CINXE.COM

Search results for: photocatalyst

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photocatalyst</title> <meta name="description" content="Search results for: photocatalyst"> <meta name="keywords" content="photocatalyst"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photocatalyst" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photocatalyst"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 111</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photocatalyst</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Reddy%20Prasad">D. M. Reddy Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Sabrina%20Binti%20Rahmat"> Nur Sabrina Binti Rahmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksudur%20Rahman%20Khan"> Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sathiyamoorthy"> D. Sathiyamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO<sub>2</sub>) emission to the environment is inevitable which is responsible for global warming. Photocatalytic reduction of CO<sub>2</sub> to fuel, such as methanol, methane etc. is a promising way to reduce greenhouse gas CO<sub>2</sub> emission. In the present work, Bi<sub>2</sub>S<sub>3</sub>/CdS was synthesized as an effective visible light responsive photocatalyst for CO<sub>2</sub> reduction into methanol. The Bi<sub>2</sub>S<sub>3</sub>/CdS photocatalyst was prepared by hydrothermal reaction. The catalyst was characterized by X-ray diffraction (XRD) instrument. The photocatalytic activity of the catalyst has been investigated for methanol production as a function of time. Gas chromatograph flame ionization detector (GC-FID) was employed to analyze the product. The yield of methanol was found to increase with higher CdS concentration in Bi<sub>2</sub>S<sub>3</sub>/CdS and the maximum yield was obtained for 45 wt% of Bi<sub>2</sub>S<sub>3</sub>/CdS under visible light irradiation was 20 <em>&mu;</em>mole/g. The result establishes that Bi<sub>2</sub>S<sub>3</sub>/CdS is favorable catalyst to reduce CO<sub>2</sub> to methanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20reduction" title=" CO2 reduction"> CO2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-FID" title=" GC-FID"> GC-FID</a> </p> <a href="https://publications.waset.org/abstracts/43005/preparation-and-characterization-of-photocatalyst-for-the-conversion-of-carbon-dioxide-to-methanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Mahmood">M. Z. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ismail"> S. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/116815/photocatalytic-removal-of-methylene-blue-dye-fabrication-and-optimization-of-adsorbant-material-and-a-photocatlyst-in-unilayer-and-bilayer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Eu³⁺ Ions Doped-SnO₂ for Effective Degradation of Malachite Green Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Malik">Ritu Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20K.%20Tomer"> Vijay K. Tomer</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20P.%20Nehra"> Satya P. Nehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Nehra"> Anshu Nehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light sensitive Eu³⁺ doped-SnO₂ nanoparticles were successfully synthesized via the hydrothermal method and extensively characterized by a combination of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and N₂ adsorption-desorption isotherms (BET). Their photocatalytic activities were evaluated using Malachite Green (MG) as decomposition objective by varying the concentration of Eu³⁺ in SnO₂. The XRD analysis showed that lanthanides phase was not observed on lower loadings of Eu³⁺ ions doped-SnO₂. Eu³⁺ ions can enhance the photocatalytic activity of SnO₂ to some extent as compared with pure SnO₂, and it was found that 3 wt% Eu³⁺ -doped SnO₂ is the most effective photocatalyst due to its lowest band gap, crystallite size and also the highest surface area. The photocatalytic tests indicate that at the optimum conditions, illumination time 40 min, pH 65, 0.3 g/L photocatalyst loading and 50 ppm dye concentration, the dye removal efficiency was 98%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82" title=" SnO₂ "> SnO₂ </a> </p> <a href="https://publications.waset.org/abstracts/64846/eu3-ions-doped-sno2-for-effective-degradation-of-malachite-green-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raqiqa%20Tur%20Rasool">Raqiqa Tur Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Abbas%20Ashraf"> Ghulam Abbas Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiCoFeS%20nanoparticles" title="NiCoFeS nanoparticles">NiCoFeS nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxymonosulfate%20activation" title=" peroxymonosulfate activation"> peroxymonosulfate activation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant%20removal" title=" organic pollutant removal"> organic pollutant removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/186862/carbon-at-nicofes-nanoparticles-for-photocatalytic-degradation-of-organic-pollutants-via-peroxymonosulfate-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Valonea Tannin Supported AgCl/ZnO/Fe3O4 Nanocomposite, a Magnetically Separable Photocatalyst with Enhanced Photocatalytic Performance under Visible Light Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20G%C3%BCy">Nuray Güy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20%C3%96zacar"> Mahmut