. Ligand identification of the adenosine A2A receptor in self-assembled nanodiscs by affinity mass spectrometry. <i>Anal. Methods</i> <b>9</b>, 5851–5858 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C7AY01891F" data-track-item_id="10.1039/C7AY01891F" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC7AY01891F" aria-label="Article reference 263" data-doi="10.1039/C7AY01891F">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1CmsLbJ" aria-label="CAS reference 263">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 263" href="http://scholar.google.com/scholar_lookup?&amp;title=Ligand%20identification%20of%20the%20adenosine%20A2A%20receptor%20in%20self-assembled%20nanodiscs%20by%20affinity%20mass%20spectrometry&amp;journal=Anal.%20Methods&amp;doi=10.1039%2FC7AY01891F&amp;volume=9&amp;pages=5851-5858&amp;publication_year=2017&amp;author=Ma%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="264."><p class="c-article-references__text" id="ref-CR264">Calleri, E. et al. Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor. <i>J. Med. Chem.</i> <b>53</b>, 3489–3501 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm901691y" data-track-item_id="10.1021/jm901691y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm901691y" aria-label="Article reference 264" data-doi="10.1021/jm901691y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXkslKmt7s%3D" aria-label="CAS reference 264">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=20394377" aria-label="PubMed reference 264">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 264" href="http://scholar.google.com/scholar_lookup?&amp;title=Frontal%20affinity%20chromatography-mass%20spectrometry%20useful%20for%20characterization%20of%20new%20ligands%20for%20GPR17%20receptor&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm901691y&amp;volume=53&amp;pages=3489-3501&amp;publication_year=2010&amp;author=Calleri%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="265."><p class="c-article-references__text" id="ref-CR265">Temporini, C. et al. Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS. <i>Anal. Bioanal. Chem.</i> <b>405</b>, 837–845 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00216-012-6353-4" data-track-item_id="10.1007/s00216-012-6353-4" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00216-012-6353-4" aria-label="Article reference 265" data-doi="10.1007/s00216-012-6353-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhtlWlu7nK" aria-label="CAS reference 265">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22960794" aria-label="PubMed reference 265">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 265" href="http://scholar.google.com/scholar_lookup?&amp;title=Development%20of%20new%20chromatographic%20tools%20based%20on%20A2A%20adenosine%20receptor%20subtype%20for%20ligand%20characterization%20and%20screening%20by%20FAC-MS&amp;journal=Anal.%20Bioanal.%20Chem.&amp;doi=10.1007%2Fs00216-012-6353-4&amp;volume=405&amp;pages=837-845&amp;publication_year=2013&amp;author=Temporini%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="266."><p class="c-article-references__text" id="ref-CR266">Qin, S. et al. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. <i>Chem. Sci.</i> <b>9</b>, 3192–3199 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C7SC04698G" data-track-item_id="10.1039/C7SC04698G" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC7SC04698G" aria-label="Article reference 266" data-doi="10.1039/C7SC04698G">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXivFGlsr4%3D" aria-label="CAS reference 266">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29732102" aria-label="PubMed reference 266">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916221" aria-label="PubMed Central reference 266">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 266" href="http://scholar.google.com/scholar_lookup?&amp;title=High-throughput%20identification%20of%20G%20protein-coupled%20receptor%20modulators%20through%20affinity%20mass%20spectrometry%20screening&amp;journal=Chem.%20Sci.&amp;doi=10.1039%2FC7SC04698G&amp;volume=9&amp;pages=3192-3199&amp;publication_year=2018&amp;author=Qin%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="267."><p class="c-article-references__text" id="ref-CR267">Massink, A. et al. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. <i>Purinergic Signal.</i> <b>11</b>, 581–594 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11302-015-9477-0" data-track-item_id="10.1007/s11302-015-9477-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11302-015-9477-0" aria-label="Article reference 267" data-doi="10.1007/s11302-015-9477-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhs1Ortb3P" aria-label="CAS reference 267">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26482925" aria-label="PubMed reference 267">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648803" aria-label="PubMed Central reference 267">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 267" href="http://scholar.google.com/scholar_lookup?&amp;title=Mass%20spectrometry-based%20ligand%20binding%20assays%20on%20adenosine%20A1%20and%20A2A%20receptors&amp;journal=Purinergic%20Signal.&amp;doi=10.1007%2Fs11302-015-9477-0&amp;volume=11&amp;pages=581-594&amp;publication_year=2015&amp;author=Massink%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="268."><p class="c-article-references__text" id="ref-CR268">Yen, H. Y. et al. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. <i>Sci. Adv.</i> <b>3</b>, e1701016 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/sciadv.1701016" data-track-item_id="10.1126/sciadv.1701016" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fsciadv.1701016" aria-label="Article reference 268" data-doi="10.1126/sciadv.1701016">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28630934" aria-label="PubMed reference 268">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473672" aria-label="PubMed Central reference 268">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXmvFOmurw%3D" aria-label="CAS reference 268">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 268" href="http://scholar.google.com/scholar_lookup?&amp;title=Ligand%20binding%20to%20a%20G%20protein-coupled%20receptor%20captured%20in%20a%20mass%20spectrometer&amp;journal=Sci.%20Adv.&amp;doi=10.1126%2Fsciadv.1701016&amp;volume=3&amp;publication_year=2017&amp;author=Yen%2CHY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="269."><p class="c-article-references__text" id="ref-CR269">Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. <i>Nature</i> <b>559</b>, 423–427 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41586-018-0325-6" data-track-item_id="10.1038/s41586-018-0325-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41586-018-0325-6" aria-label="Article reference 269" data-doi="10.1038/s41586-018-0325-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlWjsbfJ" aria-label="CAS reference 269">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29995853" aria-label="PubMed reference 269">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059376" aria-label="PubMed Central reference 269">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 269" href="http://scholar.google.com/scholar_lookup?&amp;title=PtdIns%284%2C5%29P2%20stabilizes%20active%20states%20of%20GPCRs%20and%20enhances%20selectivity%20of%20G-protein%20coupling&amp;journal=Nature&amp;doi=10.1038%2Fs41586-018-0325-6&amp;volume=559&amp;pages=423-427&amp;publication_year=2018&amp;author=Yen%2CHY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="270."><p class="c-article-references__text" id="ref-CR270">Deng, Y. et al. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase. <i>J. Med. Chem.</i> <b>57</b>, 8817–8826 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm500847m" data-track-item_id="10.1021/jm500847m" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm500847m" aria-label="Article reference 270" data-doi="10.1021/jm500847m">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslCht77P" aria-label="CAS reference 270">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25313996" aria-label="PubMed reference 270">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 270" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20of%20novel%2C%20dual%20mechanism%20ERK%20inhibitors%20by%20affinity%20selection%20screening%20of%20an%20inactive%20kinase&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm500847m&amp;volume=57&amp;pages=8817-8826&amp;publication_year=2014&amp;author=Deng%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="271."><p class="c-article-references__text" id="ref-CR271">Zhang, T. et al. Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure-activity relationships and guide drug design in a factor IXa inhibitor program. <i>J. Med. Chem.</i> <b>59</b>, 1818–1829 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jmedchem.5b01293" data-track-item_id="10.1021/acs.jmedchem.5b01293" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jmedchem.5b01293" aria-label="Article reference 271" data-doi="10.1021/acs.jmedchem.5b01293">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XisVyitr8%3D" aria-label="CAS reference 271">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26871940" aria-label="PubMed reference 271">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 271" href="http://scholar.google.com/scholar_lookup?&amp;title=Definitive%20metabolite%20identification%20coupled%20with%20automated%20ligand%20identification%20system%20%28ALIS%29%20technology%3A%20a%20novel%20approach%20to%20uncover%20structure-activity%20relationships%20and%20guide%20drug%20design%20in%20a%20factor%20IXa%20inhibitor%20program&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Facs.jmedchem.5b01293&amp;volume=59&amp;pages=1818-1829&amp;publication_year=2016&amp;author=Zhang%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="272."><p class="c-article-references__text" id="ref-CR272">Kutilek, V. D. et al. Integration of affinity selection-mass spectrometry and functional cell-based assays to rapidly triage druggable target space within the NF-kappaB pathway. <i>J. Biomol. Screen.