CINXE.COM
Search results for: concrete code
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: concrete code</title> <meta name="description" content="Search results for: concrete code"> <meta name="keywords" content="concrete code"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="concrete code" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="concrete code"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3177</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: concrete code</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2997</span> Optimization of Steel Moment Frame Structures Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Befkin">Mohammad Befkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Momtaz"> Alireza Momtaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural design is the challenging aspect of every project due to limitations in dimensions, functionality of the structure, and more importantly, the allocated budget for construction. This research study aims to investigate the optimized design for three steel moment frame buildings with different number of stories using genetic algorithm code. The number and length of spans, and height of each floor were constant in all three buildings. The design of structures are carried out according to AISC code within the provisions of plastic design with allowable stress values. Genetic code for optimization is produced using MATLAB program, while buildings modeled in Opensees program and connected to the MATLAB code to perform iterations in optimization steps. In the end designs resulted from genetic algorithm code were compared with the analysis of buildings in ETABS program. The results demonstrated that suggested structural elements by the code utilize their full capacity, indicating the desirable efficiency of produced code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20frame" title=" steel moment frame"> steel moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/166927/optimization-of-steel-moment-frame-structures-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2996</span> Behaviour of Hollow Tubes Filled with Sand Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Senani">Meriem Senani</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureedine%20Ferhoune"> Noureedine Ferhoune </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load, the cross section dimensions were: 100x70x2 mm. A total of 16 stubs have been tested, as follows: 4 filled with ordinary concrete appointed by BO columns, 6 filled with concrete witch natural sand was completely substitute a crystallized sand slag designated in this paper by BSI, and 6 others were tucked in concrete whose natural sand was partially replace by a crystallized sand slag called by BSII. The main objectives of these tests were to clarify the steel specimen's performance filled by concrete sand compared to those filled with ordinary concrete. The main parameters studied are: The height of the specimen (300mm-500mm), eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes, has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex warping of the largest, followed by the smallest due to the outward thrust of the concrete, it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20sand" title="concrete sand">concrete sand</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallized%20slag" title=" crystallized slag"> crystallized slag</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mode" title=" failure mode"> failure mode</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a> </p> <a href="https://publications.waset.org/abstracts/33810/behaviour-of-hollow-tubes-filled-with-sand-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2995</span> Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibyendu%20Adak">Dibyendu Adak</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Mandal"> Saroj Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modification" title=" process modification"> process modification</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-structures" title=" micro-structures"> micro-structures</a> </p> <a href="https://publications.waset.org/abstracts/95820/process-modified-geopolymer-concrete-a-sustainable-material-for-green-construction-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2994</span> Colour Quick Response Code with High Damage Resistance Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minh%20Nguyen">Minh Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QR%20code" title="QR code">QR code</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20barcode" title=" 2D barcode"> 2D barcode</a> </p> <a href="https://publications.waset.org/abstracts/148450/colour-quick-response-code-with-high-damage-resistance-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2993</span> Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravande%20Kishore">Ravande Kishore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title="construction material">construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20replacement" title=" partial replacement"> partial replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20dust" title=" marble dust"> marble dust</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/15741/performance-of-structural-concrete-containing-marble-dust-as-a-partial-replacement-for-river-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2992</span> Counterfeit Product Detection Using Block Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharanya%20C.%20H.">Sharanya C. H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pragathi%20M."> Pragathi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vathsala%20R.%20S."> Vathsala R. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Theja%20K.%20V."> Theja K. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashaswini%20S."