CINXE.COM

Ramsey interferometry - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ramsey interferometry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d4108b71-f4fd-45cd-9b7b-547aaa6af4a0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ramsey_interferometry","wgTitle":"Ramsey interferometry","wgCurRevisionId":1223943841,"wgRevisionId":1223943841,"wgArticleId":41740230,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All Wikipedia articles needing clarification","Wikipedia articles needing clarification from April 2024","Articles with short description","Short description matches Wikidata","Interferometers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Ramsey_interferometry","wgRelevantArticleId":41740230,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[] ,"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q17163407","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ramsey interferometry - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ramsey_interferometry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ramsey_interferometry&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ramsey_interferometry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ramsey_interferometry rootpage-Ramsey_interferometry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ramsey+interferometry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ramsey+interferometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ramsey+interferometry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ramsey+interferometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_principles" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Physical_principles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Physical principles</span> </div> </a> <button aria-controls="toc-Physical_principles-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Physical principles subsection</span> </button> <ul id="toc-Physical_principles-sublist" class="vector-toc-list"> <li id="toc-The_Rabi_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Rabi_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The Rabi method</span> </div> </a> <ul id="toc-The_Rabi_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Ramsey_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Ramsey_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>The Ramsey method</span> </div> </a> <ul id="toc-The_Ramsey_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications_of_the_Ramsey_interferometer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications_of_the_Ramsey_interferometer"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Applications of the Ramsey interferometer</span> </div> </a> <button aria-controls="toc-Applications_of_the_Ramsey_interferometer-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications of the Ramsey interferometer subsection</span> </button> <ul id="toc-Applications_of_the_Ramsey_interferometer-sublist" class="vector-toc-list"> <li id="toc-Atomic_clocks_and_the_SI_definition_of_the_second" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atomic_clocks_and_the_SI_definition_of_the_second"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Atomic clocks and the SI definition of the second</span> </div> </a> <ul id="toc-Atomic_clocks_and_the_SI_definition_of_the_second-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Experiments_of_Serge_Haroche" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Experiments_of_Serge_Haroche"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Experiments of Serge Haroche</span> </div> </a> <ul id="toc-Experiments_of_Serge_Haroche-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_Ramsey–Bordé_interferometer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_Ramsey–Bordé_interferometer"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>The Ramsey–Bordé interferometer</span> </div> </a> <button aria-controls="toc-The_Ramsey–Bordé_interferometer-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle The Ramsey–Bordé interferometer subsection</span> </button> <ul id="toc-The_Ramsey–Bordé_interferometer-sublist" class="vector-toc-list"> <li id="toc-Four_traveling-wave_interaction_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Four_traveling-wave_interaction_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Four traveling-wave interaction geometry</span> </div> </a> <ul id="toc-Four_traveling-wave_interaction_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interferometer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interferometer"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Interferometer</span> </div> </a> <ul id="toc-Interferometer-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ramsey interferometry</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%AF%D8%A7%D8%AE%D9%84%E2%80%8C%D8%B3%D9%86%D8%AC%DB%8C_%D8%B1%D9%85%D8%B2%DB%8C" title="تداخل‌سنجی رمزی – Persian" lang="fa" hreflang="fa" data-title="تداخل‌سنجی رمزی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17163407#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ramsey_interferometry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ramsey_interferometry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ramsey_interferometry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ramsey_interferometry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ramsey_interferometry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ramsey_interferometry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;oldid=1223943841" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ramsey_interferometry&amp;id=1223943841&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRamsey_interferometry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRamsey_interferometry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ramsey_interferometry&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ramsey_interferometry&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q17163407" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Form of particle interferometry</div> <p><b>Ramsey interferometry</b>, also known as the <b>separated oscillating fields method</b>,<sup id="cite_ref-Ramsey_Paper_1-0" class="reference"><a href="#cite_note-Ramsey_Paper-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> is a form of particle interferometry that uses the phenomenon of <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">magnetic resonance</a> to measure transition frequencies of particles. It was developed in 1949 by <a href="/wiki/Norman_Ramsey_Jr." title="Norman Ramsey Jr.">Norman Ramsey</a>,<sup id="cite_ref-Bransden_2-0" class="reference"><a href="#cite_note-Bransden-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> who built upon the ideas of his mentor, <a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">Isidor Isaac Rabi</a>, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration.<sup id="cite_ref-Prob3_3-0" class="reference"><a href="#cite_note-Prob3-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> A more modern method, known as <b>Ramsey–Bordé interferometry</b> uses a Ramsey configuration and was developed by French physicist <a href="/wiki/Christian_Bord%C3%A9" title="Christian Bordé">Christian Bordé</a> and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.