CINXE.COM
Independent component analysis - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Independent component analysis - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"093b8ab0-cbb9-4820-b1d3-e4c527b3c03c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Independent_component_analysis","wgTitle":"Independent component analysis","wgCurRevisionId":1270540662,"wgRevisionId":1270540662,"wgArticleId":598031,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Articles with short description","Short description is different from Wikidata","Articles needing additional references from October 2011","All articles needing additional references","All articles with unsourced statements","Articles with unsourced statements from October 2012","Webarchive template wayback links","Signal estimation","Dimension reduction"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Independent_component_analysis","wgRelevantArticleId":598031,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1259145","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.21"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Independent component analysis - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Independent_component_analysis"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Independent_component_analysis&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Independent_component_analysis"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Independent_component_analysis rootpage-Independent_component_analysis skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Independent+component+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Independent+component+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Independent+component+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Independent+component+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Defining_component_independence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Defining_component_independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Defining component independence</span> </div> </a> <ul id="toc-Defining_component_independence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mathematical_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Mathematical definitions</span> </div> </a> <button aria-controls="toc-Mathematical_definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical definitions subsection</span> </button> <ul id="toc-Mathematical_definitions-sublist" class="vector-toc-list"> <li id="toc-General" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>General</span> </div> </a> <ul id="toc-General-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generative_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generative_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Generative model</span> </div> </a> <ul id="toc-Generative_model-sublist" class="vector-toc-list"> <li id="toc-Linear_noiseless_ICA" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Linear_noiseless_ICA"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Linear noiseless ICA</span> </div> </a> <ul id="toc-Linear_noiseless_ICA-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_noisy_ICA" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Linear_noisy_ICA"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Linear noisy ICA</span> </div> </a> <ul id="toc-Linear_noisy_ICA-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nonlinear_ICA" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nonlinear_ICA"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>Nonlinear ICA</span> </div> </a> <ul id="toc-Nonlinear_ICA-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Identifiability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Identifiability"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Identifiability</span> </div> </a> <ul id="toc-Identifiability-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Binary_ICA" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Binary_ICA"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Binary ICA</span> </div> </a> <ul id="toc-Binary_ICA-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Methods_for_blind_source_separation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Methods_for_blind_source_separation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Methods for blind source separation</span> </div> </a> <button aria-controls="toc-Methods_for_blind_source_separation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Methods for blind source separation subsection</span> </button> <ul id="toc-Methods_for_blind_source_separation-sublist" class="vector-toc-list"> <li id="toc-Projection_pursuit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Projection_pursuit"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Projection pursuit</span> </div> </a> <ul id="toc-Projection_pursuit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Based_on_infomax" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Based_on_infomax"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Based on infomax</span> </div> </a> <ul id="toc-Based_on_infomax-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Based_on_maximum_likelihood_estimation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Based_on_maximum_likelihood_estimation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Based on maximum likelihood estimation</span> </div> </a> <ul id="toc-Based_on_maximum_likelihood_estimation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History_and_background" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History_and_background"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>History and background</span> </div> </a> <ul id="toc-History_and_background-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Availability" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Availability"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Availability</span> </div> </a> <ul id="toc-Availability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Independent component analysis</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%D9%8A%D9%84_%D8%A7%D9%84%D9%85%D9%83%D9%88%D9%86%D8%A7%D8%AA_%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D9%82%D9%84%D8%A9" title="تحليل المكونات المستقلة – Arabic" lang="ar" hreflang="ar" data-title="تحليل المكونات المستقلة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/An%C3%A0lisi_independent_de_components" title="Anàlisi independent de components – Catalan" lang="ca" hreflang="ca" data-title="Anàlisi independent de components" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Unabh%C3%A4ngigkeitsanalyse" title="Unabhängigkeitsanalyse – German" lang="de" hreflang="de" data-title="Unabhängigkeitsanalyse" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%BD%CE%AC%CE%BB%CF%85%CF%83%CE%B7_%CE%B1%CE%BD%CE%B5%CE%BE%CE%AC%CF%81%CF%84%CE%B7%CF%84%CF%89%CE%BD_%CF%83%CF%85%CE%BD%CE%B9%CF%83%CF%84%CF%89%CF%83%CF%8E%CE%BD" title="Ανάλυση ανεξάρτητων συνιστωσών – Greek" lang="el" hreflang="el" data-title="Ανάλυση ανεξάρτητων συνιστωσών" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/An%C3%A1lisis_de_componentes_independientes" title="Análisis de componentes independientes – Spanish" lang="es" hreflang="es" data-title="Análisis de componentes independientes" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%DB%8C%D9%84_%D9%85%D8%A4%D9%84%D9%81%D9%87%E2%80%8C%D9%87%D8%A7%DB%8C_%D9%85%D8%B3%D8%AA%D9%82%D9%84" title="تحلیل مؤلفههای مستقل – Persian" lang="fa" hreflang="fa" data-title="تحلیل مؤلفههای مستقل" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Analyse_en_composantes_ind%C3%A9pendantes" title="Analyse en composantes indépendantes – French" lang="fr" hreflang="fr" data-title="Analyse en composantes indépendantes" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%8F%85%EB%A6%BD_%EC%84%B1%EB%B6%84_%EB%B6%84%EC%84%9D" title="독립 성분 분석 – Korean" lang="ko" hreflang="ko" data-title="독립 성분 분석" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Analisi_delle_componenti_indipendenti" title="Analisi delle componenti indipendenti – Italian" lang="it" hreflang="it" data-title="Analisi delle componenti indipendenti" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B%E6%88%90%E5%88%86%E5%88%86%E6%9E%90" title="独立成分分析 – Japanese" lang="ja" hreflang="ja" data-title="独立成分分析" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%BD%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82" title="Анализ независимых компонент – Russian" lang="ru" hreflang="ru" data-title="Анализ независимых компонент" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Independent_components_analysis" title="Independent components analysis – Sundanese" lang="su" hreflang="su" data-title="Independent components analysis" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Oberoende_komponentanalys" title="Oberoende komponentanalys – Swedish" lang="sv" hreflang="sv" data-title="Oberoende komponentanalys" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%8D%A8%E7%AB%8B%E6%88%90%E4%BB%BD%E5%88%86%E6%9E%90" title="獨立成份分析 – Cantonese" lang="yue" hreflang="yue" data-title="獨立成份分析" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B%E6%88%90%E5%88%86%E5%88%86%E6%9E%90" title="独立成分分析 – Chinese" lang="zh" hreflang="zh" data-title="独立成分分析" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1259145#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Independent_component_analysis" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Independent_component_analysis" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Independent_component_analysis"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Independent_component_analysis"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Independent_component_analysis" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Independent_component_analysis" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&oldid=1270540662" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Independent_component_analysis&id=1270540662&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndependent_component_analysis"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndependent_component_analysis"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Independent_component_analysis&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Independent_component_analysis&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Independent_component_analysis" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1259145" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Signal processing computational method</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Independent_component_analysis" title="Special:EditPage/Independent component analysis">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Independent+component+analysis%22">"Independent component analysis"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Independent+component+analysis%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Independent+component+analysis%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Independent+component+analysis%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Independent+component+analysis%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Independent+component+analysis%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">October 2011</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1244144826">.mw-parser-output .machine-learning-list-title{background-color:#ddddff}html.skin-theme-clientpref-night .mw-parser-output .machine-learning-list-title{background-color:#222}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .machine-learning-list-title{background-color:#222}}</style> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488" /><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a><br />and <a href="/wiki/Data_mining" title="Data mining">data mining</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Paradigms</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Supervised_learning" title="Supervised learning">Supervised learning</a></li> <li><a href="/wiki/Unsupervised_learning" title="Unsupervised learning">Unsupervised learning</a></li> <li><a href="/wiki/Semi-supervised_learning" class="mw-redirect" title="Semi-supervised learning">Semi-supervised learning</a></li> <li><a href="/wiki/Self-supervised_learning" title="Self-supervised learning">Self-supervised learning</a></li> <li><a href="/wiki/Reinforcement_learning" title="Reinforcement learning">Reinforcement learning</a></li> <li><a href="/wiki/Meta-learning_(computer_science)" title="Meta-learning (computer science)">Meta-learning</a></li> <li><a href="/wiki/Online_machine_learning" title="Online machine learning">Online learning</a></li> <li><a href="/wiki/Batch_learning" class="mw-redirect" title="Batch learning">Batch learning</a></li> <li><a href="/wiki/Curriculum_learning" title="Curriculum learning">Curriculum learning</a></li> <li><a href="/wiki/Rule-based_machine_learning" title="Rule-based machine learning">Rule-based learning</a></li> <li><a href="/wiki/Neuro-symbolic_AI" title="Neuro-symbolic AI">Neuro-symbolic AI</a></li> <li><a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">Neuromorphic engineering</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Problems</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Generative_model" title="Generative model">Generative modeling</a></li> <li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Clustering</a></li> <li><a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">Dimensionality reduction</a></li> <li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li> <li><a href="/wiki/Anomaly_detection" title="Anomaly detection">Anomaly detection</a></li> <li><a href="/wiki/Data_cleaning" class="mw-redirect" title="Data cleaning">Data cleaning</a></li> <li><a href="/wiki/Automated_machine_learning" title="Automated machine learning">AutoML</a></li> <li><a href="/wiki/Association_rule_learning" title="Association rule learning">Association rules</a></li> <li><a href="/wiki/Semantic_analysis_(machine_learning)" title="Semantic analysis (machine learning)">Semantic analysis</a></li> <li><a href="/wiki/Structured_prediction" title="Structured prediction">Structured prediction</a></li> <li><a href="/wiki/Feature_engineering" title="Feature engineering">Feature engineering</a></li> <li><a href="/wiki/Feature_learning" title="Feature learning">Feature learning</a></li> <li><a href="/wiki/Learning_to_rank" title="Learning to rank">Learning to rank</a></li> <li><a href="/wiki/Grammar_induction" title="Grammar induction">Grammar induction</a></li> <li><a href="/wiki/Ontology_learning" title="Ontology learning">Ontology learning</a></li> <li><a href="/wiki/Multimodal_learning" title="Multimodal learning">Multimodal learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Supervised_learning" title="Supervised learning">Supervised learning</a><br /><span class="nobold"><span style="font-size: 85%;">(<b><a href="/wiki/Statistical_classification" title="Statistical classification">classification</a></b> • <b><a href="/wiki/Regression_analysis" title="Regression analysis">regression</a></b>)</span></span> </div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Apprenticeship_learning" title="Apprenticeship learning">Apprenticeship learning</a></li> <li><a href="/wiki/Decision_tree_learning" title="Decision tree learning">Decision trees</a></li> <li><a href="/wiki/Ensemble_learning" title="Ensemble learning">Ensembles</a> <ul><li><a href="/wiki/Bootstrap_aggregating" title="Bootstrap aggregating">Bagging</a></li> <li><a href="/wiki/Boosting_(machine_learning)" title="Boosting (machine learning)">Boosting</a></li> <li><a href="/wiki/Random_forest" title="Random forest">Random forest</a></li></ul></li> <li><a href="/wiki/K-nearest_neighbors_algorithm" title="K-nearest neighbors algorithm"><i>k</i>-NN</a></li> <li><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></li> <li><a href="/wiki/Naive_Bayes_classifier" title="Naive Bayes classifier">Naive Bayes</a></li> <li><a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">Artificial neural networks</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Perceptron" title="Perceptron">Perceptron</a></li> <li><a href="/wiki/Relevance_vector_machine" title="Relevance vector machine">Relevance vector machine (RVM)</a></li> <li><a href="/wiki/Support_vector_machine" title="Support vector machine">Support vector machine (SVM)</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Cluster_analysis" title="Cluster analysis">Clustering</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/BIRCH" title="BIRCH">BIRCH</a></li> <li><a href="/wiki/CURE_algorithm" title="CURE algorithm">CURE</a></li> <li><a href="/wiki/Hierarchical_clustering" title="Hierarchical clustering">Hierarchical</a></li> <li><a href="/wiki/K-means_clustering" title="K-means clustering"><i>k</i>-means</a></li> <li><a href="/wiki/Fuzzy_clustering" title="Fuzzy clustering">Fuzzy</a></li> <li><a href="/wiki/Expectation%E2%80%93maximization_algorithm" title="Expectation–maximization algorithm">Expectation–maximization (EM)</a></li> <li><br /><a href="/wiki/DBSCAN" title="DBSCAN">DBSCAN</a></li> <li><a href="/wiki/OPTICS_algorithm" title="OPTICS algorithm">OPTICS</a></li> <li><a href="/wiki/Mean_shift" title="Mean shift">Mean shift</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">Dimensionality reduction</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">CCA</a></li> <li><a class="mw-selflink selflink">ICA</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">LDA</a></li> <li><a href="/wiki/Non-negative_matrix_factorization" title="Non-negative matrix factorization">NMF</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">PCA</a></li> <li><a href="/wiki/Proper_generalized_decomposition" title="Proper generalized decomposition">PGD</a></li> <li><a href="/wiki/T-distributed_stochastic_neighbor_embedding" title="T-distributed stochastic neighbor embedding">t-SNE</a></li> <li><a href="/wiki/Sparse_dictionary_learning" title="Sparse dictionary learning">SDL</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Structured_prediction" title="Structured prediction">Structured prediction</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Graphical_model" title="Graphical model">Graphical models</a> <ul><li><a href="/wiki/Bayesian_network" title="Bayesian network">Bayes net</a></li> <li><a href="/wiki/Conditional_random_field" title="Conditional random field">Conditional random field</a></li> <li><a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Anomaly_detection" title="Anomaly detection">Anomaly detection</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Random_sample_consensus" title="Random sample consensus">RANSAC</a></li> <li><a href="/wiki/K-nearest_neighbors_algorithm" title="K-nearest neighbors algorithm"><i>k</i>-NN</a></li> <li><a href="/wiki/Local_outlier_factor" title="Local outlier factor">Local outlier factor</a></li> <li><a href="/wiki/Isolation_forest" title="Isolation forest">Isolation forest</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">Artificial neural network</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Autoencoder" title="Autoencoder">Autoencoder</a></li> <li><a href="/wiki/Deep_learning" title="Deep learning">Deep learning</a></li> <li><a href="/wiki/Feedforward_neural_network" title="Feedforward neural network">Feedforward neural network</a></li> <li><a href="/wiki/Recurrent_neural_network" title="Recurrent neural network">Recurrent neural network</a> <ul><li><a href="/wiki/Long_short-term_memory" title="Long