CINXE.COM
(PDF) Exploring Interpretability in Robinson's Arithmetic Q
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="rlpPkKkXqZAAQ4XH0YkMHZeyyiPtXdOTM/qQTLR+OFsdqH5ZZn6R58ZLAF/HXGORTLPbirSR2X6ij+c7Mbnpxw==" /> <meta name="citation_title" content="Interpretability in Robinson&#39;s Q" /> <meta name="citation_publication_date" content="2013/01/01" /> <meta name="citation_journal_title" content="Bulletin of Symbolic Logic" /> <meta name="citation_author" content="Fernando Ferreira" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q" /> <meta name="twitter:title" content="Interpretability in Robinson's Q" /> <meta name="twitter:description" content="Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q" /> <meta property="og:title" content="Interpretability in Robinson's Q" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much" /> <meta property="article:author" content="https://lisboa.academia.edu/FernandoFerreira" /> <meta name="description" content="Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much" /> <title>(PDF) Exploring Interpretability in Robinson's Arithmetic Q</title> <link rel="canonical" href="https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734519612000); window.Aedu.timeDifference = new Date().getTime() - 1734519612000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Fernando Ferreira"}],"contributor":[],"dateCreated":"2023-02-18","datePublished":"2013-01-01","headline":"Interpretability in Robinson's Q","image":"https://attachments.academia-assets.com/98823017/thumbnails/1.jpg","inLanguage":"en","keywords":["Pure Mathematics","Interpretability"],"publication":"Bulletin of Symbolic Logic","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Cambridge University Press (CUP)"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"lisboa"}],"thumbnailUrl":"https://attachments.academia-assets.com/98823017/thumbnails/1.jpg","url":"https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "a877ec520d3f0c3ddcabebbc580f7629445d59fd03cfee8757ea93ed38f3dbb2", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="xCEaGEhE6Oqy3ccZbyNGC9Mum9KwTGMcwIpF7Kkp+wl30yvRhy3QnXTVQoF59imHCC+Ke+mAafFR/zKbLO4qlQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="uakPQkzvk6q+xdSt6IR7C4yP4ytRmQk5xIPGkyzd4VUKWz6Lg4ar3XjNUTX+URSHV47ygghVA9RV9rHkqRowyQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-3f6c8d93606e71610593edcc4a66814b5eb01028a2b32194979a5b0c3df849c2.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 11326288; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F97110182%2FInterpretability_in_Robinsons_Q%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F97110182%2FInterpretability_in_Robinsons_Q%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":98823017,"identifier":"Attachment_98823017","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":97110182,"created_at":"2023-02-18T05:37:33.839-08:00","from_world_paper_id":227892390,"updated_at":"2024-11-29T05:50:18.605-08:00","_data":{"publisher":"Cambridge University Press (CUP)","ai_title_tag":"Exploring Interpretability in Robinson's Arithmetic Q","grobid_abstract":"Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic Q. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted in Q but also what cannot be so interpreted. We explain some of these results and rely on them to discuss Nelson's position.","publication_date":"2013,,","publication_name":"Bulletin of Symbolic Logic","grobid_abstract_attachment_id":"98823017"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Interpretability in Robinson's Q","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [11326288]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":98823017,"attachmentType":"pdf"}"><img alt="First page of “Interpretability in Robinson's Q”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/98823017/mini_magick20230218-1-1bu17l1.png?1676727569" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Interpretability in Robinson's Q</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="11326288" href="https://lisboa.academia.edu/FernandoFerreira"><img alt="Profile image of Fernando Ferreira" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Fernando Ferreira</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2013, Bulletin of Symbolic Logic</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">28 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 97110182; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=97110182"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic Q. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted in Q but also what cannot be so interpreted. We explain some of these results and rely on them to discuss Nelson's position.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":98823017,"attachmentType":"pdf","workUrl":"https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":98823017,"attachmentType":"pdf","workUrl":"https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="98823017" data-landing_url="https://www.academia.edu/97110182/Interpretability_in_Robinsons_Q" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="48566791" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48566791/The_interpretability_logic_of_all_reasonable_arithmetical_theories">The interpretability logic of all reasonable arithmetical theories</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="80365520" href="https://uu.academia.edu/albertvisser">albert visser</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Erkenntnis, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The interpretability logic of all reasonable arithmetical