CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;30 of 30 results for author: <span class="mathjax">Bowring, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Bowring%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bowring, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bowring%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bowring, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04642">arXiv:2405.04642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04642">pdf</a>, <a href="https://arxiv.org/format/2405.04642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Measurement of Correlated Charge Noise in Superconducting Qubits at an Underground Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bratrud%2C+G">G. Bratrud</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+S">S. Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Anyang%2C+K">K. Anyang</a>, <a href="/search/physics?searchtype=author&amp;query=Cesan%C3%AD%2C+A+C">A. Col贸n Cesan铆</a>, <a href="/search/physics?searchtype=author&amp;query=Dyson%2C+T">T. Dyson</a>, <a href="/search/physics?searchtype=author&amp;query=Magoon%2C+H">H. Magoon</a>, <a href="/search/physics?searchtype=author&amp;query=Sabhari%2C+D">D. Sabhari</a>, <a href="/search/physics?searchtype=author&amp;query=Spahn%2C+G">G. Spahn</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+G">G. Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/physics?searchtype=author&amp;query=Kurinsky%2C+N+A">N. A. Kurinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Linehan%2C+R">R. Linehan</a>, <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+R">R. McDermott</a>, <a href="/search/physics?searchtype=author&amp;query=Sussman%2C+S">S. Sussman</a>, <a href="/search/physics?searchtype=author&amp;query=Temples%2C+D+J">D. J. Temples</a>, <a href="/search/physics?searchtype=author&amp;query=Uemura%2C+S">S. Uemura</a>, <a href="/search/physics?searchtype=author&amp;query=Bathurst%2C+C">C. Bathurst</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G">G. Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Hernandez%2C+I">I. Hernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Hollister%2C+M">M. Hollister</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+L">L. Hsu</a>, <a href="/search/physics?searchtype=author&amp;query=James%2C+C">C. James</a>, <a href="/search/physics?searchtype=author&amp;query=Kennard%2C+K">K. Kennard</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04642v3-abstract-short" style="display: inline;"> We measure space- and time-correlated charge jumps on a four-qubit device, operating 107 meters below the Earth&#39;s surface in a low-radiation, cryogenic facility designed for the characterization of low-threshold particle detectors. The rock overburden of this facility reduces the cosmic ray muon flux by over 99% compared to laboratories at sea level. Combined with 4$蟺$ coverage of a movable lead s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04642v3-abstract-full').style.display = 'inline'; document.getElementById('2405.04642v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04642v3-abstract-full" style="display: none;"> We measure space- and time-correlated charge jumps on a four-qubit device, operating 107 meters below the Earth&#39;s surface in a low-radiation, cryogenic facility designed for the characterization of low-threshold particle detectors. The rock overburden of this facility reduces the cosmic ray muon flux by over 99% compared to laboratories at sea level. Combined with 4$蟺$ coverage of a movable lead shield, this facility enables quantifiable control over the flux of ionizing radiation on the qubit device. Long-time-series charge tomography measurements on these weakly charge-sensitive qubits capture discontinuous jumps in the induced charge on the qubit islands, corresponding to the interaction of ionizing radiation with the qubit substrate. The rate of these charge jumps scales with the flux of ionizing radiation on the qubit package, as characterized by a series of independent measurements on another energy-resolving detector operating simultaneously in the same cryostat with the qubits. Using lead shielding, we achieve a minimum charge jump rate of 0.19$^{+0.04}_{-0.03}$ mHz, almost an order of magnitude lower than that measured in surface tests, but a factor of roughly eight higher than expected based on reduction of ambient gammas alone. We operate four qubits for over 22 consecutive hours with zero correlated charge jumps at length scales above three millimeters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04642v3-abstract-full').style.display = 'none'; document.getElementById('2405.04642v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, 4 tables. Minor update to the measured gamma flux ratio (Page 4 and Supplemental Section F) in the LMO detector, from 23 to 20. Typos corrected, references added. Extraneous .tex files have been removed that were causing errors with the &#34;HTML (experimental)&#34; arxiv feature</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0199-ETD-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04423">arXiv:2404.04423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04423">pdf</a>, <a href="https://arxiv.org/format/2404.04423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Linehan%2C+R">R. Linehan</a>, <a href="/search/physics?searchtype=author&amp;query=Hernandez%2C+I">I. Hernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Temples%2C+D+J">D. J. Temples</a>, <a href="/search/physics?searchtype=author&amp;query=Dang%2C+S+Q">S. Q. Dang</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+D">D. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+L">L. Hsu</a>, <a href="/search/physics?searchtype=author&amp;query=Figueroa-Feliciano%2C+E">E. Figueroa-Feliciano</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Anyang%2C+K">K. Anyang</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Bratrud%2C+G">G. Bratrud</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G">G. Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/physics?searchtype=author&amp;query=Stifter%2C+K">K. Stifter</a>, <a href="/search/physics?searchtype=author&amp;query=Sussman%2C+S">S. Sussman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04423v1-abstract-short" style="display: inline;"> In recent years, the lack of a conclusive detection of WIMP dark matter at the 10 GeV/c$^{2}$ mass scale and above has encouraged development of low-threshold detector technology aimed at probing lighter dark matter candidates. Detectors based on Cooper-pair-breaking sensors have emerged as a promising avenue for this detection due to the low (meV-scale) energy required for breaking a Cooper pair&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04423v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04423v1-abstract-full" style="display: none;"> In recent years, the lack of a conclusive detection of WIMP dark matter at the 10 GeV/c$^{2}$ mass scale and above has encouraged development of low-threshold detector technology aimed at probing lighter dark matter candidates. Detectors based on Cooper-pair-breaking sensors have emerged as a promising avenue for this detection due to the low (meV-scale) energy required for breaking a Cooper pair in most superconductors. Among them, devices based on superconducting qubits are interesting candidates for sensing due to their observed sensitivity to broken Cooper pairs. We have developed an end-to-end G4CMP-based simulation framework and have used it to evaluate performance metrics of qubit-based devices operating in a gate-based &#34;energy relaxation&#34; readout scheme, akin to those used in recent studies of qubit sensitivity to ionizing radiation. We find that for this readout scheme, the qubit acts as a phonon sensor with an energy threshold ranging down to $\simeq$0.4 eV for near-term performance parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04423v1-abstract-full').style.display = 'none'; document.getElementById('2404.04423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0112-ETD-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04473">arXiv:2402.04473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04473">pdf</a>, <a href="https://arxiv.org/format/2402.04473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.044045">10.1103/PhysRevApplied.22.044045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of a Kinetic Inductance Phonon-Mediated Detector at the NEXUS Cryogenic Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Temples%2C+D+J">Dylan J Temples</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+O">Osmond Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Ramanathan%2C+K">Karthik Ramanathan</a>, <a href="/search/physics?searchtype=author&amp;query=Aralis%2C+T">Taylor Aralis</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Yen-Yung Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Golwala%2C+S">Sunil Golwala</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+L">Lauren Hsu</a>, <a href="/search/physics?searchtype=author&amp;query=Bathurst%2C+C">Corey Bathurst</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+D">Daniel Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ran Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Figueroa-Feliciano%2C+E">Enectali Figueroa-Feliciano</a>, <a href="/search/physics?searchtype=author&amp;query=Hollister%2C+M">Matthew Hollister</a>, <a href="/search/physics?searchtype=author&amp;query=James%2C+C">Christopher James</a>, <a