short-term memory">LSTM</a></li> <li><a href="/wiki/Gated_recurrent_unit" title="Gated recurrent unit">GRU</a></li> <li><a href="/wiki/Echo_state_network" title="Echo state network">ESN</a></li> <li><a href="/wiki/Reservoir_computing" title="Reservoir computing">reservoir computing</a></li></ul></li> <li><a href="/wiki/Boltzmann_machine" title="Boltzmann machine">Boltzmann machine</a> <ul><li><a href="/wiki/Restricted_Boltzmann_machine" title="Restricted Boltzmann machine">Restricted</a></li></ul></li> <li><a href="/wiki/Generative_adversarial_network" title="Generative adversarial network">GAN</a></li> <li><a href="/wiki/Diffusion_model" title="Diffusion model">Diffusion model</a></li> <li><a href="/wiki/Self-organizing_map" title="Self-organizing map">SOM</a></li> <li><a href="/wiki/Convolutional_neural_network" title="Convolutional neural network">Convolutional neural network</a> <ul><li><a href="/wiki/U-Net" title="U-Net">U-Net</a></li> <li><a href="/wiki/LeNet" title="LeNet">LeNet</a></li> <li><a href="/wiki/AlexNet" title="AlexNet">AlexNet</a></li> <li><a href="/wiki/DeepDream" title="DeepDream">DeepDream</a></li></ul></li> <li><a href="/wiki/Neural_radiance_field" title="Neural radiance field">Neural radiance field</a></li> <li><a href="/wiki/Transformer_(machine_learning_model)" class="mw-redirect" title="Transformer (machine learning model)">Transformer</a> <ul><li><a href="/wiki/Vision_transformer" title="Vision transformer">Vision</a></li></ul></li> <li><a href="/wiki/Mamba_(deep_learning_architecture)" title="Mamba (deep learning architecture)">Mamba</a></li> <li><a href="/wiki/Spiking_neural_network" title="Spiking neural network">Spiking neural network</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Electrochemical_RAM" title="Electrochemical RAM">Electrochemical RAM</a> (ECRAM)</li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)"><a href="/wiki/Reinforcement_learning" title="Reinforcement learning">Reinforcement learning</a></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Q-learning" title="Q-learning">Q-learning</a></li> <li><a href="/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action" title="State–action–reward–state–action">SARSA</a></li> <li><a href="/wiki/Temporal_difference_learning" title="Temporal difference learning">Temporal difference (TD)</a></li> <li><a href="/wiki/Multi-agent_reinforcement_learning" title="Multi-agent reinforcement learning">Multi-agent</a> <ul><li><a href="/wiki/Self-play_(reinforcement_learning_technique)" class="mw-redirect" title="Self-play (reinforcement learning technique)">Self-play</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Learning with humans</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Active_learning_(machine_learning)" title="Active learning (machine learning)">Active learning</a></li> <li><a href="/wiki/Crowdsourcing" title="Crowdsourcing">Crowdsourcing</a></li> <li><a href="/wiki/Human-in-the-loop" title="Human-in-the-loop">Human-in-the-loop</a></li> <li><a href="/wiki/Reinforcement_learning_from_human_feedback" title="Reinforcement learning from human feedback">RLHF</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Model diagnostics</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion matrix</a></li> <li><a href="/wiki/Learning_curve_(machine_learning)" title="Learning curve (machine learning)">Learning curve</a></li> <li><a href="/wiki/Receiver_operating_characteristic" title="Receiver operating characteristic">ROC curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Mathematical foundations</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Kernel_machines" class="mw-redirect" title="Kernel machines">Kernel machines</a></li> <li><a href="/wiki/Bias%E2%80%93variance_tradeoff" title="Bias–variance tradeoff">Bias–variance tradeoff</a></li> <li><a href="/wiki/Computational_learning_theory" title="Computational learning theory">Computational learning theory</a></li> <li><a href="/wiki/Empirical_risk_minimization" title="Empirical risk minimization">Empirical risk minimization</a></li> <li><a href="/wiki/Occam_learning" title="Occam learning">Occam learning</a></li> <li><a href="/wiki/Probably_approximately_correct_learning" title="Probably approximately correct learning">PAC learning</a></li> <li><a href="/wiki/Statistical_learning_theory" title="Statistical learning theory">Statistical learning</a></li> <li><a href="/wiki/Vapnik%E2%80%93Chervonenkis_theory" title="Vapnik–Chervonenkis theory">VC theory</a></li> <li><a href="/wiki/Topological_deep_learning" title="Topological deep learning">Topological deep learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Journals and conferences</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/ECML_PKDD" title="ECML PKDD">ECML PKDD</a></li> <li><a href="/wiki/Conference_on_Neural_Information_Processing_Systems" title="Conference on Neural Information Processing Systems">NeurIPS</a></li> <li><a href="/wiki/International_Conference_on_Machine_Learning" title="International Conference on Machine Learning">ICML</a></li> <li><a href="/wiki/International_Conference_on_Learning_Representations" title="International Conference on Learning Representations">ICLR</a></li> <li><a href="/wiki/International_Joint_Conference_on_Artificial_Intelligence" title="International Joint Conference on Artificial Intelligence">IJCAI</a></li> <li><a href="/wiki/Machine_Learning_(journal)" title="Machine Learning (journal)">ML</a></li> <li><a href="/wiki/Journal_of_Machine_Learning_Research" title="Journal of Machine Learning Research">JMLR</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed machine-learning-list-title"><div class="sidebar-list-title" style="border-top:1px solid #aaa; text-align:center;;color: var(--color-base)">Related articles</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Glossary_of_artificial_intelligence" title="Glossary of artificial intelligence">Glossary of artificial intelligence</a></li> <li><a href="/wiki/List_of_datasets_for_machine-learning_research" title="List of datasets for machine-learning research">List of datasets for machine-learning research</a> <ul><li><a href="/wiki/List_of_datasets_in_computer_vision_and_image_processing" title="List of datasets in computer vision and image processing">List of datasets in computer vision and image processing</a></li></ul></li> <li><a href="/wiki/Outline_of_machine_learning" title="Outline of machine learning">Outline of machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Machine_learning" title="Template:Machine learning"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Machine_learning" title="Template talk:Machine learning"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Machine_learning" title="Special:EditPage/Template:Machine learning"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, <b>independent component analysis</b> (<b>ICA</b>) is a computational method for separating a <a href="/wiki/Multivariate_statistics" title="Multivariate statistics">multivariate</a> signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">statistically independent</a> from each other.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> ICA was invented by Jeanny Hérault and Christian Jutten in 1985.<sup id="cite_ref-jutten85_2-0" class="reference"><a href="#cite_note-jutten85-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> ICA is a special case of <a href="/wiki/Blind_source_separation" class="mw-redirect" title="Blind source separation">blind source separation</a>. A common example application of ICA is the "<a href="/wiki/Cocktail_party_problem" class="mw-redirect" title="Cocktail party problem">cocktail party problem</a>" of listening in on one person's speech in a noisy room.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/300px--A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="300" height="227" data-durationhint="21" data-mwtitle="A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv" data-mwprovider="wikimediacommons" resource="/wiki/File:A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.480p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="480p.vp9.webm" data-width="636" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv" type="video/ogg; codecs="theora"" data-width="900" data-height="680" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="190" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.240p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="240p.vp9.webm" data-width="318" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.360p.webm" type="video/webm; codecs="vp8, vorbis"" data-transcodekey="360p.webm" data-width="476" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/8/82/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv/A-Local-Learning-Rule-for-Independent-Component-Analysis-srep28073-s3.ogv.360p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="360p.vp9.webm" data-width="476" data-height="360" /></video></span><figcaption>ICA on four randomly mixed videos.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Top row: The original source videos. Middle row: Four random mixtures used as input to the algorithm. Bottom row: The reconstructed videos.</figcaption></figure> <p>Independent component analysis attempts to decompose a multivariate signal into independent non-Gaussian signals. As an example, sound is usually a signal that is composed of the numerical addition, at each time t, of signals from several sources. The question then is whether it is possible to separate these contributing sources from the observed total signal. When the statistical independence assumption is correct, blind ICA separation of a mixed signal gives very good results.