CINXE.COM
Mario Letelier - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Mario Letelier - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="swrZZkOj+g8CoFG+0HMYmi8Wef6C4cXqSTXls/3OUI/A8zPd81niCqozfcGp6TrcYHWrH0bk+xI3EyVNr/uasA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="mario letelier" /> <meta name="description" content="Mario Letelier: 13 Followers, 4 Following, 131 Research papers." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '3396cc84cfd2f38327776bf96002dae06ee5bf2b'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15321,"monthly_visitors":"115 million","monthly_visitor_count":115442458,"monthly_visitor_count_in_millions":115,"user_count":280003094,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1736257897000); window.Aedu.timeDifference = new Date().getTime() - 1736257897000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-580e920422d0dfc4250251a5d0780e4cf8f42b2e8387806de00f28f4578bd27f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-b9d61d9aace7ec66205585913d5193b3f163274ac8c78e775dec7c24fd52e304.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/MarioLetelier" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7f89cc8204b27e050ff7efe84a5dc8f5d838e3d6b72e6a9014f37ac7b9bf2658.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/MarioLetelier","location":"/MarioLetelier","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/MarioLetelier","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-3eb2a553-1508-460f-a521-43461f6fedec"></div> <div id="ProfileCheckPaperUpdate-react-component-3eb2a553-1508-460f-a521-43461f6fedec"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Mario Letelier</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Mario" data-follow-user-id="46747754" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="46747754"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">13</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><a href="/MarioLetelier/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uppsala.academia.edu/HeminKoyi"><img class="profile-avatar u-positionAbsolute" alt="Hemin Koyi" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/102248/28141/11213115/s200_hemin.koyi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uppsala.academia.edu/HeminKoyi">Hemin Koyi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Uppsala University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uel.academia.edu/JanaJavornik"><img class="profile-avatar u-positionAbsolute" alt="Jana Javornik" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/113072/30527/13170018/s200_jana.javornik.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uel.academia.edu/JanaJavornik">Jana Javornik</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of East London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://leicester.academia.edu/GrahamMartin"><img class="profile-avatar u-positionAbsolute" alt="Graham Martin" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/156189/40499/1481064/s200_graham.martin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://leicester.academia.edu/GrahamMartin">Graham Martin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Leicester</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uncg.academia.edu/GwenRobbinsSchug"><img class="profile-avatar u-positionAbsolute" alt="Gwen Robbins Schug" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/161482/41323/141954071/s200_gwen.robbins_schug.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uncg.academia.edu/GwenRobbinsSchug">Gwen Robbins Schug</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of North Carolina at Greensboro</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://usal.academia.edu/GabrielGutierrezAlonso"><img class="profile-avatar u-positionAbsolute" alt="Gabriel Gutierrez-Alonso" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/175637/822125/1022101/s200_gabriel.gutierrez-alonso.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usal.academia.edu/GabrielGutierrezAlonso">Gabriel Gutierrez-Alonso</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Salamanca</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://mq.academia.edu/JohnSutton"><img class="profile-avatar u-positionAbsolute" alt="John Sutton" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176044/43811/40295/s200_john.sutton.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mq.academia.edu/JohnSutton">John Sutton</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Macquarie University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ufrgs.academia.edu/ErosCarvalho"><img class="profile-avatar u-positionAbsolute" alt="Eros Carvalho" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176585/88715/48865541/s200_eros.carvalho.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufrgs.academia.edu/ErosCarvalho">Eros Carvalho</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal do Rio Grande do Sul</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://swansea.academia.edu/KevinArbuckle"><img class="profile-avatar u-positionAbsolute" alt="Kevin Arbuckle" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/191329/90380/6936137/s200_kevin.arbuckle.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://swansea.academia.edu/KevinArbuckle">Kevin Arbuckle</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Swansea University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ku-dk.academia.edu/JesperHoffmeyer"><img class="profile-avatar u-positionAbsolute" alt="Jesper Hoffmeyer" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/241162/92724/102335/s200_jesper.hoffmeyer.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ku-dk.academia.edu/JesperHoffmeyer">Jesper Hoffmeyer</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Copenhagen</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ncit.academia.edu/RoshanChitrakar"><img class="profile-avatar u-positionAbsolute" alt="Roshan Chitrakar" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/371695/9733675/15833098/s200_roshan.chitrakar.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ncit.academia.edu/RoshanChitrakar">Roshan Chitrakar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Nepal College of Information Technology</p></div></div></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Mario Letelier</h3></div><div class="js-work-strip profile--work_container" data-work-id="126699596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo"><img alt="Research paper thumbnail of Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo">Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo</a></div><div class="wp-workCard_item"><span>CPU</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126699596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126699596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126699596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126699596]").text(description); $(".js-view-count[data-work-id=126699596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126699596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126699596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126699596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126699596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126699596,"title":"Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo","translated_title":"","metadata":{"publisher":"CPU","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"CPU"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo","translated_internal_url":"","created_at":"2024-12-31T03:14:37.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tendencias_de_la_Educación_Superior_Elementos_para_un_Análisis_Prospectivo","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science"},{"id":69541,"name":"CPU","url":"https://www.academia.edu/Documents/in/CPU"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593253"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section"><img alt="Research paper thumbnail of Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section">Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section</a></div><div class="wp-workCard_item"><span>Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturin...</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated ana...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593253"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593253"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593253; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593253]").text(description); $(".js-view-count[data-work-id=120593253]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593253; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593253']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593253, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593253]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593253,"title":"Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section","translated_title":"","metadata":{"abstract":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","publisher":"American Society of Mechanical Engineers","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturin..."},"translated_abstract":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","internal_url":"https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section","translated_internal_url":"","created_at":"2024-06-05T11:42:10.992-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"}],"urls":[{"id":42679568,"url":"http://asmedigitalcollection.asme.org/FEDSM/proceedings-pdf/doi/10.1115/FEDSM2016-1069/2385278/v01bt34a001-fedsm2016-1069.