theories","attachmentId":67111765,"attachmentType":"pdf","work_url":"https://www.academia.edu/48566791/The_interpretability_logic_of_all_reasonable_arithmetical_theories","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/48566791/The_interpretability_logic_of_all_reasonable_arithmetical_theories"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="48566965" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48566965/The_Interpretability_Logic_of_all_Reasonable_Arithmetical_Theories_The_New_Conjecture">The Interpretability Logic of all Reasonable Arithmetical Theories. The New Conjecture</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="80365520" href="https://uu.academia.edu/albertvisser">albert visser</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Logic Group Preprint Series, 2012</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper is a presentation of a status qu stionis, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Interpretability Logic of all Reasonable Arithmetical Theories. The New Conjecture","attachmentId":67111544,"attachmentType":"pdf","work_url":"https://www.academia.edu/48566965/The_Interpretability_Logic_of_all_Reasonable_Arithmetical_Theories_The_New_Conjecture","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/48566965/The_Interpretability_Logic_of_all_Reasonable_Arithmetical_Theories_The_New_Conjecture"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="117255565" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories">A new principle in the interpretability logic of all reasonable arithmetical theories</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51116229" href="https://independent.academia.edu/JoostJoosten">Joost Joosten</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2020</p><p class="ds-related-work--abstract ds2-5-body-sm">The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A new principle in the interpretability logic of all reasonable arithmetical theories","attachmentId":113160838,"attachmentType":"pdf","work_url":"https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="69310050" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69310050/Formalized_Interpretability_in_Primitive_Recursive_Arithmetic">Formalized Interpretability in Primitive Recursive Arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51116229" href="https://independent.academia.edu/JoostJoosten">Joost Joosten</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2003</p><p class="ds-related-work--abstract ds2-5-body-sm">Interpretations are a natural tool in comparing the strength of two theories. In this paper we give a brief introduction to the topic of interpretability and interpretability logics. We will focus on the, so far, unknown interpretability logic of PRA. One research technique will be treated. This technique can be best described as restricting the realizations in the arithmetical semantics. 1 What are interpretations and why study them? How to interpret “Eli, Eli, lama sabachtani”? Let us consider the concept of interpretation in the previous phrase1. What does it actually mean to interpret something. Or more specifically, what do we mean when we say that T interprets some utterance φ of S? Well, in this case T can first translate φ to its own language, then place it in an adequate context and then somehow make sense of it. The mathematical notion of interpretation is somewhat similar. We say that a theory T interprets another theory S whenever there is some translation such that all ...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Formalized Interpretability in Primitive Recursive Arithmetic","attachmentId":79455307,"attachmentType":"pdf","work_url":"https://www.academia.edu/69310050/Formalized_Interpretability_in_Primitive_Recursive_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/69310050/Formalized_Interpretability_in_Primitive_Recursive_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="92756599" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92756599/Philosophy_of_Arithmetic">Philosophy of Arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="795663" href="https://utrgv.academia.edu/MelisaVivanco">Melisa Vivanco</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Melisa Vivanco, 2023</p><p class="ds-related-work--abstract ds2-5-body-sm">Some of the most influential programs in the philosophy of mathematics started from the philosophical study of natural numbers. On the one hand, our arithmetic intuitions appear earlier and more direct than other mathematical (and non-mathematical) intuitions. On the other hand, while arithmetic admits one of the first axiomatizations with wide acceptance within the mathematical practice, the study of natural numbers sets a methodological precedent that will later seek to be replicated in other areas, in particular, in the study of the most complex numerical structures. This course will address the main issues in the philosophical discussion on arithmetic. Among these topics are the ideas of the various classical doctrines on the foundations of arithmetic, from the milestone of Gödel’s incompleteness theorems to recent doctrines on the semantics of numerical expressions and arithmetic sentences. The class will cover debates about metaphysics and the epistemology of numbers and arithmetic truths.