<sup id="cite_ref-ComoJ2010_5-0" class="reference"><a href="#cite_note-ComoJ2010-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> It is also used for signals that are not supposed to be generated by mixing for analysis purposes. </p><p>A simple application of ICA is the "<a href="/wiki/Cocktail_party_problem" class="mw-redirect" title="Cocktail party problem">cocktail party problem</a>", where the underlying speech signals are separated from a sample data consisting of people talking simultaneously in a room. Usually the problem is simplified by assuming no time delays or echoes. Note that a filtered and delayed signal is a copy of a dependent component, and thus the statistical independence assumption is not violated. </p><p>Mixing weights for constructing the <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/913ace920108f7552777e36ac0b7ee3f5093a088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\textstyle M}" /></span></i> observed signals from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d21d55fc102ec49600d3d5522a59ae4561acc22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\textstyle N}" /></span> components can be placed in an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M\times N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mo>×<!-- × --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M\times N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3405ce1323e335ff1cd4571db61bbd893ef4e682" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.346ex; height:2.176ex;" alt="{\textstyle M\times N}" /></span> matrix. An important thing to consider is that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d21d55fc102ec49600d3d5522a59ae4561acc22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\textstyle N}" /></span> sources are present, at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d21d55fc102ec49600d3d5522a59ae4561acc22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\textstyle N}" /></span> observations (e.g. microphones if the observed signal is audio) are needed to recover the original signals. When there are an equal number of observations and source signals, the mixing matrix is square (<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M=N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M=N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7a22d896ce95aebc79c5f3e5ea5bf2a55796ec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.604ex; height:2.176ex;" alt="{\textstyle M=N}" /></span></i>). Other cases of underdetermined (<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M<N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mo><</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M<N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cef54b1270320cfe8714b89f1d8701286decfabd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.604ex; height:2.176ex;" alt="{\textstyle M<N}" /></span></i>) and overdetermined (<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M>N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mo>></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M>N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6c031b1791bb36a836b6eab871af9809278b56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.604ex; height:2.176ex;" alt="{\textstyle M>N}" /></span></i>) have been investigated. </p><p>The success of ICA separation of mixed signals relies on two assumptions and three effects of mixing source signals. Two assumptions: </p> <ol><li>The source signals are independent of each other.</li> <li>The values in each source signal have non-Gaussian distributions.</li></ol> <p>Three effects of mixing source signals: </p> <ol><li>Independence: As per assumption 1, the source signals are independent; however, their signal mixtures are not. This is because the signal mixtures share the same source signals.</li> <li>Normality: According to the <a href="/wiki/Central_Limit_Theorem" class="mw-redirect" title="Central Limit Theorem">Central Limit Theorem</a>, the distribution of a sum of independent random variables with finite variance tends towards a Gaussian distribution.<br />Loosely speaking, a sum of two independent random variables usually has a distribution that is closer to Gaussian than any of the two original variables. Here we consider the value of each signal as the random variable.</li> <li>Complexity: The temporal complexity of any signal mixture is greater than that of its simplest constituent source signal.</li></ol> <p>Those principles contribute to the basic establishment of ICA. If the signals extracted from a set of mixtures are independent and have non-Gaussian distributions or have low complexity, then they must be source signals.<sup id="cite_ref-Stone_2004_6-0" class="reference"><a href="#cite_note-Stone_2004-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Defining_component_independence">Defining component independence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=2" title="Edit section: Defining component independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ICA finds the independent components (also called factors, latent variables or sources) by maximizing the statistical independence of the estimated components. We may choose one of many ways to define a proxy for independence, and this choice governs the form of the ICA algorithm. The two broadest definitions of independence for ICA are </p> <ol><li>Minimization of mutual information</li> <li>Maximization of non-Gaussianity</li></ol> <p>The Minimization-of-<a href="/wiki/Mutual_information" title="Mutual information">Mutual information</a> (MMI) family of ICA algorithms uses measures like <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">Kullback-Leibler Divergence</a> and <a href="/wiki/Principle_of_maximum_entropy" title="Principle of maximum entropy">maximum entropy</a>. The non-Gaussianity family of ICA algorithms, motivated by the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>, uses <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> and <a href="/wiki/Negentropy" title="Negentropy">negentropy</a>.<sup id="cite_ref-comon94_8-0" class="reference"><a href="#cite_note-comon94-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Typical algorithms for ICA use centering (subtract the mean to create a zero mean signal), <a href="/wiki/Whitening_transformation" title="Whitening transformation">whitening</a> (usually with the <a href="/wiki/Eigenvalue_decomposition" class="mw-redirect" title="Eigenvalue decomposition">eigenvalue decomposition</a>), and <a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">dimensionality reduction</a> as preprocessing steps in order to simplify and reduce the complexity of the problem for the actual iterative algorithm. Whitening and <a href="/wiki/Dimension_reduction" class="mw-redirect" title="Dimension reduction">dimension reduction</a> can be achieved with <a href="/wiki/Principal_component_analysis" title="Principal component analysis">principal component analysis</a> or <a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">singular value decomposition</a>. Whitening ensures that all dimensions are treated equally <i>a priori</i> before the algorithm is run. Well-known algorithms for ICA include <a href="/wiki/Infomax" title="Infomax">infomax</a>, <a href="/wiki/FastICA" title="FastICA">FastICA</a>, <a href="/wiki/JADE_(ICA)" class="mw-redirect" title="JADE (ICA)">JADE</a>, and <a href="/wiki/Kernel-independent_component_analysis" title="Kernel-independent component analysis">kernel-independent component analysis</a>, among others. In general, ICA cannot identify the actual number of source signals, a uniquely correct ordering of the source signals, nor the proper scaling (including sign) of the source signals. </p><p>ICA is important to <a href="/wiki/Blind_signal_separation" class="mw-redirect" title="Blind signal separation">blind signal separation</a> and has many practical applications. It is closely related to (or even a special case of) the search for a <a href="/wiki/Factorial_code" title="Factorial code">factorial code</a> of the data, i.e., a new vector-valued representation of each data vector such that it gets uniquely encoded by the resulting code vector (loss-free coding), but the code components are statistically independent. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_definitions">Mathematical definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=3" title="Edit section: Mathematical definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Linear independent component analysis can be divided into noiseless and noisy cases, where noiseless ICA is a special case of noisy ICA. Nonlinear ICA should be considered as a separate case. </p> <div class="mw-heading mw-heading3"><h3 id="General">General</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=4" title="Edit section: General"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The data are represented by the observed <a href="/wiki/Random_vector" class="mw-redirect" title="Random vector">random vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82d2672fb6c006196a357a27e9d81683a54c73b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.396ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}" /></span> and the hidden components as the random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7a7393e3a5f90f8f4e95a19431b657f5f117dbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.81ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}.