href="/search/physics?searchtype=author&amp;query=Kennard%2C+K">Kyle Kennard</a>, <a href="/search/physics?searchtype=author&amp;query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+S">Samantha Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+P">Patrick Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Novati%2C+V">Valentina Novati</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+R">Runze Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+B">Benjamin Schmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04473v2-abstract-short" style="display: inline;"> Microcalorimeters that leverage microwave kinetic inductance detectors to read out phonon signals in the particle-absorbing target, referred to as kinetic inductance phonon-mediated (KIPM) detectors, offer an attractive detector architecture to probe dark matter (DM) down to the fermionic thermal relic mass limit. A prototype KIPM detector featuring a single aluminum resonator patterned onto a 1-g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04473v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04473v2-abstract-full" style="display: none;"> Microcalorimeters that leverage microwave kinetic inductance detectors to read out phonon signals in the particle-absorbing target, referred to as kinetic inductance phonon-mediated (KIPM) detectors, offer an attractive detector architecture to probe dark matter (DM) down to the fermionic thermal relic mass limit. A prototype KIPM detector featuring a single aluminum resonator patterned onto a 1-gram silicon substrate was operated in the NEXUS low-background facility at Fermilab for characterization and evaluation of this detector architecture&#39;s efficacy for a dark matter search. An energy calibration was performed by exposing the bare substrate to a pulsed source of 470 nm photons, resulting in a baseline resolution on the energy absorbed by the phonon sensor of $2.1\pm0.2$ eV, a factor of two better than the current state-of-the-art, enabled by millisecond-scale quasiparticle lifetimes. However, due to the sub-percent phonon collection efficiency, the resolution on energy deposited in the substrate is limited to $蟽_E=318 \pm 28$ eV. We further model the signal pulse shape as a function of device temperature to extract quasiparticle lifetimes, as well as the observed noise spectra, both of which impact the baseline resolution of the sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04473v2-abstract-full').style.display = 'none'; document.getElementById('2402.04473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-674-LDRD-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 22, 044045 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16668">arXiv:2312.16668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16668">pdf</a>, <a href="https://arxiv.org/format/2312.16668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Axion Dark Matter eXperiment: Run 1A Analysis Details </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=LaRoque%2C+B+H">B. H. LaRoque</a>, <a href="/search/physics?searchtype=author&amp;query=Lentz%2C+E">E. Lentz</a>, <a href="/search/physics?searchtype=author&amp;query=Oblath%2C+N+S">N. S. Oblath</a>, <a href="/search/physics?searchtype=author&amp;query=Taubman%2C+M+S">M. S. Taubman</a>, <a href="/search/physics?searchtype=author&amp;query=Tedeschi%2C+J">J. Tedeschi</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+A+M">A. M. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Braine%2C+T">T. Braine</a>, <a href="/search/physics?searchtype=author&amp;query=Crisosto%2C+N">N. Crisosto</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberg%2C+L+J">L. J Rosenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rybka%2C+G">G. Rybka</a>, <a href="/search/physics?searchtype=author&amp;query=Will%2C+D">D. Will</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kimes%2C+S">S. Kimes</a>, <a href="/search/physics?searchtype=author&amp;query=Ottens%2C+R">R. Ottens</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A+S">A. S. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Knirck%2C+S">S. Knirck</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+D+V">D. V. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">A. Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+W">W. Wester</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16668v1-abstract-short" style="display: inline;"> The ADMX collaboration gathered data for its Run 1A axion dark matter search from January to June 2017, scanning with an axion haloscope over the frequency range 645-680 MHz (2.66-2.81 ueV in axion mass) at DFSZ sensitivity. The resulting axion search found no axion-like signals comprising all the dark matter in the form of a virialized galactic halo over the entire frequency range, implying lower&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16668v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16668v1-abstract-full" style="display: none;"> The ADMX collaboration gathered data for its Run 1A axion dark matter search from January to June 2017, scanning with an axion haloscope over the frequency range 645-680 MHz (2.66-2.81 ueV in axion mass) at DFSZ sensitivity. The resulting axion search found no axion-like signals comprising all the dark matter in the form of a virialized galactic halo over the entire frequency range, implying lower bound exclusion limits at or below DFSZ coupling at the 90% confidence level. This paper presents expanded details of the axion search analysis of Run 1A, including review of relevant experimental systems, data-taking operations, preparation and interpretation of raw data, axion search methodology, candidate handling, and final axion limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16668v1-abstract-full').style.display = 'none'; document.getElementById('2312.16668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 19 figures, accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13891">arXiv:2310.13891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13891">pdf</a>, <a href="https://arxiv.org/format/2310.13891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.131004">10.1103/PhysRevLett.132.131004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Results from a Broadband Search for Dark Photon Dark Matter in the $44$ to $52\,渭$eV range with a coaxial dish antenna </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Knirck%2C+S">Stefan Knirck</a>, <a href="/search/physics?searchtype=author&amp;query=Hoshino%2C+G">Gabe Hoshino</a>, <a href="/search/physics?searchtype=author&amp;query=Awida%2C+M+H">Mohamed H. Awida</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G+I">Gustavo I. Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Federico%2C+M">Martin Di Federico</a>, <a href="/search/physics?searchtype=author&amp;query=Knepper%2C+B">Benjamin Knepper</a>, <a href="/search/physics?searchtype=author&amp;query=Lapuente%2C+A">Alex Lapuente</a>, <a href="/search/physics?searchtype=author&amp;query=Littmann%2C+M">Mira Littmann</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+D+V">Donald V. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Rodriguez%2C+D">Derrick Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=Ruschman%2C+M+K">Mark K. Ruschman</a>, <a href="/search/physics?searchtype=author&amp;query=Sawtell%2C+M+A">Matthew A. Sawtell</a>, <a href="/search/physics?searchtype=author&amp;query=Stefanazzi%2C+L">Leandro Stefanazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">Andrew Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Teafoe%2C+G+W">Gary W. Teafoe</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">Aaron Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C+L">Clarence L. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Dona%2C+K">Kristin Dona</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">Rakshya Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Kurinsky%2C+N+A">Noah A. Kurinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jesse Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pena%2C+C">Cristi谩n Pena</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13891v2-abstract-short" style="display: inline;"> We present first results from a dark photon dark matter search in the mass range from 44 to 52 $渭{\rm eV}$ ($10.7 - 12.5\,{\rm GHz}$) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area $0.5\,{\rm m}^2$ and is focused by a novel parabolic reflector onto a horn antenna. Signals are re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13891v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13891v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13891v2-abstract-full" style="display: none;"> We present first results from a dark photon dark matter search in the mass range from 44 to 52 $渭{\rm eV}$ ($10.7 - 12.5\,{\rm GHz}$) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area $0.5\,{\rm m}^2$ and is focused by a novel parabolic reflector onto a horn antenna. Signals are read out with a low-noise receiver system. A first data taking run with 24 days of data does not show evidence for dark photon dark matter in this mass range, excluding dark photon - photon mixing parameters $蠂\gtrsim 10^{-12}$ in this range at 90% confidence level. This surpasses existing constraints by about two orders of magnitude and is the most stringent bound on dark photons in this range below 49 $渭$eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13891v2-abstract-full').style.display = 