CINXE.COM
Search results for: total phenol
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: total phenol</title> <meta name="description" content="Search results for: total phenol"> <meta name="keywords" content="total phenol"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="total phenol" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="total phenol"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8999</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: total phenol</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8999</span> Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihsanullah">Ihsanullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20Ali%20Atieh"> Muataz Ali Atieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20adsorbents" title=" carbon adsorbents"> carbon adsorbents</a> </p> <a href="https://publications.waset.org/abstracts/19609/utilization-of-low-cost-adsorbent-fly-ash-for-the-removal-of-phenol-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8998</span> Isolation and Molecular Identification of Phenol Tolerating Bacteria from Petroleum Contaminated Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Dankaka">S. M. Dankaka</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Abdullahi"> N. Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This research was conducted to isolate and identify phenol-tolerant bacteria from petroleum-contaminated sites in the northwestern part of Nigeria. Research Aim: The aim of this study was to identify bacteria with the ability to tolerate different phenol concentrations. Methodology: Samples were obtained from different petroleum-contaminated sites, and bacteria were cultured, followed by morphological, microscopic, and molecular identification. Isolates were grown on phenol-tolerant nutrient agar. The tolerant ability of the isolates was observed at 500 mg/L, 1000 mg/L, and 1500 mg/L concentrations of phenol. Findings: Two bacteria species (NWPK and NWPKD) were obtained. The total viable counts of phenol-utilizing bacteria from NWPK and NWPKD were 2.71x10⁷ and 4.0x10⁶ cfu/g, respectively. The NWPK showed its capacity to tolerate phenol at 2.3x10⁷, 2.5x10⁷, and 1.0x10⁷ cfu/g of 500, 1000, and 1500 mg/L of phenol concentration, respectively, while NWPKD tolerance ability was 1.5x10⁷, 3.8x10⁷ and 1.0x10⁷ cfu/g of 500, 1000 and 1500 mg/L of phenol respectively. The isolates were identified as Citrobacter and Acinetobacter species, respectively, based on 16S rRNA gene sequence analysis. Conclusion: The study found that these isolates showed the ability to withstand and survive high phenol concentrations in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20tolerance" title="phenol tolerance">phenol tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contaminated%20sites" title=" petroleum contaminated sites"> petroleum contaminated sites</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA" title=" 16S rRNA"> 16S rRNA</a> </p> <a href="https://publications.waset.org/abstracts/161554/isolation-and-molecular-identification-of-phenol-tolerating-bacteria-from-petroleum-contaminated-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8997</span> Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gar%20Alalm">Mohamed Gar Alalm</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Ookawara"> Shinichi Ookawara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic" title=" photocatalytic"> photocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide "> titanium dioxide </a> </p> <a href="https://publications.waset.org/abstracts/21418/photocatalytic-degradation-of-phenol-by-fe-doped-tio2-under-solar-simulated-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8996</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8995</span> Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fidelis%20Chigondo">Fidelis Chigondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorbent" title=" biosorbent"> biosorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon%20rind" title=" watermelon rind"> watermelon rind</a> </p> <a href="https://publications.waset.org/abstracts/67013/removal-of-phenol-from-aqueous-solution-using-watermelon-citrullus-c-lanatus-rind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8994</span> Phenol Removal from Water in the Presence of Nano-TiO₂ and a Natural Activated Carbon: Intensive and Extensive Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Belayachi">Hanane Belayachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadila%20Nemchi"> Fadila Nemchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Belayachi"> Amel Belayachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Bourahla"> Sarra Bourahla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Belhakem"> Mostefa Belhakem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, two photocatalytic processes for the degradation of phenol in water are presented. The first one is extensive (EP), which is carried out in a treatment chain of two steps, allowing the adsorption of the pollutant by a naturally activated carbon from the grapes. This operation is followed by a photocatalytic degradation of the residual phenol in the presence of TiO₂. The second process is intensive (IP) and is realized in one step in the presence of a hybrid photocatalytic nanomaterial prepared from naturally activated carbon and TiO₂. The evaluation of the two processes, EP and IP, is based on the analytical monitoring of the initial and final parameters of the water to be treated, i.e., the phenol concentration by liquid phase chromatography (HPLC) and total organic carbon (TOC). For both processes, the sampling was carried out every 10 min for 120 min of treatment time to measure the phenol concentrations. The elimination and degradation rates in the case of the intensive process are better than the extensive process. In both processes, the catechol molecule was detected