</i> <b>21</b>, 608–619 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1177/1087057116637353" data-track-item_id="10.1177/1087057116637353" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1177%2F1087057116637353" aria-label="Article reference 272" data-doi="10.1177/1087057116637353">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XitV2qtLjN" aria-label="CAS reference 272">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26969322" aria-label="PubMed reference 272">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 272" href="http://scholar.google.com/scholar_lookup?&amp;title=Integration%20of%20affinity%20selection-mass%20spectrometry%20and%20functional%20cell-based%20assays%20to%20rapidly%20triage%20druggable%20target%20space%20within%20the%20NF-kappaB%20pathway&amp;journal=J.%20Biomol.%20Screen.&amp;doi=10.1177%2F1087057116637353&amp;volume=21&amp;pages=608-619&amp;publication_year=2016&amp;author=Kutilek%2CVD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="273."><p class="c-article-references__text" id="ref-CR273">Walker, S. S. et al. Affinity selection-mass spectrometry identifies a novel antibacterial RNA polymerase inhibitor. <i>ACS Chem. Biol.</i> <b>12</b>, 1346–1352 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acschembio.6b01133" data-track-item_id="10.1021/acschembio.6b01133" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facschembio.6b01133" aria-label="Article reference 273" data-doi="10.1021/acschembio.6b01133">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXksF2lsrw%3D" aria-label="CAS reference 273">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28323406" aria-label="PubMed reference 273">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800494" aria-label="PubMed Central reference 273">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 273" href="http://scholar.google.com/scholar_lookup?&amp;title=Affinity%20selection-mass%20spectrometry%20identifies%20a%20novel%20antibacterial%20RNA%20polymerase%20inhibitor&amp;journal=ACS%20Chem.%20Biol.&amp;doi=10.1021%2Facschembio.6b01133&amp;volume=12&amp;pages=1346-1352&amp;publication_year=2017&amp;author=Walker%2CSS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="274."><p class="c-article-references__text" id="ref-CR274">Whitehurst, C. E. et al. Discovery and characterization of orthosteric and allosteric muscarinic M2 acetylcholine receptor ligands by affinity selection-mass spectrometry. <i>J. Biomol. Screen.</i> <b>11</b>, 194–207 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1177/1087057105284340" data-track-item_id="10.1177/1087057105284340" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1177%2F1087057105284340" aria-label="Article reference 274" data-doi="10.1177/1087057105284340">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16490772" aria-label="PubMed reference 274">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XjtlCqsbY%3D" aria-label="CAS reference 274">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 274" href="http://scholar.google.com/scholar_lookup?&amp;title=Discovery%20and%20characterization%20of%20orthosteric%20and%20allosteric%20muscarinic%20M2%20acetylcholine%20receptor%20ligands%20by%20affinity%20selection-mass%20spectrometry&amp;journal=J.%20Biomol.%20Screen.&amp;doi=10.1177%2F1087057105284340&amp;volume=11&amp;pages=194-207&amp;publication_year=2006&amp;author=Whitehurst%2CCE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="275."><p class="c-article-references__text" id="ref-CR275">Lu, Y. et al. Accelerating the throughput of affinity mass spectrometry-based ligand screening toward a G protein-coupled receptor. <i>Anal. Chem.</i> <b>91</b>, 8162–8169 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.analchem.9b00477" data-track-item_id="10.1021/acs.analchem.9b00477" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.analchem.9b00477" aria-label="Article reference 275" data-doi="10.1021/acs.analchem.9b00477">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXpvVCmu7k%3D" aria-label="CAS reference 275">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31094506" aria-label="PubMed reference 275">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669887" aria-label="PubMed Central reference 275">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 275" href="http://scholar.google.com/scholar_lookup?&amp;title=Accelerating%20the%20throughput%20of%20affinity%20mass%20spectrometry-based%20ligand%20screening%20toward%20a%20G%20protein-coupled%20receptor&amp;journal=Anal.%20Chem.&amp;doi=10.1021%2Facs.analchem.9b00477&amp;volume=91&amp;pages=8162-8169&amp;publication_year=2019&amp;author=Lu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="276."><p class="c-article-references__text" id="ref-CR276">Choi, Y. et al. Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS. <i>Anal. Chem.</i> <b>83</b>, 1048–1052 (2011).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ac1028424" data-track-item_id="10.1021/ac1028424" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fac1028424" aria-label="Article reference 276" data-doi="10.1021/ac1028424">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3MXmtlGj" aria-label="CAS reference 276">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=21192729" aria-label="PubMed reference 276">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 276" href="http://scholar.google.com/scholar_lookup?&amp;title=Screening%20natural%20products%20for%20inhibitors%20of%20quinone%20reductase-2%20using%20ultrafiltration%20LC-MS&amp;journal=Anal.%20Chem.&amp;doi=10.1021%2Fac1028424&amp;volume=83&amp;pages=1048-1052&amp;publication_year=2011&amp;author=Choi%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="277."><p class="c-article-references__text" id="ref-CR277">Yang, Z. et al. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. <i>Anal. Chim. Acta</i> <b>719</b>, 87–95 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.aca.2012.01.018" data-track-item_id="10.1016/j.aca.2012.01.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.aca.2012.01.018" aria-label="Article reference 277" data-doi="10.1016/j.aca.2012.01.018">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xis1art7g%3D" aria-label="CAS reference 277">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22340536" aria-label="PubMed reference 277">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 277" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20ultrafiltration%20high-performance%20liquid%20chromatography%20coupled%20with%20diode%20array%20detector%20and%20mass%20spectrometry%20approach%20for%20screening%20and%20characterising%20tyrosinase%20inhibitors%20from%20mulberry%20leaves&amp;journal=Anal.%20Chim.%20Acta&amp;doi=10.1016%2Fj.aca.2012.01.018&amp;volume=719&amp;pages=87-95&amp;publication_year=2012&amp;author=Yang%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="278."><p class="c-article-references__text" id="ref-CR278">Song, H. P. et al. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. <i>Chem. Commun.</i> <b>51</b>, 1494–1497 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C4CC08728C" data-track-item_id="10.1039/C4CC08728C" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC4CC08728C" aria-label="Article reference 278" data-doi="10.1039/C4CC08728C">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXitValtbjO" aria-label="CAS reference 278">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 278" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20strategy%20for%20screening%20of%20high-quality%20enzyme%20inhibitors%20from%20herbal%20medicines%20based%20on%20ultrafiltration%20LC-MS%20and%20in%20silico%20molecular%20docking&amp;journal=Chem.%20Commun.&amp;doi=10.1039%2FC4CC08728C&amp;volume=51&amp;pages=1494-1497&amp;publication_year=2015&amp;author=Song%2CHP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="279."><p class="c-article-references__text" id="ref-CR279">Fu, X. et al. Novel chemical ligands to ebola virus and marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. <i>Sci. Rep.</i> <b>6</b>, 29680 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep29680" data-track-item_id="10.1038/srep29680" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep29680" aria-label="Article reference 279" data-doi="10.1038/srep29680">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXksVektLg%3D" aria-label="CAS reference 279">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27403722" aria-label="PubMed reference 279">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940736" aria-label="PubMed Central reference 279">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 279" href="http://scholar.google.com/scholar_lookup?&amp;title=Novel%20chemical%20ligands%20to%20ebola%20virus%20and%20marburg%20virus%20nucleoproteins%20identified%20by%20combining%20affinity%20mass%20spectrometry%20and%20metabolomics%20approaches&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fsrep29680&amp;volume=6&amp;publication_year=2016&amp;author=Fu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="280."><p class="c-article-references__text" id="ref-CR280">Wang, L. et al. Quickly screening for potential alpha-glucosidase inhibitors from guava leaves tea by bioaffinity ultrafiltration coupled with HPLC-ESI-TOF/MS method. <i>J. Agric. Food Chem.</i> <b>66</b>, 1576–1582 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acs.jafc.7b05280" data-track-item_id="10.1021/acs.jafc.7b05280" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facs.jafc.7b05280" aria-label="Article reference 280" data-doi="10.1021/acs.jafc.7b05280">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvVGrt7w%3D" aria-label="CAS reference 280">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29382189" aria-label="PubMed reference 280">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 280" href="http://scholar.google.com/scholar_lookup?&amp;title=Quickly%20screening%20for%20potential%20alpha-glucosidase%20inhibitors%20from%20guava%20leaves%20tea%20by%20bioaffinity%20ultrafiltration%20coupled%20with%20HPLC-ESI-TOF%2FMS%20method&amp;journal=J.%20Agric.%20Food%20Chem.