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Philosophy of Arithmetic","attachmentId":95681402,"attachmentType":"pdf","work_url":"https://www.academia.edu/92756599/Philosophy_of_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/92756599/Philosophy_of_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="17065648" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17065648/Fragments_of_arithmetic">Fragments of arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="196571" href="https://cmu.academia.edu/WilfriedSieg">Wilfried Sieg</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Pure and Applied Logic, 1985</p><p class="ds-related-work--abstract ds2-5-body-sm">We establish by elementary proof-theoretic means the conservativeness of two subsystems of analysis over primitive recursive arithmetic. The one subsystem was introduced by Friedman [6], the other is a strengthened version of a theory of Mint ; each has been shown to be of considerable interest for both mathematical practice and me&mathematical investigations. The foundational significance of such conservation results is clear: they provide a direct finitist justification of the part of mathematical practice formalizable in these subsystems.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fragments of arithmetic","attachmentId":42334579,"attachmentType":"pdf","work_url":"https://www.academia.edu/17065648/Fragments_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/17065648/Fragments_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="53576956" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53576956/Some_consequences_of_a_recursive_number_theoretic_relation_that_is_not_the_standard_interpretation_of_any_of_its_formal_representations">Some consequences of a recursive number-theoretic relation that is not the standard interpretation of any of its formal representations</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="319497" href="https://independent.academia.edu/BhupinderSinghAnand">Bhupinder Singh Anand</a></div><p class="ds-related-work--abstract ds2-5-body-sm">We give precise definitions of primitive and formal mathematical objects, and show: there is an elementary, recursive, number-theoretic relation that is not a formal mathematical object in Gödel's formal system P, since it is not the standard interpretation of any of its representations in P; the range of a recursive number-theoretic function does not always define a formal mathematical object (recursively enumerable set) consistently in any Axiomatic Set Theory that is a model for P; there is no P-formula, Con(P), whose standard interpretation is unambiguously equivalent to Gödel's number-theoretic definition of "P is consistent"; every recursive number-theoretic function is not strongly representable in P; Tarski's definitions of "satisfiability" and "truth" can be made constructive, and intuitionistically unobjectionable, by reformulating Church's Thesis constructively; the classical definition of Turing machines can be extended to include self-terminating, converging, and oscillating routines; a constructive Church's Thesis implies, firstly, that every partial recursive number-theoretic function has a unique, constructive, extension as a total function, and, secondly, that we can define effectively computable number-theoretic functions that are not classically Turing-computable; Turing's and Cantor's diagonal arguments do not necessarily define Cauchy sequences. recognised as true 9 under classical interpretation 10 , but which are not provable 11 within the system. Does this imply that such recognition, in some cases, cannot be duplicated in any artificially constructed and, more important, artificially controlled, mechanism or organism whose design is based on classical logic? 12 The scientific, and philosophical, dimensions of an affirmative answer to the last question have been broadly reviewed, and addressed, by Roger Penrose in [Pe90] and [Pe94]. Penrose's argument is based on a strongly Platonist thesis that sensory perceptions Arithmetic, and Mendelson's formal system S ([Me64], p102) as a standard formalisation of classical first order Peano Arithmetic. 7 We follow Mendelson's definition of an "undecidable sentence" ([Me64], p143). 8 When referring to a formal language, we assume the terms "sentence" and "proposition" are synonymous, and that they refer to a well-formed expression of the language that contains no free variables, and which translates, under an interpretation, as a proposition in the usual, linguistic, sense. 9 We note that the term "true" is used both in its familiar linguistic sense, and in a mathematically precise sense; the appropriate meaning is usually obvious from the context. Mathematically, we follow Mendelson's exposition of the truth of a formal sentence under an interpretation as determined by Tarski's definitions of satisfiability and truth ([Me64], p51). 10 We note that the term "interpretation" is also used both in its familiar linguistic sense, and in a mathematical sense; the appropriate meaning is usually obvious from the context. Mathematically, we follow Mendelson's definitions of "interpretation" ([Me64], §2, p49), and of "standard interpretation" ([Me64], p107). We note that the interpreted relation R(x) is obtained from the formula [R(x)] of a formal system P by replacing every primitive, undefined symbol of P in the formula [R(x)] by an interpreted mathematical symbol (i.e. a symbol that is a shorthand notation for some, semantically well-defined, concept of classical mathematics). So the P-formula [(Ax)R(x)] interprets as the sentence (Ax)R(x), and the P-formula [~(Ax)R(x)] as the sentence ~(Ax)R(x). We also note that the meta-assertions "[(Ax)R(x)] is a true sentence under the interpretation M of P", and "(Ax)R(x) is a true sentence of the interpretation M of P", are equivalent to the meta-assertion "R(x) is satisfied for any given value of x in the domain of the interpretation M of P" ([Me64], p51).