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile"><img alt="Research paper thumbnail of Los estudios de postgrado y el desarrollo universitario en Chile" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile">Los estudios de postgrado y el desarrollo universitario en Chile</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593251]").text(description); $(".js-view-count[data-work-id=120593251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593251,"title":"Los estudios de postgrado y el desarrollo universitario en Chile","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1992,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile","translated_internal_url":"","created_at":"2024-06-05T11:42:10.562-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[],"urls":[{"id":42679566,"url":"http://ci.nii.ac.jp/ncid/BA32053441"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593249"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior"><img alt="Research paper thumbnail of 3. Propuestas de un modelo de transición entre educación media y educación superior" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior">3. Propuestas de un modelo de transición entre educación media y educación superior</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593249"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593249"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593249; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593249]").text(description); $(".js-view-count[data-work-id=120593249]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593249; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593249']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593249, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593249]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593249,"title":"3. Propuestas de un modelo de transición entre educación media y educación superior","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior","translated_internal_url":"","created_at":"2024-06-05T11:42:10.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"3_Propuestas_de_un_modelo_de_transición_entre_educación_media_y_educación_superior","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897293"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow"><img alt="Research paper thumbnail of Frequency-dependent friction in oscillatory laminar pipe flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow">Frequency-dependent friction in oscillatory laminar pipe flow</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897293"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897293"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897293; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897293]").text(description); $(".js-view-count[data-work-id=119897293]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897293; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897293']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897293, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897293]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897293,"title":"Frequency-dependent friction in oscillatory laminar pipe flow","translated_title":"","metadata":{"abstract":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","publication_date":{"day":1,"month":11,"year":1974,"errors":{}}},"translated_abstract":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","internal_url":"https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow","translated_internal_url":"","created_at":"2024-05-23T16:39:12.339-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":349439,"name":"Frequency Dependence","url":"https://www.academia.edu/Documents/in/Frequency_Dependence"},{"id":872274,"name":"Compressible Flow","url":"https://www.academia.edu/Documents/in/Compressible_Flow"},{"id":3854404,"name":"Mechanical Sciences","url":"https://www.academia.edu/Documents/in/Mechanical_Sciences"}],"urls":[{"id":42264966,"url":"https://ui.adsabs.harvard.edu/abs/1974IJMeS..16..819J/abstract"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897292"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_"><img alt="Research paper thumbnail of Closure to “Skin Friction in Unsteady Laminar Pipe Flow”" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_">Closure to “Skin Friction in Unsteady Laminar Pipe Flow”</a></div><div class="wp-workCard_item"><span>Journal of the Hydraulics Division</span><span>, Jul 1, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897292"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897292"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897292; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897292]").text(description); $(".js-view-count[data-work-id=119897292]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897292; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897292']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897292, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897292]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897292,"title":"Closure to “Skin Friction in Unsteady Laminar Pipe Flow”","translated_title":"","metadata":{"publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":7,"year":1977,"errors":{}},"publication_name":"Journal of the Hydraulics Division"},"translated_abstract":null,"internal_url":"https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_","translated_internal_url":"","created_at":"2024-05-23T16:39:11.794-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":484569,"name":"Unsteady flow","url":"https://www.academia.edu/Documents/in/Unsteady_flow"}],"urls":[{"id":42264965,"url":"https://doi.org/10.1061/jyceaj.0004793"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897291"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape"><img alt="Research paper thumbnail of Laminar Flow in Conduits of Unconventional Shape" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape">Laminar Flow in Conduits of Unconventional Shape</a></div><div class="wp-workCard_item"><span>Journal of Engineering Mechanics-asce</span><span>, Jun 1, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new analytical solution technique is presented which greatly extends the range of conduit shape...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897291"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897291"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897291; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897291]").text(description); $(".js-view-count[data-work-id=119897291]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897291; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897291']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897291, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897291]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897291,"title":"Laminar Flow in Conduits of Unconventional Shape","translated_title":"","metadata":{"abstract":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":6,"year":1985,"errors":{}},"publication_name":"Journal of Engineering Mechanics-asce"},"translated_abstract":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","internal_url":"https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape","translated_internal_url":"","created_at":"2024-05-23T16:39:11.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Laminar_Flow_in_Conduits_of_Unconventional_Shape","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":1079,"name":"Engineering Mechanics","url":"https://www.academia.edu/Documents/in/Engineering_Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"}],"urls":[{"id":42264964,"url":"https://doi.org/10.1061/(asce)0733-9399(1985)111:6(768)"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus"><img alt="Research paper thumbnail of Flow of a Power-Law Fluid in a Distorted Annulus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus">Flow of a Power-Law Fluid in a Distorted Annulus</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The velocity field is analytically determined for the case of power-law fluid axial flow in non-c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633740]").text(description); $(".js-view-count[data-work-id=115633740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633740,"title":"Flow of a Power-Law Fluid in a Distorted Annulus","translated_title":"","metadata":{"abstract":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","publication_date":{"day":17,"month":11,"year":1996,"errors":{}}},"translated_abstract":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","internal_url":"https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus","translated_internal_url":"","created_at":"2024-03-01T04:59:14.974-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"}],"urls":[{"id":39935291,"url":"https://doi.org/10.1115/imece1996-0223"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation"><img alt="Research paper thumbnail of Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation">Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation</a></div><div class="wp-workCard_item"><span>European Journal of Engineering Education</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633739]").text(description); $(".js-view-count[data-work-id=115633739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633739,"title":"Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Engineering Education"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation","translated_internal_url":"","created_at":"2024-03-01T04:59:14.786-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":1736,"name":"Science Education","url":"https://www.academia.edu/Documents/in/Science_Education"},{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education"},{"id":2621,"name":"Higher Education","url":"https://www.academia.edu/Documents/in/Higher_Education"},{"id":82713,"name":"Engineering Ethics","url":"https://www.academia.edu/Documents/in/Engineering_Ethics"},{"id":89488,"name":"Teaching Methods","url":"https://www.academia.edu/Documents/in/Teaching_Methods"},{"id":578100,"name":"Developing nations","url":"https://www.academia.edu/Documents/in/Developing_nations"}],"urls":[{"id":39935290,"url":"https://eric.ed.gov/?id=EJ485581"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes"><img alt="Research paper thumbnail of Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes">Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes</a></div><div class="wp-workCard_item"><span>American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The transversal flow field in pipes of non-circular cross-section shapes is determined for a Gree...