&amp;doi=10.1021%2Facs.jafc.7b05280&amp;volume=66&amp;pages=1576-1582&amp;publication_year=2018&amp;author=Wang%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="281."><p class="c-article-references__text" id="ref-CR281">Wang, Z. et al. Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. <i>Analyst</i> <b>144</b>, 2881–2890 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1039/C8AN02482K" data-track-item_id="10.1039/C8AN02482K" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1039%2FC8AN02482K" aria-label="Article reference 281" data-doi="10.1039/C8AN02482K">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFSqs7o%3D" aria-label="CAS reference 281">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30788466" aria-label="PubMed reference 281">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 281" href="http://scholar.google.com/scholar_lookup?&amp;title=Efficient%20ligand%20discovery%20from%20natural%20herbs%20by%20integrating%20virtual%20screening%2C%20affinity%20mass%20spectrometry%20and%20targeted%20metabolomics&amp;journal=Analyst&amp;doi=10.1039%2FC8AN02482K&amp;volume=144&amp;pages=2881-2890&amp;publication_year=2019&amp;author=Wang%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="282."><p class="c-article-references__text" id="ref-CR282">Zhang, B. et al. A novel G protein-biased and subtype-selective agonist for a G protein-coupled receptor discovered from screening herbal extracts. <i>ACS Cent. Sci.</i> <b>6</b>, 213–225 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acscentsci.9b01125" data-track-item_id="10.1021/acscentsci.9b01125" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facscentsci.9b01125" aria-label="Article reference 282" data-doi="10.1021/acscentsci.9b01125">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtlaqsr8%3D" aria-label="CAS reference 282">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=32123739" aria-label="PubMed reference 282">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047268" aria-label="PubMed Central reference 282">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 282" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20novel%20G%20protein-biased%20and%20subtype-selective%20agonist%20for%20a%20G%20protein-coupled%20receptor%20discovered%20from%20screening%20herbal%20extracts&amp;journal=ACS%20Cent.%20Sci.&amp;doi=10.1021%2Facscentsci.9b01125&amp;volume=6&amp;pages=213-225&amp;publication_year=2020&amp;author=Zhang%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="283."><p class="c-article-references__text" id="ref-CR283">Udugamasooriya, D. G., Dineen, S. P., Brekken, R. A. &amp; Kodadek, T. A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. <i>J. Am. Chem. Soc.</i> <b>130</b>, 5744–5752 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ja711193x" data-track-item_id="10.1021/ja711193x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fja711193x" aria-label="Article reference 283" data-doi="10.1021/ja711193x">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXktFShsbc%3D" aria-label="CAS reference 283">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=18386897" aria-label="PubMed reference 283">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 283" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20peptoid%20%E2%80%9Cantibody%20surrogate%E2%80%9D%20that%20antagonizes%20VEGF%20receptor%202%20activity&amp;journal=J.%20Am.%20Chem.%20Soc.&amp;doi=10.1021%2Fja711193x&amp;volume=130&amp;pages=5744-5752&amp;publication_year=2008&amp;author=Udugamasooriya%2CDG&amp;author=Dineen%2CSP&amp;author=Brekken%2CRA&amp;author=Kodadek%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="284."><p class="c-article-references__text" id="ref-CR284">Hofner, G. &amp; Wanner, K. T. Competitive binding assays made easy with a native marker and mass spectrometric quantification. <i>Angew. Chem. Int. Ed.</i> <b>42</b>, 5235–5237 (2003).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/anie.200351806" data-track-item_id="10.1002/anie.200351806" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fanie.200351806" aria-label="Article reference 284" data-doi="10.1002/anie.200351806">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3sXptV2mtbc%3D" aria-label="CAS reference 284">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 284" href="http://scholar.google.com/scholar_lookup?&amp;title=Competitive%20binding%20assays%20made%20easy%20with%20a%20native%20marker%20and%20mass%20spectrometric%20quantification&amp;journal=Angew.%20Chem.%20Int.%20Ed.&amp;doi=10.1002%2Fanie.200351806&amp;volume=42&amp;pages=5235-5237&amp;publication_year=2003&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="285."><p class="c-article-references__text" id="ref-CR285">Niessen, K. V., Hofner, G. &amp; Wanner, K. T. Competitive MS binding assays for dopamine D2 receptors employing spiperone as a native marker. <i>ChemBioChem</i> <b>6</b>, 1769–1775 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cbic.200500074" data-track-item_id="10.1002/cbic.200500074" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcbic.200500074" aria-label="Article reference 285" data-doi="10.1002/cbic.200500074">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtFentrvK" aria-label="CAS reference 285">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16149041" aria-label="PubMed reference 285">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 285" href="http://scholar.google.com/scholar_lookup?&amp;title=Competitive%20MS%20binding%20assays%20for%20dopamine%20D2%20receptors%20employing%20spiperone%20as%20a%20native%20marker&amp;journal=ChemBioChem&amp;doi=10.1002%2Fcbic.200500074&amp;volume=6&amp;pages=1769-1775&amp;publication_year=2005&amp;author=Niessen%2CKV&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="286."><p class="c-article-references__text" id="ref-CR286">Zepperitz, C., Hofner, G. &amp; Wanner, K. T. MS-binding assays: kinetic, saturation, and competitive experiments based on quantitation of bound marker as exemplified by the GABA transporter mGAT1. <i>ChemMedChem</i> <b>1</b>, 208–217 (2006).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.200500038" data-track-item_id="10.1002/cmdc.200500038" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.200500038" aria-label="Article reference 286" data-doi="10.1002/cmdc.200500038">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD28XhvFyjtbs%3D" aria-label="CAS reference 286">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=16892353" aria-label="PubMed reference 286">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 286" href="http://scholar.google.com/scholar_lookup?&amp;title=MS-binding%20assays%3A%20kinetic%2C%20saturation%2C%20and%20competitive%20experiments%20based%20on%20quantitation%20of%20bound%20marker%20as%20exemplified%20by%20the%20GABA%20transporter%20mGAT1&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.200500038&amp;volume=1&amp;pages=208-217&amp;publication_year=2006&amp;author=Zepperitz%2CC&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="287."><p class="c-article-references__text" id="ref-CR287">Grimm, S. H., Hofner, G. &amp; Wanner, K. T. MS binding assays for the three monoamine transporters using the triple reuptake inhibitor (1R,3S)-indatraline as native marker. <i>ChemMedChem</i> <b>10</b>, 1027–1039 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.201500084" data-track-item_id="10.1002/cmdc.201500084" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.201500084" aria-label="Article reference 287" data-doi="10.1002/cmdc.201500084">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXmsleqsL4%3D" aria-label="CAS reference 287">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25899387" aria-label="PubMed reference 287">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 287" href="http://scholar.google.com/scholar_lookup?&amp;title=MS%20binding%20assays%20for%20the%20three%20monoamine%20transporters%20using%20the%20triple%20reuptake%20inhibitor%20%281R%2C3S%29-indatraline%20as%20native%20marker&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.201500084&amp;volume=10&amp;pages=1027-1039&amp;publication_year=2015&amp;author=Grimm%2CSH&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="288."><p class="c-article-references__text" id="ref-CR288">Kern, F. T. &amp; Wanner, K. T. Generation and screening of oxime libraries addressing the neuronal GABA transporter GAT1. <i>ChemMedChem</i> <b>10</b>, 396–410 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.201402376" data-track-item_id="10.1002/cmdc.201402376" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.201402376" aria-label="Article reference 288" data-doi="10.1002/cmdc.201402376">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVGku77O" aria-label="CAS reference 288">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25369775" aria-label="PubMed reference 288">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 288" href="http://scholar.google.com/scholar_lookup?&amp;title=Generation%20and%20screening%20of%20oxime%20libraries%20addressing%20the%20neuronal%20GABA%20transporter%20GAT1&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.201402376&amp;volume=10&amp;pages=396-410&amp;publication_year=2015&amp;author=Kern%2CFT&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="289."><p class="c-article-references__text" id="ref-CR289">Sichler, S. et al. Development of MS binding assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor. <i>Toxicol. Lett.</i> <b>293</b>, 172–183 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.toxlet.2017.11.013" data-track-item_id="10.1016/j.toxlet.2017.11.013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.toxlet.2017.11.013" aria-label="Article reference 289" data-doi="10.1016/j.toxlet.2017.11.013">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvVehs7fK" aria-label="CAS reference 289">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29146291" aria-label="PubMed reference 289">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 289" href="http://scholar.google.com/scholar_lookup?&amp;title=Development%20of%20MS%20binding%20assays%20targeting%20the%20binding%20site%20of%20MB327%20at%20the%20nicotinic%20acetylcholine%20receptor&amp;journal=Toxicol.