CINXE.COM
Search results for: protein-RNA interfaces
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: protein-RNA interfaces</title> <meta name="description" content="Search results for: protein-RNA interfaces"> <meta name="keywords" content="protein-RNA interfaces"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="protein-RNA interfaces" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="protein-RNA interfaces"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 361</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: protein-RNA interfaces</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Hydration of Protein-RNA Recognition Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amita%20Barik">Amita Barik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Prasad%20Bahadur"> Ranjit Prasad Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-bonds" title="h-bonds">h-bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=minor-major%20grooves" title=" minor-major grooves"> minor-major grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=preserved%20water" title=" preserved water"> preserved water</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces" title=" protein-RNA interfaces"> protein-RNA interfaces</a> </p> <a href="https://publications.waset.org/abstracts/42932/hydration-of-protein-rna-recognition-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Investigation of Al/Si, Au/Si and Au/GaAs Interfaces by Positron Annihilation Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulnasser%20S.%20Saleh">Abdulnasser S. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of metal-semiconductor interfaces comes from the fact that most electronic devices are interconnected using metallic wiring that forms metal–semiconductor contacts. The properties of these contacts can vary considerably depending on the nature of the interface with the semiconductor. Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si, and Au/GaAs structures. A computational modeling by ROYPROF program is used to analyze Doppler broadening results in order to determine kinds of regions that positrons are likely to sample. In all fittings, the interfaces are found 1 nm thick and act as an absorbing sink for positrons diffusing towards them and may be regarded as highly defective. Internal electric fields were found to influence positrons diffusing to the interfaces and unable to force them cross to the other side. The materials positron affinities are considered in understanding such motion. The results of these theoretical fittings have clearly demonstrated the sensitivity of interfaces in any fitting attempts of analyzing positron spectroscopy data and gave valuable information about metal-semiconductor interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfaces" title="interfaces">interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=positron" title=" positron"> positron</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects "> defects </a> </p> <a href="https://publications.waset.org/abstracts/46927/investigation-of-alsi-ausi-and-augaas-interfaces-by-positron-annihilation-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Siam">Abderrahim Siam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Maamri"> Ramdane Maamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaidi%20Sahnoun"> Zaidi Sahnoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines. The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques, and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20user%20interfaces" title="adaptive user interfaces">adaptive user interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20solution%E2%80%99s%20appropriateness" title=" adaptation solution’s appropriateness"> adaptation solution’s appropriateness</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a> </p> <a href="https://publications.waset.org/abstracts/25034/toward-a-measure-of-appropriateness-of-user-interfaces-adaptations-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hina%20Verma">Hina Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Le%20Guen"> Karine Le Guen</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaud%20Dalaunay"> Renaud Dalaunay</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyas%20Ismail"> Iyas Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Vita%20Ilakovac"> Vita Ilakovac</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Pascal%20Rueff"> Jean Pascal Rueff</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunlin%20Jacques%20Zheng"> Yunlin Jacques Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Jonnard"> Philippe Jonnard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buried%20interfaces" title="buried interfaces">buried interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20X-ray%20emission%20spectroscopy" title=" hard X-ray emission spectroscopy"> hard X-ray emission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20photoelectron%20spectroscopy" title=" X-ray photoelectron spectroscopy"> X-ray photoelectron spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/136026/study-of-buried-interfaces-in-fesi-multilayer-by-hard-x-ray-emission-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Anthropomorphic Interfaces For User Trust in a Highly Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarisse%20Lawson-Guidigbe">Clarisse Lawson-Guidigbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Louveton"> Nicolas Louveton</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Amokrane-Ferka"> Kahina Amokrane-Ferka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Andre"> Jean-Marc Andre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trust in automated driving systems is receiving growing attention in the research community. Anthropomorphism has been identified by past research as