</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some consequences of a recursive number-theoretic relation that is not the standard interpretation of any of its formal representations","attachmentId":70356805,"attachmentType":"pdf","work_url":"https://www.academia.edu/53576956/Some_consequences_of_a_recursive_number_theoretic_relation_that_is_not_the_standard_interpretation_of_any_of_its_formal_representations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/53576956/Some_consequences_of_a_recursive_number_theoretic_relation_that_is_not_the_standard_interpretation_of_any_of_its_formal_representations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="11399538" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/11399538/On_Interpretations_of_Arithmetic_and_Set_Theory">On Interpretations of Arithmetic and Set Theory</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="27506117" href="https://independent.academia.edu/TinLokWong">Tin-Lok Wong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">being 'inverse to each other' admits important variations. For example, Chang and Keisler [5, §A.31] specify one particular choice of axiomatisation of ZF; for this axiomatisation a weak form of interpretation-equivalence of 'ZF with infinity negated' and PA can be proved, but for stronger notions of interpretation-equivalence a different axiomatisation of ZF seems to be required.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Interpretations of Arithmetic and Set Theory","attachmentId":46729721,"attachmentType":"pdf","work_url":"https://www.academia.edu/11399538/On_Interpretations_of_Arithmetic_and_Set_Theory","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/11399538/On_Interpretations_of_Arithmetic_and_Set_Theory"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="49462986" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49462986/On_Interpretability_in_the_Theory_of_Concatenation">On Interpretability in the Theory of Concatenation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="114851681" href="https://cuni.academia.edu/VitezslavSvejdar">Vitezslav Svejdar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 2009</p><p class="ds-related-work--abstract ds2-5-body-sm">We prove that a variant of Robinson arithmetic $\mathsf{Q}$ with nontotal operations is interpretable in the theory of concatenation $\mathsf{TC}$ introduced by A. Grzegorczyk. Since $\mathsf{Q}$ is known to be interpretable in that nontotal variant, our result gives a positive answer to the problem whether $\mathsf{Q}$ is interpretable in $\mathsf{TC}$ . An immediate consequence is essential undecidability of $\mathsf{TC}$ .</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Interpretability in the Theory of Concatenation","attachmentId":67808410,"attachmentType":"pdf","work_url":"https://www.academia.edu/49462986/On_Interpretability_in_the_Theory_of_Concatenation","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/49462986/On_Interpretability_in_the_Theory_of_Concatenation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="8391573" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8391573/A_Remark_on_Q">A Remark on Q</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8585079" href="https://utoronto.academia.edu/MihaiGanea">Mihai Ganea</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Robinson’s arithmetic Q is given a simple interpretation in Hajek’s weaker relational version QH that does not use Solovay’s technique of shortening cuts. The result is placed within two research themes regarding relational arithmetics.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Remark on Q","attachmentId":34788887,"attachmentType":"pdf","work_url":"https://www.academia.edu/8391573/A_Remark_on_Q","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/8391573/A_Remark_on_Q"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":98823017,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":98823017,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_98823017" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="97982632" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity">A Substitutional Framework for Arithmetical Validity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11326288" href="https://lisboa.academia.edu/FernandoFerreira">Fernando Ferreira</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Grazer Philosophische Studien, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Substitutional Framework for Arithmetical Validity","attachmentId":99457912,"attachmentType":"pdf","work_url":"https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="13629980" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13629980/A_second_philosophy_of_arithmetic">A second philosophy of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32791720" href="https://uci.academia.edu/PenelopeMaddy">Penelope Maddy</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Review of Symbolic Logic, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A second philosophy of arithmetic","attachmentId":38092038,"attachmentType":"pdf","work_url":"https://www.academia.edu/13629980/A_second_philosophy_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/13629980/A_second_philosophy_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="12425006" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12425006/The_Significance_of_Conway_s_Construction_of_Number_for_Structuralism_in_the_Philosophy_of_Mathematics">The Significance of Conway’s Construction of Number for Structuralism in the Philosophy of Mathematics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11269821" href="https://florida.academia.edu/AllenPorter">Allen Porter</a></div><div class="ds-related-work--ctas"><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/12425006/The_Significance_of_Conway_s_Construction_of_Number_for_Structuralism_in_the_Philosophy_of_Mathematics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="112851703" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112851703/The_logical_character_of_number_reply_to_abel_lasalle_casanave">The logical character of number: reply to abel