%20Lett.&amp;doi=10.1016%2Fj.toxlet.2017.11.013&amp;volume=293&amp;pages=172-183&amp;publication_year=2018&amp;author=Sichler%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="290."><p class="c-article-references__text" id="ref-CR290">Neiens, P., Hofner, G. &amp; Wanner, K. T. MS binding assays for D1 and D5 dopamine receptors. <i>ChemMedChem</i> <b>10</b>, 1924–1931 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.201500355" data-track-item_id="10.1002/cmdc.201500355" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.201500355" aria-label="Article reference 290" data-doi="10.1002/cmdc.201500355">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVensb3F" aria-label="CAS reference 290">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26332653" aria-label="PubMed reference 290">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 290" href="http://scholar.google.com/scholar_lookup?&amp;title=MS%20binding%20assays%20for%20D1%20and%20D5%20dopamine%20receptors&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.201500355&amp;volume=10&amp;pages=1924-1931&amp;publication_year=2015&amp;author=Neiens%2CP&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="291."><p class="c-article-references__text" id="ref-CR291">Schuller, M., Hofner, G. &amp; Wanner, K. T. Simultaneous multiple MS binding assays addressing D1 and D2 dopamine receptors. <i>ChemMedChem</i> <b>12</b>, 1585–1594 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/cmdc.201700369" data-track-item_id="10.1002/cmdc.201700369" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fcmdc.201700369" aria-label="Article reference 291" data-doi="10.1002/cmdc.201700369">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsVWlsrbM" aria-label="CAS reference 291">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28776962" aria-label="PubMed reference 291">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 291" href="http://scholar.google.com/scholar_lookup?&amp;title=Simultaneous%20multiple%20MS%20binding%20assays%20addressing%20D1%20and%20D2%20dopamine%20receptors&amp;journal=ChemMedChem&amp;doi=10.1002%2Fcmdc.201700369&amp;volume=12&amp;pages=1585-1594&amp;publication_year=2017&amp;author=Schuller%2CM&amp;author=Hofner%2CG&amp;author=Wanner%2CKT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="292."><p class="c-article-references__text" id="ref-CR292">Sanchez-Garrido, M. A. et al. GLP-1/glucagon receptor co-agonism for treatment of obesity. <i>Diabetologia</i> <b>60</b>, 1851–1861 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00125-017-4354-8" data-track-item_id="10.1007/s00125-017-4354-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00125-017-4354-8" aria-label="Article reference 292" data-doi="10.1007/s00125-017-4354-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXht1Wru7%2FF" aria-label="CAS reference 292">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28733905" aria-label="PubMed reference 292">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448809" aria-label="PubMed Central reference 292">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 292" href="http://scholar.google.com/scholar_lookup?&amp;title=GLP-1%2Fglucagon%20receptor%20co-agonism%20for%20treatment%20of%20obesity&amp;journal=Diabetologia&amp;doi=10.1007%2Fs00125-017-4354-8&amp;volume=60&amp;pages=1851-1861&amp;publication_year=2017&amp;author=Sanchez-Garrido%2CMA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="293."><p class="c-article-references__text" id="ref-CR293">Brandt, S. J., Gotz, A., Tschop, M. H. &amp; Muller, T. D. Gut hormone polyagonists for the treatment of type 2 diabetes. <i>Peptides</i> <b>100</b>, 190–201 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.peptides.2017.12.021" data-track-item_id="10.1016/j.peptides.2017.12.021" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.peptides.2017.12.021" aria-label="Article reference 293" data-doi="10.1016/j.peptides.2017.12.021">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXntFyisLg%3D" aria-label="CAS reference 293">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29412819" aria-label="PubMed reference 293">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805859" aria-label="PubMed Central reference 293">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 293" href="http://scholar.google.com/scholar_lookup?&amp;title=Gut%20hormone%20polyagonists%20for%20the%20treatment%20of%20type%202%20diabetes&amp;journal=Peptides&amp;doi=10.1016%2Fj.peptides.2017.12.021&amp;volume=100&amp;pages=190-201&amp;publication_year=2018&amp;author=Brandt%2CSJ&amp;author=Gotz%2CA&amp;author=Tschop%2CMH&amp;author=Muller%2CTD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="294."><p class="c-article-references__text" id="ref-CR294">Berman, H. M. et al. The Protein Data Bank. <i>Nucleic Acids Res.</i> <b>28</b>, 235–242 (2000).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/nar/28.1.235" data-track-item_id="10.1093/nar/28.1.235" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fnar%2F28.1.235" aria-label="Article reference 294" data-doi="10.1093/nar/28.1.235">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD3cXhvVKjt7w%3D" aria-label="CAS reference 294">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=10592235" aria-label="PubMed reference 294">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472" aria-label="PubMed Central reference 294">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 294" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20Protein%20Data%20Bank&amp;journal=Nucleic%20Acids%20Res.&amp;doi=10.1093%2Fnar%2F28.1.235&amp;volume=28&amp;pages=235-242&amp;publication_year=2000&amp;author=Berman%2CHM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="295."><p class="c-article-references__text" id="ref-CR295">Zhou, F. et al. Structural basis for activation of the growth hormone-releasing hormone receptor. <i>Nat. Commun.</i> <b>11</b>, 5205 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-020-18945-0" data-track-item_id="10.1038/s41467-020-18945-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-020-18945-0" aria-label="Article reference 295" data-doi="10.1038/s41467-020-18945-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXitFSgtbnK" aria-label="CAS reference 295">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=33060564" aria-label="PubMed reference 295">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567103" aria-label="PubMed Central reference 295">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 295" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20basis%20for%20activation%20of%20the%20growth%20hormone-releasing%20hormone%20receptor&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-020-18945-0&amp;volume=11&amp;publication_year=2020&amp;author=Zhou%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="296."><p class="c-article-references__text" id="ref-CR296">Sun, W. et al. A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. <i>Cell Res.</i> <b>30</b>, 1098–1108 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41422-020-00442-0" data-track-item_id="10.1038/s41422-020-00442-0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41422-020-00442-0" aria-label="Article reference 296" data-doi="10.1038/s41422-020-00442-0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFyru77O" aria-label="CAS reference 296">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=33239759" aria-label="PubMed reference 296">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785020" aria-label="PubMed Central reference 296">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 296" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20unique%20hormonal%20recognition%20feature%20of%20the%20human%20glucagon-like%20peptide-2%20receptor&amp;journal=Cell%20Res.&amp;doi=10.1038%2Fs41422-020-00442-0&amp;volume=30&amp;pages=1098-1108&amp;publication_year=2020&amp;author=Sun%2CW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="297."><p class="c-article-references__text" id="ref-CR297">Seyedabadi, M., Ghahremani, M. H. &amp; Albert, P. R. Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential. <i>Pharmacol. Ther.</i> <b>200</b>, 148–178 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.pharmthera.2019.05.006" data-track-item_id="10.1016/j.pharmthera.2019.05.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.pharmthera.2019.05.006" aria-label="Article reference 297" data-doi="10.1016/j.pharmthera.2019.05.006">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXps1Ghtb4%3D" aria-label="CAS reference 297">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31075355" aria-label="PubMed reference 297">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 297" href="http://scholar.google.com/scholar_lookup?&amp;title=Biased%20signaling%20of%20G%20protein%20coupled%20receptors%20%28GPCRs%29%3A%20molecular%20determinants%20of%20GPCR%2Ftransducer%20selectivity%20and%20therapeutic%20potential&amp;journal=Pharmacol.%20Ther.&amp;doi=10.1016%2Fj.pharmthera.2019.05.006&amp;volume=200&amp;pages=148-178&amp;publication_year=2019&amp;author=Seyedabadi%2CM&amp;author=Ghahremani%2CMH&amp;author=Albert%2CPR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="298."><p class="c-article-references__text" id="ref-CR298">Cussac, D. et al. Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells. <i>Eur. J. Pharmacol.</i> <b>594</b>, 32–38 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ejphar.2008.07.040" data-track-item_id="10.1016/j.ejphar.2008.07.040" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ejphar.2008.07.040" aria-label="Article reference 298" data-doi="10.1016/j.ejphar.2008.07.040">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtVynurrF" aria-label="CAS reference 298">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=18703043" aria-label="PubMed reference 298">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 298" href="http://scholar.google.com/scholar_lookup?&amp;title=Agonist-directed%20trafficking%20of%20signalling%20at%20serotonin%205-HT2A%2C%205-HT2B%20and%205-HT2C-VSV%20receptors%20mediated%20Gq%2F11%20activation%20and%20calcium%20mobilisation%20in%20CHO%20cells&amp;journal=Eur.