a trust-building factor. In this paper, we consider three anthropomorphic interfaces integrating three versions of a virtual assistant. We attempt to measure the impact of each of these interfaces on trust in the automated driving system. An experiment following a between-subject design was conducted in a driving simulator (N = 36) to evaluate participants’ performance and experience in two handover situations (a simple one and a critical one). Perception of anthropomorphism and trust was measured using scales, while participants’ experience was measured during elicitation interviews. We found no significant difference between the three interfaces regarding the perception of anthropomorphism, trust levels, or experience. However, regarding participants’ performance, we found a significant difference between the three interfaces in the simple handover situations but not the critical one. Learnings from anthropomorphism and trust measurement scales are discussed and suggestions for further research are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title="highly automated driving">highly automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20design" title=" anthropomorphic design"> anthropomorphic design</a>, <a href="https://publications.waset.org/abstracts/search?q=mindful%20anthropomorphism" title=" mindful anthropomorphism"> mindful anthropomorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=mindless%20anthropomorphism" title=" mindless anthropomorphism"> mindless anthropomorphism</a> </p> <a href="https://publications.waset.org/abstracts/146868/anthropomorphic-interfaces-for-user-trust-in-a-highly-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Shalchy">Faezeh Shalchy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20concrete" title="fiber-reinforced concrete">fiber-reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/26458/nanostructure-and-adhesion-of-cementpolymer-fiber-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Standardized Description and Modeling Methods of Semiconductor IP Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee">Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IP reuse is an effective design methodology for modern SoC design to reduce effort and time. However, description and modeling methods of IP interfaces are different due to different IP designers. In this paper, standardized description and modeling methods of IP interfaces are proposed. It consists of 11 items such as IP information, model provision, data type, description level, interface information, port information, signal information, protocol information, modeling level, modeling information, and source file. The proposed description and modeling methods enables easy understanding, simulation, verification, and modification in IP reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface" title="interface">interface</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=description" title=" description"> description</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20IP" title=" semiconductor IP"> semiconductor IP</a> </p> <a href="https://publications.waset.org/abstracts/16150/standardized-description-and-modeling-methods-of-semiconductor-ip-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Multiple Pen and Touch Interaction on Interactive LCDs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Kunz">Andreas Kunz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alavi"> Ali Alavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a simple active stylus for interactive IR-based tabletop systems. Such tables offer a set of tags for realizing tangible user interfaces, which can only be applied to objects having a relatively big contacting area with the interactive surface. The stylus has a unique address and thus can be clearly distinguished from other styli, objects or finger touches that might simultaneously occur on the interactive surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interactive%20screens" title="interactive screens">interactive screens</a>, <a href="https://publications.waset.org/abstracts/search?q=pen" title=" pen"> pen</a>, <a href="https://publications.waset.org/abstracts/search?q=tangibles" title=" tangibles"> tangibles</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20interfaces" title=" user interfaces"> user interfaces</a> </p> <a href="https://publications.waset.org/abstracts/16033/multiple-pen-and-touch-interaction-on-interactive-lcds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Relating Interface Properties with Crack Propagation in Composite Laminates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Qu">Tao Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prakash"> Chandra Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Tomar"> Vikas Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=interfaces" title=" interfaces"> interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/44635/relating-interface-properties-with-crack-propagation-in-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Rao">Saleem Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Ghadeer"> Mohammed Al-Ghadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Archan%20Banerjee"> Archan Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Fariborzi"> Hossein Fariborzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconducting%20circuits" title="superconducting circuits">superconducting circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=quality-factor" title=" quality-factor"> quality-factor</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=coherence" title=" coherence"> coherence</a> </p> <a href="https://publications.waset.org/abstracts/176785/improvement-in-quality-factor-superconducting-co-planer-waveguide-resonators-by-passivation-air-interfaces-using-self-assembled-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Graphic