Özacar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few decades, considerable attention has been devoted to the photocatalysts for the photocatalytic degradation of environmental pollutants. Many novel nanostructured photocatalysts for wastewater treatment have been investigated, such as TiO2 and, CdS, ZnO and silver halides (AgX, X = Cl, Br, I). The silver halides are photosensitive materials which can absorb photons in the visible region to produce electron–hole pairs. Silver halides are expensive that restricts their applications in large-scale photocatalytic processes. Tannin contains hydroxyl functional groups, it was employed as a modifier to improve the surface properties and adsorption capacity of the activated carbon towards the metal cations uptake. In this work, we designed a new structure of magnetically separable photocatalyst that combines AgCl/ZnO nanoparticles with Fe3O4 nanoparticles deposited on tannin, which was denoted as (AgI/ZnO)-Fe3O4/Tannin. The as-prepared products are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR), diffuse reflectance spectra (DRS) and vibrating sample magnetometer (VSM). The photocatalyst exhibited high activity degrading a textile dye under visible light irradiation. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AgI%2FZnO-Fe3O4%2FTannin" title="AgI/ZnO-Fe3O4/Tannin">AgI/ZnO-Fe3O4/Tannin</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20separable" title=" magnetically separable"> magnetically separable</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/53916/valonea-tannin-supported-agclznofe3o4-nanocomposite-a-magnetically-separable-photocatalyst-with-enhanced-photocatalytic-performance-under-visible-light-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kok%20Hong%20Tan">Kok Hong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hing%20Wah%20Lee"> Hing Wah Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhih-Wei%20Chen"> Jhih-Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Fu%20Dee"> Chang Fu Dee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Lin%20Wu"> Chung-Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Siang-Piao%20Chai"> Siang-Piao Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Sea%20Chang"> Wei Sea Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical" title=" photoelectrochemical"> photoelectrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=PEC" title=" PEC"> PEC</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20photocatalyst" title=" semiconductor photocatalyst"> semiconductor photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanorods" title=" zinc oxide nanorods"> zinc oxide nanorods</a> </p> <a href="https://publications.waset.org/abstracts/92902/dimensional-controlled-functional-gold-nanoparticles-and-zinc-oxide-nanorods-for-solar-water-splitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alshammari">Ahmad Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Bagabas"> Abdulaziz Bagabas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Assulami"> Muhamad Assulami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to the environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV-A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20AuNPs" title="supported AuNPs">supported AuNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20photocatalyst" title=" semiconductor photocatalyst"> semiconductor photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20B" title=" rhodamine B "> rhodamine B </a> </p> <a href="https://publications.waset.org/abstracts/20579/semiconductor-supported-gold-nanoparticles-for-photodegradation-of-rhodamine-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Green Synthesis and Photo Catalytic Activity of Monoclinic α-Bi2O3 Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Yuvakkumar">R. Yuvakkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Hong"> S. I. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light driven monoclinic α-Bi2O3 photocatalyst was synthesized employing green synthesis method using rambutan peel wastes. 10 ml rambutan extract was added to 50 ml of 0.1M Bi(NO3)3 under stirring at about 80°C for 2 hours. The centrifuged and dried product was calcinated in a muffle furnace at 450°C to get pure α-Bi2O3. The characterized product photocatalytic activity was evaluated employing methyl orange (MeO) as model pollutant with 10 mg l-1 concentration at pH 7. The obtained product optical absorption edges located at 484 nm clearly revealed the photocatalyst excitation by visible light irradiation. The obtained yellow color photocatalyst accord with its strong absorption spectrum revealed the visible light absorption due to the band gap transition. The band gap energy of α-Bi2O3 was estimated to be 2.81 eV indicating the absorption of α-Bi2O3 in visible light region. The photocatalytic results of MeO degradation revealed that green synthesized Bi2O3 can effectively degrade 92% MeO within 240 min under visible light (>400 nm), which is slightly increased to that of chemically synthesized Bi2O3 (90%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth%20oxide" title=" bismuth oxide"> bismuth oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a> </p> <a href="https://publications.waset.org/abstracts/45476/green-synthesis-and-photo-catalytic-activity-of-monoclinic-a-bi2o3-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Verma">Neha Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Manik%20Rakhra"> Manik Rakhra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation%20of%20dye" title=" photodegradation of dye"> photodegradation of dye</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/142117/doped-and-co-doped-zno-based-nanoparticles-and-their-photocatalytic-and-gas-sensing-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eko%20S.