}" /></span> The task is to transform the observed data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27d19744800f6afda5dad6ca95f32999a18ce548" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {x}},}" /></span> using a linear static transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {W}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {W}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b1c4d8ca751f99f80d732d42624c33a4b46631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.805ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {W}}}" /></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}={\boldsymbol {W}}{\boldsymbol {x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}={\boldsymbol {W}}{\boldsymbol {x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c4816584c31118a14831094d7b475657ad084d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.316ex; height:2.509ex;" alt="{\displaystyle {\boldsymbol {s}}={\boldsymbol {W}}{\boldsymbol {x}},}" /></span> into a vector of maximally independent components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adfccdf93cc6115ade3deffbbbf062d6849a1f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.234ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {s}}}" /></span> measured by some function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s_{1},\ldots ,s_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s_{1},\ldots ,s_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7982911258dae78885e46978e8a07f4b716f347c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.182ex; height:2.843ex;" alt="{\displaystyle F(s_{1},\ldots ,s_{n})}" /></span> of independence. </p> <div class="mw-heading mw-heading3"><h3 id="Generative_model">Generative model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=5" title="Edit section: Generative model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Linear_noiseless_ICA">Linear noiseless ICA</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=6" title="Edit section: Linear noiseless ICA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}" /></span> of the observed random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82d2672fb6c006196a357a27e9d81683a54c73b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.396ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {x}}=(x_{1},\ldots ,x_{m})^{T}}" /></span> are generated as a sum of the independent components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f159343172781e7666dbc88280c91f34117c30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.009ex;" alt="{\displaystyle s_{k}}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1,\ldots ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1,\ldots ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02703686f808b37fedb436806fa72ca3522e22de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.045ex; height:2.509ex;" alt="{\displaystyle k=1,\ldots ,n}" /></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}=a_{i,1}s_{1}+\cdots +a_{i,k}s_{k}+\cdots +a_{i,n}s_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}=a_{i,1}s_{1}+\cdots +a_{i,k}s_{k}+\cdots +a_{i,n}s_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1bcb4ff12b6448d5ada6576250d14ef40bd25f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.794ex; height:2.676ex;" alt="{\displaystyle x_{i}=a_{i,1}s_{1}+\cdots +a_{i,k}s_{k}+\cdots +a_{i,n}s_{n}}" /></span> </p><p>weighted by the mixing weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i,k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i,k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/513ba16f4bf7e8e3f6eda23db04a7e66ec9f5178" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.343ex; height:2.343ex;" alt="{\displaystyle a_{i,k}}" /></span>. </p><p>The same generative model can be written in vector form as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}=\sum _{k=1}^{n}s_{k}{\boldsymbol {a}}_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}=\sum _{k=1}^{n}s_{k}{\boldsymbol {a}}_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65e8b26dbc93b91dc7082139a85d2b8730ecf7d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.112ex; height:6.843ex;" alt="{\displaystyle {\boldsymbol {x}}=\sum _{k=1}^{n}s_{k}{\boldsymbol {a}}_{k}}" /></span>, where the observed random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606b7680d510560a505937143775ea80fa958051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.532ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {x}}}" /></span> is represented by the basis vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {a}}_{k}=({\boldsymbol {a}}_{1,k},\ldots ,{\boldsymbol {a}}_{m,k})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {a}}_{k}=({\boldsymbol {a}}_{1,k},\ldots ,{\boldsymbol {a}}_{m,k})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1382429d699572ef04d42ef03855615a8de5d920" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.335ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {a}}_{k}=({\boldsymbol {a}}_{1,k},\ldots ,{\boldsymbol {a}}_{m,k})^{T}}" /></span>. The basis vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {a}}_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {a}}_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/493f447b52837d1493281459664451b3f22f4c49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.56ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {a}}_{k}}" /></span> form the columns of the mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {A}}=({\boldsymbol {a}}_{1},\ldots ,{\boldsymbol {a}}_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {A}}=({\boldsymbol {a}}_{1},\ldots ,{\boldsymbol {a}}_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d559f2a79216b312d0f0261b6a4c78979a98e6ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.321ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {A}}=({\boldsymbol {a}}_{1},\ldots ,{\boldsymbol {a}}_{n})}" /></span> and the generative formula can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af63472217b2ffc65407450779634f04d5096741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.884ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}}" /></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fccf9a9ef34f453f6c51137a403e61abf2afabf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.163ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {s}}=(s_{1},\ldots ,s_{n})^{T}}" /></span>. </p><p>Given the model and realizations (samples) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}_{1},\ldots ,{\boldsymbol {x}}_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}_{1},\ldots ,{\boldsymbol {x}}_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ebed21a154ca42d867219e0005dcfebfe0f7432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.987ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {x}}_{1},\ldots ,{\boldsymbol {x}}_{N}}" /></span> of the random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606b7680d510560a505937143775ea80fa958051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.532ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {x}}}" /></span>, the task is to estimate both the mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8b5a6d1dbadead8b1dc48719c888e6cac5f861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {A}}}" /></span> and the sources <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adfccdf93cc6115ade3deffbbbf062d6849a1f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.234ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {s}}}" /></span>. This is done by adaptively calculating the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a36660d03c65332b9ce8b29d7869818762cb970" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {w}}}" /></span> vectors and setting up a cost function which either maximizes the non-gaussianity of the calculated <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{k}={\boldsymbol {w}}^{T}{\boldsymbol {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{k}={\boldsymbol {w}}^{T}{\boldsymbol {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9809acad1f457fd5f8ef9144c7b5d10d90228a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.13ex; height:3.009ex;" alt="{\displaystyle s_{k}={\boldsymbol {w}}^{T}{\boldsymbol {x}}}" /></span> or minimizes the mutual information. In some cases, a priori knowledge of the probability distributions of the sources can be used in the cost function. </p><p>The original sources <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adfccdf93cc6115ade3deffbbbf062d6849a1f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.234ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {s}}}" /></span> can be recovered by multiplying the observed signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606b7680d510560a505937143775ea80fa958051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.532ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {x}}}" /></span> with the inverse of the mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {W}}={\boldsymbol {A}}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">W</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {W}}={\boldsymbol {A}}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db9aae3ed82c9d9f658996916fbfb4fb06c4d7f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.255ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {W}}={\boldsymbol {A}}^{-1}}" /></span>, also known as the unmixing matrix. Here it is assumed that the mixing matrix is square (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480d6131c6cb07a90f4ec18a376a59fab884b860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle n=m}" /></span>). If the number of basis vectors is greater than the dimensionality of the observed vectors, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e64e2a4a5b6cb58f1553c6a65551b4898bb82403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.843ex;" alt="{\displaystyle n>m}" /></span>, the task is overcomplete but is still solvable with the <a href="/wiki/Pseudo_inverse" class="mw-redirect" title="Pseudo inverse">pseudo inverse</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Linear_noisy_ICA">Linear noisy ICA</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=7" title="Edit