User Interface Design Principles for Designing Augmented Reality Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshan%20Ejaz">Afshan Ejaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Asim%20Ali"> Syed Asim Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reality is a combination of perception, reconstruction, and interaction. Augmented Reality is the advancement that layer over consistent everyday existence which includes content based interface, voice-based interfaces, voice-based interface and guide based or gesture-based interfaces, so designing augmented reality application interfaces is a difficult task for the maker. Designing a user interface which is not only easy to use and easy to learn but its more interactive and self-explanatory which have high perceived affordability, perceived usefulness, consistency and high discoverability so that the user could easily recognized and understand the design. For this purpose, a lot of interface design principles such as learnability, Affordance, Simplicity, Memorability, Feedback, Visibility, Flexibly and others are introduced but there no such principles which explain the most appropriate interface design principles for designing an Augmented Reality application interfaces. Therefore, the basic goal of introducing design principles for Augmented Reality application interfaces is to match the user efforts and the computer display (‘plot user input onto computer output’) using an appropriate interface action symbol (‘metaphors’) or to make that application easy to use, easy to understand and easy to discover. In this study by observing Augmented reality system and interfaces, few of well-known design principle related to GUI (‘user-centered design’) are identify and through them, few issues are shown which can be determined through the design principles. With the help of multiple studies, our study suggests different interface design principles which makes designing Augmented Reality application interface more easier and more helpful for the maker as these principles make the interface more interactive, learnable and more usable. To accomplish and test our finding, Pokémon Go an Augmented Reality game was selected and all the suggested principles are implement and test on its interface. From the results, our study concludes that our identified principles are most important principles while developing and testing any Augmented Reality application interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GUI" title="GUI">GUI</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphors" title=" metaphors"> metaphors</a>, <a href="https://publications.waset.org/abstracts/search?q=affordance" title=" affordance"> affordance</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction" title=" satisfaction"> satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20burden" title=" cognitive burden"> cognitive burden</a> </p> <a href="https://publications.waset.org/abstracts/97487/graphic-user-interface-design-principles-for-designing-augmented-reality-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Exploring Electroactive Polymers for Dynamic Data Physicalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Dauner">Joanna Dauner</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Friedrich"> Jan Friedrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Elsner"> Linda Elsner</a>, <a href="https://publications.waset.org/abstracts/search?q=Kora%20Kimpel"> Kora Kimpel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroactive%20polymer" title="electroactive polymer">electroactive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-changing%20interfaces" title=" shape-changing interfaces"> shape-changing interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material%20interfaces" title=" smart material interfaces"> smart material interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20physicalization" title=" data physicalization"> data physicalization</a> </p> <a href="https://publications.waset.org/abstracts/164699/exploring-electroactive-polymers-for-dynamic-data-physicalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Z%C3%A9nouda">Hervé Zénouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audio-games" title="audio-games">audio-games</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20games" title=" video games"> video games</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20generated%20music" title=" computer generated music"> computer generated music</a>, <a href="https://publications.waset.org/abstracts/search?q=gameplay" title=" gameplay"> gameplay</a>, <a href="https://publications.waset.org/abstracts/search?q=interactivity" title=" interactivity"> interactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=synesthesia" title=" synesthesia"> synesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20interfaces" title=" sound interfaces"> sound interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=relationships%20image%2Fsound" title=" relationships image/sound"> relationships image/sound</a>, <a href="https://publications.waset.org/abstracts/search?q=audiovisual%20music" title=" audiovisual music"> audiovisual music</a> </p> <a href="https://publications.waset.org/abstracts/152518/digital-musical-organology-the-audio-games-the-question-of-a-musicological-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> An Experimental Study of the Effectiveness of Lubricants in Reducing the Sidewall Friction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Li"> Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Daviault"> Maxime Daviault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In several cases, one needs apply lubrication materials in laboratory tests to