> Yashaswini S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=ethereum" title=" ethereum"> ethereum</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20code" title=" QR code"> QR code</a> </p> <a href="https://publications.waset.org/abstracts/160998/counterfeit-product-detection-using-block-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2991</span> Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Stefania%20Kalapoda">Eleni Stefania Kalapoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass-timber%20innovation" title="mass-timber innovation">mass-timber innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=densification" title=" densification"> densification</a> </p> <a href="https://publications.waset.org/abstracts/158233/timber-urbanism-assessing-the-carbon-footprint-of-mass-timber-steel-and-concrete-structural-prototypes-for-peri-urban-densification-in-the-hudson-valleys-urban-fringe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2990</span> Re-Use of Waste Marble in Producing Green Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20%C5%9Eahan%20Arel">Hasan Şahan Arel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO<sub>3</sub> and SiO<sub>2</sub> present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO<sub>2</sub> emissions by 12% and also lowering the costs from US$40/m<sup>3</sup> to US$33/m<sup>3</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20production" title="cement production">cement production</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=marble" title=" marble"> marble</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54230/re-use-of-waste-marble-in-producing-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2989</span> Sustainability of Carbon Nanotube-Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al%20Araj">Rashad Al Araj</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20K.%20Tamimi"> Adil K. Tamimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano%20tube" title=" carbon nano tube"> carbon nano tube</a>, <a href="https://publications.waset.org/abstracts/search?q=microsilica" title=" microsilica"> microsilica</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/66726/sustainability-of-carbon-nanotube-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2988</span> Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.-Y.%20Lee">J.-Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-S.%20Lim"> H.-S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-E.%20Kim"> S.-E. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete%20members" title="prestressed concrete members">prestressed concrete members</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20reinforcing%20bars" title=" high strength reinforcing bars"> high strength reinforcing bars</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/65500/evaluation-of-applicability-of-high-strength-stirrup-for-prestressed-concrete-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2987</span> Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Hamrat">Mostefa Hamrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensaid%20Boulekbache"> Bensaid Boulekbache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Chemrouk"> Mohamed Chemrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Amziane"> Sofiane Amziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20%28DIC%29" title=" digital image correlation (DIC)"> digital image correlation (DIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=codes%20provisions" title=" codes provisions"> codes provisions</a> </p> <a href="https://publications.waset.org/abstracts/19290/flexural-behaviour-of-normal-strength-and-high-strength-fibre-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2986</span> Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ahmadi%20Moghadam">Hamed Ahmadi Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolbanin%20Arasteh%20Khoshbin"> Omolbanin Arasteh Khoshbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20and%20expansion" title=" shrinkage and expansion"> shrinkage and expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=Pozzolan" title=" Pozzolan"> Pozzolan</a> </p> <a href="https://publications.waset.org/abstracts/13675/mechanical-properties-and-shrinkage-and-expansion-assessment-of-rice-husk-ash-concrete-and-its-comparison-with-the-control-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2985</span> On the Construction of Some Optimal Binary Linear Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skezeer%20John%20B.%20Paz">Skezeer John B. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ederlina%20G.%20Nocon"> Ederlina G. Nocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounds%20of%20linear%20codes" title="bounds of linear codes">bounds of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=Griesmer%20bound" title=" Griesmer bound"> Griesmer bound</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20of%20linear%20codes" title=" construction of linear codes"> construction of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20binary%20linear%20codes" title=" optimal binary linear codes"> optimal binary linear codes</a> </p> <a href="https://publications.waset.org/abstracts/31628/on-the-construction-of-some-optimal-binary-linear-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">755</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2984</span> Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Gunneswara%20Rao">T. D. Gunneswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudimby%20Andal"> Mudimby Andal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementing%20efficiency" title="cementing efficiency">cementing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20calcium%20fly%20ash" title=" low calcium fly ash"> low calcium fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/3427/cementing-efficiency-of-low-calcium-fly-ash-in-fly-ash-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2983</span> Challenges in Teaching Code of Ethics and Professional Conduct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasika%20Dayarathna">Rasika Dayarathna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computing has reached every corner of our lives in many forms. The Internet, particularly Social Media, Artificial Intelligence, are prominent among them. As a result, computing has changed our lives and it is expected that severe changes will take place in the coming years. It has introduced a new set of ethical challenges and amplified the existing ethical challenges. It is the duty of everyone involved from conceptualizing, designing, implementing, deploying, and using to follow generally accepted practices in order to avoid or minimize harm and improve the quality of life. Since computing in various forms mentioned above has a