lasalle casanave</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8282456" href="https://pucrj.academia.edu/OswaldoChateaubriand">Oswaldo Chateaubriand</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Manuscrito, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The logical character of number: reply to abel lasalle casanave","attachmentId":109955954,"attachmentType":"pdf","work_url":"https://www.academia.edu/112851703/The_logical_character_of_number_reply_to_abel_lasalle_casanave","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112851703/The_logical_character_of_number_reply_to_abel_lasalle_casanave"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="35039964" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/35039964/A_New_Path_to_the_Logicist_Construction_of_Numbers">A New Path to the Logicist Construction of Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8147163" href="https://univ-rennes1.academia.edu/PierreJoray">Pierre Joray</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Travaux de Logique, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A New Path to the Logicist Construction of Numbers","attachmentId":54901850,"attachmentType":"pdf","work_url":"https://www.academia.edu/35039964/A_New_Path_to_the_Logicist_Construction_of_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/35039964/A_New_Path_to_the_Logicist_Construction_of_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="80112869" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80112869/The_interpretability_logic_of_Peano_arithmetic">The interpretability logic of Peano arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="18337933" href="https://independent.academia.edu/AlessandroBerarducci">Alessandro Berarducci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Symbolic Logic, 1990</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The interpretability logic of Peano arithmetic","attachmentId":86603412,"attachmentType":"pdf","work_url":"https://www.academia.edu/80112869/The_interpretability_logic_of_Peano_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/80112869/The_interpretability_logic_of_Peano_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="3292839" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3292839/Interpretability_over_Peano_Arithmetic">Interpretability over Peano Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3804648" href="https://gu-se.academia.edu/ClaesStranneg%C3%A5rd">Claes Strannegård</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Symbolic Logic, 1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Interpretability over Peano Arithmetic","attachmentId":50362267,"attachmentType":"pdf","work_url":"https://www.academia.edu/3292839/Interpretability_over_Peano_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3292839/Interpretability_over_Peano_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="5149149" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity">Arithmetical definability and computational complexity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6951880" href="https://esti.academia.edu/HachaichiYassine">Hachaichi Yassine</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Theoretical Computer Science, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Arithmetical definability and computational complexity","attachmentId":49428968,"attachmentType":"pdf","work_url":"https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="21480115" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic">First-Order Proof Theory of Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5937540" href="https://ucsd.academia.edu/SamBuss">Sam Buss</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Studies in Logic and the Foundations of Mathematics, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"First-Order Proof Theory of Arithmetic","attachmentId":41904055,"attachmentType":"pdf","work_url":"https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="112843929" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112843929/The_Arithmetical_Hierarchy">The Arithmetical Hierarchy</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36769883" href="https://independent.academia.edu/BorutRobic">Borut Robic</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Springer eBooks, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Arithmetical Hierarchy","attachmentId":109950760,"attachmentType":"pdf","work_url":"https://www.academia.edu/112843929/The_Arithmetical_Hierarchy","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112843929/The_Arithmetical_Hierarchy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="70412185" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/70412185/Some_consequences_of_defining_mathematical_objects_constructively_and_mathematical_truth_effectively_A_lay_perspective">Some consequences of defining mathematical objects constructively and mathematical truth effectively -- A lay perspective</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="319497" href="https://independent.academia.edu/BhupinderSinghAnand">Bhupinder Singh Anand</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some consequences of defining mathematical objects constructively and mathematical truth effectively -- A lay perspective","attachmentId":80176337,"attachmentType":"pdf","work_url":"https://www.academia.edu/70412185/Some_consequences_of_defining_mathematical_objects_constructively_and_mathematical_truth_effectively_A_lay_perspective","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/70412185/Some_consequences_of_defining_mathematical_objects_constructively_and_mathematical_truth_effectively_A_lay_perspective"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="20105212" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models">Theories