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633738]").text(description); $(".js-view-count[data-work-id=115633738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633738,"title":"Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes","translated_title":"","metadata":{"abstract":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED"},"translated_abstract":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","internal_url":"https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes","translated_internal_url":"","created_at":"2024-03-01T04:59:14.603-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"}],"urls":[{"id":39935289,"url":"https://biust.pure.elsevier.com/en/publications/secondary-flows-of-a-viscoelastic-fluid-in-pipes-of-complex-cross"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation"><img alt="Research paper thumbnail of Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation">Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633737]").text(description); $(".js-view-count[data-work-id=115633737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633737,"title":"Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation","translated_internal_url":"","created_at":"2024-03-01T04:59:14.418-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":222949,"name":"Dissipation","url":"https://www.academia.edu/Documents/in/Dissipation"}],"urls":[{"id":39935288,"url":"https://biust.pure.elsevier.com/en/publications/thermally-developing-heat-transfer-in-tubes-of-arbitrary-cross-se"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem"><img alt="Research paper thumbnail of Refined mathematical analysis of the capillary penetration problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem">Refined mathematical analysis of the capillary penetration problem</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, Dec 1, 1979</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633736]").text(description); $(".js-view-count[data-work-id=115633736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633736,"title":"Refined mathematical analysis of the capillary penetration problem","translated_title":"","metadata":{"abstract":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":1979,"errors":{}},"publication_name":"Journal of Colloid and Interface Science"},"translated_abstract":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","internal_url":"https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem","translated_internal_url":"","created_at":"2024-03-01T04:59:14.214-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Refined_mathematical_analysis_of_the_capillary_penetration_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":39579,"name":"Colloid and Interface Chemistry","url":"https://www.academia.edu/Documents/in/Colloid_and_Interface_Chemistry"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":871208,"name":"Newtonian Fluid","url":"https://www.academia.edu/Documents/in/Newtonian_Fluid"}],"urls":[{"id":39935287,"url":"https://doi.org/10.1016/0021-9797(79)90347-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow"><img alt="Research paper thumbnail of Skin Friction in Unsteady Laminar Pipe Flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow">Skin Friction in Unsteady Laminar Pipe Flow</a></div><div class="wp-workCard_item"><span>Journal of the Hydraulics Division</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633735]").text(description); $(".js-view-count[data-work-id=115633735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633735,"title":"Skin Friction in Unsteady Laminar Pipe Flow","translated_title":"","metadata":{"abstract":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","publisher":"American Society of Civil Engineers","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Journal of the Hydraulics Division"},"translated_abstract":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","internal_url":"https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow","translated_internal_url":"","created_at":"2024-03-01T04:59:14.013-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Skin_Friction_in_Unsteady_Laminar_Pipe_Flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2550,"name":"Hydraulics","url":"https://www.academia.edu/Documents/in/Hydraulics"},{"id":53132,"name":"Analysis","url":"https://www.academia.edu/Documents/in/Analysis"},{"id":113500,"name":"Hydraulic Engineering","url":"https://www.academia.edu/Documents/in/Hydraulic_Engineering"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":1008397,"name":"Coefficients","url":"https://www.academia.edu/Documents/in/Coefficients"}],"urls":[{"id":39935286,"url":"https://doi.org/10.1061/jyceaj.0004472"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_"><img alt="Research paper thumbnail of Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_">Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)</a></div><div class="wp-workCard_item"><span>Journal of Engineering Mechanics-asce</span><span>, Aug 1, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633734]").text(description); $(".js-view-count[data-work-id=115633734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633734,"title":"Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)","translated_title":"","metadata":{"publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":8,"year":1987,"errors":{}},"publication_name":"Journal of Engineering Mechanics-asce"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_","translated_internal_url":"","created_at":"2024-03-01T04:59:13.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":1079,"name":"Engineering Mechanics","url":"https://www.academia.edu/Documents/in/Engineering_Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"}],"urls":[{"id":39935285,"url":"https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1254)"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation"><img alt="Research paper thumbnail of Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation">Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation</a></div><div class="wp-workCard_item"><span>European Journal of Engineering Education</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633733]").text(description); $(".js-view-count[data-work-id=115633733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633733,"title":"Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Engineering Education"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation","translated_internal_url":"","created_at":"2024-03-01T04:59:13.554-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":1736,"name":"Science Education","url":"https://www.academia.edu/Documents/in/Science_Education"},{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education"},{"id":2621,"name":"Higher Education","url":"https://www.academia.edu/Documents/in/Higher_Education"},{"id":82713,"name":"Engineering Ethics","url":"https://www.academia.edu/Documents/in/Engineering_Ethics"},{"id":89488,"name":"Teaching Methods","url":"https://www.academia.edu/Documents/in/Teaching_Methods"},{"id":578100,"name":"Developing nations","url":"https://www.academia.edu/Documents/in/Developing_nations"}],"urls":[{"id":39935284,"url":"https://doi.org/10.1080/03043799308923254"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids"><img alt="Research paper thumbnail of Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids">Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is present...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633732]").text(description); $(".js-view-count[data-work-id=115633732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633732,"title":"Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids","translated_title":"","metadata":{"abstract":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","publication_date":{"day":5,"month":11,"year":2000,"errors":{}}},"translated_abstract":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","internal_url":"https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids","translated_internal_url":"","created_at":"2024-03-01T04:59:13.350-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":2003310,"name":"Friction Factor","url":"https://www.academia.edu/Documents/in/Friction_Factor"},{"id":3910042,"name":"Deborah number","url":"https://www.academia.edu/Documents/in/Deborah_number"}],"urls":[{"id":39935283,"url":"https://doi.org/10.1115/imece2000-1939"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux"><img alt="Research paper thumbnail of Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux">Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633731]").text(description); $(".js-view-count[data-work-id=115633731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633731,"title":"Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux","translated_internal_url":"","created_at":"2024-03-01T04:59:13.