significant impact on our lives, various codes of conduct and standards have been introduced. Among many, the ACM (Association of Computing Machinery) Code of Ethics and Professional Conduct is a leading one. This was drafted for everyone, including aspiring computing professionals. However, teaching a code of conduct for aspiring computing professionals is very challenging since this universal code needs to be taught for young computing professionals in a local setting where there are value mismatches and exposure to information systems. This paper discusses the importance of teaching the code, how to overcome the challenges, and suggestions to improve the code to make it more appealing and buying in. It is expected that the improved approach would contribute to improving the quality of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20of%20conduct" title="code of conduct">code of conduct</a>, <a href="https://publications.waset.org/abstracts/search?q=professionalism" title=" professionalism"> professionalism</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title=" ethics"> ethics</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20of%20ethics" title=" code of ethics"> code of ethics</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics%20education" title=" ethics education"> ethics education</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20development" title=" moral development"> moral development</a> </p> <a href="https://publications.waset.org/abstracts/143823/challenges-in-teaching-code-of-ethics-and-professional-conduct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2982</span> Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Cheong">Christina Cheong</a>, <a href="https://publications.waset.org/abstracts/search?q=Naomi%20Keena"> Naomi Keena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Concrete" title="Concrete">Concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Plastic%20waste%20additions%20to%20concrete" title=" Plastic waste additions to concrete"> Plastic waste additions to concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20ratings" title=" sustainability ratings"> sustainability ratings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20materials" title=" sustainable materials"> sustainable materials</a> </p> <a href="https://publications.waset.org/abstracts/119564/investigating-the-systematic-implications-of-plastic-waste-additions-to-concrete-taking-a-circular-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2981</span> Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Sayadi">Ali A. Sayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20R.%20Neitzert"> Thomas R. Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Charles%20Clifton"> G. Charles Clifton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perlite%20concrete" title="perlite concrete">perlite concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-lactic%20acid%20%28pla%29" title=" poly-lactic acid (pla)"> poly-lactic acid (pla)</a>, <a href="https://publications.waset.org/abstracts/search?q=expanded%20polystyrene%20%28eps%29" title=" expanded polystyrene (eps)"> expanded polystyrene (eps)</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/50271/feasibility-of-a-biopolymer-as-lightweight-aggregate-in-perlite-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2980</span> Blast Load Resistance of Bridge Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Kavousifard">Amir Kavousifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Lan%20Lin"> Lan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast" title="blast">blast</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=charge" title=" charge"> charge</a>, <a href="https://publications.waset.org/abstracts/search?q=height" title=" height"> height</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=standoff" title=" standoff"> standoff</a> </p> <a href="https://publications.waset.org/abstracts/190131/blast-load-resistance-of-bridge-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2979</span> A Corpus-Based Analysis on Code-Mixing Features in Mandarin-English Bilingual Children in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xunan%20Huang">Xunan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Caicai%20Zhang"> Caicai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigated the code-mixing features in Mandarin-English bilingual children in Singapore. First, it examined whether the code-mixing rate was different in Mandarin Chinese and English contexts. Second, it explored the syntactic categories of code-mixing in Singapore bilingual children. Moreover, this study investigated whether morphological information was preserved when inserting syntactic components into the matrix language. Data are derived from the Singapore Bilingual Corpus, in which the recordings and transcriptions of sixty English-Mandarin 5-to-6-year-old children were preserved for analysis. Results indicated that the rate of code-mixing was asymmetrical in the two language contexts, with the rate being significantly higher in the Mandarin context than that in the English context. The asymmetry is related to language dominance in that children are more likely to code-mix when using their nondominant language. Concerning the syntactic categories of code-mixing words in the Singaporean bilingual children, we found that noun-mixing, verb-mixing, and adjective-mixing are the three most frequently used categories in code-mixing in the Mandarin context. This pattern mirrors the syntactic categories of code-mixing in the Cantonese context in Cantonese-English bilingual children, and the general trend observed in lexical borrowing. Third, our results also indicated that English vocabularies that carry morphological information are embedded in bare forms in the Mandarin context. These findings shed light upon how bilingual children take advantage of the two languages in mixed utterances in a bilingual environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingual%20children" title="bilingual children">bilingual children</a>, <a href="https://publications.waset.org/abstracts/search?q=code-mixing" title=" code-mixing"> code-mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=English" title=" English"> English</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandarin%20Chinese" title=" Mandarin