%20Kunarti">Eko S. Kunarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhmad%20Syoufian"> Akhmad Syoufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Indriana%20Kartini"> Indriana Kartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes"> Agnes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%83O%E2%82%84%2FSiO%E2%82%82%2FTiO%E2%82%82" title="Fe₃O₄/SiO₂/TiO₂">Fe₃O₄/SiO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=Au%28III%29%20and%20Cu%28II%29%20mixture" title=" Au(III) and Cu(II) mixture"> Au(III) and Cu(II) mixture</a> </p> <a href="https://publications.waset.org/abstracts/84909/fe3o4sio2tio2-nanoparticles-as-catalyst-for-recovery-of-gold-from-the-mixture-of-auiii-and-cuii-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Ershad%20Moradi">Seyyed Ershad Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khodaveisi"> Javad Khodaveisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Nasrollahpour"> Atefeh Nasrollahpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title="mesoporous carbon">mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide" title=" titanium oxide"> titanium oxide</a> </p> <a href="https://publications.waset.org/abstracts/78833/methyl-red-adsorption-and-photodegradation-on-tio2-modified-mesoporous-carbon-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teguh%20Endah%20Saraswati">Teguh Endah Saraswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusumandari%20Kusumandari"> Kusumandari Kusumandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Candra%20Purnawan"> Candra Purnawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Dinan%20Ghaisani"> Annisa Dinan Ghaisani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aufara%20Mahayum"> Aufara Mahayum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=DBD%20plasma" title=" DBD plasma"> DBD plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/108467/rapid-degradation-of-high-concentration-methylene-blue-in-the-combined-system-of-plasma-enhanced-photocatalysis-using-tio2-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20V.%20Pillai">Vishnu V. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20P.%20Lonkar"> Sunil P. Lonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhil%20M.%20Abraham"> Akhil M. Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Alhassan"> Saeed M. Alhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecofriendly" title="ecofriendly">ecofriendly</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a> </p> <a href="https://publications.waset.org/abstracts/62648/facile-synthesis-of-sulfur-doped-tio2-nanoparticles-with-enhanced-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Azari">Babak Azari</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Pourahmad"> Afshin Pourahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Sadeghi"> Babak Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masuod%20Mokhtari"> Masuod Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano" title="nano">nano</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolit" title=" zeolit"> zeolit</a>, <a href="https://publications.waset.org/abstracts/search?q=potocatalist" title=" potocatalist"> potocatalist</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/169098/extraction-of-amorphous-sio2-from-equisetnm-arvense-plant-for-synthesis-of-sio2zeolitic-imidazolate-framework-8-nanocomposite-and-its-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Vel%C3%A1squez%20Torres">M. E. Velásquez Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Tzompantzi"> F. Tzompantzi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Castillo-Rodr%C3%ADguez"> J. C. Castillo-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Romero%20Villegas"> A. G. Romero Villegas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mend%C3%A9z-Salazar"> S. Mendéz-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Santolalla-Vargas"> C. E. Santolalla-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cardoso-Mart%C3%ADnez"> J. Cardoso-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-chlorophenol" title="4-chlorophenol">4-chlorophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollutant" title=" water pollutant"> water pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/152569/4-chlorophenol-degradation-in-water-using-tio2-xzns-synthesized-by-one-step-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Prabhakar%20Vattikuti">S. V. Prabhakar Vattikuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Byon"> Chan Byon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructures" title=" heterostructures"> heterostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20disulfides" title=" transition metal disulfides"> transition metal disulfides</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dye" title=" organic dye"> organic dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a> </p> <a href="https://publications.waset.org/abstracts/51906/facile-synthesis-of-heterostructured-bi2s3-ws2-photocatalysts-for-photodegradation-of-organic-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Saroj">Sudhakar Saroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Vir%20Singh"> Satya Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20blue%20199" title="direct blue 199">direct blue 199</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a> </p> <a href="https://publications.waset.org/abstracts/85357/synthesis-characterization-and-application-of-undoped-and-fe-doped-tio2-ti1feo2-x001-002-003-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pachari%20Chuenta">Pachari Chuenta</a>, <a href="https://publications.waset.org/abstracts/search?q=Suwat%20Nanan"> Suwat Nanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dye" title="azo dye">azo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation" title=" chemical precipitation"> chemical precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic" title=" photocatalytic"> photocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/81626/zno-nanoparticles-as-photocatalysts-synthesis-characterization-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenija%20Milo%C5%A1evi%C4%87">Ksenija Milošević</a>, <a href="https://publications.waset.org/abstracts/search?q=Davor%20Lon%C4%8Darevi%C4%87"> Davor Lončarević</a>, <a href="https://publications.waset.org/abstracts/search?q=Tihana%20Mudrini%C4%87"> Tihana Mudrinić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmina%20Dostani%C4%87"> Jasmina Dostanić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bandgap%20alignment" title="bandgap alignment">bandgap alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=heterojunction" title=" heterojunction"> heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20mechanism" title=" reaction mechanism"> reaction mechanism</a> </p> <a href="https://publications.waset.org/abstracts/151493/kinetics-and-mechanism-study-of-photocatalytic-degradation-using-heterojunction-semiconductors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payam%20Hayati">Payam Hayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Firoozbakht"> Fateme Firoozbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamhassan%20Azimi"> Gholamhassan Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Tangestaninejad"> Shahram Tangestaninejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenton-like%20degradation" title="fenton-like degradation">fenton-like degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20photocatalysts" title=" heterogenous photocatalysts"> heterogenous photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=naproxen" title=" naproxen"> naproxen</a> </p> <a href="https://publications.waset.org/abstracts/178142/mil-88bfe-mof-grafted-carbon-dot-nanocomposites-as-effective-photocatalysts-for-fenton-like-photodegradation-of-amphotericin-b-and-naproxen-under-visible-light-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vrinda%20P.%20S.%20Borker">Vrinda P. S. Borker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxides" title="cobalt oxides">cobalt oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-doped%20cobalt%20oxides" title=" Cu-doped cobalt oxides"> Cu-doped cobalt oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82O%E2%82%82%20in%20dye%20degradation" title=" H₂O₂ in dye degradation"> H₂O₂ in dye degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-catalyst" title=" photo-catalyst"> photo-catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dye%20degradation" title=" solar dye degradation"> solar dye degradation</a> </p> <a href="https://publications.waset.org/abstracts/88283/synthesis-and-characterization-of-cobalt-oxide-and-cu-doped-cobalt-oxide-as-photocatalyst-for-model-dye-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Maksudur%20Rahman%20Khan">Md. Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahim%20Uddin"> M. Rahim Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidah%20Abdullah"> Hamidah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaykobad%20Md.%20Rezaul%20Karim"> Kaykobad Md. Rezaul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Yousuf"> Abu Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) into methanol on TiO<sub>2</sub> loaded copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe<sub>2</sub>O<sub>4</sub> as tetragonal phase incorporation with anatase TiO<sub>2</sub> in CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe<sub>2</sub>O<sub>4 </sub>phases along with predominantly anatase phase of TiO<sub>2</sub> in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO<sub>2</sub>. Photoluminescence (PL) technique was used to study the electron&ndash;hole (e<sup>&minus;</sup>/h<sup>+</sup>) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron&ndash;hole (e<sup>&minus;</sup>/h<sup>+</sup>) pairs in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The photocatalytic performance of CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was evaluated based on the methanol yield with varying amount of TiO<sub>2 </sub>over CuFe<sub>2</sub>O<sub>4</sub> (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO<sub>2</sub> in aqueous phase were dissolved CO<sub>2 </sub>and HCO<sub>3</sub><sup>- </sup>at pH ~5.9. It was evident that the CuFe<sub>2</sub>O<sub>4</sub> could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO<sub>2</sub> to increase the life time of the electron and facilitating the reactions of