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"}],"urls":[{"id":39935282,"url":"https://biust.pure.elsevier.com/en/publications/interplay-of-viscoelasticity-and-inertia-heat-transfer-asymptote-"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente"><img alt="Research paper thumbnail of Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente" class="work-thumbnail" src="https://attachments.academia-assets.com/111986279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente">Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente</a></div><div class="wp-workCard_item"><span>Anales de la Universidad de Chile</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d1f85b454c0f31014c9c99df2c801992" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":111986279,"asset_id":115633730,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633730]").text(description); $(".js-view-count[data-work-id=115633730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d1f85b454c0f31014c9c99df2c801992" } } $('.js-work-strip[data-work-id=115633730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633730,"title":"Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente","translated_title":"","metadata":{"publisher":"University of Chile","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Anales de la Universidad de Chile"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente","translated_internal_url":"","created_at":"2024-03-01T04:59:12.840-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":111986279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986279/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986279/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301768=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Wg1UPqbxfbsWMxuZUHAVy-zyd4iiCbRjuF0UF~vOj~WMAanHZpC4AHk4~UEdhEoT2GTyQlxKNxNjFb7l-jTa6NIEVmRh7KSrOAEbKdL8iW4YA6vQuAzM2y~DtNs-OZMy5RCpe85f-ho0fZbu33M9sppla6SR-SFa-1T7AOGo2O8GNwKM272NOwgZqTIyHaGb~IcH6gkB1AnqRSngQI~-tD7PB4eMeL6hOVsvYh~UUtckqVub~ZPCW7JaVt7A85sGYXVv2KL8Ldq~kIJoPLtifxeLckKyrus9qWkCBoe8kLt8st1v4SBZN1tiZenGoE3pt71xgjeHa5-TpvSSDpHUeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ley_de_fricción_y_ecuación_unidimensional_de_movimiento_para_flujo_laminar_impermanente","translated_slug":"","page_count":13,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[{"id":111986279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986279/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986279/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301768=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Wg1UPqbxfbsWMxuZUHAVy-zyd4iiCbRjuF0UF~vOj~WMAanHZpC4AHk4~UEdhEoT2GTyQlxKNxNjFb7l-jTa6NIEVmRh7KSrOAEbKdL8iW4YA6vQuAzM2y~DtNs-OZMy5RCpe85f-ho0fZbu33M9sppla6SR-SFa-1T7AOGo2O8GNwKM272NOwgZqTIyHaGb~IcH6gkB1AnqRSngQI~-tD7PB4eMeL6hOVsvYh~UUtckqVub~ZPCW7JaVt7A85sGYXVv2KL8Ldq~kIJoPLtifxeLckKyrus9qWkCBoe8kLt8st1v4SBZN1tiZenGoE3pt71xgjeHa5-TpvSSDpHUeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111986278,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986278/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986278/download_file","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986278/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301770=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Cw1J9IxpPvCj9jRKU1qppDpKw20mcQu6e2oTdh5KFC1vbMSM~R5-OUDBjZZ7OYThiZsIBURMd41a39jOAzRecfTZe1uIlSHYfRAc~7KL-u6eVqYDhYuGDlTDsJPCBTCnrS2jzRjphVr2GbDOOWktCaDk1Ii1A~HXS6EVyJv0dxji36FjnuLa55zXt3~NEUMrdHWIZHsqwA01MhQ73fbuyGFFutr9srffHeQe0Z5StjNqGUpn8IlqOZE7AuArQ53OdjSoB5DGzwzSt-jNJE9wtOF4abxOFbwqjd9BEtXJ8nFStGWqSwQ4foSEPQbYKf1fXhyNcQpAMMuobtYM~SJ02Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":39935281,"url":"https://revistaei.uchile.cl/index.php/ANUC/article/download/22896/24243"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes"><img alt="Research paper thumbnail of Some applications of extended calculus to non-Newtonian flow in pipes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes">Some applications of extended calculus to non-Newtonian flow in pipes</a></div><div class="wp-workCard_item"><span>Journal of The Brazilian Society of Mechanical Sciences and Engineering</span><span>, Jan 16, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633729]").text(description); $(".js-view-count[data-work-id=115633729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633729,"title":"Some applications of extended calculus to non-Newtonian flow in pipes","translated_title":"","metadata":{"abstract":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":1,"year":2021,"errors":{}},"publication_name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering"},"translated_abstract":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","internal_url":"https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes","translated_internal_url":"","created_at":"2024-03-01T04:59:12.582-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":327041,"name":"Fractional Calculus","url":"https://www.academia.edu/Documents/in/Fractional_Calculus"},{"id":371994,"name":"Dental Calculus","url":"https://www.academia.edu/Documents/in/Dental_Calculus"},{"id":871208,"name":"Newtonian Fluid","url":"https://www.academia.edu/Documents/in/Newtonian_Fluid"}],"urls":[{"id":39935280,"url":"https://doi.org/10.1007/s40430-021-02802-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016"><img alt="Research paper thumbnail of Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016">Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633728]").text(description); $(".js-view-count[data-work-id=115633728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633728,"title":"Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016","translated_internal_url":"","created_at":"2024-03-01T04:59:12.363-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"}],"urls":[{"id":39935279,"url":"https://udesantiago.pure.elsevier.com/en/publications/effect-of-elasticity-on-viscoplastic-flow-asme-2016-international"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="9496186" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126699596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo"><img alt="Research paper thumbnail of Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo">Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo</a></div><div class="wp-workCard_item"><span>CPU</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126699596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126699596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126699596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126699596]").text(description); $(".js-view-count[data-work-id=126699596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126699596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126699596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126699596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=126699596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126699596,"title":"Tendencias de la Educación Superior. Elementos para un Análisis Prospectivo","translated_title":"","metadata":{"publisher":"CPU","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"CPU"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126699596/Tendencias_de_la_Educaci%C3%B3n_Superior_Elementos_para_un_An%C3%A1lisis_Prospectivo","translated_internal_url":"","created_at":"2024-12-31T03:14:37.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tendencias_de_la_Educación_Superior_Elementos_para_un_Análisis_Prospectivo","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science"},{"id":69541,"name":"CPU","url":"https://www.academia.edu/Documents/in/CPU"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593253"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section"><img alt="Research paper thumbnail of Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section">Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section</a></div><div class="wp-workCard_item"><span>Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturin...</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated ana...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593253"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593253"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593253; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593253]").text(description); $(".js-view-count[data-work-id=120593253]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593253; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593253']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593253, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593253]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593253,"title":"Herschel-Bulkley Viscoplastic Flow in Tubes of Non-Circular Cross-Section","translated_title":"","metadata":{"abstract":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","publisher":"American Society of Mechanical Engineers","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturin..."