reduce the friction (shear strength) along the interfaces between a tested soil and the side walls of container. Several types of lubricants are available. Their effectiveness had been tested mostly through direct shear tests. These testing conditions are quite different than those when the tested soil is placed in the container. Thus, the shear strengths measured from direct shear tests may not be totally representative of those of interfaces between the tested soil and the sidewalls of container. In this paper, the effectiveness of different lubricants used to reduce the friction (shear strength) of soil-structure interfaces has been studied. Results show that the selected lubricants do not significantly reduce the sidewall friction (shear strength). Rather, the application of wax, graphite, grease or lubricant oil has effect to increase the sidewall shear strength due probably to the high viscosity of such materials. Subsequently, the application of lubricants between tested soil and sidewall and neglecting the friction (shear strength) along the sidewalls may lead to inaccurate test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arching" title="arching">arching</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title=" laboratory tests"> laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricants" title=" lubricants"> lubricants</a> </p> <a href="https://publications.waset.org/abstracts/81128/an-experimental-study-of-the-effectiveness-of-lubricants-in-reducing-the-sidewall-friction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bamikole%20J.%20Adeyemi">Bamikole J. Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Jadhawar"> Prashant Jadhawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateef%20Akanji"> Lateef Akanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20interfaces" title="liquid-liquid interfaces">liquid-liquid interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20concentrations" title=" surfactant concentrations"> surfactant concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20determining%20ions" title=" potential determining ions"> potential determining ions</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization" title=" residual oil mobilization"> residual oil mobilization</a> </p> <a href="https://publications.waset.org/abstracts/113999/numerical-investigation-of-the-effects-of-surfactant-concentrations-on-the-dynamics-of-liquid-liquid-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> “Friction Surfaces” of Airport Emergency Plan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Kraus">Jakub Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Plos"> Vladimír Plos</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Vittek"> Peter Vittek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses on the issue of airport emergency plans, which are documents describing reactions to events with impact on aviation safety or aviation security. The article specifically focuses on the use and creation of emergency plans, where could be found a number of disagreements between different stakeholders, for which the airport emergency plan applies. Those are the friction surfaces of interfaces, which is necessary to identify and ensure them smooth process to avoid dangerous situations or delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport%20emergency%20plan" title="airport emergency plan">airport emergency plan</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation%20safety" title=" aviation safety"> aviation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation%20security" title=" aviation security"> aviation security</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20management%20system" title=" comprehensive management system"> comprehensive management system</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20surfaces%20of%20airport%20emergency%20plan" title=" friction surfaces of airport emergency plan"> friction surfaces of airport emergency plan</a>, <a href="https://publications.waset.org/abstracts/search?q=interfaces%20of%20processes" title=" interfaces of processes"> interfaces of processes</a> </p> <a href="https://publications.waset.org/abstracts/29708/friction-surfaces-of-airport-emergency-plan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Defect Modes in Multilayered Piezoelectric Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Piliposyan">D. G. Piliposyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20layered%20structure" title="piezoelectric layered structure">piezoelectric layered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20phononic%20crystal" title=" periodic phononic crystal"> periodic phononic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=bandgap" title=" bandgap"> bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=bloch%20waves" title=" bloch waves"> bloch waves</a> </p> <a href="https://publications.waset.org/abstracts/55400/defect-modes-in-multilayered-piezoelectric-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Azarrudin%20M.%20A.">Abdul Azarrudin M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pothiraj%20K."