as an under product of degradation. In the IP case, this intermediate phenol was totally eliminated, and only traces of catechol persisted in the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/185757/phenol-removal-from-water-in-the-presence-of-nano-tio2-and-a-natural-activated-carbon-intensive-and-extensive-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8993</span> Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Makhlouf">Mourad Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Bouchher"> Omar Bouchher</a>, <a href="https://publications.waset.org/abstracts/search?q=Messabih%20Sidi%20Mohamed"> Messabih Sidi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Benrachedi%20Khaled"> Benrachedi Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCM-41" title="MCM-41">MCM-41</a>, <a href="https://publications.waset.org/abstracts/search?q=FSM-16" title=" FSM-16"> FSM-16</a>, <a href="https://publications.waset.org/abstracts/search?q=TMCS" title=" TMCS"> TMCS</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=4AHB" title=" 4AHB"> 4AHB</a> </p> <a href="https://publications.waset.org/abstracts/57425/adsorption-of-phenol-and-4-hydroxybenzoic-acid-onto-functional-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8992</span> Antioxidant Activity of Germinated African Yam Bean (Sphenostylis Stenocarpa) in Alloxan Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Uchegbu%20Nneka">N. Uchegbu Nneka </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate the effect of the antioxidant activity of germinated African Yam Bean (AYB) on oxidative stress markers in alloxan-induced diabetic rat. Rats were randomized into three groups; control, diabetic and germinated AYB–treated diabetic rats. The Total phenol and flavonoid content and DPPH radical scavenging activity before and after germination were investigated. The glucose level, lipid peroxidation and reduced glutathione of the animals were also determined using the standard technique for four weeks. Germination increased the total phenol, flavonoid and antioxidant activity of AYB extract by 19.14%, 32.28%, and 57.25% respectively. The diabetic rats placed on germinated AYB diet had a significant decrease in the blood glucose and lipid peroxidation with a corresponding increase in glutathione (p<0.05). These results demonstrate that consumption of germinated AYB can be a good dietary supplement in inhibiting hyperglycemia/hyperlipidemia and the prevention of diabetic complication associated with oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20yam%20bean" title="African yam bean">African yam bean</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol" title=" total phenol"> total phenol</a> </p> <a href="https://publications.waset.org/abstracts/17855/antioxidant-activity-of-germinated-african-yam-bean-sphenostylis-stenocarpa-in-alloxan-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8991</span> Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Nowzari-Dalini">N. Nowzari-Dalini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO<sub>2</sub> were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert<sup>®</sup> software. 98% of phenol degradation was achieved after 6h of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/59934/preparation-of-fe-cr-codoped-tio2-nanostructure-for-phenol-removal-from-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8990</span> Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gar%20Alalm">Mohamed Gar Alalm</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, photo-catalytic degradation of phenol by titanium dioxide (TiO2) in aqueous solution was evaluated. The UV energy of solar light was utilized by compound parabolic collectors (CPCs) technology. The effect of irradiation time, initial pH, and dosage of TiO2 were investigated. Aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. 94.5% degradation efficiency of phenol was achieved after 150 minutes of irradiation when the initial concentration was 100 mg/L. The dosage of TiO2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 5.2. Phenol photo-catalytic degradation fitted to the pseudo-first order kinetic according to Langmuir–Hinshelwood model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20parabolic%20collectors" title="compound parabolic collectors">compound parabolic collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-catalytic" title=" photo-catalytic"> photo-catalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/5336/solar-photocatalytic-degradation-of-phenol-in-aqueous-solutions-using-titanium-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8989</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8988</span> Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail">Sherif Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title="phenol degradation">phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-doped%20TiO2" title=" Fe-doped TiO2"> Fe-doped TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=AOPs" title=" AOPs"> AOPs</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/90365/phenol-degradation-via-photocatalytic-oxidation-using-fe-doped-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8987</span> Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/156940/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modeling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8986</span> Antioxidant Activity, Total Phenol and Pigments Content of Seaweeds Collected from, Rameshwaram, Gulf of Mannar, Southeast Coast of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparna%20Roy">Suparna Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Anantharaman"> P. Anantharaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to estimate some in-vitro antioxidant activities and total phenols of various extracts such as aqueous, acetone, ethanol, methanol extract of seaweeds and pigments content by Spectrophotometric