},"translated_abstract":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","internal_url":"https://www.academia.edu/120593253/Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section","translated_internal_url":"","created_at":"2024-06-05T11:42:10.992-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Herschel_Bulkley_Viscoplastic_Flow_in_Tubes_of_Non_Circular_Cross_Section","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed reg...","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"}],"urls":[{"id":42679568,"url":"http://asmedigitalcollection.asme.org/FEDSM/proceedings-pdf/doi/10.1115/FEDSM2016-1069/2385278/v01bt34a001-fedsm2016-1069.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593251"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile"><img alt="Research paper thumbnail of Los estudios de postgrado y el desarrollo universitario en Chile" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile">Los estudios de postgrado y el desarrollo universitario en Chile</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593251"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593251]").text(description); $(".js-view-count[data-work-id=120593251]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593251']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593251, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593251]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593251,"title":"Los estudios de postgrado y el desarrollo universitario en Chile","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1992,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120593251/Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile","translated_internal_url":"","created_at":"2024-06-05T11:42:10.562-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Los_estudios_de_postgrado_y_el_desarrollo_universitario_en_Chile","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[],"urls":[{"id":42679566,"url":"http://ci.nii.ac.jp/ncid/BA32053441"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120593249"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior"><img alt="Research paper thumbnail of 3. Propuestas de un modelo de transición entre educación media y educación superior" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior">3. Propuestas de un modelo de transición entre educación media y educación superior</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120593249"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120593249"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120593249; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120593249]").text(description); $(".js-view-count[data-work-id=120593249]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120593249; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120593249']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120593249, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120593249]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120593249,"title":"3. Propuestas de un modelo de transición entre educación media y educación superior","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/120593249/3_Propuestas_de_un_modelo_de_transici%C3%B3n_entre_educaci%C3%B3n_media_y_educaci%C3%B3n_superior","translated_internal_url":"","created_at":"2024-06-05T11:42:10.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"3_Propuestas_de_un_modelo_de_transición_entre_educación_media_y_educación_superior","translated_slug":"","page_count":null,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897293"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow"><img alt="Research paper thumbnail of Frequency-dependent friction in oscillatory laminar pipe flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow">Frequency-dependent friction in oscillatory laminar pipe flow</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficie...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897293"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897293"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897293; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897293]").text(description); $(".js-view-count[data-work-id=119897293]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897293; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897293']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897293, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897293]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897293,"title":"Frequency-dependent friction in oscillatory laminar pipe flow","translated_title":"","metadata":{"abstract":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","publication_date":{"day":1,"month":11,"year":1974,"errors":{}}},"translated_abstract":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","internal_url":"https://www.academia.edu/119897293/Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow","translated_internal_url":"","created_at":"2024-05-23T16:39:12.339-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Frequency_dependent_friction_in_oscillatory_laminar_pipe_flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Based on the Iberall model of fluid transients, a frequency-dependent friction coefficient is derived for laminar pipe flow of compressible fluids. The analysis, employing Laplace transformation, is of particular utility in the description of fluid motions which are naturally periodic and, hence, where the dependency of skin friction on frequency of excitation can be accounted for by expressing the coefficient in terms of the dominant frequency of the system. The analytical result is applied to the classical example of oscillations of an incompressible fluid in an open-ended U-tube. In distinct contrast to predictions based on the very common, quasi-steady engineering approximation of skin friction effects, the theory is found to be in excellent agreement with actual observations of successive peaks of the column motion over the whole range of frequencies investigated.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":96825,"name":"Manufacturing Engineering","url":"https://www.academia.edu/Documents/in/Manufacturing_Engineering"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":349439,"name":"Frequency Dependence","url":"https://www.academia.edu/Documents/in/Frequency_Dependence"},{"id":872274,"name":"Compressible Flow","url":"https://www.academia.edu/Documents/in/Compressible_Flow"},{"id":3854404,"name":"Mechanical Sciences","url":"https://www.academia.edu/Documents/in/Mechanical_Sciences"}],"urls":[{"id":42264966,"url":"https://ui.adsabs.harvard.edu/abs/1974IJMeS..16..819J/abstract"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897292"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_"><img alt="Research paper thumbnail of Closure to “Skin Friction in Unsteady Laminar Pipe Flow”" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_">Closure to “Skin Friction in Unsteady Laminar Pipe Flow”</a></div><div class="wp-workCard_item"><span>Journal of the Hydraulics Division</span><span>, Jul 1, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897292"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897292"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897292; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897292]").text(description); $(".js-view-count[data-work-id=119897292]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897292; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897292']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897292, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897292]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897292,"title":"Closure to “Skin Friction in Unsteady Laminar Pipe Flow”","translated_title":"","metadata":{"publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":7,"year":1977,"errors":{}},"publication_name":"Journal of the Hydraulics Division"},"translated_abstract":null,"internal_url":"https://www.academia.edu/119897292/Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_","translated_internal_url":"","created_at":"2024-05-23T16:39:11.794-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Closure_to_Skin_Friction_in_Unsteady_Laminar_Pipe_Flow_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":484569,"name":"Unsteady flow","url":"https://www.academia.edu/Documents/in/Unsteady_flow"}],"urls":[{"id":42264965,"url":"https://doi.org/10.1061/jyceaj.0004793"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119897291"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape"><img alt="Research paper thumbnail of Laminar Flow in Conduits of Unconventional Shape" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape">Laminar Flow in Conduits of Unconventional Shape</a></div><div class="wp-workCard_item"><span>Journal of Engineering Mechanics-asce</span><span>, Jun 1, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new analytical solution technique is presented which greatly extends the range of conduit shape...