<sup id="cite_ref-Email_4-0" class="reference"><a href="#cite_note-Email-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BordePaper1_5-0" class="reference"><a href="#cite_note-BordePaper1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A main goal of precision spectroscopy of a two-level atom is to measure the absorption frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> between the ground state <span class="texhtml"><span class="nowrap">&#124;↓&#x27e9;</span></span> and excited state <span class="texhtml"><span class="nowrap">&#124;↑&#x27e9;</span></span> of the atom. One way to accomplish this measurement is to apply an external oscillating electromagnetic field at frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and then find the difference <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> (also known as the detuning) between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta =\omega -\omega _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta =\omega -\omega _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9f4c48c5e55d96a29ef033ccf5225918b1a7fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.63ex; height:2.843ex;" alt="{\displaystyle (\Delta =\omega -\omega _{0})}"></span> by measuring the probability to transfer <span class="texhtml"><span class="nowrap">&#124;↓&#x27e9;</span></span> to <span class="texhtml"><span class="nowrap">&#124;↑&#x27e9;</span></span>. This probability can be maximized when <span class="texhtml">Δ = 0</span>, when the driving field is in resonance with the transition frequency of the atom. Looking at this probability of transition as a function of the detuning <span class="texhtml"><i>P</i>(Δ)</span>, the narrower the peak around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf057da503668fa097746562ae91517330ce5b58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.197ex; height:2.176ex;" alt="{\displaystyle \Delta =0}"></span>, the more precision there is. If the peak were very broad about <span class="texhtml">Δ = 0</span>, then it would be difficult to distinguish precisely where <span class="texhtml">Δ = 0</span> is located due to many values of <span class="texhtml">Δ</span> having close to the same probability.<sup id="cite_ref-Prob3_3-1" class="reference"><a href="#cite_note-Prob3-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Physical_principles">Physical principles</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=2" title="Edit section: Physical principles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="The_Rabi_method">The Rabi method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=3" title="Edit section: The Rabi method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">Nuclear magnetic resonance</a></div> <p>A simplified version of the Rabi method consists of a beam of atoms, all having the same speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> and the same direction, sent through one interaction zone of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>. The atoms are two-level atoms with a transition energy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88965d38ca9b0a66958bffaacea92f2d33741cf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.807ex; height:2.509ex;" alt="{\displaystyle \hbar \omega _{0}}"></span> (this is defined by applying a field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} _{\|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} _{\|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8610537fd9e186168610ead36e7ef81458642b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.955ex; height:3.009ex;" alt="{\displaystyle \mathbf {B} _{\|}}"></span> in an excitation direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/722665b45e05afe79f4395a3de0237d8ce856273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.176ex;" alt="{\displaystyle {\hat {z}}}"></span>, and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}=\gamma |\mathbf {B} _{\|}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}=\gamma |\mathbf {B} _{\|}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97b8d624d8aed1579b835a376383ae9181610b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.11ex; height:3.176ex;" alt="{\displaystyle \omega _{0}=\gamma |\mathbf {B} _{\|}|}"></span>, the <a href="/wiki/Larmor_precession" title="Larmor precession">Larmor frequency</a>), and with an interaction time of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =L/v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =L/v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a935151c453704c1b66dd2941cc25543626b5ced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.173ex; height:2.843ex;" alt="{\displaystyle \tau =L/v}"></span> in the interaction zone. In the interaction zone, a monochromatic oscillating magnetic field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} _{\perp }\cos(\omega t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} _{\perp }\cos(\omega t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b11a8f2783557aad89e911e58129da6438a4e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.005ex; height:2.843ex;" alt="{\displaystyle \mathbf {B} _{\perp }\cos(\omega t)}"></span> is applied perpendicular to the excitation direction, and this will lead to <a href="/wiki/Rabi_cycle" title="Rabi cycle">Rabi oscillations</a> between <span class="texhtml"><span class="nowrap">&#124;↓&#x27e9;</span></span> and <span class="texhtml"><span class="nowrap">&#124;↑&#x27e9;</span></span> at a frequency of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{\perp }=\gamma |\mathbf {B} _{\perp }|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{\perp }=\gamma |\mathbf {B} _{\perp }|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19dd88f17fe55af97c6cdd1bb570d30d37aaae66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.255ex; height:2.843ex;" alt="{\displaystyle \Omega _{\perp }=\gamma |\mathbf {B} _{\perp }|}"></span>.<sup id="cite_ref-Prob3_3-2" class="reference"><a href="#cite_note-Prob3-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-notes_6-0" class="reference"><a href="#cite_note-notes-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Hamiltonian in the rotating frame (including the <a href="/wiki/Rotating-wave_approximation" title="Rotating-wave approximation">rotating-wave approximation</a>) is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}=-{\frac {\hbar \Delta }{2}}{\hat {\sigma _{z}}}+{\frac {\hbar \Omega _{\perp }}{2}}{\hat {\sigma _{x}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}=-{\frac {\hbar \Delta }{2}}{\hat {\sigma _{z}}}+{\frac {\hbar \Omega _{\perp }}{2}}{\hat {\sigma _{x}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30e99bbf7fc9ef216998beabfeb526a47508120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.696ex; height:5.343ex;" alt="{\displaystyle {\hat {H}}=-{\frac {\hbar \Delta }{2}}{\hat {\sigma _{z}}}+{\frac {\hbar \Omega _{\perp }}{2}}{\hat {\sigma _{x}}}.}"></span></dd></dl> <p>The probability of transition from <span class="texhtml"><span class="nowrap">&#124;↓&#x27e9;</span></span> and <span class="texhtml"><span class="nowrap">&#124;↑&#x27e9;</span></span> can be found from this Hamiltonian and is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\Delta ,v,L,\Omega _{\perp })={\frac {1}{1+\left({\frac {\Delta }{\Omega _{\perp }}}\right)^{2}}}\sin ^{2}\left({\frac {L}{2v}}{\sqrt {\Omega _{\perp }^{2}+\Delta ^{2}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>L</mi> <mo>,</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\Delta ,v,L,\Omega _{\perp })={\frac {1}{1+\left({\frac {\Delta }{\Omega _{\perp }}}\right)^{2}}}\sin ^{2}\left({\frac {L}{2v}}{\sqrt {\Omega _{\perp }^{2}+\Delta ^{2}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4fc67bfb20558e3f27d064dff83c2d04cd1770" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:52.318ex; height:8.676ex;" alt="{\displaystyle P(\Delta ,v,L,\Omega _{\perp })={\frac {1}{1+\left({\frac {\Delta }{\Omega _{\perp }}}\right)^{2}}}\sin ^{2}\left({\frac {L}{2v}}{\sqrt {\Omega _{\perp }^{2}+\Delta ^{2}}}\right).