CINXE.COM

Search results for: indoor positioning

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indoor positioning</title> <meta name="description" content="Search results for: indoor positioning"> <meta name="keywords" content="indoor positioning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indoor positioning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indoor positioning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 928</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indoor positioning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Wang">Chao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuxue%20Xia"> Zuxue Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhai%20Xia"> Wenhai Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang"> Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayuan%20Hu"> Jiayuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Cheng"> Rui Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20radar" title=" millimeter wave radar"> millimeter wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IWR1443%20sensor" title=" IWR1443 sensor"> IWR1443 sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud%20imaging" title=" point cloud imaging"> point cloud imaging</a> </p> <a href="https://publications.waset.org/abstracts/155483/three-dimensional-positioning-method-of-indoor-personnel-based-on-millimeter-wave-radar-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan-Ren%20Chen">Yan-Ren Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenn-Kaie%20Lain"> Jenn-Kaie Lain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=received%20signal%20strength" title=" received signal strength"> received signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=trilateration" title=" trilateration"> trilateration</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communications" title=" visible light communications"> visible light communications</a> </p> <a href="https://publications.waset.org/abstracts/10276/leds-based-indoor-positioning-by-distances-derivation-from-lambertian-illumination-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linhang%20Zhu">Linhang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Zhu"> Hongyu Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu"> Jiahe Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manhattan%20world%20hypothesis" title="Manhattan world hypothesis">Manhattan world hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20positioning%20and%20mapping" title=" real-time positioning and mapping"> real-time positioning and mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title=" feature matching"> feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=loopback%20detection" title=" loopback detection"> loopback detection</a> </p> <a href="https://publications.waset.org/abstracts/173745/indoor-real-time-positioning-and-mapping-based-on-manhattan-hypothesis-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guanqiao%20Wang">Guanqiao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20plastering%20robot" title="indoor plastering robot">indoor plastering robot</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20positioning" title=" precise positioning"> precise positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20laser" title=" line laser"> line laser</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/147620/accurate-positioning-method-of-indoor-plastering-robot-based-on-line-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phornpat%20Chewasoonthorn">Phornpat Chewasoonthorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Surat%20Kwanmuang"> Surat Kwanmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning" title="indoor positioning">indoor positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-wideband" title=" ultra-wideband"> ultra-wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction" title=" error correction"> error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/138120/error-correction-method-for-2d-ultra-wideband-indoor-wireless-positioning-system-using-logarithmic-error-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning%20system" title="indoor positioning system">indoor positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20delay" title=" measurement delay"> measurement delay</a> </p> <a href="https://publications.waset.org/abstracts/21330/an-indoor-positioning-system-in-wireless-sensor-networks-with-measurement-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> A Route Guidance System for Car Finding in Indoor Parking Garages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Chun%20Lee">Pei-Chun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shih%20Wang"> Sheng-Shih Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guidance" title="guidance">guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=iBeacon" title=" iBeacon"> iBeacon</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20app" title=" mobile app"> mobile app</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/54035/a-route-guidance-system-for-car-finding-in-indoor-parking-garages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaya%20Ismail">Sumaya Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Aijaz%20Ahmad%20Rehi"> Aijaz Ahmad Rehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking" title=" indoor location tracking"> indoor location tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20architecture" title=" application architecture"> application architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20RFID%20tag" title=" passive RFID tag"> passive RFID tag</a> </p> <a href="https://publications.waset.org/abstracts/164777/development-of-application-architecture-for-rfid-based-indoor-tracking-using-passive-rfid-tag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Development of an Indoor Drone Designed for the Needs of the Creative Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Santamarina%20Campos">V. Santamarina Campos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20de%20Miguel%20Molina"> M. de