%20J.%20Pharmacol.&amp;doi=10.1016%2Fj.ejphar.2008.07.040&amp;volume=594&amp;pages=32-38&amp;publication_year=2008&amp;author=Cussac%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="299."><p class="c-article-references__text" id="ref-CR299">Brust, T. F. et al. Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. <i>J. Pharmacol. Exp. Ther.</i> <b>352</b>, 480–493 (2015).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/jpet.114.220293" data-track-item_id="10.1124/jpet.114.220293" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fjpet.114.220293" aria-label="Article reference 299" data-doi="10.1124/jpet.114.220293">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25539635" aria-label="PubMed reference 299">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352597" aria-label="PubMed Central reference 299">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVKnu78%3D" aria-label="CAS reference 299">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 299" href="http://scholar.google.com/scholar_lookup?&amp;title=Bias%20analyses%20of%20preclinical%20and%20clinical%20D2%20dopamine%20ligands%3A%20studies%20with%20immediate%20and%20complex%20signaling%20pathways&amp;journal=J.%20Pharmacol.%20Exp.%20Ther.&amp;doi=10.1124%2Fjpet.114.220293&amp;volume=352&amp;pages=480-493&amp;publication_year=2015&amp;author=Brust%2CTF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="300."><p class="c-article-references__text" id="ref-CR300">Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. <i>Science</i> <b>340</b>, 615–619 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1126/science.1232808" data-track-item_id="10.1126/science.1232808" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1126%2Fscience.1232808" aria-label="Article reference 300" data-doi="10.1126/science.1232808">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3sXmslWksb0%3D" aria-label="CAS reference 300">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23519215" aria-label="PubMed reference 300">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390" aria-label="PubMed Central reference 300">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 300" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20features%20for%20functional%20selectivity%20at%20serotonin%20receptors&amp;journal=Science&amp;doi=10.1126%2Fscience.1232808&amp;volume=340&amp;pages=615-619&amp;publication_year=2013&amp;author=Wacker%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="301."><p class="c-article-references__text" id="ref-CR301">Stewart, G. D., Sexton, P. M. &amp; Christopoulos, A. Detection of novel functional selectivity at M3 muscarinic acetylcholine receptors using a <i>Saccharomyces cerevisiae</i> platform. <i>ACS Chem. Biol.</i> <b>5</b>, 365–375 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/cb900276p" data-track-item_id="10.1021/cb900276p" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fcb900276p" aria-label="Article reference 301" data-doi="10.1021/cb900276p">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXit1Oitb4%3D" aria-label="CAS reference 301">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=20155933" aria-label="PubMed reference 301">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 301" href="http://scholar.google.com/scholar_lookup?&amp;title=Detection%20of%20novel%20functional%20selectivity%20at%20M3%20muscarinic%20acetylcholine%20receptors%20using%20a%20Saccharomyces%20cerevisiae%20platform&amp;journal=ACS%20Chem.%20Biol.&amp;doi=10.1021%2Fcb900276p&amp;volume=5&amp;pages=365-375&amp;publication_year=2010&amp;author=Stewart%2CGD&amp;author=Sexton%2CPM&amp;author=Christopoulos%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="302."><p class="c-article-references__text" id="ref-CR302">Pronin, A. N., Wang, Q. &amp; Slepak, V. Z. Teaching an old drug new tricks: agonism, antagonism, and biased signaling of pilocarpine through M3 muscarinic acetylcholine receptor. <i>Mol. Pharmacol.</i> <b>92</b>, 601–612 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.117.109678" data-track-item_id="10.1124/mol.117.109678" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.117.109678" aria-label="Article reference 302" data-doi="10.1124/mol.117.109678">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVyiur3F" aria-label="CAS reference 302">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28893976" aria-label="PubMed reference 302">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635516" aria-label="PubMed Central reference 302">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 302" href="http://scholar.google.com/scholar_lookup?&amp;title=Teaching%20an%20old%20drug%20new%20tricks%3A%20agonism%2C%20antagonism%2C%20and%20biased%20signaling%20of%20pilocarpine%20through%20M3%20muscarinic%20acetylcholine%20receptor&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.117.109678&amp;volume=92&amp;pages=601-612&amp;publication_year=2017&amp;author=Pronin%2CAN&amp;author=Wang%2CQ&amp;author=Slepak%2CVZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="303."><p class="c-article-references__text" id="ref-CR303">Baltos, J. A. et al. Quantification of adenosine A(1) receptor biased agonism: implications for drug discovery. <i>Biochem. Pharmacol.</i> <b>99</b>, 101–112 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bcp.2015.11.013" data-track-item_id="10.1016/j.bcp.2015.11.013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bcp.2015.11.013" aria-label="Article reference 303" data-doi="10.1016/j.bcp.2015.11.013">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVChs7%2FE" aria-label="CAS reference 303">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26581123" aria-label="PubMed reference 303">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 303" href="http://scholar.google.com/scholar_lookup?&amp;title=Quantification%20of%20adenosine%20A%281%29%20receptor%20biased%20agonism%3A%20implications%20for%20drug%20discovery&amp;journal=Biochem.%20Pharmacol.&amp;doi=10.1016%2Fj.bcp.2015.11.013&amp;volume=99&amp;pages=101-112&amp;publication_year=2016&amp;author=Baltos%2CJA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="304."><p class="c-article-references__text" id="ref-CR304">Hodavance, S. Y., Gareri, C., Torok, R. D. &amp; Rockman, H. A. G Protein-coupled receptor biased agonism. <i>J. Cardiovasc. Pharmacol.</i> <b>67</b>, 193–202 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1097/FJC.0000000000000356" data-track-item_id="10.1097/FJC.0000000000000356" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1097%2FFJC.0000000000000356" aria-label="Article reference 304" data-doi="10.1097/FJC.0000000000000356">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XjslCltr0%3D" aria-label="CAS reference 304">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26751266" aria-label="PubMed reference 304">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783281" aria-label="PubMed Central reference 304">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 304" href="http://scholar.google.com/scholar_lookup?&amp;title=G%20Protein-coupled%20receptor%20biased%20agonism&amp;journal=J.%20Cardiovasc.%20Pharmacol.&amp;doi=10.1097%2FFJC.0000000000000356&amp;volume=67&amp;pages=193-202&amp;publication_year=2016&amp;author=Hodavance%2CSY&amp;author=Gareri%2CC&amp;author=Torok%2CRD&amp;author=Rockman%2CHA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="305."><p class="c-article-references__text" id="ref-CR305">Drake, M. T. et al. beta-arrestin-biased agonism at the beta2-adrenergic receptor. <i>J. Biol. Chem.</i> <b>283</b>, 5669–5676 (2008).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M708118200" data-track-item_id="10.1074/jbc.M708118200" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M708118200" aria-label="Article reference 305" data-doi="10.1074/jbc.M708118200">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1cXit1OmtLo%3D" aria-label="CAS reference 305">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=18086673" aria-label="PubMed reference 305">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 305" href="http://scholar.google.com/scholar_lookup?&amp;title=beta-arrestin-biased%20agonism%20at%20the%20beta2-adrenergic%20receptor&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M708118200&amp;volume=283&amp;pages=5669-5676&amp;publication_year=2008&amp;author=Drake%2CMT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="306."><p class="c-article-references__text" id="ref-CR306">Yano, H. et al. Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. <i>Nat. Commun.</i> <b>9</b>, 486 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41467-017-02606-w" data-track-item_id="10.1038/s41467-017-02606-w" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41467-017-02606-w" aria-label="Article reference 306" data-doi="10.1038/s41467-017-02606-w">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29402888" aria-label="PubMed reference 306">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799184" aria-label="PubMed Central reference 306">PubMed Central</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtFSnsbnM" aria-label="CAS reference 306">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 306" href="http://scholar.google.com/scholar_lookup?&amp;title=Gs-%20versus%20Golf-dependent%20functional%20selectivity%20mediated%20by%20the%20dopamine%20D1%20receptor&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fs41467-017-02606-w&amp;volume=9&amp;publication_year=2018&amp;author=Yano%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="307."><p class="c-article-references__text" id="ref-CR307">Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. <i>Nat. Commun.