> Pothiraj K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kandasamy%20Satish"> Kandasamy Satish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automobile" title="automobile">automobile</a>, <a href="https://publications.waset.org/abstracts/search?q=clutch" title=" clutch"> clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=fork" title=" fork"> fork</a> </p> <a href="https://publications.waset.org/abstracts/157212/experimental-investigation-of-mechanical-friction-influence-in-semi-hydraulic-clutch-actuation-system-over-mileage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Mikkelsen">Alexander Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Khobaib%20Khobaib"> Khobaib Khobaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Rozynek"> Zbigniew Rozynek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20deformation" title="drop deformation">drop deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20induced%20stress" title=" electric field induced stress"> electric field induced stress</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic%20flows" title=" electrohydrodynamic flows"> electrohydrodynamic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20structuring%20at%20drop%20interfaces" title=" particle structuring at drop interfaces"> particle structuring at drop interfaces</a> </p> <a href="https://publications.waset.org/abstracts/93941/electric-field-induced-deformation-of-particle-laden-drops-and-structuring-of-surface-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanni%20Chang">Yanni Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezhi%20Dai"> Dezhi Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Y.%20Tong"> Albert Y. Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation%20scheme" title="interpolation scheme">interpolation scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=overset%20meshes" title=" overset meshes"> overset meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=PLIC-VOF%20method" title=" PLIC-VOF method"> PLIC-VOF method</a> </p> <a href="https://publications.waset.org/abstracts/113095/a-geometric-interpolation-scheme-in-overset-meshes-for-the-piecewise-linear-interface-calculation-volume-of-fluid-method-in-multiphase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.-G.%20Herrmann">H.-G. Herrmann</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Schwarz"> M. Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summa"> J. Summa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Grossmann"> F. Grossmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed. <p align="left"> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20evaluation" title="defect evaluation">defect evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=EMAT" title=" EMAT"> EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a> </p> <a href="https://publications.waset.org/abstracts/67647/non-destructive-testing-for-evaluation-of-defects-and-interfaces-in-metal-carbon-fiber-reinforced-polymer-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Djemili">Rafik Djemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Bourouba"> Hocine Bourouba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Amara%20Korba"> M. C. Amara Korba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain-computer%20interface" title="brain-computer interface">brain-computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20imagery" title=" motor imagery"> motor imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/6971/comparative-analysis-of-spectral-estimation-methods-for-brain-computer-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20Nagro">Shimaa Nagro</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Campion"> Russell Campion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title="mobile learning">mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=M-Learn" title=" M-Learn"> M-Learn</a>, <a href="https://publications.waset.org/abstracts/search?q=HCI" title=" HCI"> HCI</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20multimedia" title=" educational multimedia"> educational multimedia</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20design" title=" interface design"> interface design</a> </p> <a href="https://publications.waset.org/abstracts/29145/research-and-development-of-methodology-tools-techniques-and-methods-to-analyze-and-design-interface-media-pedagogy-for-educational-topics-to-be-delivered-via-mobile-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> A Model-Driven Approach of User Interface for MVP Rich Internet Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Roubi">Sarra Roubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Erramdani"> Mohammed Erramdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Mbarki"> Samir Mbarki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metamodel" title="metamodel">metamodel</a>, <a href="https://publications.waset.org/abstracts/search?q=model-driven%20engineering" title=" model-driven engineering"> model-driven engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=MVP" title=" MVP"> MVP</a>, <a href="https://publications.waset.org/abstracts/search?q=rich%20internet%20application" title=" rich internet application"> rich internet application</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20interface" title=" user interface"> user interface</a> </p> <a href="https://publications.waset.org/abstracts/36531/a-model-driven-approach-of-user-interface-for-mvp-rich-internet-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Idrees">Sadia Idrees</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianpaolo%20Vignali"> Gianpaolo Vignali</a>, <a href="https://publications.waset.org/abstracts/search?q=Simeon%20Gill"> Simeon Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title="e-commerce">e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20customization" title=" mass customization"> mass customization</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20size%20and%20fit" title=" virtual size and fit"> virtual size and fit</a>, <a href="https://publications.waset.org/abstracts/search?q=web%203.0%20technology" title=" web 3.0 technology"> web 3.0 technology</a> </p> <a href="https://publications.waset.org/abstracts/117627/technological-advancement-in-fashion-online-retailing-a-comparative-study-of-pakistan-and-uk-fashion-e-commerce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> The Observable Method for the Regularization of