Miguel Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kr%C3%B6ner"> S. Kröner</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20de%20Miguel%20Molina"> B. de Miguel Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title="virtual reality">virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning%20system" title=" indoor positioning system"> indoor positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=RPAS" title=" RPAS"> RPAS</a>, <a href="https://publications.waset.org/abstracts/search?q=remotely%20piloted%20aircraft%20systems" title=" remotely piloted aircraft systems"> remotely piloted aircraft systems</a>, <a href="https://publications.waset.org/abstracts/search?q=aerial%20film" title=" aerial film"> aerial film</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20navigation" title=" intelligent navigation"> intelligent navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20safety%20measures" title=" advanced safety measures"> advanced safety measures</a>, <a href="https://publications.waset.org/abstracts/search?q=creative%20industries" title=" creative industries"> creative industries</a> </p> <a href="https://publications.waset.org/abstracts/90557/development-of-an-indoor-drone-designed-for-the-needs-of-the-creative-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipob%20Kondee">Kittipob Kondee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chutima%20Prommak"> Chutima Prommak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20positioning%20system" title="indoor positioning system">indoor positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20system%20design" title=" optimization system design"> optimization system design</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-floor%20building" title=" multi-floor building"> multi-floor building</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/9947/optimal-design-of-reference-node-placement-for-wireless-indoor-positioning-systems-in-multi-floor-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcell%20Serra%20de%20Almeida%20Martins">Marcell Serra de Almeida Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedito%20de%20Souza%20Ribeiro%20Neto"> Benedito de Souza Ribeiro Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerson%20Lima%20Serejo"> Gerson Lima Serejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gustavo%20Resque%20Dos%20Santos"> Carlos Gustavo Resque Dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20recognition" title="multiscale recognition">multiscale recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title=" indoor localization"> indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=tape-shaped%20marker" title=" tape-shaped marker"> tape-shaped marker</a>, <a href="https://publications.waset.org/abstracts/search?q=fiducial%20marker" title=" fiducial marker"> fiducial marker</a> </p> <a href="https://publications.waset.org/abstracts/163542/tape-shaped-multiscale-fiducial-marker-a-design-prototype-for-indoor-localization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rung-Shiang%20Cheng">Rung-Shiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jun%20Hong"> Wei-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jheng-Syun%20Wang"> Jheng-Syun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawuu%20W.%20Lin"> Kawuu W. Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beacon" title="beacon">beacon</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor" title=" indoor"> indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLE" title=" BLE"> BLE</a>, <a href="https://publications.waset.org/abstracts/search?q=Dijkstra%20algorithm" title=" Dijkstra algorithm"> Dijkstra algorithm</a> </p> <a href="https://publications.waset.org/abstracts/49106/an-indoor-guidance-system-combining-near-field-communication-and-bluetooth-low-energy-beacon-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> Indoor Robot Positioning with Precise Correlation Computations over Walsh-Coded Lightwave Signal Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jen-Fa%20Huang">Jen-Fa Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Wei%20Chiu"> Yu-Wei Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhe-Ren%20Cheng"> Jhe-Ren Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light communication (VLC) technique has become useful method via LED light blinking. Several issues on indoor mobile robot positioning with LED blinking are examined in the paper. In the transmitter, we control the transceivers blinking message. Orthogonal Walsh codes are adopted for such purpose on auto-correlation function (ACF) to detect signal sequences. In the robot receiver, we set the frame of time by 1 ns passing signal from the transceiver to the mobile robot. After going through many periods of time detecting the peak value of ACF in the mobile robot. Moreover, the transceiver transmits signal again immediately. By capturing three times of peak value, we can know the time difference of arrival (TDOA) between two peak value intervals and finally analyze the accuracy of the robot position. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Visible%20Light%20Communication" title="Visible Light Communication">Visible Light Communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Auto-Correlation%20Function%20%28ACF%29" title=" Auto-Correlation Function (ACF)"> Auto-Correlation Function (ACF)</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20value%20of%20ACF" title=" peak value of ACF"> peak value of ACF</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20difference%20of%20Arrival%20%28TDOA%29" title=" Time difference of Arrival (TDOA)"> Time difference of Arrival (TDOA)</a> </p> <a href="https://publications.waset.org/abstracts/55009/indoor-robot-positioning-with-precise-correlation-computations-over-walsh-coded-lightwave-signal-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Arfaeinia">Hossein Arfaeinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Nadali"> Azam Nadali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asadgol"> Zahra Asadgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fahiminia"> Mohammad Fahiminia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20matter%20%28PM%29" title="particle