}"></span></dd></dl> <p>This probability will be at its maximum when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{\perp }\tau =\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{\perp }\tau =\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6915bee7a8750351660aef714b28a103e130d51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.821ex; height:2.509ex;" alt="{\displaystyle \Omega _{\perp }\tau =\pi }"></span>. The line width <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> of this <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\Delta ,\Omega _{\perp })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>,</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\Delta ,\Omega _{\perp })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6df2740326ab0f8fd72cd00cb6a17c5d1737d3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.713ex; height:2.843ex;" alt="{\displaystyle P(\Delta ,\Omega _{\perp })}"></span> vs. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta /\Omega _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta /\Omega _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fcc75560263d7b60a8bc61e87c05df4c0f0b9b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.287ex; height:2.843ex;" alt="{\displaystyle \Delta /\Omega _{\perp }}"></span> determines the precision of the measurement. Because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \sim \Omega _{\perp }\sim \pi /\tau \sim \pi v/L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x223C;<!-- ∼ --></mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \sim \Omega _{\perp }\sim \pi /\tau \sim \pi v/L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6931168bf47d58898bad0e6fca23b9f03866666f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.434ex; height:2.843ex;" alt="{\displaystyle \delta \sim \Omega _{\perp }\sim \pi /\tau \sim \pi v/L}"></span>, by increasing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>, and correspondingly decreasing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2d4f1a5a904fe4c35b4874689edfbadbde549b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Omega _{\perp }}"></span> so that their product is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>, the precision of the measurement increases; i.e. the peak of the graph becomes narrower. </p><p>In reality, however, inhomogeneities such as the atoms having a distribution of velocities or there being an inhomogeneous <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/714d6b7c294f6c1386d69f58c941755fffe6499c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.412ex; height:2.509ex;" alt="{\displaystyle \mathbf {B} _{\perp }}"></span> will cause the line shape to broaden and lead to decreased precision. Having a distribution of velocities means having a distribution of interaction times, and therefore there would be many angles through which state vectors would flip on the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a>. There would be an optimal length in the Rabi setup that would give the greatest precision, but it would not be possible to increase the length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> infinitely and expect ever increasing precision, as was the case in the perfect, simple Rabi model.<sup id="cite_ref-Prob3_3-3" class="reference"><a href="#cite_note-Prob3-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_Ramsey_method">The Ramsey method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=4" title="Edit section: The Ramsey method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mplwp_ramsey_fringes_monochromatic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Mplwp_ramsey_fringes_monochromatic.svg/220px-Mplwp_ramsey_fringes_monochromatic.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Mplwp_ramsey_fringes_monochromatic.svg/330px-Mplwp_ramsey_fringes_monochromatic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Mplwp_ramsey_fringes_monochromatic.svg/440px-Mplwp_ramsey_fringes_monochromatic.svg.png 2x" data-file-width="600" data-file-height="400" /></a><figcaption>Ramsey fringes</figcaption></figure> <p>Ramsey improved upon Rabi's method by splitting the one interaction zone into two very short interaction zones, each applying a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> pulse. The two interaction zones are separated by a much longer non-interaction zone. By making the two interaction zones very short, the atoms spend a much shorter time in the presence of the external electromagnetic fields than they would in the Rabi model. This is advantageous because the longer the atoms are in the interaction zone, the more inhomogeneities (such as an inhomogeneous field) lead to reduced precision in determining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span>. The non-interaction zone in Ramsey's model can be made much longer than the one interaction zone in Rabi's method because there is no perpendicular field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/714d6b7c294f6c1386d69f58c941755fffe6499c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.412ex; height:2.509ex;" alt="{\displaystyle \mathbf {B} _{\perp }}"></span> being applied in the non-interaction zone (although there is still <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} _{\|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} _{\|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8610537fd9e186168610ead36e7ef81458642b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.955ex; height:3.009ex;" alt="{\displaystyle \mathbf {B} _{\|}}"></span>).<sup id="cite_ref-Bransden_2-1" class="reference"><a href="#cite_note-Bransden-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></span> </p><p>The primary improvement from the Ramsey method is because the main peak resonance frequency represents an average over the frequencies (and inhomogeneities) in the non-interaction region between the cavities, whereas with the Rabi method the inhomogeneities in the interaction region lead to line broadening. An additional advantage of the Ramsey method for microwave or optical transitions is that the non-interaction region can be made much longer than an interaction region with the Rabi method, resulting in narrower lines. </p><p>The Hamiltonian in the rotating frame for the two interaction zones is the same for that of the Rabi method, and in the non-interaction zone the Hamiltonian is only the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\sigma _{z}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\sigma _{z}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6041c36e1b641349c378b4a2f0436e64076da8b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.329ex; height:2.509ex;" alt="{\displaystyle {\hat {\sigma _{z}}}}"></span> term. First a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> pulse is applied to atoms in the ground state, whereupon the atoms reach the non-interaction zone, and the spins precess about the <i>z</i>&#160;axis for time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>. Another <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> pulse is applied, and the probability measured—practically this experiment must be done many times, because one measurement will not be enough to determine the probability of measuring any value (see the Bloch sphere description below). By applying this evolution to atoms of one velocity, the probability to find the atom in the excited state as a function of the detuning and time of flight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> in the non-interaction zone is (taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Delta |\ll \Omega _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x226A;<!