'none'; document.getElementById('2310.13891v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-625-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 131004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05669">arXiv:2310.05669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05669">pdf</a>, <a href="https://arxiv.org/format/2310.05669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Transverse Emittance Reduction in Muon Beams by Ionization Cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05669v2-abstract-short" style="display: inline;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05669v2-abstract-full" style="display: none;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from proton collisions. Ionization cooling is the technique proposed to decrease the muon beam phase-space volume. Here we demonstrate a clear signal of ionization cooling through the observation of transverse emittance reduction in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment (MICE). The measurement is well reproduced by the simulation of the experiment and the theoretical model. The results shown here represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'none'; document.getElementById('2310.05669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STFC-P-2023-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10251">arXiv:2209.10251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10251">pdf</a>, <a href="https://arxiv.org/format/2209.10251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.092003">10.1103/PhysRevD.106.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple Coulomb Scattering of muons in Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10251v1-abstract-short" style="display: inline;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10251v1-abstract-full" style="display: none;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liquid hydrogen or lithium hydride (LiH) energy absorber as part of a programme to develop muon accelerator facilities, such as a Neutrino Factory or a Muon Collider. The energy loss and MCS that occur in the absorber material are competing effects that alter the performance of the cooling channel. Therefore measurements of MCS are required in order to validate the simulations used to predict the cooling performance in future accelerator facilities. We report measurements made in the MICE apparatus of MCS using a LiH absorber and muons within the momentum range 160 to 245 MeV/c. The measured RMS scattering width is about 9% smaller than that predicted by the approximate formula proposed by the Particle Data Group. Data at 172, 200 and 240 MeV/c are compared to the GEANT4 (v9.6) default scattering model. These measurements show agreement with this more recent GEANT4 (v9.6) version over the range of incident muon momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'none'; document.getElementById('2209.10251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures, journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2022-001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14923">arXiv:2203.14923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14923">pdf</a>, <a href="https://arxiv.org/format/2203.14923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Axion Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Balafendiev%2C+R">R. Balafendiev</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Bekker%2C+H">H. Bekker</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+P">P. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+K+K">K. K. Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Berlin%2C+A">A. Berlin</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Carenza%2C+P">P. Carenza</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Chakrabarty%2C+S+S">S. S. Chakrabarty</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T+Y">T. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Croon%2C+D">D. Croon</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14923v3-abstract-short" style="display: inline;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synerg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'inline'; document.getElementById('2203.14923v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14923v3-abstract-full" style="display: none;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synergies with astrophysical searches and advances in instrumentation including quantum-enabled readout, high-Q resonators and cavities and large high-field magnets. This white paper outlines a clear roadmap to discovery, and shows that the US is well-positioned to be at the forefront of the search for axion dark matter in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'none'; document.getElementById('2203.14923v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">restore and expand author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14915">arXiv:2203.14915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14915">pdf</a>, <a href="https://arxiv.org/format/2203.14915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> New Horizons: Scalar and Vector Ultralight Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antypas%2C+D">D. Antypas</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Betz%2C+J">J. Betz</a>, <a href="/search/physics?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Carney%2C+D">D. Carney</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez-Urrutia%2C+J+R+C">J. R. Crespo L贸pez-Urrutia</a>, <a href="/search/physics?searchtype=author&amp;query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/physics?searchtype=author&amp;query=DePorzio%2C+N">N. DePorzio</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A+V">A. V. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Deshpande%2C+T">T. Deshpande</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Luzio%2C+L">L. Di Luzio</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Morcillo%2C+A">A. Diaz-Morcillo</a>, <a href="/search/physics?searchtype=author&amp;query=Doyle%2C+J+M">J. M. Doyle</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14915v1-abstract-short" style="display: inline;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14915v1-abstract-full" style="display: none;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical, largely coherent field. This white paper focuses on searches for wavelike scalar and vector dark matter candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'none'; document.getElementById('2203.14915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12103">arXiv:2111.12103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12103">pdf</a>, <a href="https://arxiv.org/format/2111.12103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.131801">10.1103/PhysRevLett.128.131801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband solenoidal haloscope for terahertz axion detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jesse Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Dona%2C+K">Kristin Dona</a>, <a href="/search/physics?searchtype=author&amp;query=Hoshino%2C+G">Gabe Hoshino</a>, <a href="/search/physics?searchtype=author&amp;query=Knirck%2C+S">Stefan Knirck</a>, <a href="/search/physics?searchtype=author&amp;query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/physics?searchtype=author&amp;query=Malaker%2C+M">Matthew Malaker</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">Andrew Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Awida%2C+M+H">Mohamed H. Awida</a>, <a href="/search/physics?searchtype=author&amp;query=Barry%2C+P+S">Peter S. Barry</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+K+K">Karl K. Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">Gianpaolo Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">Clarence Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">Aaron Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">Rakshya Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+S">Samantha Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Juliang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Nam%2C+S+W">Sae Woo Nam</a>, <a href="/search/physics?searchtype=author&amp;query=Noroozian%2C+O">Omid Noroozian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T+X">Tony X. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12103v2-abstract-short" style="display: inline;"> We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10$^{-3}$, 1] eV ([0.24, 240] THz) mass range. BREAD proposes a cylindrical metal barrel to convert dark matter into photons, which a novel parabolic reflector design focuses onto a photosensor. This unique geometry en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12103v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12103v2-abstract-full" style="display: none;"> We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10$^{-3}$, 1] eV ([0.24, 240] THz) mass range. BREAD proposes a cylindrical metal barrel to convert dark matter into photons, which a novel parabolic reflector design focuses onto a photosensor. This unique geometry enables enclosure in standard cryostats and high-field solenoids, overcoming limitations of current dish antennas. A pilot 0.7 m$^{2}$ barrel experiment planned at Fermilab is projected to surpass existing dark photon coupling constraints by over a decade with one-day runtime. Axion sensitivity requires $&lt;10^{-20}$ W/$\sqrt{\textrm{Hz}}$ sensor noise equivalent power with a 10 T solenoid and 10 m$^{2}$ barrel. We project BREAD sensitivity for various sensor technologies and discuss future prospects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12103v2-abstract-full').style.display = 'none'; document.getElementById('2111.12103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures + references and appendices, v2 matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128 (2022) 131801 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05813">arXiv:2106.05813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05813">pdf</a>, <a href="https://arxiv.org/format/2106.05813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08046">10.1088/1748-0221/16/08/P08046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the MICE diagnostic system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+collaboration"> The MICE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05813v2-abstract-short" style="display: inline;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05813v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05813v2-abstract-full" style="display: none;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. This paper documents the performance of the detectors used in MICE to measure the muon-beam parameters, and the physical properties of the liquid hydrogen energy absorber during running. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'none'; document.getElementById('2106.05813v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2021-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 JINST 16 P08046 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00169">arXiv:2010.00169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00169">pdf</a>, <a href="https://arxiv.org/format/2010.00169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0037857">10.1063/5.0037857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion Dark Matter eXperiment: Detailed Design and Operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A+S">A. S. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">A. Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+W">W. Wester</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+D+V">D. V. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Braine%2C+T">T. Braine</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Crisosto%2C+N">N. Crisosto</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+N">N. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Kimes%2C+S">S. Kimes</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberg%2C+L+J">L. J Rosenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rybka%2C+G">G. Rybka</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Will%2C+D">D. Will</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Woollett%2C+N">N. Woollett</a>, <a href="/search/physics?searchtype=author&amp;query=Durham%2C+S">S. Durham</a>, <a href="/search/physics?searchtype=author&amp;query=Duffy%2C+L+D">L. D. Duffy</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+R">R. Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+M">M. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=LaRoque%2C+B+H">B. H. LaRoque</a>, <a href="/search/physics?searchtype=author&amp;query=Oblath%2C+N+S">N. S. Oblath</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00169v1-abstract-short" style="display: inline;"> Axion Dark Matter eXperiment (ADMX) ultra low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the $2.66$ to $3.1$ $渭$eV mass range with Dine-Fischler-Srednicki-Zhitnisky (DFSZ) sensitivity Ref. [1,2]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technolog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00169v1-abstract-full').style.display = 'inline'; document.getElementById('2010.00169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00169v1-abstract-full" style="display: none;"> Axion Dark Matter eXperiment (ADMX) ultra low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the $2.66$ to $3.1$ $渭$eV mass range with Dine-Fischler-Srednicki-Zhitnisky (DFSZ) sensitivity Ref. [1,2]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as state-of-the-art quantum limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable Microstrip Superconducting Quantum Interference Device (SQUID) Amplifier (MSA), in Run 1A, and a Josephson Parametric Amplifier (JPA), in Run 1B, along with novel analysis tools that characterize the system noise temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00169v1-abstract-full').style.display = 'none'; document.getElementById('2010.00169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 28 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-331-AD-E-QIS </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05796">arXiv:1911.05796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05796">pdf</a>, <a href="https://arxiv.org/ps/1911.05796">ps</a>, <a href="https://arxiv.org/format/1911.05796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Response to NITRD, NCO, NSF Request for Information on &#34;Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amundson%2C+J">J. Amundson</a>, <a href="/search/physics?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/physics?searchtype=author&amp;query=Avestruz%2C+C">C. Avestruz</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Caldeira%2C+J">J. Caldeira</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/physics?searchtype=author&amp;query=Elvira%2C+D">D. Elvira</a>, <a href="/search/physics?searchtype=author&amp;query=Farahi%2C+A">A. Farahi</a>, <a href="/search/physics?searchtype=author&amp;query=Genser%2C+K">K. Genser</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+L">L. Gray</a>, <a href="/search/physics?searchtype=author&amp;query=Gutsche%2C+O">O. Gutsche</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+P">P. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Kinney%2C+J">J. Kinney</a>, <a href="/search/physics?searchtype=author&amp;query=Kowalkowski%2C+J+B">J. B. Kowalkowski</a>, <a href="/search/physics?searchtype=author&amp;query=Kutschke%2C+R">R. Kutschke</a>, <a href="/search/physics?searchtype=author&amp;query=Mrenna%2C+S">S. Mrenna</a>, <a href="/search/physics?searchtype=author&amp;query=Nord%2C+B">B. Nord</a>, <a href="/search/physics?searchtype=author&amp;query=Para%2C+A">A. Para</a>, <a href="/search/physics?searchtype=author&amp;query=Pedro%2C+K">K. Pedro</a>, <a href="/search/physics?searchtype=author&amp;query=Perdue%2C+G+N">G. N. Perdue</a>, <a href="/search/physics?searchtype=author&amp;query=Scheinker%2C+A">A. Scheinker</a>, <a href="/search/physics?searchtype=author&amp;query=Spentzouris%2C+P">P. Spentzouris</a>, <a href="/search/physics?searchtype=author&amp;query=John%2C+J+S">J. St. John</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05796v1-abstract-short" style="display: inline;"> We present a response to the 2018 Request for Information (RFI) from the NITRD, NCO, NSF regarding the &#34;Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan.&#34; Through this document, we provide a response to the question of whether and how the National Artificial Intelligence Research and Development Strategic Plan (NAIRDSP) should be updated from the perspect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05796v1-abstract-full').style.display = 'inline'; document.getElementById('1911.05796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05796v1-abstract-full" style="display: none;"> We present a response to the 2018 Request for Information (RFI) from the NITRD, NCO, NSF regarding the &#34;Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan.&#34; Through this document, we provide a response to the question of whether and how the National Artificial Intelligence Research and Development Strategic Plan (NAIRDSP) should be updated from the perspective of Fermilab, America&#39;s premier national laboratory for High Energy Physics (HEP). We believe the NAIRDSP should be extended in light of the rapid pace of development and innovation in the field of Artificial Intelligence (AI) since 2016, and present our recommendations below. AI has profoundly impacted many areas of human life, promising to dramatically reshape society --- e.g., economy, education, science --- in the coming years. We are still early in this process. It is critical to invest now in this technology to ensure it is safe and deployed ethically. Science and society both have a strong need for accuracy, efficiency, transparency, and accountability in algorithms, making investments in scientific AI particularly valuable. Thus far the US has been a leader in AI technologies, and we believe as a national Laboratory it is crucial to help maintain and extend this leadership. Moreover, investments in AI will be important for maintaining US leadership in the physical sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05796v1-abstract-full').style.display = 'none'; document.getElementById('1911.05796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-FN-1092-SCD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08638">arXiv:1910.08638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08638">pdf</a>, <a href="https://arxiv.org/format/1910.08638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.101303">10.1103/PhysRevLett.124.101303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extended Search for the Invisible Axion with the Axion Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Braine%2C+T">T. Braine</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Crisosto%2C+N">N. Crisosto</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+N">N. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Kimes%2C+S">S. Kimes</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberg%2C+L+J">L. J Rosenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rybka%2C+G">G. Rybka</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A+S">A. S. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">A. Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+W">W. Wester</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Woollett%2C+N">N. Woollett</a>, <a href="/search/physics?searchtype=author&amp;query=Duffy%2C+L+D">L. D. Duffy</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+R">R. Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+M">M. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=LaRoque%2C+B+H">B. H. LaRoque</a>, <a href="/search/physics?searchtype=author&amp;query=Oblath%2C+N+S">N. S. Oblath</a>, <a href="/search/physics?searchtype=author&amp;query=Taubman%2C+M+S">M. S. Taubman</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">J. Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Dove%2C+A">A. Dove</a>, <a href="/search/physics?searchtype=author&amp;query=Eddins%2C+A">A. Eddins</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08638v3-abstract-short" style="display: inline;"> This paper reports on a cavity haloscope search for dark matter axions in the galactic halo in the mass range $2.81$-$3.31$ $渭eV$. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics, and marks the first time a haloscope search has been able to search for axions at mode c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08638v3-abstract-full').style.display = 'inline'; document.getElementById('1910.08638v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08638v3-abstract-full" style="display: none;"> This paper reports on a cavity haloscope search for dark matter axions in the galactic halo in the mass range $2.81$-$3.31$ $渭eV$. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics, and marks the first time a haloscope search has been able to search for axions at mode crossings using an alternate cavity configuration. Unprecedented sensitivity in this higher mass range is achieved by deploying an ultra low-noise Josephson parametric amplifier as the first stage signal amplifier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08638v3-abstract-full').style.display = 'none'; document.getElementById('1910.08638v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 101303 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08562">arXiv:1907.08562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08562">pdf</a>, <a href="https://arxiv.org/format/1907.08562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First demonstration of ionization cooling by the Muon Ionization Cooling Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a>, <a href="/search/physics?searchtype=author&amp;query=Jovancevic%2C+N">N. Jovancevic</a> , et al. (110 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08562v1-abstract-short" style="display: inline;"> High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08562v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08562v1-abstract-full" style="display: none;"> High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08562v1-abstract-full').style.display = 'none'; document.getElementById('1907.08562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages and 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2019-003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00920">arXiv:1901.00920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00920">pdf</a>, <a href="https://arxiv.org/format/1901.00920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.261302">10.1103/PhysRevLett.121.261302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+M">M. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=LaRoque%2C+B+H">B. H. LaRoque</a>, <a href="/search/physics?searchtype=author&amp;query=Oblath%2C+N+S">N. S. Oblath</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+N">N. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Force%2C+N">N. Force</a>, <a href="/search/physics?searchtype=author&amp;query=Kimes%2C+S">S. Kimes</a>, <a href="/search/physics?searchtype=author&amp;query=Ottens%2C+R">R. Ottens</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberg%2C+L+J">L. J. Rosenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rybka%2C+G">G. Rybka</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Woollett%2C+N">N. Woollett</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A+S">A. S. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">A. Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+W">W. Wester</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+R">R. Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Daw%2C+E+J">E. J. Daw</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Dixit%2C+A+V">A. V. Dixit</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">J. Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Kelley%2C+S+R">S. R. O&#39;Kelley</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00920v1-abstract-short" style="display: inline;"> The $渭$eV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX &#34;Sidecar,&#34; which is designed to pave the way for future, highe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00920v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00920v1-abstract-full" style="display: none;"> The $渭$eV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX &#34;Sidecar,&#34; which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM$_{010}$ and TM$_{020}$ modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00920v1-abstract-full').style.display = 'none'; document.getElementById('1901.00920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121 (2018) 261302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03172">arXiv:1811.03172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.03172">pdf</a>, <a href="https://arxiv.org/ps/1811.03172">ps</a>, <a href="https://arxiv.org/format/1811.03172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Opportunities in Machine Learning for Particle Accelerators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+A">Auralee Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Mayes%2C+C">Christopher Mayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/physics?searchtype=author&amp;query=Adelmann%2C+A">Andreas Adelmann</a>, <a href="/search/physics?searchtype=author&amp;query=Ischebeck%2C+R">Rasmus Ischebeck</a>, <a href="/search/physics?searchtype=author&amp;query=Snuverink%2C+J">Jochem Snuverink</a>, <a href="/search/physics?searchtype=author&amp;query=Agapov%2C+I">Ilya Agapov</a>, <a href="/search/physics?searchtype=author&amp;query=Kammering%2C+R">Raimund Kammering</a>, <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+J">Jonathan Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Bazarov%2C+I">Ivan Bazarov</a>, <a href="/search/physics?searchtype=author&amp;query=Valentino%2C+G">Gianluca Valentino</a>, <a href="/search/physics?searchtype=author&amp;query=Wenninger%2C+J">Jorg Wenninger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03172v1-abstract-short" style="display: inline;"> Machine learning (ML) is a subfield of artificial intelligence. The term applies broadly to a collection of computational algorithms and techniques that train systems from raw data rather than a priori models. ML techniques are now technologically mature enough to be applied to particle accelerators, and we expect that ML will become an increasingly valuable tool to meet new demands for beam energ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03172v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03172v1-abstract-full" style="display: none;"> Machine learning (ML) is a subfield of artificial intelligence. The term applies broadly to a collection of computational algorithms and techniques that train systems from raw data rather than a priori models. ML techniques are now technologically mature enough to be applied to particle accelerators, and we expect that ML will become an increasingly valuable tool to meet new demands for beam energy, brightness, and stability. The intent of this white paper is to provide a high-level introduction to problems in accelerator science and operation where incorporating ML-based approaches may provide significant benefit. We review ML techniques currently being investigated at particle accelerator facilities, and we place specific emphasis on active research efforts and promising exploratory results. We also identify new applications and discuss their feasibility, along with the required data and infrastructure strategies. We conclude with a set of guidelines and recommendations for laboratory managers and administrators, emphasizing the logistical and technological requirements for successfully adopting this technology. This white paper also serves as a summary of the discussion from a recent workshop held at SLAC on ML for particle accelerators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03172v1-abstract-full').style.display = 'none'; document.getElementById('1811.03172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13224">arXiv:1810.13224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.13224">pdf</a>, <a href="https://arxiv.org/format/1810.13224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-6674-y">10.1140/epjc/s10052-019-6674-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Blackmore%2C+V">V. Blackmore</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Boehm%2C+J">J. Boehm</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&amp;query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+C">C. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Coney%2C+L">L. Coney</a>, <a href="/search/physics?searchtype=author&amp;query=Charnley%2C+G">G. Charnley</a>, <a href="/search/physics?searchtype=author&amp;query=Chatzitheodoridis%2C+G+T">G. T. Chatzitheodoridis</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a> , et al. (111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13224v3-abstract-short" style="display: inline;"> The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13224v3-abstract-full').style.display = 'inline'; document.getElementById('1810.13224v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13224v3-abstract-full" style="display: none;"> The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4\,T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions and reports the first particle-by-particle measurement of the emittance of the MICE Muon Beam as a function of muon-beam momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13224v3-abstract-full').style.display = 'none'; document.getElementById('1810.13224v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03473">arXiv:1807.03473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.03473">pdf</a>, <a href="https://arxiv.org/format/1807.03473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.23.072001">10.1103/PhysRevAccelBeams.23.072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Operation of normal-conducting RF cavities in multi-tesla magnetic fields for muon ionization cooling: a feasibility demonstration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Kochemirovskiy%2C+A">Alexey Kochemirovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Torun%2C+Y">Yagmur Torun</a>, <a href="/search/physics?searchtype=author&amp;query=Adolphsen%2C+C">Chris Adolphsen</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A">Alan Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Freemire%2C+B">Ben Freemire</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+L">Lixin Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Haase%2C+A">Andrew Haase</a>, <a href="/search/physics?searchtype=author&amp;query=Lane%2C+P">Peter Lane</a>, <a href="/search/physics?searchtype=author&amp;query=Leonova%2C+M">Maria Leonova</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Derun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zenghai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+A">Ao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+T">Tianhuan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D">David Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Moretti%2C+A">Alfred Moretti</a>, <a href="/search/physics?searchtype=author&amp;query=Neuffer%2C+D">David Neuffer</a>, <a href="/search/physics?searchtype=author&amp;query=Pasquinelli%2C+R">Ralph Pasquinelli</a>, <a href="/search/physics?searchtype=author&amp;query=Palmer%2C+M">Mark Palmer</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+D">David Peterson</a>, <a href="/search/physics?searchtype=author&amp;query=Popovic%2C+M">Milorad Popovic</a>, <a href="/search/physics?searchtype=author&amp;query=Stratakis%2C+D">Diktys Stratakis</a>, <a href="/search/physics?searchtype=author&amp;query=Yonehara%2C+K">Katsuya Yonehara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03473v1-abstract-short" style="display: inline;"> Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03473v1-abstract-full').style.display = 'inline'; document.getElementById('1807.03473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03473v1-abstract-full" style="display: none;"> Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03473v1-abstract-full').style.display = 'none'; document.getElementById('1807.03473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 23, 072001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.05750">arXiv:1804.05750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.05750">pdf</a>, <a href="https://arxiv.org/format/1804.05750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.151301">10.1103/PhysRevLett.120.151301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+N">N. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Force%2C+N">N. Force</a>, <a href="/search/physics?searchtype=author&amp;query=Khatiwada%2C+R">R. Khatiwada</a>, <a href="/search/physics?searchtype=author&amp;query=Lentz%2C+E">E. Lentz</a>, <a href="/search/physics?searchtype=author&amp;query=Ottens%2C+R">R. Ottens</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenberg%2C+L+J">L. J Rosenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rybka%2C+G">G. Rybka</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Woolett%2C+N">N. Woolett</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A+S">A. S. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Sonnenschein%2C+A">A. Sonnenschein</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+W">W. Wester</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Oblath%2C+N+S">N. S. Oblath</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+R">R. Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Daw%2C+E+J">E. J. Daw</a>, <a href="/search/physics?searchtype=author&amp;query=Dixit%2C+A+V">A. V. Dixit</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">J. Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Kelley%2C+S+R">S. R. O&#39;Kelley</a>, <a href="/search/physics?searchtype=author&amp;query=Crisosto%2C+N">N. Crisosto</a>, <a href="/search/physics?searchtype=author&amp;query=Gleason%2C+J+R">J. R. Gleason</a>, <a href="/search/physics?searchtype=author&amp;query=Jois%2C+S">S. Jois</a>, <a href="/search/physics?searchtype=author&amp;query=Sikivie%2C+P">P. Sikivie</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+I">I. Stern</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.05750v2-abstract-short" style="display: inline;"> This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $渭$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05750v2-abstract-full').style.display = 'inline'; document.getElementById('1804.05750v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.05750v2-abstract-full" style="display: none;"> This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $渭$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05750v2-abstract-full').style.display = 'none'; document.getElementById('1804.05750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 151301 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.11306">arXiv:1803.11306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.11306">pdf</a>, <a href="https://arxiv.org/ps/1803.11306">ps</a>, <a href="https://arxiv.org/format/1803.11306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quantum Sensing for High Energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/physics?searchtype=author&amp;query=Apollinari%2C+G">Giorgio Apollinari</a>, <a href="/search/physics?searchtype=author&amp;query=Arvanitaki%2C+A">Asimina Arvanitaki</a>, <a href="/search/physics?searchtype=author&amp;query=Awschalom%2C+D">David Awschalom</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+K+K">Karl K. Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Bibber%2C+K">Karl Van Bibber</a>, <a href="/search/physics?searchtype=author&amp;query=Bienias%2C+P">Przemyslaw Bienias</a>, <a href="/search/physics?searchtype=author&amp;query=Bodwin%2C+G">Geoffrey Bodwin</a>, <a href="/search/physics?searchtype=author&amp;query=Boshier%2C+M">Malcolm Boshier</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">Daniel Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Braga%2C+D">Davide Braga</a>, <a href="/search/physics?searchtype=author&amp;query=Byrum%2C+K">Karen Byrum</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G">Gustavo Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">Gianpaolo Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecil%2C+T">Tom Cecil</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">Clarence Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Checchin%2C+M">Mattia Checchin</a>, <a href="/search/physics?searchtype=author&amp;query=Chekanov%2C+S">Sergei Chekanov</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">Aaron Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Clerk%2C+A">Aashish Clerk</a>, <a href="/search/physics?searchtype=author&amp;query=Cloet%2C+I">Ian Cloet</a>, <a href="/search/physics?searchtype=author&amp;query=Crisler%2C+M">Michael Crisler</a>, <a href="/search/physics?searchtype=author&amp;query=Demarteau%2C+M">Marcel Demarteau</a>, <a href="/search/physics?searchtype=author&amp;query=Dharmapalan%2C+R">Ranjan Dharmapalan</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.11306v1-abstract-short" style="display: inline;"> Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.11306v1-abstract-full" style="display: none;"> Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11306v1-abstract-full').style.display = 'none'; document.getElementById('1803.11306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, report of the first workshop on Quantum Sensing for High Energy Physics, held at Argonne National Laboratory, December 12-14, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02599">arXiv:1802.02599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02599">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Expression of Interest for Evolution of the Mu2e Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusalma%2C+F">F. Abusalma</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrose%2C+D">D. Ambrose</a>, <a href="/search/physics?searchtype=author&amp;query=Artikov%2C+A">A. Artikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+R">R. Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Blazey%2C+G+C">G. C. Blazey</a>, <a href="/search/physics?searchtype=author&amp;query=Bloise%2C+C">C. Bloise</a>, <a href="/search/physics?searchtype=author&amp;query=Boi%2C+S">S. Boi</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Bono%2C+J">J. Bono</a>, <a href="/search/physics?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+D">D. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+D">D. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Byrum%2C+K">K. Byrum</a>, <a href="/search/physics?searchtype=author&amp;query=Campbell%2C+M">M. Campbell</a>, <a href="/search/physics?searchtype=author&amp;query=Caron%2C+J+-">J. -F. Caron</a>, <a href="/search/physics?searchtype=author&amp;query=Cervelli%2C+F">F. Cervelli</a>, <a href="/search/physics?searchtype=author&amp;query=Chokheli%2C+D">D. Chokheli</a>, <a href="/search/physics?searchtype=author&amp;query=Ciampa%2C+K">K. Ciampa</a>, <a href="/search/physics?searchtype=author&amp;query=Ciolini%2C+R">R. Ciolini</a>, <a href="/search/physics?searchtype=author&amp;query=Coleman%2C+R">R. Coleman</a>, <a href="/search/physics?searchtype=author&amp;query=Cronin-Hennessy%2C+D">D. Cronin-Hennessy</a>, <a href="/search/physics?searchtype=author&amp;query=Culbertson%2C+R">R. Culbertson</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+M+A">M. A. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Daniel%2C+A">A. Daniel</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02599v1-abstract-short" style="display: inline;"> We propose an evolution of the Mu2e experiment, called Mu2e-II, that would leverage advances in detector technology and utilize the increased proton intensity provided by the Fermilab PIP-II upgrade to improve the sensitivity for neutrinoless muon-to-electron conversion by one order of magnitude beyond the Mu2e experiment, providing the deepest probe of charged lepton flavor violation in the fores&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02599v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02599v1-abstract-full" style="display: none;"> We propose an evolution of the Mu2e experiment, called Mu2e-II, that would leverage advances in detector technology and utilize the increased proton intensity provided by the Fermilab PIP-II upgrade to improve the sensitivity for neutrinoless muon-to-electron conversion by one order of magnitude beyond the Mu2e experiment, providing the deepest probe of charged lepton flavor violation in the foreseeable future. Mu2e-II will use as much of the Mu2e infrastructure as possible, providing, where required, improvements to the Mu2e apparatus to accommodate the increased beam intensity and cope with the accompanying increase in backgrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02599v1-abstract-full').style.display = 'none'; document.getElementById('1802.02599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, 1 table; Submitted to the Fermilab Physics Advisory Committee</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-FN-1052 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.04946">arXiv:1709.04946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.04946">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> RF system for the MICE demonstration of ionization cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ronald%2C+K">K. Ronald</a>, <a href="/search/physics?searchtype=author&amp;query=Whyte%2C+C+G">C. G. Whyte</a>, <a href="/search/physics?searchtype=author&amp;query=Dick%2C+A+J">A. J. Dick</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+A+R">A. R. Young</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=DeMello%2C+A+J">A. J. DeMello</a>, <a href="/search/physics?searchtype=author&amp;query=Lambert%2C+A+R">A. R. Lambert</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+T">T. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T">T. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Moretti%2C+A">A. Moretti</a>, <a href="/search/physics?searchtype=author&amp;query=Pasquinelli%2C+R">R. Pasquinelli</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+D">D. Peterson</a>, <a href="/search/physics?searchtype=author&amp;query=Popovic%2C+M">M. Popovic</a>, <a href="/search/physics?searchtype=author&amp;query=Schultz%2C+R">R. Schultz</a>, <a href="/search/physics?searchtype=author&amp;query=Volk%2C+J">J. Volk</a>, <a href="/search/physics?searchtype=author&amp;query=Torun%2C+Y">Y. Torun</a>, <a href="/search/physics?searchtype=author&amp;query=Hanlet%2C+P">P. Hanlet</a>, <a href="/search/physics?searchtype=author&amp;query=Freemire%2C+B">B. Freemire</a>, <a href="/search/physics?searchtype=author&amp;query=Moss%2C+A">A. Moss</a>, <a href="/search/physics?searchtype=author&amp;query=Dumbell%2C+K">K. Dumbell</a>, <a href="/search/physics?searchtype=author&amp;query=Grant%2C+A">A. Grant</a>, <a href="/search/physics?searchtype=author&amp;query=White%2C+C">C. White</a>, <a href="/search/physics?searchtype=author&amp;query=Griffiths%2C+S">S. Griffiths</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.04946v1-abstract-short" style="display: inline;"> Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04946v1-abstract-full').style.display = 'inline'; document.getElementById('1709.04946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.04946v1-abstract-full" style="display: none;"> Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04946v1-abstract-full').style.display = 'none'; document.getElementById('1709.04946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 pp</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Conf-17-071-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.06403">arXiv:1701.06403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.06403">pdf</a>, <a href="https://arxiv.org/format/1701.06403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.20.063501">10.1103/PhysRevAccelBeams.20.063501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and expected performance of the MICE demonstration of ionization cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MICE+Collaboration"> MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&amp;query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Y. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">J. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&amp;query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&amp;query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchet%2C+G">G. Cecchet</a>, <a href="/search/physics?searchtype=author&amp;query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&amp;query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&amp;query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&amp;query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&amp;query=Savic%2C+M">M. Savic</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+O+M">O. M. Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Ramberger%2C+S">S. Ramberger</a>, <a href="/search/physics?searchtype=author&amp;query=Vretenar%2C+M">M. Vretenar</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.06403v2-abstract-short" style="display: inline;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06403v2-abstract-full').style.display = 'inline'; document.getElementById('1701.06403v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.06403v2-abstract-full" style="display: none;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.06403v2-abstract-full').style.display = 'none'; document.getElementById('1701.06403v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2017-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 20, 063501 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.07237">arXiv:1612.07237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.07237">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+A+L">A. L. Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Biedron%2C+S+G">S. G. Biedron</a>, <a href="/search/physics?searchtype=author&amp;query=Milton%2C+S+V">S. V. Milton</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chase%2C+B+E">B. E. Chase</a>, <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+J+P">J. P. Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Steimel%2C+J">J. Steimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.07237v1-abstract-short" style="display: inline;"> As part of the PIP-II Injector Experiment (PXIE) accelerator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H- ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07237v1-abstract-full').style.display = 'inline'; document.getElementById('1612.07237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.07237v1-abstract-full" style="display: none;"> As part of the PIP-II Injector Experiment (PXIE) accelerator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H- ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07237v1-abstract-full').style.display = 'none'; document.getElementById('1612.07237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pp. Proceedings of the 2016 International Particle Accelerator Conference (IPAC), May 8-13, 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Conf-16-603-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.05659">arXiv:1612.05659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.05659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+A+L">A. L. Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Biedron%2C+S+G">S. G. Biedron</a>, <a href="/search/physics?searchtype=author&amp;query=Milton%2C+S+V">S. V. Milton</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Chase%2C+B+E">B. E. Chase</a>, <a href="/search/physics?searchtype=author&amp;query=Edelen%2C+J+P">J. P. Edelen</a>, <a href="/search/physics?searchtype=author&amp;query=Nicklaus%2C+D">D. Nicklaus</a>, <a href="/search/physics?searchtype=author&amp;query=Steimel%2C+J">J. Steimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.05659v1-abstract-short" style="display: inline;"> For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05659v1-abstract-full').style.display = 'inline'; document.getElementById('1612.05659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.05659v1-abstract-full" style="display: none;"> For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05659v1-abstract-full').style.display = 'none'; document.getElementById('1612.05659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pp. Proceedings of the 2016 North American Particle Accelerator Conference (Oct. 9-14, 2016)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Conf-16-601-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.00556">arXiv:1511.00556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.00556">pdf</a>, <a href="https://arxiv.org/format/1511.00556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/03/P03001">10.1088/1748-0221/11/03/P03001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion contamination in the MICE muon beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alekou%2C+A">A. Alekou</a>, <a href="/search/physics?searchtype=author&amp;query=Apollonio%2C+M">M. Apollonio</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Barclay%2C+P">P. Barclay</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Blackmore%2C+V+J">V. J. Blackmore</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&amp;query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&amp;query=Bravar%2C+U">U. Bravar</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Capponi%2C+M">M. Capponi</a>, <a href="/search/physics?searchtype=author&amp;query=Carlisle%2C+T">T. Carlisle</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchet%2C+G">G. Cecchet</a>, <a href="/search/physics?searchtype=author&amp;query=Charnley%2C+C">C. Charnley</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.00556v3-abstract-short" style="display: inline;"> The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00556v3-abstract-full').style.display = 'inline'; document.getElementById('1511.00556v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.00556v3-abstract-full" style="display: none;"> The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\sim$1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_蟺&lt; 1.4\%$ at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.00556v3-abstract-full').style.display = 'none'; document.getElementById('1511.00556v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2015-009 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 11 (2016) 03, P03002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.08306">arXiv:1510.08306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.08306">pdf</a>, <a href="https://arxiv.org/format/1510.08306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/10/12/P12012">10.1088/1748-0221/10/12/P12012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-Muon Ranger: performance in the MICE Muon Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alekou%2C+A">A. Alekou</a>, <a href="/search/physics?searchtype=author&amp;query=Apollonio%2C+M">M. Apollonio</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Barclay%2C+P">P. Barclay</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bene%2C+P">P. Bene</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Blackmore%2C+V+J">V. J. Blackmore</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&amp;query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&amp;query=Bravar%2C+U">U. Bravar</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&amp;query=Capponi%2C+M">M. Capponi</a>, <a href="/search/physics?searchtype=author&amp;query=Carlisle%2C+T">T. Carlisle</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.08306v2-abstract-short" style="display: inline;"> The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08306v2-abstract-full').style.display = 'inline'; document.getElementById('1510.08306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.08306v2-abstract-full" style="display: none;"> The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08306v2-abstract-full').style.display = 'none'; document.getElementById('1510.08306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2015-008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5750">arXiv:1409.5750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5750">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigation Of Breakdown Induced Surface Damage On 805 Mhz Pillbox Cavity Interior Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jana%2C+M+R">M. R. Jana</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Leonova%2C+M">M. Leonova</a>, <a href="/search/physics?searchtype=author&amp;query=Moretti%2C+A">A. Moretti</a>, <a href="/search/physics?searchtype=author&amp;query=Tollestrup%2C+A">A. Tollestrup</a>, <a href="/search/physics?searchtype=author&amp;query=Yonehara%2C+K">K. Yonehara</a>, <a href="/search/physics?searchtype=author&amp;query=Freemire%2C+B">B. Freemire</a>, <a href="/search/physics?searchtype=author&amp;query=Torun%2C+Y">Y. Torun</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Flanagan%2C+G">G. Flanagan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5750v1-abstract-short" style="display: inline;"> The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, we have tested two 805 MHz vacuum RF cavities in a multi-Tesla magnetic field to study the effects of the static magnetic field on the cavity operation. This study gives useful information on field emitt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5750v1-abstract-full').style.display = 'inline'; document.getElementById('1409.5750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5750v1-abstract-full" style="display: none;"> The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, we have tested two 805 MHz vacuum RF cavities in a multi-Tesla magnetic field to study the effects of the static magnetic field on the cavity operation. This study gives useful information on field emitters in the cavity, dark current, surface conditioning, breakdown mechanisms and material properties of the cavity. All these factors determine the maximum accelerating gradient in the cavity. This paper discusses the image processing technique for quantitative estimation of spark damage spot distribution on cavity interior surfaces. The distribution is compared with the electric field distribution predicted by a computer code calculation. The local spark density is proportional to probability of surface breakdown and shows a power law dependence on the maximum electric field (E). This E dependence is consistent with the dark current calculated from the Fowler-Nordheim equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5750v1-abstract-full').style.display = 'none'; document.getElementById('1409.5750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 p. Presented at North American Particle Accelerator Conference (PAC13) Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-410-APC </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.1509">arXiv:1306.1509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.1509">pdf</a>, <a href="https://arxiv.org/ps/1306.1509">ps</a>, <a href="https://arxiv.org/format/1306.1509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-013-2582-8">10.1140/epjc/s10052-013-2582-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of the muon beams for the Muon Ionisation Cooling Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=Alekou%2C+A">A. Alekou</a>, <a href="/search/physics?searchtype=author&amp;query=Apollonio%2C+M">M. Apollonio</a>, <a href="/search/physics?searchtype=author&amp;query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Barclay%2C+P">P. Barclay</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&amp;query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&amp;query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&amp;query=Blackmore%2C+V+J">V. J. Blackmore</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&amp;query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&amp;query=Bravar%2C+U">U. Bravar</a>, <a href="/search/physics?searchtype=author&amp;query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&amp;query=Capponi%2C+M">M. Capponi</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.1509v2-abstract-short" style="display: inline;"> A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 蟺mm-rad horizontally and 0.6--1.0 蟺mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1509v2-abstract-full').style.display = 'inline'; document.getElementById('1306.1509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.1509v2-abstract-full" style="display: none;"> A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 蟺mm-rad horizontally and 0.6--1.0 蟺mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.1509v2-abstract-full').style.display = 'none'; document.getElementById('1306.1509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in EPJC, 20 pages, 15 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10