matter (PM)">particle matter (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20air%20ions%20%28NAIs%29" title=" negative air ions (NAIs)"> negative air ions (NAIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a> </p> <a href="https://publications.waset.org/abstracts/76064/indoor-and-outdoor-concentration-of-pm10-pm25-and-pm1-in-residential-building-and-evaluation-of-negative-air-ions-nais-in-indoor-pm-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Image Features Comparison-Based Position Estimation Method Using a Camera Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinseon%20Song">Jinseon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwan%20Park"> Yongwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, propose method that can user&rsquo;s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positioning" title="positioning">positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=distance" title=" distance"> distance</a>, <a href="https://publications.waset.org/abstracts/search?q=camera" title=" camera"> camera</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a>, <a href="https://publications.waset.org/abstracts/search?q=SURF%28Speed-Up%20Robust%20Features%29" title=" SURF(Speed-Up Robust Features)"> SURF(Speed-Up Robust Features)</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/11844/image-features-comparison-based-position-estimation-method-using-a-camera-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premkumar%20Vincent">Premkumar Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeok%20Kim"> Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Bae"> Jin-Hyuk Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20solar%20cells" title="indoor solar cells">indoor solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20light%20harvesting" title=" indoor light harvesting"> indoor light harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3AICBA" title=" P3HT:ICBA"> P3HT:ICBA</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/75834/absorption-control-of-organic-solar-cells-under-led-light-for-high-efficiency-indoor-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Autonomous Position Control of an Unmanned Aerial Vehicle Based on Accelerometer Response for Indoor Navigation Using Kalman Filtering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Misbahuddin">Syed Misbahuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagufta%20Kapadia"> Sagufta Kapadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous indoor drone navigation has been posed with various challenges, including the inability to use a Global Positioning System (GPS). As of now, Unmanned Aerial Vehicles (UAVs) either rely on 3D mapping systems or utilize external camera arrays to track the UAV in an enclosed environment. The objective of this paper is to develop an algorithm that utilizes Kalman Filtering to reduce noise, allowing the UAV to be navigated indoors using only the flight controller and an onboard companion computer. In this paper, open-source libraries are used to control the UAV, which will only use the onboard accelerometer on the flight controller to estimate the position through double integration. One of the advantages of such a system is that it allows for low-cost and lightweight UAVs to autonomously navigate indoors without advanced mapping of the environment or the use of expensive high-precision-localization sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title="accelerometer">accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor-navigation" title=" indoor-navigation"> indoor-navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman-filtering" title=" Kalman-filtering"> Kalman-filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=position-control" title=" position-control "> position-control </a> </p> <a href="https://publications.waset.org/abstracts/115917/autonomous-position-control-of-an-unmanned-aerial-vehicle-based-on-accelerometer-response-for-indoor-navigation-using-kalman-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Correlation between Indoor and Outdoor Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20N.%20Shatnawi"> Ziad N. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria%20air%20pollutants" title="criteria air pollutants">criteria air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20air%20pollution" title=" indoor/outdoor air pollution"> indoor/outdoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20ratio" title=" indoor/outdoor ratio"> indoor/outdoor ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/21435/correlation-between-indoor-and-outdoor-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20W.%20Mui">Kwok W. Mui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20T.%20Wong"> Ling T. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20T.%20Cheung"> Chin T. Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20C.%20Yu"> Ho C. Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculator" title="calculator">calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality%20%28IEQ%29" title=" indoor environmental quality (IEQ)"> indoor environmental quality (IEQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=5-star%20benchmarks" title=" 5-star benchmarks "> 5-star benchmarks </a> </p> <a href="https://publications.waset.org/abstracts/24988/an-application-based-indoor-environmental-quality-ieq-calculator-for-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Visual Search Based Indoor Localization in Low Light via RGB-D Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yali%20Zheng">Yali Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peipei%20Luo"> Peipei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinan%20Chen"> Shinan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiasheng%20Hao"> Jiasheng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cheng"> Hong Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20navigation" title="indoor navigation">indoor navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20camera" title=" RGB-D camera"> RGB-D camera</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20based" title=" vision