-- ≪ --></mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Delta |\ll \Omega _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a478b3627a85888ca684356956efc8790c7f2cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.033ex; height:2.843ex;" alt="{\displaystyle |\Delta |\ll \Omega _{\perp }}"></span> here) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(T,\Delta )=\cos ^{2}\left({\frac {\Delta T}{2}}\right)=\cos ^{2}\left({\frac {\Delta L}{2v}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo>,</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>T</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(T,\Delta )=\cos ^{2}\left({\frac {\Delta T}{2}}\right)=\cos ^{2}\left({\frac {\Delta L}{2v}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca40c44c052dcf925ee8d903c12a6c01d9ce926c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.941ex; height:6.176ex;" alt="{\displaystyle P(T,\Delta )=\cos ^{2}\left({\frac {\Delta T}{2}}\right)=\cos ^{2}\left({\frac {\Delta L}{2v}}\right).}"></span></dd></dl> <p>This probability function describes the well-known <b>Ramsey fringes</b>. </p><p>If there is a distribution of velocities and a "hard pulse" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(|\Delta |\ll \Omega _{\perp }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x226A;<!-- ≪ --></mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22A5;<!-- ⊥ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(|\Delta |\ll \Omega _{\perp }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2eff444bcf3481384dcde071f4ed00ff19e8fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.842ex; height:2.843ex;" alt="{\displaystyle \left(|\Delta |\ll \Omega _{\perp }\right)}"></span> is applied in the interaction zones so that all of the spins of the atoms are rotated <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> on the Bloch sphere regardless of whether or not they all were excited to exactly the same resonance frequency, the Ramsey fringes will look very similar to those discussed above. If a hard pulse is not applied, then the variation in interaction times must be taken into account. What results are Ramsey fringes in an envelope in the shape of the Rabi method probability for atoms of one velocity. The line width <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> of the fringes in this case is what determines the precision with which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> can be determined and is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \sim {\frac {1}{T}}\sim {\frac {v}{L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>L</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \sim {\frac {1}{T}}\sim {\frac {v}{L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b320b76ba8617b1894b0a35c9615518c4cae6cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.784ex; height:5.176ex;" alt="{\displaystyle \delta \sim {\frac {1}{T}}\sim {\frac {v}{L}}.}"></span></dd></dl> <p>By increasing the time of flight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> in the non-interaction zone, or equivalently increasing the length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> of the non-interaction zone, the line width can be substantially improved, by a factor of 10 or more, over that of other methods.<sup id="cite_ref-Ramsey_Paper_1-1" class="reference"><a href="#cite_note-Ramsey_Paper-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Because Ramsey's model allows a longer observation time, one can more precisely determine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span>. This is a statement of the time-energy uncertainty principle: the larger the uncertainty in the time domain, the smaller the uncertainty in the energy domain, or equivalently the frequency domain. Thought of another way, if two waves of almost exactly the same frequency are superimposed upon each other, then it will be impossible to distinguish them if the resolution of our eyes is larger than the difference between the two waves. Only after a long period of time will the difference between two waves become large enough to differentiate the two.<sup id="cite_ref-Prob3_3-4" class="reference"><a href="#cite_note-Prob3-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Early Ramsey interferometers used two interaction zones separated in space, but it is also possible to use two pulses separated in time, as long as the pulses are coherent. In the case of time-separated pulses, the longer the time between pulses, the more precise the measurement.<sup id="cite_ref-Bransden_2-2" class="reference"><a href="#cite_note-Bransden-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications_of_the_Ramsey_interferometer">Applications of the Ramsey interferometer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=5" title="Edit section: Applications of the Ramsey interferometer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Atomic_clocks_and_the_SI_definition_of_the_second">Atomic clocks and the SI definition of the second</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=6" title="Edit section: Atomic clocks and the SI definition of the second"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Atomic_clock" title="Atomic clock">Atomic clock</a></div> <p>An atomic clock is fundamentally an oscillator whose frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is matched to that of an atomic transition of a two-level atom, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span>. The oscillator is the parallel external electromagnetic field in the non-interaction zone of the Ramsey–Bordé interferometer. By measuring the transition rate from the excited to the ground state, one can tune the oscillator so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c93049cbc3eaea8d372ce40362944f1a8a67941" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.044ex; height:2.009ex;" alt="{\displaystyle \omega =\omega _{0}}"></span> by finding the frequency that yields the maximum transition rate. Once the oscillator is tuned, the number of oscillations of the oscillator can be counted electronically to give a certain time interval (e.g. the <a href="/wiki/Second#International_second" title="Second">SI second</a>, which is 9,192,631,770 periods of a cesium-133 <span class="nowrap">atom).<sup id="cite_ref-Bransden_2-3" class="reference"><a href="#cite_note-Bransden-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="Experiments_of_Serge_Haroche">Experiments of Serge Haroche</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=7" title="Edit section: Experiments of Serge Haroche"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Serge_Haroche" title="Serge Haroche">Serge Haroche</a> won the 2012 Nobel Prize in physics (with <a href="/wiki/David_J._Wineland" title="David J. Wineland">David J. Wineland</a><sup id="cite_ref-DJ_Wineland_7-0" class="reference"><a href="#cite_note-DJ_Wineland-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>) for work involving cavity quantum electrodynamics (QED) in which the research group used microwave-frequency photons to verify the quantum description of electromagnetic fields.