</i> <b>7</b>, 10842 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/ncomms10842" data-track-item_id="10.1038/ncomms10842" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fncomms10842" aria-label="Article reference 307" data-doi="10.1038/ncomms10842">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28Xjt1emtbk%3D" aria-label="CAS reference 307">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26905976" aria-label="PubMed reference 307">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770093" aria-label="PubMed Central reference 307">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 307" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20role%20of%20kinetic%20context%20in%20apparent%20biased%20agonism%20at%20GPCRs&amp;journal=Nat.%20Commun.&amp;doi=10.1038%2Fncomms10842&amp;volume=7&amp;publication_year=2016&amp;author=Klein%20Herenbrink%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="308."><p class="c-article-references__text" id="ref-CR308">Webster, L. &amp; Schmidt, W. K. Dilemma of addiction and respiratory depression in the treatment of pain: a prototypical endomorphin as a new approach. <i>Pain Med.</i> <b>21</b>, 992–1004 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/pm/pnz122" data-track-item_id="10.1093/pm/pnz122" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fpm%2Fpnz122" aria-label="Article reference 308" data-doi="10.1093/pm/pnz122">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=31165885" aria-label="PubMed reference 308">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 308" href="http://scholar.google.com/scholar_lookup?&amp;title=Dilemma%20of%20addiction%20and%20respiratory%20depression%20in%20the%20treatment%20of%20pain%3A%20a%20prototypical%20endomorphin%20as%20a%20new%20approach&amp;journal=Pain%20Med.&amp;doi=10.1093%2Fpm%2Fpnz122&amp;volume=21&amp;pages=992-1004&amp;publication_year=2020&amp;author=Webster%2CL&amp;author=Schmidt%2CWK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="309."><p class="c-article-references__text" id="ref-CR309">Rahmeh, R. et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. <i>Proc. Natl Acad. Sci. USA</i> <b>109</b>, 6733–6738 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1073/pnas.1201093109" data-track-item_id="10.1073/pnas.1201093109" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1073%2Fpnas.1201093109" aria-label="Article reference 309" data-doi="10.1073/pnas.1201093109">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XmslGhtLk%3D" aria-label="CAS reference 309">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22493271" aria-label="PubMed reference 309">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340029" aria-label="PubMed Central reference 309">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 309" href="http://scholar.google.com/scholar_lookup?&amp;title=Structural%20insights%20into%20biased%20G%20protein-coupled%20receptor%20signaling%20revealed%20by%20fluorescence%20spectroscopy&amp;journal=Proc.%20Natl%20Acad.%20Sci.%20USA&amp;doi=10.1073%2Fpnas.1201093109&amp;volume=109&amp;pages=6733-6738&amp;publication_year=2012&amp;author=Rahmeh%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="310."><p class="c-article-references__text" id="ref-CR310">Busnelli, M. et al. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. <i>J. Biol. Chem.</i> <b>287</b>, 3617–3629 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1074/jbc.M111.277178" data-track-item_id="10.1074/jbc.M111.277178" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1074%2Fjbc.M111.277178" aria-label="Article reference 310" data-doi="10.1074/jbc.M111.277178">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVSjsb0%3D" aria-label="CAS reference 310">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22069312" aria-label="PubMed reference 310">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 310" href="http://scholar.google.com/scholar_lookup?&amp;title=Functional%20selective%20oxytocin-derived%20agonists%20discriminate%20between%20individual%20G%20protein%20family%20subtypes&amp;journal=J.%20Biol.%20Chem.&amp;doi=10.1074%2Fjbc.M111.277178&amp;volume=287&amp;pages=3617-3629&amp;publication_year=2012&amp;author=Busnelli%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="311."><p class="c-article-references__text" id="ref-CR311">Dhar, T. G. et al. Identification and preclinical pharmacology of BMS-986104: a differentiated S1P1 receptor modulator in clinical trials. <i>ACS Med. Chem. Lett.</i> <b>7</b>, 283–288 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/acsmedchemlett.5b00448" data-track-item_id="10.1021/acsmedchemlett.5b00448" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Facsmedchemlett.5b00448" aria-label="Article reference 311" data-doi="10.1021/acsmedchemlett.5b00448">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XptlGqtA%3D%3D" aria-label="CAS reference 311">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=26985316" aria-label="PubMed reference 311">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789672" aria-label="PubMed Central reference 311">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 311" href="http://scholar.google.com/scholar_lookup?&amp;title=Identification%20and%20preclinical%20pharmacology%20of%20BMS-986104%3A%20a%20differentiated%20S1P1%20receptor%20modulator%20in%20clinical%20trials&amp;journal=ACS%20Med.%20Chem.%20Lett.&amp;doi=10.1021%2Facsmedchemlett.5b00448&amp;volume=7&amp;pages=283-288&amp;publication_year=2016&amp;author=Dhar%2CTG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="312."><p class="c-article-references__text" id="ref-CR312">Lin, X. et al. Slowly signaling G protein-biased CB2 cannabinoid receptor agonist ly2828360 suppresses neuropathic pain with sustained efficacy and attenuates morphine tolerance and dependence. <i>Mol. Pharmacol.</i> <b>93</b>, 49–62 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1124/mol.117.109355" data-track-item_id="10.1124/mol.117.109355" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1124%2Fmol.117.109355" aria-label="Article reference 312" data-doi="10.1124/mol.117.109355">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsF2rtbrP" aria-label="CAS reference 312">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29192123" aria-label="PubMed reference 312">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749492" aria-label="PubMed Central reference 312">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 312" href="http://scholar.google.com/scholar_lookup?&amp;title=Slowly%20signaling%20G%20protein-biased%20CB2%20cannabinoid%20receptor%20agonist%20ly2828360%20suppresses%20neuropathic%20pain%20with%20sustained%20efficacy%20and%20attenuates%20morphine%20tolerance%20and%20dependence&amp;journal=Mol.%20Pharmacol.&amp;doi=10.1124%2Fmol.117.109355&amp;volume=93&amp;pages=49-62&amp;publication_year=2018&amp;author=Lin%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="313."><p class="c-article-references__text" id="ref-CR313">Boatman, P. D. et al. (1aR,5aR)1a,3,5,5a-Tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalene-4-carboxylic acid (MK-1903): a potent GPR109a agonist that lowers free fatty acids in humans. <i>J. Med. Chem.</i> <b>55</b>, 3644–3666 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/jm2010964" data-track-item_id="10.1021/jm2010964" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fjm2010964" aria-label="Article reference 313" data-doi="10.1021/jm2010964">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xkt1ehsrs%3D" aria-label="CAS reference 313">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22435740" aria-label="PubMed reference 313">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 313" href="http://scholar.google.com/scholar_lookup?&amp;title=%281aR%2C5aR%291a%2C3%2C5%2C5a-Tetrahydro-1H-2%2C3-diaza-cyclopropa%5Ba%5Dpentalene-4-carboxylic%20acid%20%28MK-1903%29%3A%20a%20potent%20GPR109a%20agonist%20that%20lowers%20free%20fatty%20acids%20in%20humans&amp;journal=J.%20Med.%20Chem.&amp;doi=10.1021%2Fjm2010964&amp;volume=55&amp;pages=3644-3666&amp;publication_year=2012&amp;author=Boatman%2CPD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="314."><p class="c-article-references__text" id="ref-CR314">Cruz-Monteagudo, M. et al. Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery. <i>Drug Discov. Today</i> <b>22</b>, 994–1007 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.drudis.2017.02.004" data-track-item_id="10.1016/j.drudis.2017.02.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.drudis.2017.02.004" aria-label="Article reference 314" data-doi="10.1016/j.drudis.2017.02.004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXktlSitro%3D" aria-label="CAS reference 314">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=28274840" aria-label="PubMed reference 314">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487293" aria-label="PubMed Central reference 314">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 314" href="http://scholar.google.com/scholar_lookup?&amp;title=Systemic%20QSAR%20and%20phenotypic%20virtual%20screening%3A%20chasing%20butterflies%20in%20drug%20discovery&amp;journal=Drug%20Discov.%20Today&amp;doi=10.1016%2Fj.drudis.2017.02.004&amp;volume=22&amp;pages=994-1007&amp;publication_year=2017&amp;author=Cruz-Monteagudo%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="315."><p class="c-article-references__text" id="ref-CR315">Fan, F., Toledo Warshaviak, D., Hamadeh, H. K. &amp; Dunn, R. T. II The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: a case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. <i>PLoS ONE</i> <b>14</b>, e0204378 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1371/journal.pone.0204378" data-track-item_id="10.1371/journal.pone.0204378" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1371%2Fjournal.pone.0204378" aria-label="Article reference 315" data-doi="10.1371/journal.pone.0204378">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXmtFejsb4%3D" aria-label="CAS reference 315">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30605479" aria-label="PubMed reference 315">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317804" aria-label="PubMed Central reference 315">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 315" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20integration%20of%20pharmacophore-based%203D%20QSAR%20modeling%20and%20virtual%20screening%20in%20safety%20profiling%3A%20a%20case%20study%20to%20identify%20antagonistic%20activities%20against%20adenosine%20receptor%2C%20A2A%2C%20using%201%2C897%20known%20drugs&amp;journal=PLoS%20ONE&amp;doi=10.1371%2Fjournal.pone.0204378&amp;volume=14&amp;publication_year=2019&amp;author=Fan%2CF&amp;author=Toledo%20Warshaviak%2CD&amp;author=Hamadeh%2CHK&amp;author=Dunn%2CRT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="316."