Shock-Interface Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teng%20Li">Teng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Mohseni"> Kamran Mohseni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20flow%20simulation" title="compressible flow simulation">compressible flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20regularization" title=" inviscid regularization"> inviscid regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=Richtmyer-Meshkov%20instability" title=" Richtmyer-Meshkov instability"> Richtmyer-Meshkov instability</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-bubble%20interactions." title=" shock-bubble interactions. "> shock-bubble interactions. </a> </p> <a href="https://publications.waset.org/abstracts/37215/the-observable-method-for-the-regularization-of-shock-interface-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hiergeist">Sebastian Hiergeist</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redundancy" title="redundancy">redundancy</a>, <a href="https://publications.waset.org/abstracts/search?q=System-on-Chip" title=" System-on-Chip"> System-on-Chip</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control%20computer%20%28FCC%29" title=" flight control computer (FCC)"> flight control computer (FCC)</a> </p> <a href="https://publications.waset.org/abstracts/78337/evaluation-of-redundancy-architectures-based-on-system-on-chip-internal-interfaces-for-future-unmanned-aerial-vehicles-flight-control-computer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD.%20J.%20Urb%C3%A1nek">Jiří. J. Urbánek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Malachov%C3%A1"> Hana Malachová</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Krahulec"> Josef Krahulec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Johanidisov%C3%A1"> Jitka Johanidisová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis" title=" crisis"> crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=DYVELOP" title=" DYVELOP"> DYVELOP</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/38771/identification-algorithm-of-critical-interface-modelling-perils-on-critical-infrastructure-subjects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Portable Cardiac Monitoring System Based on Real-Time Microcontroller and Multiple Communication Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionel%20Zagan">Ionel Zagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Gheorghita%20Gaitan"> Vasile Gheorghita Gaitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Brezulianu"> Adrian Brezulianu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the contributions in designing a mobile system named Tele-ECG implemented for remote monitoring of cardiac patients. For a better flexibility of this application, the authors chose to implement a local memory and multiple communication interfaces. The project described in this presentation is based on the ARM Cortex M0+ microcontroller and the ADAS1000 dedicated chip necessary for the collection and transmission of Electrocardiogram signals (ECG) from the patient to the microcontroller, without altering the performances and the stability of the system. The novelty brought by this paper is the implementation of a remote monitoring system for cardiac patients, having a real-time behavior and multiple interfaces. The microcontroller is responsible for processing digital signals corresponding to ECG and also for the implementation of communication interface with the main server, using GSM/Bluetooth SIMCOM SIM800C module. This paper translates all the characteristics of the Tele-ECG project representing a feasible implementation in the biomedical field. Acknowledgment: This paper was supported by the project 'Development and integration of a mobile tele-electrocardiograph in the GreenCARDIO© system for patients monitoring and diagnosis - m-GreenCARDIO', Contract no. BG58/30.09.2016, PNCDI III, Bridge Grant 2016, using the infrastructure from the project 'Integrated Center for research, development and innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control', Contract No. 671/09.04.2015, Sectoral Operational Program for Increase of the Economic Competitiveness co-funded from the European Regional Development Fund. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tele-ECG" title="Tele-ECG">Tele-ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20cardiac%20monitoring" title=" real-time cardiac monitoring"> real-time cardiac monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a> </p> <a href="https://publications.waset.org/abstracts/62189/portable-cardiac-monitoring-system-based-on-real-time-microcontroller-and-multiple-communication-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Su%20Ryu">Young-Su Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gi%20Jeon"> Won-Gi Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Chul%20Song"> Byoung-Chul Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hong%20Park"> Jae-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Won%20Kwon"> Ki-Won Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system%20%28ESS%29" title="energy storage system (ESS)">energy storage system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20framework" title=" open framework"> open framework</a>, <a href="https://publications.waset.org/abstracts/search?q=profile" title=" profile"> profile</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29" title=" photovoltaic (PV)"> photovoltaic (PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=uninterruptible%20power%20supply%20%28UPS%29" title=" uninterruptible power supply (UPS)"> uninterruptible power supply (UPS)</a> </p> <a href="https://publications.waset.org/abstracts/68041/design-of-open-framework-based-smart-ess-profile-for-pv-ess-and-ups-ess" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>