<sup id="cite_ref-Prob7_8-0" class="reference"><a href="#cite_note-Prob7-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Essential to their experiments was the Ramsey interferometer, which they used to demonstrate the transfer of quantum coherence from one atom to another through interaction with a quantum mode in a cavity. The setup is similar to a regular Ramsey interferometer, with key differences being there is a quantum cavity in the non-interaction zone and the second interaction zone has its field phase shifted by some constant relative to the first interaction zone. </p><p>If one atom is sent into the setup in its ground state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\downarrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\downarrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2925aef9464d9e4f3393dc2a2e0e20dca0a2be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\downarrow \right\rangle }"></span> and passed through the first interaction zone, the state would become a superposition of ground and excited states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{\sqrt {2}}}\left(\left|\downarrow \right\rangle +\left|\uparrow \right\rangle \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mo stretchy="false">&#x2191;<!-- ↑ --></mo> <mo>&#x27E9;</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{\sqrt {2}}}\left(\left|\downarrow \right\rangle +\left|\uparrow \right\rangle \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eee7ee85adbd5f05300a87a938eb82e3c138478" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.492ex; height:4.176ex;" alt="{\textstyle {\frac {1}{\sqrt {2}}}\left(\left|\downarrow \right\rangle +\left|\uparrow \right\rangle \right)}"></span>, just as it would with a regular Ramsey interferometer. It then passes through the quantum cavity, which initially contains only a vacuum, and then is measured to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\downarrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\downarrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2925aef9464d9e4f3393dc2a2e0e20dca0a2be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\downarrow \right\rangle }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\uparrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2191;<!-- ↑ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\uparrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63af311377b1ea64952f5b9389a8a8f9d994a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\uparrow \right\rangle }"></span>. A second atom initially in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\downarrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\downarrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2925aef9464d9e4f3393dc2a2e0e20dca0a2be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\downarrow \right\rangle }"></span> is then sent through the cavity and then through the phase-shifted second Ramsey interaction zone. If the first atom is measured to be in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\downarrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\downarrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2925aef9464d9e4f3393dc2a2e0e20dca0a2be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\downarrow \right\rangle }"></span>, then the probability that the second atom is in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\uparrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2191;<!-- ↑ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\uparrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63af311377b1ea64952f5b9389a8a8f9d994a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\uparrow \right\rangle }"></span> depends on the amount of time between sending in the first and the second atoms. The fundamental reason for this is that if the first atom is measured to be in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\downarrow \right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mo>&#x27E9;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\downarrow \right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2925aef9464d9e4f3393dc2a2e0e20dca0a2be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle \left|\downarrow \right\rangle }"></span>, then there is a single mode of the electromagnetic field within the cavity that will subsequently affect the measurement outcome of the second atom.<sup id="cite_ref-Prob7_8-1" class="reference"><a href="#cite_note-Prob7-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="The_Ramsey–Bordé_interferometer"><span id="The_Ramsey.E2.80.93Bord.C3.A9_interferometer"></span>The Ramsey–Bordé interferometer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=8" title="Edit section: The Ramsey–Bordé interferometer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Early interpretations of atom interferometers, including those of Ramsey, used a classical description of the motion of the atoms, but Bordé introduced an interpretation that used a quantum description of the motion of the atoms. Strictly speaking, the Ramsey interferometer is not an interferometer in real space because the fringe patterns develop due to changes of the pseudo-spin of the atom in the internal atomic space. However, an argument could be made for the Ramsey interferometer to be an interferometer in real space by thinking about the atomic movement quantumly—the fringes can be thought of as the result of the momentum kick imparted to the atoms by the detuning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span>.<sup id="cite_ref-Email_4-1" class="reference"><a href="#cite_note-Email-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Four_traveling-wave_interaction_geometry">Four traveling-wave interaction geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=9" title="Edit section: Four traveling-wave interaction geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The problem that Bordé et al.<sup id="cite_ref-BordePaper1_5-1" class="reference"><a href="#cite_note-BordePaper1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> were trying to solve in 1984 was the averaging-out of Ramsey fringes of atoms whose transition frequencies were in the optical range. When this was the case, first-order Doppler shifts caused the Ramsey fringes to vanish because of the introduced spread in frequencies. Their solution was to have four Ramsey interaction zones instead of two, each zone consisting of a traveling wave but still applying a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> pulse. The first two waves both travel in the same direction, and the second two both travel in the direction opposite that of the first and second. There are two populations that result from the interaction of the atoms first with the first two zones and subsequently with the second two. The first population consists of atoms whose Doppler-induced de-phasing has cancelled, resulting in the familiar Ramsey fringes. The second consists of atoms whose Doppler-induced de-phasing has doubled and whose Ramsey fringes have completely disappeared (this is known as the "backward-stimulated photon echo", and its signal goes to zero after integrating over all velocities). </p><p>The interaction geometry of two pairs of counter-propagating waves that Bordé et al. introduced allows improved resolution of spectroscopy of frequencies in the optical range, such as those of Ca and I<sub>2</sub>.