section: Linear noisy ICA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With the added assumption of zero-mean and uncorrelated Gaussian noise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\sim N(0,\operatorname {diag} (\Sigma ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∼<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>diag</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\sim N(0,\operatorname {diag} (\Sigma ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87c2b17211062a305e1e98fe03a58eea92d83b7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.314ex; height:2.843ex;" alt="{\displaystyle n\sim N(0,\operatorname {diag} (\Sigma ))}" /></span>, the ICA model takes the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}+n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo>+</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}+n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/001676401b15913ff86c3c896588ae9317631a95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.119ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {x}}={\boldsymbol {A}}{\boldsymbol {s}}+n}" /></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Nonlinear_ICA">Nonlinear ICA</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=8" title="Edit section: Nonlinear ICA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The mixing of the sources does not need to be linear. Using a nonlinear mixing function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\cdot |\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\cdot |\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a938be286acbb07e4e1ad3c65652ae2665240e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.472ex; height:2.843ex;" alt="{\displaystyle f(\cdot |\theta )}" /></span> with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }" /></span> the <a href="/w/index.php?title=Nonlinear_ICA&action=edit&redlink=1" class="new" title="Nonlinear ICA (page does not exist)">nonlinear ICA</a> model is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=f(s|\theta )+n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=f(s|\theta )+n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d35119cdcc37443e4f7899017f60e773dc9ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.579ex; height:2.843ex;" alt="{\displaystyle x=f(s|\theta )+n}" /></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Identifiability">Identifiability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=9" title="Edit section: Identifiability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The independent components are identifiable up to a permutation and scaling of the sources.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> This identifiability requires that: </p> <ul><li>At most one of the sources <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f159343172781e7666dbc88280c91f34117c30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.009ex;" alt="{\displaystyle s_{k}}" /></span> is Gaussian,</li> <li>The number of observed mixtures, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}" /></span>, must be at least as large as the number of estimated components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}" /></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\geq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>≥<!-- ≥ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\geq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b02f25e62da7fe3162ac80446437cdc1c0fd341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.534ex; height:2.176ex;" alt="{\displaystyle m\geq n}" /></span>. It is equivalent to say that the mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8b5a6d1dbadead8b1dc48719c888e6cac5f861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {A}}}" /></span> must be of full <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> for its inverse to exist.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Binary_ICA">Binary ICA</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=10" title="Edit section: Binary ICA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A special variant of ICA is binary ICA in which both signal sources and monitors are in binary form and observations from monitors are disjunctive mixtures of binary independent sources. The problem was shown to have applications in many domains including <a href="/wiki/Medical_diagnosis" title="Medical diagnosis">medical diagnosis</a>, <a href="/w/index.php?title=Multi-cluster_assignment&action=edit&redlink=1" class="new" title="Multi-cluster assignment (page does not exist)">multi-cluster assignment</a>, <a href="/wiki/Network_tomography" title="Network tomography">network tomography</a> and <a href="/w/index.php?title=Internet_resource_management&action=edit&redlink=1" class="new" title="Internet resource management (page does not exist)">internet resource management</a>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {x_{1},x_{2},\ldots ,x_{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {x_{1},x_{2},\ldots ,x_{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c8f2c13280e7895c57c5f8fb14b5a422d0b361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.985ex; height:2.009ex;" alt="{\displaystyle {x_{1},x_{2},\ldots ,x_{m}}}" /></span> be the set of binary variables from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}" /></span> monitors and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {y_{1},y_{2},\ldots ,y_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {y_{1},y_{2},\ldots ,y_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beb52c75a22b40004dbb949e9ea7f5b0379ae4c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.957ex; height:2.009ex;" alt="{\displaystyle {y_{1},y_{2},\ldots ,y_{n}}}" /></span> be the set of binary variables from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}" /></span> sources. Source-monitor connections are represented by the (unknown) mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">G</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f980b2b704f566adb9507dfa02ba5c89e9accb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.176ex;" alt="{\textstyle {\boldsymbol {G}}}" /></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{ij}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{ij}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/718fe03d6b108f20dd898db3779c066a02a47cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.847ex; height:2.843ex;" alt="{\displaystyle g_{ij}=1}" /></span> indicates that signal from the <i>i</i>-th source can be observed by the <i>j</i>-th monitor. The system works as follows: at any time, if a source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}" /></span> is active (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{i}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{i}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13864bfc60110b9306a50b300d2d72b22fa1e371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.2ex; height:2.509ex;" alt="{\displaystyle y_{i}=1}" /></span>) and it is connected to the monitor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}" /></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{ij}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{ij}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/718fe03d6b108f20dd898db3779c066a02a47cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.847ex; height:2.843ex;" alt="{\displaystyle g_{ij}=1}" /></span>) then the monitor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}" /></span> will observe some activity (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{j}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{j}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c0a59667c986ecc2a3f6a84f387699c2f25b12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.5ex; height:2.843ex;" alt="{\displaystyle x_{j}=1}" /></span>). Formally we have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}=\bigvee _{j=1}^{n}(g_{ij}\wedge y_{j}),i=1,2,\ldots ,m,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>⋁<!-- ⋁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}=\bigvee _{j=1}^{n}(g_{ij}\wedge y_{j}),i=1,2,\ldots ,m,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/644b8d4d5dddfefc5fd3f4d5d06453006e34f053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.192ex; height:7.176ex;" alt="{\displaystyle x_{i}=\bigvee _{j=1}^{n}(g_{ij}\wedge y_{j}),i=1,2,\ldots ,m,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }" /></span> is Boolean AND and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vee }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vee }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b76220c6805c9b465d6efbc7686c624f49f3023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \vee }" /></span> is Boolean OR. Noise is not explicitly modelled, rather, can be treated as independent sources. </p><p>The above problem can be heuristically solved<sup id="cite_ref-Hyvärinen_10-0" class="reference"><a href="#cite_note-Hyvärinen-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> by assuming variables are continuous and running <a href="/wiki/FastICA" title="FastICA">FastICA</a> on binary observation data to get the mixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">G</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f980b2b704f566adb9507dfa02ba5c89e9accb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.176ex;" alt="{\textstyle {\boldsymbol {G}}}" /></span> (real values), then apply <a href="/wiki/Round_number" title="Round number">round number</a> techniques on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">G</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f980b2b704f566adb9507dfa02ba5c89e9accb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.176ex;" alt="{\textstyle {\boldsymbol {G}}}" /></span> to obtain the binary values. This approach has been shown to produce a highly inaccurate result.