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119897291"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119897291"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119897291; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119897291]").text(description); $(".js-view-count[data-work-id=119897291]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119897291; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119897291']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119897291, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119897291]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119897291,"title":"Laminar Flow in Conduits of Unconventional Shape","translated_title":"","metadata":{"abstract":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":6,"year":1985,"errors":{}},"publication_name":"Journal of Engineering Mechanics-asce"},"translated_abstract":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","internal_url":"https://www.academia.edu/119897291/Laminar_Flow_in_Conduits_of_Unconventional_Shape","translated_internal_url":"","created_at":"2024-05-23T16:39:11.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Laminar_Flow_in_Conduits_of_Unconventional_Shape","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"A new analytical solution technique is presented which greatly extends the range of conduit shapes for which a mathematical description of the enclosed laminar flow becomes possible. To this end, a known particular solution up of the Poisson equation is linearly combined with some harmonic function uh in the form u=up+euh. In this, e≷0 is a parameter which determines the shape of “new” conduits and whose range of possible values is governed by the no‐slip condition.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":1079,"name":"Engineering Mechanics","url":"https://www.academia.edu/Documents/in/Engineering_Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"}],"urls":[{"id":42264964,"url":"https://doi.org/10.1061/(asce)0733-9399(1985)111:6(768)"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus"><img alt="Research paper thumbnail of Flow of a Power-Law Fluid in a Distorted Annulus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus">Flow of a Power-Law Fluid in a Distorted Annulus</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The velocity field is analytically determined for the case of power-law fluid axial flow in non-c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633740]").text(description); $(".js-view-count[data-work-id=115633740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633740,"title":"Flow of a Power-Law Fluid in a Distorted Annulus","translated_title":"","metadata":{"abstract":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","publication_date":{"day":17,"month":11,"year":1996,"errors":{}}},"translated_abstract":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","internal_url":"https://www.academia.edu/115633740/Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus","translated_internal_url":"","created_at":"2024-03-01T04:59:14.974-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Flow_of_a_Power_Law_Fluid_in_a_Distorted_Annulus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The velocity field is analytically determined for the case of power-law fluid axial flow in non-circular annuli, in which the inner wall is essentially circular, and the outer wall may exhibit a wide variety of shapes. The flow is assumed driven by the axial motion of the inner wall. A perturbation scheme is developed for power-law indices close the unity. The analysis is pursued for two specific shapes of the cross-section outer wall. By assigning appropriate values to the shape parameters, the two annulus shapes herein presented show three, and four, respectively, curved sides that generate, correspondingly, three, and four corners. Plots of isovels and velocity profiles are shown for several values of the significant parameters. Relationships between pipe geometry, fluid constants and flow velocity are discussed.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"}],"urls":[{"id":39935291,"url":"https://doi.org/10.1115/imece1996-0223"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation"><img alt="Research paper thumbnail of Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation">Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation</a></div><div class="wp-workCard_item"><span>European Journal of Engineering Education</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633739]").text(description); $(".js-view-count[data-work-id=115633739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633739,"title":"Engineering Education in Chile: Tradition, Trends, and Prospects for Evaluation","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Engineering Education"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633739/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation","translated_internal_url":"","created_at":"2024-03-01T04:59:14.786-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_for_Evaluation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":1736,"name":"Science Education","url":"https://www.academia.edu/Documents/in/Science_Education"},{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education"},{"id":2621,"name":"Higher Education","url":"https://www.academia.edu/Documents/in/Higher_Education"},{"id":82713,"name":"Engineering Ethics","url":"https://www.academia.edu/Documents/in/Engineering_Ethics"},{"id":89488,"name":"Teaching Methods","url":"https://www.academia.edu/Documents/in/Teaching_Methods"},{"id":578100,"name":"Developing nations","url":"https://www.academia.edu/Documents/in/Developing_nations"}],"urls":[{"id":39935290,"url":"https://eric.ed.gov/?id=EJ485581"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes"><img alt="Research paper thumbnail of Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes">Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes</a></div><div class="wp-workCard_item"><span>American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The transversal flow field in pipes of non-circular cross-section shapes is determined for a Gree...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633738]").text(description); $(".js-view-count[data-work-id=115633738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633738,"title":"Secondary flows of a viscoelastic fluid in pipes of complex cross-section shapes","translated_title":"","metadata":{"abstract":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED"},"translated_abstract":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","internal_url":"https://www.academia.edu/115633738/Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes","translated_internal_url":"","created_at":"2024-03-01T04:59:14.603-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Secondary_flows_of_a_viscoelastic_fluid_in_pipes_of_complex_cross_section_shapes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The transversal flow field in pipes of non-circular cross-section shapes is determined for a Green-Rivlin fluid. An analytical approach is presented, which is applicable to unsteady flows driven by small amplitude pressure gradients. Both the longitudinal flow velocity and secondary velocity components are found by prescribing a pipe contour through a shape factor conveniently defined. Secondary flow patterns are computed for several pipe shapes. Results are presented herein for the specific cases where the shape factor prescribes tube cross-section of approximately triangular, square and pentagonal shapes.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"}],"urls":[{"id":39935289,"url":"https://biust.pure.elsevier.com/en/publications/secondary-flows-of-a-viscoelastic-fluid-in-pipes-of-complex-cross"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation"><img alt="Research paper thumbnail of Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation">Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633737]").text(description); $(".js-view-count[data-work-id=115633737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633737,"title":"Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including Axial Conduction and Viscous Dissipation","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633737/Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation","translated_internal_url":"","created_at":"2024-03-01T04:59:14.418-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Thermally_Developing_Heat_Transfer_in_Tubes_of_Arbitrary_Cross_Section_Including_Axial_Conduction_and_Viscous_Dissipation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":222949,"name":"Dissipation","url":"https://www.academia.edu/Documents/in/Dissipation"}],"urls":[{"id":39935288,"url":"https://biust.pure.elsevier.com/en/publications/thermally-developing-heat-transfer-in-tubes-of-arbitrary-cross-se"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem"><img alt="Research paper thumbnail of Refined mathematical analysis of the capillary penetration problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem">Refined mathematical analysis of the capillary penetration problem</a></div><div class="wp-workCard_item"><span>Journal of Colloid and Interface Science</span><span>, Dec 1, 1979</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633736]").text(description); $(".js-view-count[data-work-id=115633736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633736,"title":"Refined mathematical analysis of the capillary penetration problem","translated_title":"","metadata":{"abstract":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":1979,"errors":{}},"publication_name":"Journal of Colloid and Interface Science"},"translated_abstract":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","internal_url":"https://www.academia.edu/115633736/Refined_mathematical_analysis_of_the_capillary_penetration_problem","translated_internal_url":"","created_at":"2024-03-01T04:59:14.214-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Refined_mathematical_analysis_of_the_capillary_penetration_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... In