<sup id="cite_ref-BordePaper1_5-2" class="reference"><a href="#cite_note-BordePaper1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Interferometer">Interferometer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=10" title="Edit section: Interferometer"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Specifically, however, the Ramsey–Bordé interferometer is an atom interferometer that uses this four-traveling-wave geometry and the phenomenon of atomic recoil.<sup id="cite_ref-BordePaper2_9-0" class="reference"><a href="#cite_note-BordePaper2-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> In Bordé's notation, <span class="texhtml"><span class="nowrap">&#124;a&#x27e9;</span></span> is the ground state and <span class="texhtml"><span class="nowrap">&#124;b&#x27e9;</span></span> is the excited state. When an atom enters any of the four interaction zones, the wavefunction of the atom is divided into a superposition of two states, where each state is described by a specific energy and a specific momentum: <span class="texhtml"><span class="nowrap">&#124;α,m<sub>α</sub>&#x27e9;</span></span>, where α is either <i>a</i> or <i>b.</i> The quantum number <i>m</i><sub>α</sub> is the number of light momentum quanta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar |\mathbf {k} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar |\mathbf {k} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3992298b6257dec92e0010fcbf9c5691c0f0ebf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.011ex; height:2.843ex;" alt="{\displaystyle \hbar |\mathbf {k} |}"></span> that have been exchanged from the initial momentum, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea699cbc1f843f2e855577d57529430ec33a1ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle \mathbf {k} }"></span> is the wavevector of the laser. This superposition is due to the energy and momentum exchanged between the laser and the atom in the interaction zones during the absorption/emission processes. Because there is initially one atom-wave, after the atom has passed through three zones it is in a superposition of eight different states before it reaches the final interaction zone. </p><p>Looking at the probability to transition to <span class="texhtml"><span class="nowrap">&#124;b&#x27e9;</span></span> after the atom has passed through the fourth interaction zone, one would find dependence on the detuning in the form of Ramsey fringes, but due to the difference in two quantum mechanical paths. After integrating over all velocities, there are only two closed circuit quantum mechanical paths that do not integrate to zero, and those are the <span class="texhtml"><span class="nowrap">&#124;a, 0&#x27e9;</span></span> and <span class="texhtml"><span class="nowrap">&#124;b, –1&#x27e9;</span></span> path and the <span class="texhtml"><span class="nowrap">&#124;a, 2&#x27e9;</span></span> and <span class="texhtml"><span class="nowrap">&#124;b, 1&#x27e9;</span></span> path, which are the two paths that lead to intersections of the diagram at the fourth interaction zone. The atom-wave interferometer formed by either of these two paths leads to a phase difference that is dependent on both internal and external parameters, i.e. it is dependent on the physical distances by which the interaction zones are separated and on the internal state of the atom, as well as external applied fields. Another way to think about these interferometers in the traditional sense is that for each path there are two arms, each of which is denoted by the atomic state. </p><p>If an external field is applied to either rotate or accelerate the atoms, there will be a phase shift due to the induced de&#160;Broglie phase in each arm of the interferometer, and this will translate to a shift in the Ramsey fringes. In other words, the external field will change the momentum states, which will lead to a shift in the fringe pattern, which can be detected. As an example, apply the following Hamiltonian of an external field to rotate the atoms in the interferometer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}_{R}=-\mathbf {\Omega } \cdot \left({\hat {\mathbf {r} }}\times {\hat {\mathbf {p} }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}_{R}=-\mathbf {\Omega } \cdot \left({\hat {\mathbf {r} }}\times {\hat {\mathbf {p} }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e5969ba53e3ae538c4e7c7d7c8f0406e3eda341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.392ex; height:3.343ex;" alt="{\displaystyle {\hat {H}}_{R}=-\mathbf {\Omega } \cdot \left({\hat {\mathbf {r} }}\times {\hat {\mathbf {p} }}\right).}"></span></dd></dl> <p>This Hamiltonian leads to a time evolution operator to first order in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}_{R}=\exp \left({\frac {i}{\hbar }}\int dt'[\mathbf {\Omega } \times {\hat {\mathbf {r} }}(t')]\cdot [\mathbf {p_{0}} +m_{\alpha }\hbar \mathbf {k} ]\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mi>d</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </msub> </mrow> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">]</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}_{R}=\exp \left({\frac {i}{\hbar }}\int dt'[\mathbf {\Omega } \times {\hat {\mathbf {r} }}(t')]\cdot [\mathbf {p_{0}} +m_{\alpha }\hbar \mathbf {k} ]\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e96fe28e2cddadde81fa94b469bd3fad24e68fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:46.911ex; height:6.176ex;" alt="{\displaystyle {\hat {U}}_{R}=\exp \left({\frac {i}{\hbar }}\int dt&#039;[\mathbf {\Omega } \times {\hat {\mathbf {r} }}(t&#039;)]\cdot [\mathbf {p_{0}} +m_{\alpha }\hbar \mathbf {k} ]\right).}"></span></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Omega } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Omega } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bbc5c501b899d658ddaa37ae734fe62c91f6d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {\Omega } }"></span> is perpendicular to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathbf {r} }}(t')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathbf {r} }}(t')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2cdc47928e1a01d29928425506af5f7fc52e11c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.496ex; height:3.009ex;" alt="{\displaystyle {\hat {\mathbf {r} }}(t&#039;)}"></span>, then the round trip phase factor for one oscillation is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \left(2ik\Omega d^{2}/v\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>i</mi> <mi>k</mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \left(2ik\Omega d^{2}/v\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbac27152af75a9fe5d9bce16d5e725b065f8877" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.099ex; height:3.343ex;" alt="{\displaystyle \exp \left(2ik\Omega d^{2}/v\right)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> is the length of the entire apparatus from the first interaction zone to the final interaction zone. This will yield a probability such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\propto \cos \left[\left(\Delta +{\frac {2\pi \Omega d}{\lambda }}+\phi \right){\frac {2d}{v}}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x221D;<!-- ∝ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mi>d</mi> </mrow> <mi>&#x03BB;<!