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2012)">citation needed</span></a></i>]</sup> </p><p>Another method is to use <a href="/wiki/Dynamic_programming" title="Dynamic programming">dynamic programming</a>: recursively breaking the observation matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/260a0485ebd57e6c6f08ff860bffc10b52ab39a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.215ex; height:2.176ex;" alt="{\textstyle {\boldsymbol {X}}}" /></span> into its sub-matrices and run the inference algorithm on these sub-matrices. The key observation which leads to this algorithm is the sub-matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {X}}^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {X}}^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed4d42aa1e36224e82e14391c516d8ef9d2ec13d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.273ex; height:2.676ex;" alt="{\textstyle {\boldsymbol {X}}^{0}}" /></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\boldsymbol {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\boldsymbol {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/260a0485ebd57e6c6f08ff860bffc10b52ab39a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.215ex; height:2.176ex;" alt="{\textstyle {\boldsymbol {X}}}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x_{ij}=0,\forall j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x_{ij}=0,\forall j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df46c054cf1a310f83b0925705a5c7ab370d4c8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.352ex; height:2.843ex;" alt="{\textstyle x_{ij}=0,\forall j}" /></span> corresponds to the unbiased observation matrix of hidden components that do not have connection to the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}" /></span>-th monitor. Experimental results from<sup id="cite_ref-Huyna_11-0" class="reference"><a href="#cite_note-Huyna-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> show that this approach is accurate under moderate noise levels. </p><p>The Generalized Binary ICA framework<sup id="cite_ref-Generalized_Binary_ICA_12-0" class="reference"><a href="#cite_note-Generalized_Binary_ICA-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> introduces a broader problem formulation which does not necessitate any knowledge on the generative model. In other words, this method attempts to decompose a source into its independent components (as much as possible, and without losing any information) with no prior assumption on the way it was generated. Although this problem appears quite complex, it can be accurately solved with a <a href="/wiki/Branch_and_bound" title="Branch and bound">branch and bound</a> search tree algorithm or tightly upper bounded with a single multiplication of a matrix with a vector. </p> <div class="mw-heading mw-heading2"><h2 id="Methods_for_blind_source_separation">Methods for blind source separation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=11" title="Edit section: Methods for blind source separation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Projection_pursuit">Projection pursuit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=12" title="Edit section: Projection pursuit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Signal mixtures tend to have Gaussian probability density functions, and source signals tend to have non-Gaussian probability density functions. Each source signal can be extracted from a set of signal mixtures by taking the inner product of a weight vector and those signal mixtures where this inner product provides an orthogonal projection of the signal mixtures. The remaining challenge is finding such a weight vector. One type of method for doing so is <a href="/wiki/Projection_pursuit" title="Projection pursuit">projection pursuit</a>.<sup id="cite_ref-James_V._Stone_2004_13-0" class="reference"><a href="#cite_note-James_V._Stone_2004-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>Projection pursuit seeks one projection at a time such that the extracted signal is as non-Gaussian as possible. This contrasts with ICA, which typically extracts <i>M</i> signals simultaneously from <i>M</i> signal mixtures, which requires estimating a <i>M</i> × <i>M</i> unmixing matrix. One practical advantage of projection pursuit over ICA is that fewer than <i>M</i> signals can be extracted if required, where each source signal is extracted from <i>M</i> signal mixtures using an <i>M</i>-element weight vector. </p><p>We can use <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> to recover the multiple source signal by finding the correct weight vectors with the use of projection pursuit. </p><p>The kurtosis of the probability density function of a signal, for a finite sample, is computed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{4}]}{(\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{2}])^{2}}}-3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{4}]}{(\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{2}])^{2}}}-3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ed7961602e0ea393c9890f132b5352d4a0cc84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.384ex; height:6.676ex;" alt="{\displaystyle K={\frac {\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{4}]}{(\operatorname {E} [(\mathbf {y} -\mathbf {\overline {y}} )^{2}])^{2}}}-3}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\overline {y}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\overline {y}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc3cb6fe9e66d5391258f1ebb7f8e76c2d024b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.526ex; height:2.676ex;" alt="{\displaystyle \mathbf {\overline {y}} }" /></span> is the <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }" /></span>, the extracted signals. The constant 3 ensures that Gaussian signals have zero kurtosis, Super-Gaussian signals have positive kurtosis, and Sub-Gaussian signals have negative kurtosis. The denominator is the <a href="/wiki/Variance" title="Variance">variance</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }" /></span>, and ensures that the measured kurtosis takes account of signal variance. The goal of projection pursuit is to maximize the kurtosis, and make the extracted signal as non-normal as possible. </p><p>Using kurtosis as a measure of non-normality, we can now examine how the kurtosis of a signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02ba081bc727b4ebff478ad1e55c3404033fa55c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.241ex; height:3.009ex;" alt="{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {x} }" /></span> extracted from a set of <i>M</i> mixtures <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{M})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{M})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0218e7a85c3af6f3e80424cc74c2818aebbf70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.977ex; height:3.176ex;" alt="{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{M})^{T}}" /></span> varies as the weight vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span> is rotated around the origin. Given our assumption that each source signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {s} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {s} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/644ae690160e658898a141e568a7fb0ee6040004" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.056ex; height:1.676ex;" alt="{\displaystyle \mathbf {s} }" /></span> is super-gaussian we would expect: </p> <ol><li>the kurtosis of the extracted signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }" /></span> to be maximal precisely when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =\mathbf {s} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =\mathbf {s} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bf4841987de687c9e248a8b26043b124699e233" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.565ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} =\mathbf {s} }" /></span>.</li> <li>the kurtosis of the extracted signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }" /></span> to be maximal when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span> is orthogonal to the projected axes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf84e7fd4fb8259a9b37f956afdf83ee2a020f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{1}}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1143e284d5f25cef778ab482edf6617a523ddd9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{2}}" /></span>, because we know the optimal weight vector should be orthogonal to a transformed axis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf84e7fd4fb8259a9b37f956afdf83ee2a020f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{1}}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1143e284d5f25cef778ab482edf6617a523ddd9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{2}}" /></span>.