Chinese"> Mandarin Chinese</a> </p> <a href="https://publications.waset.org/abstracts/89366/a-corpus-based-analysis-on-code-mixing-features-in-mandarin-english-bilingual-children-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2978</span> Fire Performance of Fly Ash Concrete with Pre-Fire Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunjie%20Fan">Kunjie Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash has been widely used as supplemental cementitious material in concrete for decades, especially in the ready-mixed concrete industry. Addition of fly ash not only brings economic and environmental benefits but also improves the engineering properties of concrete. It is well known that the pre-fire load has significant impacts on mechanical properties of concrete at high temperatures, however, the fire performance of stressed fly ash concrete is still not clear. Therefore, an apparatus was specially designed for testing “hot” mechanical properties of fly ash concrete with different heating-loading regimes. Through the experimental research, the mechanical properties, including compressive strength, peak strain, elastic modulus, complete stress-strain relationship, and transient thermal creep of fly ash concrete under uniaxial compression at elevated temperatures, have been investigated. It was found that the compressive strength and the elastic modulus increase with the load level, while the peak strain decreases with the applied stress level. In addition, 25% replacement of OPC with FA in the concrete mitigated the deterioration of the compressive strength, the development of transient thermal creep, and the nonlinearity of stress-strain response at elevated temperatures but hardly influenced the value of the elastic modulus and the peak strain. The applicability of Eurocode EN1992-1-2 to normal strength concrete with 25% replacement of fly ash has been verified to be safe. Based on the experimental analysis, an advanced constitutive model for stressed fly ash concrete at high temperatures was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20performance" title="fire performance">fire performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20concrete" title=" fly ash concrete"> fly ash concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-fire%20load" title=" pre-fire load"> pre-fire load</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20thermal%20creep" title=" transient thermal creep"> transient thermal creep</a> </p> <a href="https://publications.waset.org/abstracts/163908/fire-performance-of-fly-ash-concrete-with-pre-fire-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2977</span> To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gavin%20%20Gengan">Gavin Gengan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsein%20Kew"> Hsein Kew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20aggregates" title=" glass aggregates"> glass aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20of%20hydration" title=" heat of hydration"> heat of hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic" title=" pozzolanic"> pozzolanic</a> </p> <a href="https://publications.waset.org/abstracts/137915/to-optimise-the-mechanical-properties-of-structural-concrete-by-partial-replacement-of-natural-aggregates-by-glass-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2976</span> A Review of Self-Healing Concrete and Various Methods of Its Scientific Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Beheshtizadeh">Davoud Beheshtizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Jafari"> Davood Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, with its special properties and advantages, has caused it to be widely and increasingly used in construction industry, especially in infrastructures of the country. On the other hand, some defects of concrete and, most importantly, micro-cracks in the concrete after setting have caused the cost of repair and maintenance of infrastructure; therefore, self-healing concretes have been of attention in other countries in the recent years. These concretes have been repaired with general mechanisms such as physical, chemical, biological and combined mechanisms, each of which has different subsets and methods of execution and operation. Also, some of these types of mechanisms are of high importance, which has led to a special production method, and as this subject is new in Iran, this knowledge is almost unknown or at least some part of it has not been considered at all. The present article completely introduces various self-healing mechanisms as a review and tries to present the disadvantages and advantages of each method along with its scope of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-cracks" title="micro-cracks">micro-cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20concrete" title=" self-healing concrete"> self-healing concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsules" title=" microcapsules"> microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensitive" title=" self-sensitive"> self-sensitive</a> </p> <a href="https://publications.waset.org/abstracts/166936/a-review-of-self-healing-concrete-and-various-methods-of-its-scientific-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2975</span> Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei">Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ali%20Amini"> Amir Ali Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavement" title="concrete pavement">concrete pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20polypropylene%20fibers" title=" macro polypropylene fibers"> macro polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20polypropylene%20fibers" title=" micro polypropylene fibers"> micro polypropylene fibers</a> </p> <a href="https://publications.waset.org/abstracts/128419/investigation-of-the-addition-of-macro-and-micro-polypropylene-fibers-on-mechanical-properties-of-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2974</span> Sustainable Underground Structures Through Soil-Driven Bio-Protection of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurahim%20Abogdera">Abdurahim Abogdera</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hamza"> Omar Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Elliott"> David