-- λ --></mi> </mfrac> </mrow> <mo>+</mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>d</mi> </mrow> <mi>v</mi> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\propto \cos \left[\left(\Delta +{\frac {2\pi \Omega d}{\lambda }}+\phi \right){\frac {2d}{v}}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ee89264a444d6ed187c3c2791b7235df21a8831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.306ex; height:6.176ex;" alt="{\displaystyle P\propto \cos \left[\left(\Delta +{\frac {2\pi \Omega d}{\lambda }}+\phi \right){\frac {2d}{v}}\right],}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is the wavelength of the atomic two-level transition. This probability represents a shift from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> by a factor of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta v={\frac {\Omega d}{\lambda }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mi>d</mi> </mrow> <mi>&#x03BB;<!-- λ --></mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta v={\frac {\Omega d}{\lambda }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb79d4941bbf6d9495a288cb32508ebdb4be76f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.652ex; height:5.509ex;" alt="{\displaystyle \delta v={\frac {\Omega d}{\lambda }}.}"></span></dd></dl> <p>For a calcium atom on the Earth's surface that rotates at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Omega =\pi /12{\text{ hours}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;hours</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Omega =\pi /12{\text{ hours}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f01394daf8340795f07b0648cb8c8f95b3171de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.752ex; height:2.843ex;" alt="{\textstyle \Omega =\pi /12{\text{ hours}}}"></span>, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2d=21{\text{ cm}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>d</mi> <mo>=</mo> <mn>21</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;cm</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2d=21{\text{ cm}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8961242ef03299664c0453c9e8d345647cc104a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.351ex; height:2.176ex;" alt="{\displaystyle 2d=21{\text{ cm}}}"></span> and looking at the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =657.3{\text{ nm}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mn>657.3</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;nm</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =657.3{\text{ nm}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b9847b18600e1bfe4464f418a1ed99e1d8ac4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.559ex; height:2.176ex;" alt="{\displaystyle \lambda =657.3{\text{ nm}}}"></span> transition, the shift in the fringes would be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta v\approx 12{\text{ Hz}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mi>v</mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>12</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Hz</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta v\approx 12{\text{ Hz}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42619a52aa5b44177376c481f2c86dfaa5baa68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.956ex; height:2.343ex;" alt="{\displaystyle \delta v\approx 12{\text{ Hz}}}"></span>, which is a measurable effect. </p><p>A similar effect can be calculated for the shift in the Ramsey fringes caused by the acceleration of gravity. The shifts in the fringes will reverse direction if the directions of the lasers in the interaction zones are reversed, and the shift will cancel if standing waves are used. </p><p>The Ramsey–Bordé interferometer provides the potential for improved frequency measurements in the presence of external fields or rotations.<sup id="cite_ref-BordePaper2_9-1" class="reference"><a href="#cite_note-BordePaper2-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ramsey_interferometry&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Ramsey_Paper-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ramsey_Paper_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ramsey_Paper_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFRamsey1950" class="citation journal cs1"><a href="/wiki/Norman_Foster_Ramsey,_Jr." class="mw-redirect" title="Norman Foster Ramsey, Jr.">Ramsey, Norman F.</a> (June 15, 1950). <a rel="nofollow" class="external text" href="http://link.aps.org/doi/10.1103/PhysRev.78.695">"A Molecular Beam Resonance Method with Separated Oscillating Fields"</a>. <i>Physical Review</i>. <b>78</b> (6): 695–699. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1950PhRv...78..695R">1950PhRv...78..695R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.78.695">10.1103/PhysRev.78.695</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 24,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=A+Molecular+Beam+Resonance+Method+with+Separated+Oscillating+Fields&amp;rft.volume=78&amp;rft.issue=6&amp;rft.pages=695-699&amp;rft.date=1950-06-15&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.78.695&amp;rft_id=info%3Abibcode%2F1950PhRv...78..695R&amp;rft.aulast=Ramsey&amp;rft.aufirst=Norman+F.&amp;rft_id=http%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRev.78.695&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARamsey+interferometry" class="Z3988"></span></span> </li> <li id="cite_note-Bransden-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bransden_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bransden_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bransden_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bransden_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBransdenJoachain2003" class="citation book cs1">Bransden, B. H.; <a href="/wiki/Charles_J._Joachain" title="Charles J. Joachain">Joachain, Charles Jean</a> (2003). <i>Physics of Atoms and Molecules</i>. Pearson Education (2nd&#160;ed.). <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-5823-5692-4" title="Special:BookSources/978-0-5823-5692-4"><bdi>978-0-5823-5692-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physics+of+Atoms+and+Molecules&amp;rft.series=Pearson+Education&amp;rft.edition=2nd&amp;rft.pub=Prentice+Hall&amp;rft.date=2003&amp;rft.isbn=978-0-5823-5692-4&amp;rft.aulast=Bransden&amp;rft.aufirst=B.+H.&amp;rft.au=Joachain%2C+Charles+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARamsey+interferometry" class="Z3988"></span></span> </li> <li id="cite_note-Prob3-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Prob3_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Prob3_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Prob3_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Prob3_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Prob3_3-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">Deutsch, Ivan. <i>Quantum Optics I, PHYS 566, at the University of New Mexico</i>. Problem Set 3 and Solutions. Fall 2013.</span> </li> <li id="cite_note-Email-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Email_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Email_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Bordé, Christian J. <span class="clarify-content" style="padding-left:0.1em; padding-right:0.1em; color:var(--color-subtle, #54595d); border:1px solid var(--border-color-subtle, #c8ccd1);">Email Correspondance</span><sup class="noprint Inline-Template Template-Clarify" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="This passage needs to be better explained. (April 2024)">clarify</span></a></i>&#93;</sup> on December 8, 2013.