based"> vision based</a> </p> <a href="https://publications.waset.org/abstracts/66057/visual-search-based-indoor-localization-in-low-light-via-rgb-d-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thet%20Su%20Hlaing">Thet Su Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Kojima"> Shoichi Kojima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20house" title="bamboo house">bamboo house</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20indigenous%20roofing%20material" title=" local indigenous roofing material"> local indigenous roofing material</a> </p> <a href="https://publications.waset.org/abstracts/117485/influence-of-roofing-material-on-indoor-thermal-comfort-of-bamboo-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Li-Ping">Sun Li-Ping</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jian-Xun"> Zhu Jian-Xun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Sheng-Nan"> Liu Sheng-Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=S-lay%20operation" title="S-lay operation">S-lay operation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20positioning" title=" dynamic positioning"> dynamic positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20motion" title=" coupling motion"> coupling motion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain" title=" time domain"> time domain</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation%20of%20thrust" title=" allocation of thrust "> allocation of thrust </a> </p> <a href="https://publications.waset.org/abstracts/8016/coupling-time-domain-analysis-for-dynamic-positioning-during-s-lay-installation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> Improving Fingerprinting-Based Localization System Using Generative AI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getaneh%20Berie%20Tarekegn">Getaneh Berie Tarekegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Chia%20Tai"> Li-Chia Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location-aware%20services" title="location-aware services">location-aware services</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20technique" title=" feature extraction technique"> feature extraction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20network" title=" generative adversarial network"> generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/185954/improving-fingerprinting-based-localization-system-using-generative-ai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getaneh%20Berie%20Tarekegn">Getaneh Berie Tarekegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Chia%20Tai"> Li-Chia Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location-aware%20services" title="location-aware services">location-aware services</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20technique" title=" feature extraction technique"> feature extraction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20network" title=" generative adversarial network"> generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/186020/improving-fingerprinting-based-localization-fpl-system-using-generative-artificial-intelligence-gai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> A Study of the Implications for the Health and Wellbeing of Energy-Efficient House Occupants: A UK-Based Investigation of Indoor Climate and Indoor Air Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Kermeci">Patricia Kermeci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Policies related to the reduction of both carbon dioxide and energy consumption within the residential sector have contributed towards a growing number of energy-efficient houses being built in several countries. Many of these energy-efficient houses rely on the construction of very well insulated and highly airtight structures, ventilated mechanically. Although energy-efficient houses are indeed more energy efficient than conventional houses, concerns have been raised over the quality of their indoor air and, consequently, the possible adverse health and wellbeing effects for their occupants. Using a longitudinal study design over three different weather seasons (winter, spring and summer), this study has investigated the indoor climate and indoor air quality of different rooms (bedroom, living room and kitchen) in five energy-efficient houses and four conventional houses in the UK. Occupants have kept diaries of their activities during the studied periods and interviews have been conducted to investigate possible behavioural explanations for the findings. Data has been compared with reviews of epidemiological, toxicological and other health related published literature to reveals three main findings. First, it shows that the indoor environment quality of energy-efficient houses cannot be treated as a holistic entity as different rooms presented dissimilar indoor climate and indoor air quality. Thus, such differences might contribute to the health and wellbeing of occupants in different ways. Second, the results show that the indoor environment quality of energy-efficient houses can vary following changes in weather season, leaving occupants at a lower or higher risk of adverse health and wellbeing effects during different weather seasons. Third, one cannot assume that even identical energy-efficient houses provide a similar indoor environment quality. Fourth, the findings reveal that the practices and behaviours of the occupants of energy-efficient houses likely determine whether they enjoy a healthier indoor environment when compared with their control houses. In conclusion, it has been considered vital to understand occupants’ practices and behaviours in order to explain the ways they might contribute to the indoor climate and indoor air quality in energy-efficient houses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-efficient%20house" title="energy-efficient house">energy-efficient house</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20wellbeing" title=" health and wellbeing"> health and wellbeing</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment" title=" indoor environment"> indoor environment</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a> </p> <a