of arithmetics in finite models</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41138865" href="https://independent.academia.edu/KonradZdanowski">Konrad Zdanowski</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Journal of Symbolic Logic, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Theories of arithmetics in finite models","attachmentId":41164160,"attachmentType":"pdf","work_url":"https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="488584" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/488584/A_c_onstructive_definition_of_the_intuitive_truth_of_the_Axioms_and_Rules_of_Inference_of_Peano_Arithmetic_The_Reasoner_Vol_1_8_p6_7">A c onstructive definition of the intuitive truth of the Axioms and Rules of Inference of Peano Arithmetic. The Reasoner, Vol (1) 8 p6-7</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="319497" href="https://independent.academia.edu/BhupinderSinghAnand">Bhupinder Singh Anand</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A c onstructive definition of the intuitive truth of the Axioms and Rules of Inference of Peano Arithmetic. The Reasoner, Vol (1) 8 p6-7","attachmentId":4027882,"attachmentType":"pdf","work_url":"https://www.academia.edu/488584/A_c_onstructive_definition_of_the_intuitive_truth_of_the_Axioms_and_Rules_of_Inference_of_Peano_Arithmetic_The_Reasoner_Vol_1_8_p6_7","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/488584/A_c_onstructive_definition_of_the_intuitive_truth_of_the_Axioms_and_Rules_of_Inference_of_Peano_Arithmetic_The_Reasoner_Vol_1_8_p6_7"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="65195709" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65195709/Interpretability_and_definability_in_the_recursively_enumerable_degrees">Interpretability and definability in the recursively enumerable degrees</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="210918804" href="https://independent.academia.edu/ShoreRichard">Richard Shore</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the …, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Interpretability and definability in the recursively enumerable degrees","attachmentId":76900193,"attachmentType":"pdf","work_url":"https://www.academia.edu/65195709/Interpretability_and_definability_in_the_recursively_enumerable_degrees","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65195709/Interpretability_and_definability_in_the_recursively_enumerable_degrees"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="75285528" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75285528/On_Axiomatizability_of_the_Multiplicative_Theory_of_Numbers">On Axiomatizability of the Multiplicative Theory of Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="117308999" href="https://tabrizu.academia.edu/SaeedSalehi">Saeed Salehi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Axiomatizability of the Multiplicative Theory of Numbers","attachmentId":83115658,"attachmentType":"pdf","work_url":"https://www.academia.edu/75285528/On_Axiomatizability_of_the_Multiplicative_Theory_of_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75285528/On_Axiomatizability_of_the_Multiplicative_Theory_of_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="9707058" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9707058/Philosophy_of_mathematics">Philosophy of mathematics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15300318" href="https://ufabc.academia.edu/NayCal">Nay Cal</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Philosophy of mathematics","attachmentId":35896749,"attachmentType":"pdf","work_url":"https://www.academia.edu/9707058/Philosophy_of_mathematics","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/9707058/Philosophy_of_mathematics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="63455901" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/63455901/Decidability_of_the_Multiplicative_and_Order_Theory_of_Numbers">Decidability of the Multiplicative and Order Theory of Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="161759955" href="https://independent.academia.edu/ZibaAssadi">Ziba Assadi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Decidability of the Multiplicative and Order Theory of Numbers","attachmentId":75880180,"attachmentType":"pdf","work_url":"https://www.academia.edu/63455901/Decidability_of_the_Multiplicative_and_Order_Theory_of_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/63455901/Decidability_of_the_Multiplicative_and_Order_Theory_of_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="4872513" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/4872513/On_Krivines_Realizability_Interpretation_of_Classical_Second_Order_Arithmetic">On Krivine's Realizability Interpretation of Classical Second-Order Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6339517" href="https://tu-darmstadt.academia.edu/thomasstreicher">thomas streicher</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Fundamenta Informaticae, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Krivine's Realizability Interpretation of Classical Second-Order Arithmetic","attachmentId":32147773,"attachmentType":"pdf","work_url":"https://www.academia.edu/4872513/On_Krivines_Realizability_Interpretation_of_Classical_Second_Order_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/4872513/On_Krivines_Realizability_Interpretation_of_Classical_Second_Order_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="110331305" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/110331305/How_to_Pick_Out_the_Integers_in_the_Rationals_An_Application_of_Number_Theory_to_Logic">How to Pick Out the Integers in the Rationals: An Application of Number Theory to