</span> </li> <li id="cite_note-BordePaper1-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-BordePaper1_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BordePaper1_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BordePaper1_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBordéSalomonAvrilliervan_Lerberghe1984" class="citation journal cs1">Bordé, Christian J.; Salomon, Ch.; Avrillier, S.; van Lerberghe, A.; Bréant, Ch.; Bassi, D.; Scoles, G. (October 1984). <a rel="nofollow" class="external text" href="http://christian.j.borde.free.fr/Ramsey.pdf">"Optical Ramsey fringes with traveling waves"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review A</i>. <b>30</b> (4): 1836–1848. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhRvA..30.1836B">1984PhRvA..30.1836B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.30.1836">10.1103/PhysRevA.30.1836</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 24,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Optical+Ramsey+fringes+with+traveling+waves&amp;rft.volume=30&amp;rft.issue=4&amp;rft.pages=1836-1848&amp;rft.date=1984-10&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.30.1836&amp;rft_id=info%3Abibcode%2F1984PhRvA..30.1836B&amp;rft.aulast=Bord%C3%A9&amp;rft.aufirst=Christian+J.&amp;rft.au=Salomon%2C+Ch.&amp;rft.au=Avrillier%2C+S.&amp;rft.au=van+Lerberghe%2C+A.&amp;rft.au=Br%C3%A9ant%2C+Ch.&amp;rft.au=Bassi%2C+D.&amp;rft.au=Scoles%2C+G.&amp;rft_id=http%3A%2F%2Fchristian.j.borde.free.fr%2FRamsey.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARamsey+interferometry" class="Z3988"></span></span> </li> <li id="cite_note-notes-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-notes_6-0">^</a></b></span> <span class="reference-text">Deutsch, Ivan. <i>Quantum Optics I, PHYS 566, at the University of New Mexico</i>. Lecture notes of Alec Landow. Fall 2013.</span> </li> <li id="cite_note-DJ_Wineland-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-DJ_Wineland_7-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/2012/press.html">"The 2012 Nobel Prize in Physics"</a> (Press release). Nobel Media AB. <q>The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2012 to Serge Haroche College de France and Ecole Normale Superieure, Paris, France and David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado Boulder, CO, USA</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+2012+Nobel+Prize+in+Physics&amp;rft.pub=Nobel+Media+AB&amp;rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F2012%2Fpress.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARamsey+interferometry" class="Z3988"></span></span> </li> <li id="cite_note-Prob7-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Prob7_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Prob7_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Deutsch, Ivan. <i>Quantum Optics I, PHYS 566, at the University of New Mexico</i>. Problem Set 7 and Solutions. Fall 2013.</span> </li> <li id="cite_note-BordePaper2-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-BordePaper2_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BordePaper2_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBordé1989" class="citation journal cs1">Bordé, Christian J. (September 4, 1989). <a rel="nofollow" class="external text" href="http://christian.j.borde.free.fr/PLA89.pdf">"Atomic interferometry with internal state labelling"</a> <span class="cs1-format">(PDF)</span>. <i>Physics Letters A</i>. <b>140</b> (1–2): 10–12. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989PhLA..140...10B">1989PhLA..140...10B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2889%2990537-9">10.1016/0375-9601(89)90537-9</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0375-9601">0375-9601</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 24,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=Atomic+interferometry+with+internal+state+labelling&amp;rft.volume=140&amp;rft.issue=1%E2%80%932&amp;rft.pages=10-12&amp;rft.date=1989-09-04&amp;rft.issn=0375-9601&amp;rft_id=info%3Adoi%2F10.1016%2F0375-9601%2889%2990537-9&amp;rft_id=info%3Abibcode%2F1989PhLA..140...10B&amp;rft.aulast=Bord%C3%A9&amp;rft.aufirst=Christian+J.&amp;rft_id=http%3A%2F%2Fchristian.j.borde.free.fr%2FPLA89.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARamsey+interferometry" class="Z3988"></span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐7lc5g Cached time: 20241123222328 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.349 seconds Real time usage: 0.510 seconds Preprocessor visited node count: 2412/1000000 Post‐expand include size: 21293/2097152 bytes Template argument size: 3288/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 28831/5000000 bytes Lua time usage: 0.159/10.000 seconds Lua memory usage: 4692492/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 331.410 1 -total 50.33% 166.805 1 Template:Reflist 29.89% 99.070 3 Template:Cite_journal 26.39% 87.470 1 Template:Short_description 18.48% 61.244 2 Template:Pagetype 10.47% 34.707 1 Template:Clarify_span 10.40% 34.454 21 Template:Math 9.08% 30.096 1 Template:Fix-span 7.22% 23.912 2 Template:Details 6.02% 19.965 2 Template:Category_handler --> <!-- Saved in parser cache with key enwiki:pcache:idhash:41740230-0!canonical and timestamp 20241123222328 and revision id 1223943841. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ramsey_interferometry&amp;oldid=1223943841">https://en.wikipedia.org/w/index.php?title=Ramsey_interferometry&amp;oldid=1223943841</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Interferometers" title="Category:Interferometers">Interferometers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_Wikipedia_articles_needing_clarification" title="Category:All Wikipedia articles needing clarification">All Wikipedia articles needing clarification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_April_2024" title="Category:Wikipedia articles needing clarification from April 2024">Wikipedia articles needing clarification from April 2024</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 May 2024, at 09:10<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ramsey_interferometry&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-kgm48","wgBackendResponseTime":157,"wgPageParseReport":{"limitreport":{"cputime":"0.349","walltime":"0.510","ppvisitednodes":{"value":2412,"limit":1000000},"postexpandincludesize":{"value":21293,"limit":2097152},"templateargumentsize":{"value":3288,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":28831,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 331.410 1 -total"," 50.33% 166.805 1 Template:Reflist"," 29.89% 99.070 3 Template:Cite_journal"," 26.39% 87.470 1 Template:Short_description"," 18.48% 61.244 2 Template:Pagetype"," 10.47% 34.707 1 Template:Clarify_span"," 10.40% 34.454 21 Template:Math"," 9.08% 30.096 1 Template:Fix-span"," 7.22% 23.912 2 Template:Details"," 6.02% 19.965 2 Template:Category_handler"]},"scribunto":{"limitreport-timeusage":{"value":"0.159","limit":"10.000"},"limitreport-memusage":{"value":4692492,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-7lc5g","timestamp":"20241123222328","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ramsey interferometry","url":"https:\/\/en.wikipedia.org\/wiki\/Ramsey_interferometry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q17163407","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q17163407","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2013-12-05T03:53:10Z","dateModified":"2024-05-15T09:10:13Z","headline":"form of particle interferometry"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10