href="https://publications.waset.org/abstracts/61494/a-study-of-the-implications-for-the-health-and-wellbeing-of-energy-efficient-house-occupants-a-uk-based-investigation-of-indoor-climate-and-indoor-air-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Exploring People’s Perceptions of Indoor Plants through the Lens of Para-Social Relationships Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivashkina%20Elizaveta">Ivashkina Elizaveta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite significant research on the positive effects of houseplants on human life, we know almost nothing about how people perceive plants and their attitudes toward them. The following study seeks to fill this void by applying para-social relationships (PSRs) theory to analyze individuals’ perceptions of houseplants. We reveal how people form and maintain PSRs with indoor plants using 15 semi-structured in-depth interviews with Russian-speaking university students who had a close bond with their indoor plants when the study was conducted. The findings indicate that the process of forming PSRs is influenced by factors such as exposure and homophily. Students develop a sense of companionship with their indoor plants, which contributes to establishing a PSR. Participants reported engaging in various activities, such as regular care, communication, and interaction with their plants. The insights gained from this research have implications for horticultural therapy, environmental psychology, and indoor gardening practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=para-social%20relationships" title="para-social relationships">para-social relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a>, <a href="https://publications.waset.org/abstracts/search?q=people-plant%20interaction" title=" people-plant interaction"> people-plant interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20plants" title=" indoor plants"> indoor plants</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20research" title=" qualitative research"> qualitative research</a> </p> <a href="https://publications.waset.org/abstracts/175220/exploring-peoples-perceptions-of-indoor-plants-through-the-lens-of-para-social-relationships-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedtaghi%20Mirmohammadi">Seyedtaghi Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Yazdani"> Jamshid Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Syavash%20Etemadi%20Nejad"> Syavash Etemadi Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classrooms" title="classrooms">classrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matters" title=" particulate matters"> particulate matters</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/21397/long-term-indoor-air-monitoring-for-students-with-emphasis-on-particulate-matter-pm25-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant&#039;s Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imad%20M.%20Assali">Imad M. Assali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building" title="sustainable building">sustainable building</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment%20quality%20%28IEQ%29" title=" indoor environment quality (IEQ)"> indoor environment quality (IEQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%27s%20health" title=" occupant&#039;s health"> occupant&#039;s health</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20system" title=" active system"> active system</a>, <a href="https://publications.waset.org/abstracts/search?q=sick%20building%20syndrome%20%28SBS%29" title=" sick building syndrome (SBS)"> sick building syndrome (SBS)</a> </p> <a href="https://publications.waset.org/abstracts/45472/enhance-indoor-environment-in-buildings-and-its-effect-on-improving-occupants-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Augmentation of Automatic Selective Door Operation systems with UWB positioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Chan">John Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jake%20Linnenbank"> Jake Linnenbank</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Caird"> Gavin Caird</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic Selective Door Operation (ASDO) systems are increasingly used in railways to provide Correct Side Door Enable (CSDE) protection as well as to protect passenger doors opening off the platform where the train is longer than the platform, or in overshoot or undershoot scenarios. Such ASDO systems typically utilise trackside-installed RFID beacons, such as Eurobalises for odometry positioning purposes. Installing such trackside infrastructure may not be desirable or possible due to various factors such as conflict with existing infrastructure, potential damage from track tamping and jurisdiction constraints. Ultra-wideband (UWB) positioning technology could enable ASDO positioning requirements to be met without requiring installation of equipment directly on track since UWB technology can be installed on adjacent infrastructure such as on platforms. This paper will explore the feasibility of upgrading existing ASDO systems with UWB positioning technology, the feasibility of retrofitting UWB-enabled ASDO systems onto unfitted trains, and any other considerations relating to the use of UWB positioning for ASDO applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB" title="UWB">UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=ASDO" title=" ASDO"> ASDO</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20selective%20door%20operations" title=" automatic selective door operations"> automatic selective door operations</a>, <a href="https://publications.waset.org/abstracts/search?q=CSDE" title=" CSDE"> CSDE</a>, <a href="https://publications.waset.org/abstracts/search?q=correct%20side%20door%20enable" title=" correct side door enable"> correct side door enable</a> </p> <a href="https://publications.waset.org/abstracts/166459/augmentation-of-automatic-selective-door-operation-systems-with-uwb-positioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20positioning&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10