Elliott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil bacteria can be affected by some factors such as pH, calcium ions and Electrical conductivity. Fresh concrete has high pH value, which is between 11 and 13 and these values will be prevented the bacteria to produce CO₂ to participate with Calcium ions that released from the concrete to get calcite. In this study we replaced 15% and 25% of cement with Fly ash as the fly ash reduce the value of the pH at the concrete. The main goal of this study was investigated whether bacteria can be used on the soil rather than in the concrete to avoid the challenges and limitations of containing bacteria inside the concrete. This was achieved by incubating cracked cement mortar specimens into fully saturated sterilized and non-sterilized soil. The crack sealing developed in the specimens during the incubation period in both soil conditions were evaluated and compared. Visual inspection, water absorption test, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) were conducted to evaluate the healing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pH" title="pH">pH</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20ions" title=" calcium ions"> calcium ions</a>, <a href="https://publications.waset.org/abstracts/search?q=MICP" title=" MICP"> MICP</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/154003/sustainable-underground-structures-through-soil-driven-bio-protection-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2973</span> Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Bracken">W. C. Bracken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title="concrete masonry">concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall%20cracking" title=" masonry wall cracking"> masonry wall cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20defect" title=" structural defect"> structural defect</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage" title=" structural damage"> structural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20defect" title=" construction defect"> construction defect</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20investigation" title=" forensic investigation"> forensic investigation</a> </p> <a href="https://publications.waset.org/abstracts/56999/structural-engineering-forensic-evaluation-of-misdiagnosed-concrete-masonry-wall-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2972</span> Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikiru%20F.%20Oritola">Sikiru F. Oritola</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Latif%20Saleh"> Abd Latif Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Rahman%20Mohd%20Sam"> Abd Rahman Mohd Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozana%20Zakaria"> Rozana Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushairry%20Mustaffar"> Mushairry Mustaffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacement <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength" title="concrete strength">concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20cement" title=" fly ash cement"> fly ash cement</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20tailings" title=" iron ore tailings"> iron ore tailings</a> </p> <a href="https://publications.waset.org/abstracts/21667/effect-of-iron-ore-tailings-on-the-properties-of-fly-ash-cement-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2971</span> Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eckert">M. Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oliveira"> M. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title="recycled aggregate">recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20shrinkage%20cracking" title=" plastic shrinkage cracking"> plastic shrinkage cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/24303/risk-of-plastic-shrinkage-cracking-in-recycled-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2970</span> Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nita"> P. Nita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainforced%20concrete" title="rainforced concrete">rainforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airport%20pavements" title=" airport pavements"> airport pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a> </p> <a href="https://publications.waset.org/abstracts/53911/airfield-pavements-made-of-reinforced-concrete-dimensioning-according-to-the-theory-of-limit-states-and-eurocode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2969</span> Durability of Light-Weight Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela">Rudolf Hela</a>, <a href="https://publications.waset.org/abstracts/search?q=Michala%20Hubertova"> Michala Hubertova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggressive%20environment" title="aggressive environment">aggressive environment</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-mechanical%20properties" title=" physical-mechanical properties"> physical-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weight%20concrete" title=" light-weight concrete"> light-weight concrete</a> </p> <a href="https://publications.waset.org/abstracts/2400/durability-of-light-weight-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2968</span> Enhancement of Recycled Concrete Aggregates Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Nov%C3%A1kov%C3%A1">Iveta Nováková</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin-Andr%C3%A8%20S.%20Husby"> Martin-Andrè S. Husby</a>, <a href="https://publications.waset.org/abstracts/search?q=Boy-Arne%20Buyle"> Boy-Arne Buyle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute 70% of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title="recycled concrete aggregates">recycled concrete aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatment" title=" mechanical treatment"> mechanical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20properties" title=" aggregate properties"> aggregate properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a> </p> <a href="https://publications.waset.org/abstracts/141087/enhancement-of-recycled-concrete-aggregates-properties-by-mechanical-treatment-and-verification-in-concrete-mixes-with-replacement-up-to-100" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20code&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>