method. The seaweeds were collected during 2016 from Rameshwaram, southeast coast of India. Among four different extracts, aqueous extracts from all seaweeds had minimum activity than acetone, methanol and ethanol. The Rhodophyta and Phaeophyta had high antioxidant activity in comparing to Chlorophyta. The highest total antioxidant activity was found in acetone extract fromTurbinaria decurrens (98.97±0.00%), followed by its methanol extract (98.81±0.60%) and ethanol extract (98.58±0.53%). The highest reducing power and H2O2 scavenging activity were found in acetone extract of Caulerpa racemosa (383.25±1.04%), and methanol extract from Caulerpa racemosa var. macrophysa (24.91±0.49%). The methanol extract from Caulerpa scalpelliformis contained the highest total phenol (85.23±0.12%). The Chloro-a and Chloro-b contents were the highest in Gracilaria foliifera (13.69±0.38% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (9.12 ±0.12% mg/gm dry wt.) likewise carotenoid was also the highest in Gracilaria foliifera (0.054±0.0003% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (0.04 ±0.002% mg/gm dry wt.). It can be concluded from this study that some seaweed extract can be used for natural antioxidant production, after further characterization to negotiate the side effect of synthetic, market available antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seaweeds" title="seaweeds">seaweeds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol" title=" total phenol"> total phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=pigment" title=" pigment"> pigment</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaikuda" title=" Olaikuda"> Olaikuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadakkadu" title=" Vadakkadu"> Vadakkadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rameshwaram" title=" Rameshwaram"> Rameshwaram</a> </p> <a href="https://publications.waset.org/abstracts/73695/antioxidant-activity-total-phenol-and-pigments-content-of-seaweeds-collected-from-rameshwaram-gulf-of-mannar-southeast-coast-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8985</span> A DOE Study of Ultrasound Intensified Removal of Phenol </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Rahul">P. R. Rahul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kannan"> A. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=granulated%20activated%20carbon" title=" granulated activated carbon"> granulated activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/30679/a-doe-study-of-ultrasound-intensified-removal-of-phenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8984</span> Comparative Catalytic Activity of Some Ferrites for Phenol Degradation in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Alqassem">Bayan Alqassem</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20A.%20Othman"> Israa A. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abu%20Haija"> Mohammed Abu Haija</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzi%20%20Banat"> Fawzi Banat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of wastewater from highly toxic pollutants is one of the most challenging issues for humanity. In this study, the advanced oxidation process (AOP) was employed to study the catalytic degradation of phenol using different ferrite catalysts which are CoFe₂O₄, CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄ and ZnFe₂O₄. The ferrite catalysts were prepared via sol-gel and co-precipitation methods. Different ferrite composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. The effect of phosphoric acid treatment on the copper ferrite activity. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high performance liquid chromatography (HPLC). The experimental results showed that ferrites prepared through sol-gel route were more active than those of the co-precipitation method towards phenol degradation. In both cases, CuFe₂O₄ exhibited the highest degradation of phenol compared to the other ferrites. The photocatalytic properties of the ferrites were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite%20catalyst" title="ferrite catalyst">ferrite catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20composites" title=" ferrite composites"> ferrite composites</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title=" phenol degradation"> phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/89207/comparative-catalytic-activity-of-some-ferrites-for-phenol-degradation-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8983</span> Study of the Azo Hydrazone Tautomerism in the 4-(9-Anthrylazo) Phenol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramadan%20Ali%20Bawa">Ramadan Ali Bawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebtisam%20Mohammed%20Alzaraide"> Ebtisam Mohammed Alzaraide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spectroscopic study on 4-(9-anthrylazo) phenol has revealed that the azo dye under study exists in two tautomeric forms which are azo phenol and hydrazo keto forms in ratio of almost (1:1). The azo hydrazone tautomerism was confirmed by the use of IR spectroscopy and HNMR in which the characteristic absorption bands and chemical shifts for both tautomers were assigned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectroscopic" title="spectroscopic">spectroscopic</a>, <a href="https://publications.waset.org/abstracts/search?q=tautomeric%20forms" title=" tautomeric forms"> tautomeric forms</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20hydrazone%20tautomerism" title=" azo hydrazone tautomerism"> azo hydrazone tautomerism</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20spectroscopy" title=" IR spectroscopy"> IR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=HNMR" title=" HNMR"> HNMR</a> </p> <a href="https://publications.waset.org/abstracts/7263/study-of-the-azo-hydrazone-tautomerism-in-the-4-9-anthrylazo-phenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8982</span> Modified Poly (Pyrrole) Film-Based Biosensors for Phenol Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Korkut">S. Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kilic"> M. S. Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Erhan"> E. Erhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly (Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol%20biosensor" title=" phenol biosensor"> phenol biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28glutaraldehyde%29" title=" poly (glutaraldehyde)"> poly (glutaraldehyde)</a> </p> <a href="https://publications.waset.org/abstracts/22105/modified-poly-pyrrole-film-based-biosensors-for-phenol-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8981</span> Post-Harvest Preservation of Mango Fruit Using Freeze and Tray Drying Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Adeyeye">O. A. Adeyeye</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Sadiku"> E. R. Sadiku</a>, <a href="https://publications.waset.org/abstracts/search?q=Periyar%20Selvam%20Sellamuthu"> Periyar Selvam Sellamuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20Babu%20Perumal"> Anand Babu Perumal</a>, <a href="https://publications.waset.org/abstracts/search?q=Reshma%20B.%20Nambiar"> Reshma B. Nambiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit and only very few off-seasonal cultivars are available in the market for consumption. Therefore, to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered. In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postharvest" title="postharvest">postharvest</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangos" title=" Mangos"> Mangos</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivar" title=" cultivar"> cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20soluble%20solid" title=" total soluble solid"> total soluble solid</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol%20content" title=" total phenol content"> total phenol content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/49789/post-harvest-preservation-of-mango-fruit-using-freeze-and-tray-drying-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8980</span> Post Harvest Preservation of Mango Fruit Using Freeze Drying and Tray Drying Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Adeyeye">O. A. Adeyeye</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Sadiku"> E. R. Sadiku</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvam%20Sellamuthu%20Periyar"> Selvam Sellamuthu Periyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Babu%20Perumal%20Anand"> Babu Perumal Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nambiar%20Reshma"> B. Nambiar Reshma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit, and only very few off-seasonal species are available in the market for consumption. Therefore, in order to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postharvest" title="postharvest">postharvest</a>, <a href="https://publications.waset.org/abstracts/search?q=mangos" title=" mangos"> mangos</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivar" title=" cultivar"> cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20soluble%20solid" title=" total soluble solid"> total soluble solid</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol%20content" title=" total phenol content"> total phenol content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/67933/post-harvest-preservation-of-mango-fruit-using-freeze-drying-and-tray-drying-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8979</span> Evaluation of the Total Antioxidant Capacity and Total Phenol Content of the Wild and Cultivated Variety of Aegle Marmelos (L) Correa Leaves Used in the Treatment of Diabetes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Nigam">V. Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nambiar"> V. Nambiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aegle Marmelos leaf has been used as a remedy for various gastrointestinal infections and lowering blood sugar level in traditional system of medicine in India due to the presence of various constituents such as flavonoids, tannins and alkaloids (eg. Aegelin, Marmelosin, Luvangetin).The objective of the present study was to evaluate the total antioxidant activity, total and individual phenol content of the wild and cultivated variety of Aegle marmelos leaves to assess the role of this plant in ethanomedicine in India. The methanolic extracts of the leaves were screened for total antioxidant capacity through Ferric Reducing Antioxidant Potential (FRAP) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay; Total Phenol content (TPC) through spectrophotometric technique based on Folin Ciocalteau assay and for qualitative estimation of phenols, High performance Liquid Chromatography was used. The TPC of wild and cultivated variety was 7.6% and 6.5% respectively whereas HPLC analysis for quantification of individual polyphenol revealed the presence of gallic acid, chlorogenic acid and Ferullic acid in wild variety whereas gallic acid, Ferullic acid and pyrocatechol in cultivated variety. FRAP values and IC 50 value (DPPH) for wild and cultivated variety was 14.65 μmol/l and 11.80μmol/l; 437 μg/ml and 620μg/ml respectively and thus it can be used as potential inhibitor of free radicals. The wild variety was having more antioxidant capacity than the cultivated one it can be exploited further for its therapeutic application. As Aegle marmelos is rich in antioxidant, it can be used as food additives to delay the oxidative deterioration of foods and as nutraceutical in medicinal formulation against degenerative diseases like diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=aegle%20marmelos" title=" aegle marmelos"> aegle