CO<sub>2</sub> to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe<sub>2</sub>O<sub>4</sub>, but loading with TiO<sub>2</sub> remarkably increased the methanol yield. Methanol yield over CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was found to be about three times higher (651 &mu;mol/g<sub>cat </sub>L) than that of CuFe<sub>2</sub>O<sub>4 </sub>photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO<sub>2</sub>/CH<sub>3</sub>OH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CuFe2O4%2FTiO2" title=" CuFe2O4/TiO2"> CuFe2O4/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=band-gap%20energy" title=" band-gap energy"> band-gap energy</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a> </p> <a href="https://publications.waset.org/abstracts/53671/preparation-and-characterization-of-cufe2o4tio2-photocatalyst-for-the-conversion-of-co2-into-methanol-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Cheol%20Jeong">Dong-Cheol Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jookyung%20Lee"> Jookyung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Hyeon%20Ro"> Yu Hyeon Ro</a>, <a href="https://publications.waset.org/abstracts/search?q=Changsik%20Song"> Changsik Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terpyridine" title="terpyridine">terpyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assebly" title=" self-assebly"> self-assebly</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-ligand" title=" metal-ligand"> metal-ligand</a> </p> <a href="https://publications.waset.org/abstracts/50618/study-of-self-assembled-photocatalyst-by-metal-terpyridine-interactions-in-polymer-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Relationship between Structure of Some Nitroaromatic Pollutants and Their Degradation Kinetic Parameters in UV-VIS/TIO2 System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nitoi">I. Nitoi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Oancea"> P. Oancea</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raileanu"> M. Raileanu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Crisan"> M. Crisan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Constantin"> L. Constantin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Cristea"> I. Cristea </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hazardous organic compounds like nitroaromatics are frequently found in chemical and petroleum industries discharged effluents. Due to their bio-refractory character and high chemical stability cannot be efficiently removed by classical biological or physical-chemical treatment processes. In the past decades, semiconductor photocatalysis has been frequently applied for the advanced degradation of toxic pollutants. Among various semiconductors titania was a widely studied photocatalyst, due to its chemical inertness, low cost, photostability and nontoxicity. In order to improve optical absorption and photocatalytic activity of TiO2 many attempts have been made, one feasible approach consists of doping oxide semiconductor with metal. The degradation of dinitrobenzene (DNB) and dinitrotoluene (DNT) from aqueous solution under UVA-VIS irradiation using heavy metal (0.5% Fe, 1%Co, 1%Ni ) doped titania was investigated. The photodegradation experiments were carried out using a Heraeus laboratory scale UV-VIS reactor equipped with a medium-pressure mercury lamp which emits in the range: 320-500 nm. Solutions with (0.34-3.14) x 10-4 M pollutant content were photo-oxidized in the following working conditions: pH = 5-9; photocatalyst dose = 200 mg/L; irradiation time = 30 – 240 minutes. Prior to irradiation, the photocatalyst powder was added to the samples, and solutions were bubbled with air (50 L/hour), in the dark, for 30 min. Dopant type, pH, structure and initial pollutant concentration influence on the degradation efficiency were evaluated in order to set up the optimal working conditions which assure substrate advanced degradation. The kinetics of nitroaromatics degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. Fe doped photocatalyst with lowest metal content (0.5 wt.%) showed a considerable better behaviour in respect to pollutant degradation than Co and Ni (1wt.%) doped titania catalysts. For the same working conditions, degradation efficiency was higher for DNT than DNB in accordance with their calculated adsobance constants (Kad), taking into account that degradation process occurs on catalyst surface following a Langmuir-Hinshalwood model. The presence of methyl group in the structure of DNT allows its degradation by oxidative and reductive pathways, while DNB is converted only by reductive route, which also explain the highest DNT degradation efficiency. For highest pollutant concentration tested (3 x 10-4 M), optimum working conditions (0.5 wt.