terms of [14], and putting xz - Xl = X, the dimensional form of the forcing function [13] is 2yL cos 0 ~b - g sin a. [15] paX Its nondimensional counterpart follows from [5]. It is a2pg/lz Uo {2yL COS O/(apg) } - sin a [16] X which suggests the following expressions for the applicable ...","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":39579,"name":"Colloid and Interface Chemistry","url":"https://www.academia.edu/Documents/in/Colloid_and_Interface_Chemistry"},{"id":86034,"name":"Mathematical Analysis","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":871208,"name":"Newtonian Fluid","url":"https://www.academia.edu/Documents/in/Newtonian_Fluid"}],"urls":[{"id":39935287,"url":"https://doi.org/10.1016/0021-9797(79)90347-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow"><img alt="Research paper thumbnail of Skin Friction in Unsteady Laminar Pipe Flow" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow">Skin Friction in Unsteady Laminar Pipe Flow</a></div><div class="wp-workCard_item"><span>Journal of the Hydraulics Division</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633735]").text(description); $(".js-view-count[data-work-id=115633735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633735,"title":"Skin Friction in Unsteady Laminar Pipe Flow","translated_title":"","metadata":{"abstract":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","publisher":"American Society of Civil Engineers","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Journal of the Hydraulics Division"},"translated_abstract":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","internal_url":"https://www.academia.edu/115633735/Skin_Friction_in_Unsteady_Laminar_Pipe_Flow","translated_internal_url":"","created_at":"2024-03-01T04:59:14.013-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Skin_Friction_in_Unsteady_Laminar_Pipe_Flow","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The routine approach toward solving problems of unsteady pipe flow utilizes either the concept of a constant friction coefficient, or the model of quasi-steady flow. These two hypotheses are tested using exact analytical solutions and corroborating experimental evidence for two cases of time-dependent laminar pipe flow: (1) The establishment of Poiseuille flow: and (2) U-tube oscillations. It is shown that neither of the simplifying assumptions corresponds to reality, and that both tend to severely underestimate the frictional resistance. It is suggested that similar conclusions may also pertain to unsteady turbulent pipe flow.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2550,"name":"Hydraulics","url":"https://www.academia.edu/Documents/in/Hydraulics"},{"id":53132,"name":"Analysis","url":"https://www.academia.edu/Documents/in/Analysis"},{"id":113500,"name":"Hydraulic Engineering","url":"https://www.academia.edu/Documents/in/Hydraulic_Engineering"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":1008397,"name":"Coefficients","url":"https://www.academia.edu/Documents/in/Coefficients"}],"urls":[{"id":39935286,"url":"https://doi.org/10.1061/jyceaj.0004472"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_"><img alt="Research paper thumbnail of Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_">Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)</a></div><div class="wp-workCard_item"><span>Journal of Engineering Mechanics-asce</span><span>, Aug 1, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633734]").text(description); $(".js-view-count[data-work-id=115633734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633734,"title":"Closure to “ Laminar Flow in Conduits of Unconventional Shape ” by Mario F. Letelier and Hans J. Leutheusser (June, 1985, Vol. 110, No. 6)","translated_title":"","metadata":{"publisher":"American Society of Civil Engineers","publication_date":{"day":1,"month":8,"year":1987,"errors":{}},"publication_name":"Journal of Engineering Mechanics-asce"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633734/Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_","translated_internal_url":"","created_at":"2024-03-01T04:59:13.804-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Closure_to_Laminar_Flow_in_Conduits_of_Unconventional_Shape_by_Mario_F_Letelier_and_Hans_J_Leutheusser_June_1985_Vol_110_No_6_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":1079,"name":"Engineering Mechanics","url":"https://www.academia.edu/Documents/in/Engineering_Mechanics"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"}],"urls":[{"id":39935285,"url":"https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1254)"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation"><img alt="Research paper thumbnail of Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation">Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation</a></div><div class="wp-workCard_item"><span>European Journal of Engineering Education</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633733]").text(description); $(".js-view-count[data-work-id=115633733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633733,"title":"Engineering Education in Chile: Tradition, Trends and Prospects of Cooperation","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"European Journal of Engineering Education"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633733/Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation","translated_internal_url":"","created_at":"2024-03-01T04:59:13.554-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_Education_in_Chile_Tradition_Trends_and_Prospects_of_Cooperation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":1736,"name":"Science Education","url":"https://www.academia.edu/Documents/in/Science_Education"},{"id":2023,"name":"Engineering Education","url":"https://www.academia.edu/Documents/in/Engineering_Education"},{"id":2621,"name":"Higher Education","url":"https://www.academia.edu/Documents/in/Higher_Education"},{"id":82713,"name":"Engineering Ethics","url":"https://www.academia.edu/Documents/in/Engineering_Ethics"},{"id":89488,"name":"Teaching Methods","url":"https://www.academia.edu/Documents/in/Teaching_Methods"},{"id":578100,"name":"Developing nations","url":"https://www.academia.edu/Documents/in/Developing_nations"}],"urls":[{"id":39935284,"url":"https://doi.org/10.1080/03043799308923254"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids"><img alt="Research paper thumbnail of Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids">Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is present...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633732]").text(description); $(".js-view-count[data-work-id=115633732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633732,"title":"Friction Effects in Pipe Flow of Phan-Thien-Tanner Fluids","translated_title":"","metadata":{"abstract":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","publication_date":{"day":5,"month":11,"year":2000,"errors":{}}},"translated_abstract":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","internal_url":"https://www.academia.edu/115633732/Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids","translated_internal_url":"","created_at":"2024-03-01T04:59:13.350-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Friction_Effects_in_Pipe_Flow_of_Phan_Thien_Tanner_Fluids","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"An analytical study of the friction law for rectilinear flow a Phan-Thien-Tanner fluid is presented. The flow is assumed steady and the pipe circular. The equations of motion are solved and the velocity, rate of flow, and friction factor are determined. Friction effects are related to the Reynolds number and to other flow parameters, such as the Deborah number.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":188256,"name":"Pipe Flow","url":"https://www.academia.edu/Documents/in/Pipe_Flow"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":2003310,"name":"Friction Factor","url":"https://www.academia.edu/Documents/in/Friction_Factor"},{"id":3910042,"name":"Deborah number","url":"https://www.academia.edu/Documents/in/Deborah_number"}],"urls":[{"id":39935283,"url":"https://doi.org/10.1115/imece2000-1939"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux"><img alt="Research paper thumbnail of Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux">Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633731]").text(description); $(".js-view-count[data-work-id=115633731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633731,"title":"Interplay of Viscoelasticity and Inertia: Heat Transfer Asymptote in Laminar Tube Flow with Constant Boundary Heat Flux","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633731/Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux","translated_internal_url":"","created_at":"2024-03-01T04:59:13.