marmelos</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic" title=" antidiabetic"> antidiabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical" title=" nutraceutical"> nutraceutical</a> </p> <a href="https://publications.waset.org/abstracts/21443/evaluation-of-the-total-antioxidant-capacity-and-total-phenol-content-of-the-wild-and-cultivated-variety-of-aegle-marmelos-l-correa-leaves-used-in-the-treatment-of-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8978</span> Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udeshika%20Yapa%20Bandara">Udeshika Yapa Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamindri%20Witharana"> Chamindri Witharana</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Soysa"> Preethi Soysa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a> </p> <a href="https://publications.waset.org/abstracts/78637/impact-on-the-yield-of-flavonoid-and-total-phenolic-content-from-pomegranate-fruit-by-different-extraction-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8977</span> Pd(II) Complex with 4-Bromo-2,6-Bis-Hydroxymethyl-Phenol and Nikotinamid: Synthesis and Spectral Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlen%20Altun">Özlen Altun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeliha%20Yoru%C3%A7"> Zeliha Yoruç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the reactions involving 4-Bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nikotinamide (NA) in the presence Pd (II) ion were investigated. Optimum conditions for the reactions were established as pH 7 and λ = 450 nm. According to absorbance measurements, the mole ratio of BBHMP : NA : Pd2+ was found as 1 : 2 : 2. As a result of physico-chemical, spectrophotometric and thermal analysis results, the reactions of BBHMP and NA with Pd (II) is complexation reactions and one molecule BBHMP and two molecules of NA react with two molecules of metal (II) ion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-Bromo-2" title="4-Bromo-2">4-Bromo-2</a>, <a href="https://publications.waset.org/abstracts/search?q=6-bis-hydroxymethyl-phenol" title="6-bis-hydroxymethyl-phenol">6-bis-hydroxymethyl-phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%28II%29" title=" Pd(II)"> Pd(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/82499/pdii-complex-with-4-bromo-26-bis-hydroxymethyl-phenol-and-nikotinamid-synthesis-and-spectral-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8976</span> Removal of Phenol from Aqueous Solutions by Ferrite Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Alqasem">Bayan Alqasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20Othman"> Israa Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu%20Haija"> Mohammad Abu Haija</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzi%20Banat"> Fawzi Banat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title="phenol degradation">phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20catalysts" title=" ferrite catalysts"> ferrite catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20composites" title=" ferrite composites"> ferrite composites</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/89080/removal-of-phenol-from-aqueous-solutions-by-ferrite-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8975</span> Antioxidant Activities, Chemical Components, Physicochemical, and Sensory Characteristics of Kecombrang Tea (Etlingera elatior)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifda%20Naufalin">Rifda Naufalin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Latifasari"> Nurul Latifasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nuryanti"> Siti Nuryanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Muna%20Ridha%20Hanifah"> Muna Ridha Hanifah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kecombrang is a Zingiberaceae plant which has antioxidant properties. The high antioxidant content in kecombrang flowers has the potential to be processed as a functional beverage raw material so that it can be used as an ingredient in making herbal teas. The purpose of this study was to determine the chemical components, physicochemistry, antioxidant activity and sensory characteristics of kecombrang tea. The research methodology was carried out by using a completely randomized design with processing factors of kecombrang tea namely blanching and non-blanching, fermentation and non-fermentation, and the optimal time for drying kecombrang tea. The best treatment combination based on the effective index method is the treatment of the blanching process followed by drying at a temperature of 50ᵒC until the 2% moisture content can produce kecombrang tea with a total phenol content of 5.95 mg Tannic Acid Equivalent (TAE) / gram db, total flavonoid 3%, pH 4.5, and antioxidant activity 82.95%, red color, distinctive aroma of tea, fresh taste, and preferred by panelists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kecombrang%20tea" title="kecombrang tea">kecombrang tea</a>, <a href="https://publications.waset.org/abstracts/search?q=blanching" title=" blanching"> blanching</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol" title=" total phenol"> total phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20antioxidant%20activity" title=" and antioxidant activity"> and antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/106909/antioxidant-activities-chemical-components-physicochemical-and-sensory-characteristics-of-kecombrang-tea-etlingera-elatior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8974</span> The Effect of Different Concentrations of Trichoderma harzianum Fungus on the Phytochemical and Antioxidative Parameters of Cauliflower (Brassica oleracea convar.botrytisl) in Soils Contaminated with Lead</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shakori">Mohammad Javad Shakori</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Babakhanzadeh%20Sajirani"> Esmaeil Babakhanzadeh Sajirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vajihe%20Esmaili"> Vajihe Esmaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the increasing contamination is an environmental concern. There is relationship between plants and microorganisms many years ago. In this regard, an experiment was conducted in order to investigate the effect of different levels of lead across three levels ‘zero, 50, and 100 mg/L’ and Trichoderma Harzanium fungus across three levels ‘5, 10, and 15%’ in a factorial design in the form of fully randomized blocks in three replications under form conditions in the climatic conditions of Shahroud in Dehlama Village. This research was performed in 2014-2015 on cauliflower. In this experiment, chlorophyll a, b, total, cartenoid, phenol, flavonoid, and antioxidant properties of cauliflowers were measured. The results indicated that the greatest level of chlorophyll a (75.723 mg/wet weight), chlorophyll b (27.378 mg/wet weight), and total chlorophyll (109.074 mg/wet weight) was related to the interactive effects of 5% treatment of Trichoderma fungus and 0mg/L lead. The results also indicated that the greatest amount of antioxidant (79.88% of free radical) and flavonoides (22.889 mg of coercetin/g of dry weight) was related to the interactive effects of lead 50 mg/L and the treatment of Trichoderma fungus 5%. Further, the greatest level of phenol (21.33 mg of Gaelic acid/ dry weight) was related to the interactive effects of lead 100 mg/L and Trichoderma fungus 5% . As carotenoids are a type of antioxidant and precursor of vitamin A, with the development of alignment effect with other antioxidants such as the total phenol, flavonoid, achieved desirable levels of antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=cauliflower" title=" cauliflower"> cauliflower</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title=" chlorophyll"> chlorophyll</a> </p> <a href="https://publications.waset.org/abstracts/59010/the-effect-of-different-concentrations-of-trichoderma-harzianum-fungus-on-the-phytochemical-and-antioxidative-parameters-of-cauliflower-brassica-oleracea-convarbotrytisl-in-soils-contaminated-with-lead" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8973</span> Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/157011/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modelling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8972</span> Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasapriyan%20Vijayan">Srinivasapriyan Vijayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene%20hydroxylation" title="benzene hydroxylation">benzene hydroxylation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-based%20metal%20organic%20frameworks" title=" Fe-based metal organic frameworks"> Fe-based metal organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20oxygen" title=" molecular oxygen"> molecular oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/59455/monodisperse-hallow-sandwich-mof-for-the-catalytic-oxidation-of-benzene-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8971</span> A Research About to Determination the Quality of Feed Oils Used as Mixedfeed Raw Material from Some Feed Factories in Konya-Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20Kanbur">Gülşah Kanbur</a>, <a href="https://publications.waset.org/abstracts/search?q=Veysel%20Ayhan"> Veysel Ayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed oil samples which are used as mixed feed raw material were taken from six different feed factories in March, May and July. All factories make production in Konya, Turkey and all of the samples were which taken are crude soybean oil. Some physical and chemical analysis, free radical scavenger effect and total phenol content were determined on these oil samples. Moisture content was found between 0.10-22.23 %, saponification number was determined 143.13 to 167.93 KOH/kg, free fatty acidity was varied 0.73 to 35.00 % , peroxide value was found between 1.53 and 28.43 meq/kg , unsaponifiable matter was determined from 0.40 to 17.10 % , viscosity was found between 34.30 and 625.67 mPas, sediment amount was determined between 0.60-18.16 % , free radical scavenger effect was varied 20.7 to 43.04 % inhibition of the extract and total phenol content was found between 1.20 and 2.69 mg/L extract. Different results were found between months and factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20soybean%20oil" title="crude soybean oil">crude soybean oil</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20oils" title=" feed oils"> feed oils</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20feed" title=" mixed feed"> mixed feed</a>, <a href="https://publications.waset.org/abstracts/search?q=Konya" title=" Konya"> Konya</a> </p> <a href="https://publications.waset.org/abstracts/28799/a-research-about-to-determination-the-quality-of-feed-oils-used-as-mixedfeed-raw-material-from-some-feed-factories-in-konya-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8970</span> Catalytic Activity Study of Fe, Ti Loaded TUD-1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supakorn%20Tantisriyanurak">Supakorn Tantisriyanurak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussaya%20Maneesuwan"> Hussaya Maneesuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyalak%20Chaisuwan"> Thanyalak Chaisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron" title="iron">iron</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol%20hydroxylation" title=" phenol hydroxylation"> phenol hydroxylation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=TUD-1" title=" TUD-1"> TUD-1</a> </p> <a href="https://publications.waset.org/abstracts/2643/catalytic-activity-study-of-fe-ti-loaded-tud-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=299">299</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=300">300</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenol&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>