><p class="c-article-references__text" id="ref-CR316">von Korff, M. &amp; Steger, M. GPCR-tailored pharmacophore pattern recognition of small molecular ligands. <i>J. Chem. Inf. Comput Sci.</i> <b>44</b>, 1137–1147 (2004).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1021/ci0303013" data-track-item_id="10.1021/ci0303013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1021%2Fci0303013" aria-label="Article reference 316" data-doi="10.1021/ci0303013">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD2cXis1CjtLs%3D" aria-label="CAS reference 316">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 316" href="http://scholar.google.com/scholar_lookup?&amp;title=GPCR-tailored%20pharmacophore%20pattern%20recognition%20of%20small%20molecular%20ligands&amp;journal=J.%20Chem.%20Inf.%20Comput%20Sci.&amp;doi=10.1021%2Fci0303013&amp;volume=44&amp;pages=1137-1147&amp;publication_year=2004&amp;author=Korff%2CM&amp;author=Steger%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="317."><p class="c-article-references__text" id="ref-CR317">He, G. et al. An improved receptor-based pharmacophore generation algorithm guided by atomic chemical characteristics and hybridization types. <i>Front Pharmacol.</i> <b>9</b>, 1463 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3389/fphar.2018.01463" data-track-item_id="10.3389/fphar.2018.01463" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3389%2Ffphar.2018.01463" aria-label="Article reference 317" data-doi="10.3389/fphar.2018.01463">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXht1Olur3L" aria-label="CAS reference 317">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=30618755" aria-label="PubMed reference 317">PubMed</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed central reference" data-track-action="pubmed central reference" href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305075" aria-label="PubMed Central reference 317">PubMed Central</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 317" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20improved%20receptor-based%20pharmacophore%20generation%20algorithm%20guided%20by%20atomic%20chemical%20characteristics%20and%20hybridization%20types&amp;journal=Front%20Pharmacol.&amp;doi=10.3389%2Ffphar.2018.01463&amp;volume=9&amp;publication_year=2018&amp;author=He%2CG"> Google Scholar</a>  </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41392-020-00435-w?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>The authors acknowledge funding support from the National Natural Science Foundation of China 81872915 (to M.-W.W.), 81773792 (to D.Y.), 81973373 (to D.Y.), 21704064 (to Q.Z.), 31971362 (to W.S.), 31971178 (to S.Z.), and 31770796 (to Y.J.); National Science &amp; Technology Major Project of China – Key New Drug Creation and Manufacturing Program 2018ZX09735-001 (to M.-W.W.), 2018ZX09711002-002-005 (to D.Y.), and 2018ZX09711002-002-002 (to Y.J.); the National Key Basic Research Program of China 2018YFA0507000 (to M.-W.W., S.Z., W.S., and H.T.); Novo Nordisk-CAS Research Fund grant NNCAS-2017-1-CC (to D.Y.); The Belt and Road Master Fellowship program (to V.L.); UCAS Scholarship for International Students (to S.D.); and The CAS-TWAS President’s Fellowship for International Doctoral Students (to E.Y.).</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><span class="c-article-author-information__subtitle u-visually-hidden" id="author-notes">Author notes</span><ol class="c-article-author-information__list"><li class="c-article-author-information__item" id="na1"><p>These authors contributed equally: Dehua Yang, Qingtong Zhou, Viktorija Labroska, Suwen Zhao</p></li></ol><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Dehua Yang, Viktorija Labroska, Sanaz Darbalaei, Elita Yuliantie, Qing Liu &amp; Ming-Wei Wang</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Dehua Yang, Qing Liu, Yi Jiang &amp; Ming-Wei Wang</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Qingtong Zhou &amp; Ming-Wei Wang</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">University of Chinese Academy of Sciences, 100049, Beijing, China</p><p class="c-article-author-affiliation__authors-list">Viktorija Labroska, Sanaz Darbalaei, Elita Yuliantie &amp; Ming-Wei Wang</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">iHuman Institute, ShanghaiTech University, 201210, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Shanshan Qin, Yiran Wu, Linshan Xie, Houchao Tao, Jianjun Cheng, Suwen Zhao &amp; Wenqing Shui</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Linshan Xie, Suwen Zhao, Wenqing Shui &amp; Ming-Wei Wang</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">School of Pharmacy, Fudan University, 201203, Shanghai, China</p><p class="c-article-author-affiliation__authors-list">Ming-Wei Wang</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Dehua-Yang-Aff1-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Dehua Yang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Dehua%20Yang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Dehua%20Yang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Dehua%20Yang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Qingtong-Zhou-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Qingtong Zhou</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Qingtong%20Zhou" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Qingtong%20Zhou" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Qingtong%20Zhou%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Viktorija-Labroska-Aff1-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Viktorija Labroska</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Viktorija%20Labroska" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Viktorija%20Labroska" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Viktorija%20Labroska%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Shanshan-Qin-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Shanshan Qin</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Shanshan%20Qin" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Shanshan%20Qin" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Shanshan%20Qin%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Sanaz-Darbalaei-Aff1-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Sanaz Darbalaei</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Sanaz%20Darbalaei" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Sanaz%20Darbalaei" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Sanaz%20Darbalaei%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yiran-Wu-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Yiran Wu</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Yiran%20Wu" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yiran%20Wu" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yiran%20Wu%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Elita-Yuliantie-Aff1-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Elita Yuliantie</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Elita%20Yuliantie" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Elita%20Yuliantie" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Elita%20Yuliantie%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Linshan-Xie-Aff5-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Linshan Xie</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Linshan%20Xie" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Linshan%20Xie" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Linshan%20Xie%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Houchao-Tao-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Houchao Tao</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Houchao%20Tao" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Houchao%20Tao" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Houchao%20Tao%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jianjun-Cheng-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Jianjun Cheng</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Jianjun%20Cheng" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jianjun%20Cheng" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jianjun%20Cheng%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Qing-Liu-Aff1-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Qing Liu</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Qing%20Liu" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Qing%20Liu" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Qing%20Liu%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Suwen-Zhao-Aff5-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Suwen Zhao</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Suwen%20Zhao" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Suwen%20Zhao" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Suwen%20Zhao%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Wenqing-Shui-Aff5-Aff6"><span class="c-article-authors-search__title u-h3 js-search-name">Wenqing Shui</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Wenqing%20Shui" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Wenqing%20Shui" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Wenqing%20Shui%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yi-Jiang-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Yi Jiang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Yi%20Jiang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yi%20Jiang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yi%20Jiang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Ming_Wei-Wang-Aff1-Aff2-Aff3-Aff4-Aff6-Aff7"><span class="c-article-authors-search__title u-h3 js-search-name">Ming-Wei Wang</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Ming-Wei%20Wang" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Ming-Wei%20Wang" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Ming-Wei%20Wang%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding authors</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:shuiwq@shanghaitech.edu.cn">Wenqing Shui</a>, <a id="corresp-c2" href="mailto:yijiang@simm.ac.cn">Yi Jiang</a> or <a id="corresp-c3" href="mailto:mwwang@simm.ac.cn">Ming-Wei Wang</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Competing interests</h3> <p>The authors declare no competing interests.