% Fe doped –TiO2 loading of 200 mg/L, pH=7 and 240 min. irradiation time) assures advanced nitroaromatics degradation (ηDNB=89%, ηDNT=94%) and organic nitrogen mineralization (ηDNB=44%, ηDNT=47%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazardous%20organic%20compounds" title="hazardous organic compounds">hazardous organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroaromatics" title=" nitroaromatics"> nitroaromatics</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/27209/relationship-between-structure-of-some-nitroaromatic-pollutants-and-their-degradation-kinetic-parameters-in-uv-vistio2-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Abbo">Hanna Abbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyasanga%20Noganta"> Siyasanga Noganta</a>, <a href="https://publications.waset.org/abstracts/search?q=Salam%20Titinchi"> Salam Titinchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magnetite%20nanoparticles" title="Magnetite nanoparticles">Magnetite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Titanium" title=" Titanium"> Titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Photocatalyst" title=" Photocatalyst"> Photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic%20pollutant" title=" Organic pollutant"> Organic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20treatment" title=" Water treatment"> Water treatment</a> </p> <a href="https://publications.waset.org/abstracts/48766/silver-doped-magnetite-titanium-oxide-nanoparticles-for-photocatalytic-degradation-of-organic-pollutants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Younsi">Z. Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Koufi"> L. Koufi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gidik"> H. Gidik</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lahem"> D. Lahem</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Wim%20Thielemans"> W. Wim Thielemans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene" title="benzene">benzene</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%86H%E2%82%86" title=" C₆H₆"> C₆H₆</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20fabrics" title=" textile fabrics"> textile fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%87H%E2%82%88" title=" C₇H₈"> C₇H₈</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a> </p> <a href="https://publications.waset.org/abstracts/94917/efficiency-of-visible-light-induced-photocatalytic-oxidation-of-toluene-and-benzene-by-a-photocatalytic-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sankha%20Chakrabortty">Sankha Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Ruj"> Biswajit Ruj</a>, <a href="https://publications.waset.org/abstracts/search?q=Parimal%20Pal"> Parimal Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title=" CO₂ capture"> CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20conversion" title=" photocatalytic conversion"> photocatalytic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a> </p> <a href="https://publications.waset.org/abstracts/98415/synthesis-of-methanol-through-photocatalytic-conversion-of-co2-a-green-chemistry-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20%20Abdelfattah">Ibrahim Abdelfattah</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20%20Ismail"> Adel Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20%20Helal"> Ahmed Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20%20Faisal"> Mohamed Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%82O%E2%82%83-TiO%E2%82%82%20nanocomposites" title="In₂O₃-TiO₂ nanocomposites">In₂O₃-TiO₂ nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20illumination" title=" visible light illumination"> visible light illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20illumination" title=" UV illumination"> UV illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=herbicide%20and%20phenol%20wastewater" title=" herbicide and phenol wastewater"> herbicide and phenol wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/61850/synthesis-of-mesoporous-in2o3-tio2-nanocomposites-as-efficient-photocatalyst-for-treatment-industrial-wastewater-under-visible-light-and-uv-illumination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Abd%20El-Sadek">M. S. Abd El-Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Omar"> M. A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharib%20M.%20Taha"> Gharib M. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82%20nanoparticles" title="SnO₂ nanoparticles">SnO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20sol-gel%20method" title=" a sol-gel method"> a sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20applications" title=" photocatalytic applications"> photocatalytic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20efficiency" title=" degradation efficiency "> degradation efficiency </a> </p> <a href="https://publications.waset.org/abstracts/96830/synthesis-characterization-and-photocatalytic-applications-of-ag-doped-sno2-nanoparticles-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thian%20Khoon%20Tan">Thian Khoon Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poi%20Sim%20Khiew"> Poi Sim Khiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Siong%20Chiu"> Wee Siong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Hua%20Chia"> Chin Hua Chia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20enhanced" title=" magnetically enhanced"> magnetically enhanced</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20dyes" title=" synthetic dyes"> synthetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title=" azo dyes"> azo dyes</a> </p> <a href="https://publications.waset.org/abstracts/193545/brief-inquisition-of-photocatalytic-degradation-of-azo-dyes-by-magnetically-enhanced-zinc-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalyst&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalyst&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalyst&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalyst&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10