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Interplay_of_Viscoelasticity_and_Inertia_Heat_Transfer_Asymptote_in_Laminar_Tube_Flow_with_Constant_Boundary_Heat_Flux","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":176527,"name":"Laminar Flow","url":"https://www.academia.edu/Documents/in/Laminar_Flow"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"}],"urls":[{"id":39935282,"url":"https://biust.pure.elsevier.com/en/publications/interplay-of-viscoelasticity-and-inertia-heat-transfer-asymptote-"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente"><img alt="Research paper thumbnail of Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente" class="work-thumbnail" src="https://attachments.academia-assets.com/111986279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente">Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente</a></div><div class="wp-workCard_item"><span>Anales de la Universidad de Chile</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d1f85b454c0f31014c9c99df2c801992" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":111986279,"asset_id":115633730,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633730]").text(description); $(".js-view-count[data-work-id=115633730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d1f85b454c0f31014c9c99df2c801992" } } $('.js-work-strip[data-work-id=115633730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633730,"title":"Ley de fricción y ecuación unidimensional de movimiento para flujo laminar impermanente","translated_title":"","metadata":{"publisher":"University of Chile","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Anales de la Universidad de Chile"},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633730/Ley_de_fricci%C3%B3n_y_ecuaci%C3%B3n_unidimensional_de_movimiento_para_flujo_laminar_impermanente","translated_internal_url":"","created_at":"2024-03-01T04:59:12.840-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":111986279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986279/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986279/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301768=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Wg1UPqbxfbsWMxuZUHAVy-zyd4iiCbRjuF0UF~vOj~WMAanHZpC4AHk4~UEdhEoT2GTyQlxKNxNjFb7l-jTa6NIEVmRh7KSrOAEbKdL8iW4YA6vQuAzM2y~DtNs-OZMy5RCpe85f-ho0fZbu33M9sppla6SR-SFa-1T7AOGo2O8GNwKM272NOwgZqTIyHaGb~IcH6gkB1AnqRSngQI~-tD7PB4eMeL6hOVsvYh~UUtckqVub~ZPCW7JaVt7A85sGYXVv2KL8Ldq~kIJoPLtifxeLckKyrus9qWkCBoe8kLt8st1v4SBZN1tiZenGoE3pt71xgjeHa5-TpvSSDpHUeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ley_de_fricción_y_ecuación_unidimensional_de_movimiento_para_flujo_laminar_impermanente","translated_slug":"","page_count":13,"language":"es","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[{"id":111986279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986279/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986279/download_file?st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&st=MTczNjI1Nzg5Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986279/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301768=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Wg1UPqbxfbsWMxuZUHAVy-zyd4iiCbRjuF0UF~vOj~WMAanHZpC4AHk4~UEdhEoT2GTyQlxKNxNjFb7l-jTa6NIEVmRh7KSrOAEbKdL8iW4YA6vQuAzM2y~DtNs-OZMy5RCpe85f-ho0fZbu33M9sppla6SR-SFa-1T7AOGo2O8GNwKM272NOwgZqTIyHaGb~IcH6gkB1AnqRSngQI~-tD7PB4eMeL6hOVsvYh~UUtckqVub~ZPCW7JaVt7A85sGYXVv2KL8Ldq~kIJoPLtifxeLckKyrus9qWkCBoe8kLt8st1v4SBZN1tiZenGoE3pt71xgjeHa5-TpvSSDpHUeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":111986278,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111986278/thumbnails/1.jpg","file_name":"publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf","download_url":"https://www.academia.edu/attachments/111986278/download_file","bulk_download_file_name":"Ley_de_friccion_y_ecuacion_unidimensiona.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111986278/publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06.pdf_filename_UTF-8publicadoranuc_2C_Journal_manager_2C_Anales_1985_8_06-libre.pdf?1709301770=\u0026response-content-disposition=attachment%3B+filename%3DLey_de_friccion_y_ecuacion_unidimensiona.pdf\u0026Expires=1736261497\u0026Signature=Cw1J9IxpPvCj9jRKU1qppDpKw20mcQu6e2oTdh5KFC1vbMSM~R5-OUDBjZZ7OYThiZsIBURMd41a39jOAzRecfTZe1uIlSHYfRAc~7KL-u6eVqYDhYuGDlTDsJPCBTCnrS2jzRjphVr2GbDOOWktCaDk1Ii1A~HXS6EVyJv0dxji36FjnuLa55zXt3~NEUMrdHWIZHsqwA01MhQ73fbuyGFFutr9srffHeQe0Z5StjNqGUpn8IlqOZE7AuArQ53OdjSoB5DGzwzSt-jNJE9wtOF4abxOFbwqjd9BEtXJ8nFStGWqSwQ4foSEPQbYKf1fXhyNcQpAMMuobtYM~SJ02Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":39935281,"url":"https://revistaei.uchile.cl/index.php/ANUC/article/download/22896/24243"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes"><img alt="Research paper thumbnail of Some applications of extended calculus to non-Newtonian flow in pipes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes">Some applications of extended calculus to non-Newtonian flow in pipes</a></div><div class="wp-workCard_item"><span>Journal of The Brazilian Society of Mechanical Sciences and Engineering</span><span>, Jan 16, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633729]").text(description); $(".js-view-count[data-work-id=115633729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633729,"title":"Some applications of extended calculus to non-Newtonian flow in pipes","translated_title":"","metadata":{"abstract":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","publisher":"Springer Science+Business Media","publication_date":{"day":16,"month":1,"year":2021,"errors":{}},"publication_name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering"},"translated_abstract":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","internal_url":"https://www.academia.edu/115633729/Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes","translated_internal_url":"","created_at":"2024-03-01T04:59:12.582-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_applications_of_extended_calculus_to_non_Newtonian_flow_in_pipes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Fractional and non-Newtonian calculus are an extension of classical calculus, usually known for providing new mathematical tools useful in science, developed from alternative approaches. Among fractional calculus, Riemann-Liouville and Caputo fractional derivatives have been the most popular operators employed in spite of their complexity. In this work, two novel and compact methods are presented as an alternative to the fractional calculation options. To test the feasibility of proposed methods, three classical fluid mechanic problems are studied: the flow through circular pipe, parallel plates and annulus, by modifying the constitutive equations into their fractional equivalent. On the other hand, a new weighted non-Newtonian derivative is proposed to extend the possibilities to model fluid viscosity based on the influence of nonadjacent layers, using the pipe flow as an example. Results show that proposed fractional models can describe shear-thinning and shear-thickening behaviors depending on the fractional order of the derivative, while the weighted derivative allows to expand the way viscosity is modeled, demonstrating the suitability of these approaches to describe physical problems.","owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":327041,"name":"Fractional Calculus","url":"https://www.academia.edu/Documents/in/Fractional_Calculus"},{"id":371994,"name":"Dental Calculus","url":"https://www.academia.edu/Documents/in/Dental_Calculus"},{"id":871208,"name":"Newtonian Fluid","url":"https://www.academia.edu/Documents/in/Newtonian_Fluid"}],"urls":[{"id":39935280,"url":"https://doi.org/10.1007/s40430-021-02802-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115633728"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016"><img alt="Research paper thumbnail of Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016">Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115633728"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115633728"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115633728; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115633728]").text(description); $(".js-view-count[data-work-id=115633728]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115633728; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115633728']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 115633728, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115633728]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115633728,"title":"Effect of elasticity on viscoplastic flow: ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/115633728/Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016","translated_internal_url":"","created_at":"2024-03-01T04:59:12.363-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46747754,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_elasticity_on_viscoplastic_flow_ASME_2016_International_Mechanical_Engineering_Congress_and_Exposition_IMECE_2016","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":46747754,"first_name":"Mario","middle_initials":null,"last_name":"Letelier","page_name":"MarioLetelier","domain_name":"independent","created_at":"2016-04-10T06:36:08.757-07:00","display_name":"Mario Letelier","url":"https://independent.academia.edu/MarioLetelier"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"}],"urls":[{"id":39935279,"url":"https://udesantiago.pure.elsevier.com/en/publications/effect-of-elasticity-on-viscoplastic-flow-asme-2016-international"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "b524a817b566bca81dad8547fb4d784af229e0eb118f2437a32d9b1a6cbd641c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="la7SyC1Ykj6zRA0+tYcXv7gx8hPFHpmttfK8IFvdPnjmVzhznaKKOxvXIUHMHTX591Ig8gEbp1XL1HzeCej0Rw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/MarioLetelier" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="1fEt2PzqeOG+dN/0cxlBTEQ1GWPhCa0QeKVGw5PO8B2mCMdjTBBg5Bbn84sKg2MKC1bLgiUMk+gGg4Y9wfs6Ig==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>