</p> </div></div></section><section data-title="Supplementary information"><div class="c-article-section" id="Sec26-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec26">Supplementary information</h2><div class="c-article-section__content" id="Sec26-content"><div data-test="supplementary-info"><div id="figshareContainer" class="c-article-figshare-container" data-test="figshare-container"></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM1"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="supplemental material" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_MOESM1_ESM.docx" data-supp-info-image="">Supplemental material</a></h3></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM2"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="table s1" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_MOESM2_ESM.xlsx" data-supp-info-image="">Table S1</a></h3></div><div class="c-article-supplementary__item" data-test="supp-item" id="MOESM3"><h3 class="c-article-supplementary__title u-h3"><a class="print-link" data-track="click" data-track-action="view supplementary info" data-test="supp-info-link" data-track-label="table s2" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41392-020-00435-w/MediaObjects/41392_2020_435_MOESM3_ESM.xlsx" data-supp-info-image="">Table S2</a></h3></div></div></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=G%20protein-coupled%20receptors%3A%20structure-%20and%20function-based%20drug%20discovery&amp;author=Dehua%20Yang%20et%20al&amp;contentID=10.1038%2Fs41392-020-00435-w&amp;copyright=The%20Author%28s%29&amp;publication=2059-3635&amp;publicationDate=2021-01-08&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41392-020-00435-w" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41392-020-00435-w" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Yang, D., Zhou, Q., Labroska, V. <i>et al.</i> G protein-coupled receptors: structure- and function-based drug discovery. <i>Sig Transduct Target Ther</i> <b>6</b>, 7 (2021). https://doi.org/10.1038/s41392-020-00435-w</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41392-020-00435-w?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2020-10-14">14 October 2020</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Revised<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2020-11-30">30 November 2020</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2020-12-05">05 December 2020</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2021-01-08">08 January 2021</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41392-020-00435-w</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> <section> <div class="c-article-section js-article-section" id="further-reading-section" data-test="further-reading-section"> <h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="further-reading">This article is cited by</h2> <div class="c-article-section__content js-collapsible-section" id="further-reading-content"> <ul class="c-article-further-reading__list" id="further-reading-list"> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:G12/13 signaling in asthma" href="https://doi.org/10.1186/s12931-024-02920-0"> G12/13 signaling in asthma </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact u-sans-serif u-mb-4 u-mt-auto"> <li>Elizabeth L. McDuffie</li><li>Reynold A. Panettieri</li><li>Charles P. Scott</li> </ul> <p class="c-article-further-reading__journal-title"><i>Respiratory Research</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene" href="https://doi.org/10.1186/s13058-024-01866-x"> GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Lalitha Vaishnavi Subramanyan</li><li>Suhail Ahmed Kabeer Rasheed</li><li>Patrick J. Casey</li> </ul> <p class="c-article-further-reading__journal-title"><i>Breast Cancer Research</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:G protein-coupled receptors and traditional Chinese medicine: new thinks for the development of traditional Chinese medicine" href="https://doi.org/10.1186/s13020-024-00964-4"> G protein-coupled receptors and traditional Chinese medicine: new thinks for the development of traditional Chinese medicine </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Ting Zhang</li><li>Wenqiao An</li><li>Sanyin Zhang</li> </ul> <p class="c-article-further-reading__journal-title"><i>Chinese Medicine</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:GPCR-BSD: a database of binding sites of human G-protein coupled receptors under diverse states" href="https://doi.org/10.1186/s12859-024-05962-9"> GPCR-BSD: a database of binding sites of human G-protein coupled receptors under diverse states </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Fan Liu</li><li>Han Zhou</li><li>Xinmiao Liang</li> </ul> <p class="c-article-further-reading__journal-title"><i>BMC Bioinformatics</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:Long noncoding RNAs and mRNAs profiling in ovary during laying and broodiness in Taihe Black-Bone Silky Fowls (Gallus gallus Domesticus Brisson)" href="https://doi.org/10.1186/s12864-024-10281-7"> Long noncoding RNAs and mRNAs profiling in ovary during laying and broodiness in Taihe Black-Bone Silky Fowls (Gallus gallus Domesticus Brisson) </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Yuting Tan</li><li>Yunyan Huang</li><li>Zhaozheng Yin</li> </ul> <p class="c-article-further-reading__journal-title"><i>BMC Genomics</i> (2024)</p> </li> </ul> </div> </div> </section> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41392-020-00435-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/sigtrans.nature.com/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41392-020-00435-w;doi=10.1038/s41392-020-00435-w;subjmeta=154,556,631,92;kwrd=Drug+discovery,Target+validation"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/sigtrans.nature.com/article&amp;sz=300x250&amp;c=1190936049&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41392-020-00435-w%26doi%3D10.1038/s41392-020-00435-w%26subjmeta%3D154,556,631,92%26kwrd%3DDrug+discovery,Target+validation"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/sigtrans.nature.com/article&amp;sz=300x250&amp;c=1190936049&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41392-020-00435-w%26doi%3D10.1038/s41392-020-00435-w%26subjmeta%3D154,556,631,92%26kwrd%3DDrug+discovery,Target+validation" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/reviews-and-analysis" data-track="click" data-track-action="reviews &amp; analysis" data-track-label="link" data-test="explore-nav-item"> Reviews &amp; Analysis </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/news-and-comment" data-track="click" data-track-action="news &amp; comment" data-track-label="link" data-test="explore-nav-item"> News &amp; Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id&#x3D;369" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/sigtrans.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/aims" data-track="click" data-track-action="aims &amp; scope" data-track-label="link"> Aims &amp; Scope </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/journal-information" data-track="click" data-track-action="journal information" data-track-label="link"> Journal Information </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/open-access" data-track="click" data-track-action="open access publishing" data-track-label="link"> Open Access Publishing </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/editors" data-track="click" data-track-action="about the editors" data-track-label="link"> About the Editors </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/editorial-board" data-track="click" data-track-action="editorial board" data-track-label="link"> Editorial Board </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/journal-staff" data-track="click" data-track-action="journal staff" data-track-label="link"> Journal Staff </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/partner" data-track="click" data-track-action="about the partner" data-track-label="link"> About the Partner </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/journal-webinar" data-track="click" data-track-action="journal open lectures" data-track-label="link"> Journal open lectures </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/awards" data-track="click" data-track-action="awards" data-track-label="link"> Awards </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/sigtrans/authors-and-referees" data-track="click" data-track-action="for authors &amp; referees" data-track-label="link"> For Authors &amp; Referees </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://mts-sigtrans.nature.com/" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external>Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="sigtrans">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> Signal Transduction and Targeted Therapy (<i>Sig Transduct Target Ther</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">2059-3635</span> (online) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author &amp; Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints &amp; permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries &amp; institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service &amp; tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising &amp; partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships &amp; Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms &amp; Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41392-020-00435-w&amp;format=js&amp;last_modified=2021-01-08" async></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10