Logic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33888294" href="https://macalester.academia.edu/DanFlath">Dan Flath</a></div><p class="ds-related-work--metadata ds2-5-body-xs">American Mathematical Monthly, 1991</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"How to Pick Out the Integers in the Rationals: An Application of Number Theory to Logic","attachmentId":108181304,"attachmentType":"pdf","work_url":"https://www.academia.edu/110331305/How_to_Pick_Out_the_Integers_in_the_Rationals_An_Application_of_Number_Theory_to_Logic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/110331305/How_to_Pick_Out_the_Integers_in_the_Rationals_An_Application_of_Number_Theory_to_Logic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="54099043" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54099043/In_defense_of_epistemic_arithmetic">In defense of epistemic arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142973211" href="https://uni-konstanz.academia.edu/leonhorsten">leon horsten</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"In defense of epistemic arithmetic","attachmentId":70627578,"attachmentType":"pdf","work_url":"https://www.academia.edu/54099043/In_defense_of_epistemic_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54099043/In_defense_of_epistemic_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="39987504" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/39987504/On_interpretations_of_bounded_arithmetic_and_bounded_set_theory">On interpretations of bounded arithmetic and bounded set theory</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="121126405" href="https://bristol.academia.edu/RichardPettigrew">Richard Pettigrew</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On interpretations of bounded arithmetic and bounded set theory","attachmentId":60179434,"attachmentType":"pdf","work_url":"https://www.academia.edu/39987504/On_interpretations_of_bounded_arithmetic_and_bounded_set_theory","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/39987504/On_interpretations_of_bounded_arithmetic_and_bounded_set_theory"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="86388849" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86388849/A_History_of_Interactions_between_Logic_and_Number_Theory">A History of Interactions between Logic and Number Theory</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="205178147" href="https://independent.academia.edu/Angusmacintyre">Angus macintyre</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A History of Interactions between Logic and Number Theory","attachmentId":90853548,"attachmentType":"pdf","work_url":"https://www.academia.edu/86388849/A_History_of_Interactions_between_Logic_and_Number_Theory","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86388849/A_History_of_Interactions_between_Logic_and_Number_Theory"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="111671629" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111671629/Are_There_Parts_of_Our_Arithmetical_Competence_that_No_Sound_Formal_System_Can_Duplicate">Are There Parts of Our Arithmetical Competence that No Sound Formal System Can Duplicate</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="319497" href="https://independent.academia.edu/BhupinderSinghAnand">Bhupinder Singh Anand</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Social Science Research Network, 2003</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Are There Parts of Our Arithmetical Competence that No Sound Formal System Can Duplicate","attachmentId":109965679,"attachmentType":"pdf","work_url":"https://www.academia.edu/111671629/Are_There_Parts_of_Our_Arithmetical_Competence_that_No_Sound_Formal_System_Can_Duplicate","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/111671629/Are_There_Parts_of_Our_Arithmetical_Competence_that_No_Sound_Formal_System_Can_Duplicate"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="41284066" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/41284066/PEACOCKS_ARITHMETIC_AN_ATTEMPT_TO_RECONCILE_EMPIRICISM_TO_UNIVERSALITY">PEACOCK'S ARITHMETIC: AN ATTEMPT TO RECONCILE EMPIRICISM TO UNIVERSALITY</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="126420663" href="https://cnrs-bellevue.academia.edu/MarieJos%C3%A9DurandRichard">Marie-José Durand-Richard</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indian Journal of History of Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"PEACOCK'S ARITHMETIC: AN ATTEMPT TO RECONCILE EMPIRICISM TO UNIVERSALITY","attachmentId":61503008,"attachmentType":"pdf","work_url":"https://www.academia.edu/41284066/PEACOCKS_ARITHMETIC_AN_ATTEMPT_TO_RECONCILE_EMPIRICISM_TO_UNIVERSALITY","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/41284066/PEACOCKS_ARITHMETIC_AN_ATTEMPT_TO_RECONCILE_EMPIRICISM_TO_UNIVERSALITY"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="103193015" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103193015/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic">Completeness theorems, incompleteness theorems and models of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="242816530" href="https://independent.academia.edu/KMcAloon">Ken McAloon</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Transactions of the American Mathematical Society, 1978</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Completeness theorems, incompleteness theorems and models of arithmetic","attachmentId":103264241,"attachmentType":"pdf","work_url":"https://www.academia.edu/103193015/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/103193015/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3394442" href="https://www.academia.edu/Documents/in/Interpretability">Interpretability</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>