</li></ol> <p>For multiple source mixture signals, we can use kurtosis and <a href="/wiki/Gram-Schmidt" class="mw-redirect" title="Gram-Schmidt">Gram-Schmidt</a> Orthogonalization (GSO) to recover the signals. Given <i>M</i> signal mixtures in an <i>M</i>-dimensional space, GSO project these data points onto an (<i>M-1</i>)-dimensional space by using the weight vector. We can guarantee the independence of the extracted signals with the use of GSO. </p><p>In order to find the correct value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span>, we can use <a href="/wiki/Gradient_descent" title="Gradient descent">gradient descent</a> method. We first of all whiten the data, and transform <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }" /></span> into a new mixture <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82eca5d0928078d5a61b9e7e98cc73db31070909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.188ex; height:1.676ex;" alt="{\displaystyle \mathbf {z} }" /></span>, which has unit variance, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} =(z_{1},z_{2},\ldots ,z_{M})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} =(z_{1},z_{2},\ldots ,z_{M})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e38481100377d0a6d62f23b8d65ab6f7be39c85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.008ex; height:3.176ex;" alt="{\displaystyle \mathbf {z} =(z_{1},z_{2},\ldots ,z_{M})^{T}}" /></span>. This process can be achieved by applying <a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">Singular value decomposition</a> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }" /></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\mathbf {U} \mathbf {D} \mathbf {V} ^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\mathbf {U} \mathbf {D} \mathbf {V} ^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1db808f95e6c706ccb58d3415fbe62d752d1635e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.025ex; height:2.676ex;" alt="{\displaystyle \mathbf {x} =\mathbf {U} \mathbf {D} \mathbf {V} ^{T}}" /></span></dd></dl> <p>Rescaling each vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}=U_{i}/\operatorname {E} (U_{i}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}=U_{i}/\operatorname {E} (U_{i}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/827944f22626dac20754c706dcd8eb0004953e35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.71ex; height:3.176ex;" alt="{\displaystyle U_{i}=U_{i}/\operatorname {E} (U_{i}^{2})}" /></span>, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {z} =\mathbf {U} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {z} =\mathbf {U} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90deb78e225dd7d132aa98a212c5ffd3fc0fae3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.343ex; height:2.176ex;" alt="{\displaystyle \mathbf {z} =\mathbf {U} }" /></span>. The signal extracted by a weighted vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/347922e4ea7a3b539ff7594fd1765cb76000d811" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.018ex; height:3.009ex;" alt="{\displaystyle \mathbf {y} =\mathbf {w} ^{T}\mathbf {z} }" /></span>. If the weight vector <b>w</b> has unit length, then the variance of <b>y</b> is also 1, that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{2}]=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{2}]=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f29c4655db008f7c5eaa5ead02b3e2405c0a8df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.509ex; height:3.176ex;" alt="{\displaystyle \operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{2}]=1}" /></span>. The kurtosis can thus be written as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {\operatorname {E} [\mathbf {y} ^{4}]}{(\operatorname {E} [\mathbf {y} ^{2}])^{2}}}-3=\operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{4}]-3.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>3</mn> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>−<!-- − --></mo> <mn>3.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {\operatorname {E} [\mathbf {y} ^{4}]}{(\operatorname {E} [\mathbf {y} ^{2}])^{2}}}-3=\operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{4}]-3.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28060dbc6e2d065bcf18f3b40c8a6bf2572df31f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.205ex; height:6.676ex;" alt="{\displaystyle K={\frac {\operatorname {E} [\mathbf {y} ^{4}]}{(\operatorname {E} [\mathbf {y} ^{2}])^{2}}}-3=\operatorname {E} [(\mathbf {w} ^{T}\mathbf {z} )^{4}]-3.}" /></span></dd></dl> <p>The updating process for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} _{new}=\mathbf {w} _{old}-\eta \operatorname {E} [\mathbf {z} (\mathbf {w} _{old}^{T}\mathbf {z} )^{3}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <mo stretchy="false">(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">z</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} _{new}=\mathbf {w} _{old}-\eta \operatorname {E} [\mathbf {z} (\mathbf {w} _{old}^{T}\mathbf {z} )^{3}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/430c12e076a4db6617c2323ff75901ad19b805ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.973ex; height:3.343ex;" alt="{\displaystyle \mathbf {w} _{new}=\mathbf {w} _{old}-\eta \operatorname {E} [\mathbf {z} (\mathbf {w} _{old}^{T}\mathbf {z} )^{3}].}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }" /></span> is a small constant to guarantee that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span> converges to the optimal solution. After each update, we normalize <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} _{new}={\frac {\mathbf {w} _{new}}{|\mathbf {w} _{new}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} _{new}={\frac {\mathbf {w} _{new}}{|\mathbf {w} _{new}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbd808658c2e2e59e44ff43c8eee1c1aec441a90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.413ex; height:5.509ex;" alt="{\displaystyle \mathbf {w} _{new}={\frac {\mathbf {w} _{new}}{|\mathbf {w} _{new}|}}}" /></span>, and set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} _{old}=\mathbf {w} _{new}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} _{old}=\mathbf {w} _{new}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ca433df12ffa468d7daac0c1c02c1f23d096b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.502ex; height:2.009ex;" alt="{\displaystyle \mathbf {w} _{old}=\mathbf {w} _{new}}" /></span>, and repeat the updating process until convergence. We can also use another algorithm to update the weight vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }" /></span>. </p><p>Another approach is using <a href="/wiki/Negentropy" title="Negentropy">negentropy</a><sup id="cite_ref-comon94_8-1" class="reference"><a href="#cite_note-comon94-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> instead of kurtosis. Using negentropy is a more robust method than kurtosis, as kurtosis is very sensitive to outliers. The negentropy methods are based on an important property of Gaussian distribution: a Gaussian variable has the largest entropy among all continuous random variables of equal variance. This is also the reason why we want to find the most nongaussian variables. A simple proof can be found in <a href="/wiki/Differential_entropy" title="Differential entropy">Differential entropy</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J(x)=S(y)-S(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J(x)=S(y)-S(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9cc71286f9d45eff9eb1619ad961f458fcd6231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.039ex; height:2.843ex;" alt="{\displaystyle J(x)=S(y)-S(x)\,}" /></span></dd></dl> <p>y is a Gaussian random variable of the same covariance matrix as x </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(x)=-\int p_{x}(u)\log p_{x}(u)du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo>∫<!-- ∫ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(x)=-\int p_{x}(u)\log p_{x}(u)du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a20a9f59da8c75cff3a1e25e7949ae46a34bb8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.766ex; height:5.676ex;" alt="{\displaystyle S(x)=-\int p_{x}(u)\log p_{x}(u)du}" /></span></dd></dl> <p>An approximation for negentropy is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J(x)={\frac {1}{12}}(E(x^{3}))^{2}+{\frac {1}{48}}(kurt(x))^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>48</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mi>u</mi> <mi>r</mi> <mi>t</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J(x)={\frac {1}{12}}(E(x^{3}))^{2}+{\frac {1}{48}}(kurt(x))^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6a101bb025c20a541da26bf76ec155322a5cfa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.135ex; height:5.343ex;" alt="{\displaystyle J(x)={\frac {1}{12}}(E(x^{3}))^{2}+{\frac {1}{48}}(kurt(x))^{2}}" /></span></dd></dl> <p>A proof can be found in the original papers of Comon;<sup id="cite_ref-pc91_16-0" class="reference"><a href="#cite_note-pc91-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-comon94_8-2" class="reference"><a href="#cite_note-comon94-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> it has been reproduced in the book <i>Independent Component Analysis</i> by Aapo Hyvärinen, Juha Karhunen, and <a href="/wiki/Erkki_Oja" title="Erkki Oja">Erkki Oja</a><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> This approximation also suffers from the same problem as kurtosis (sensitivity to outliers). Other approaches have been developed.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J(y)=k_{1}(E(G_{1}(y)))^{2}+k_{2}(E(G_{2}(y))-E(G_{2}(v))^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J(y)=k_{1}(E(G_{1}(y)))^{2}+k_{2}(E(G_{2}(y))-E(G_{2}(v))^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/667499f601ac3c6166bf9f5a506c3960c93f8d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.833ex; height:3.176ex;" alt="{\displaystyle J(y)=k_{1}(E(G_{1}(y)))^{2}+k_{2}(E(G_{2}(y))-E(G_{2}(v))^{2}}" /></span></dd></dl> <p>A choice of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6ea4f4668b8334c8a7d3d284b0fd22131ef5f52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.881ex; height:2.509ex;" alt="{\displaystyle G_{1}}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645011b0c6933a02f5f7d84624f78220d747427e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.881ex; height:2.509ex;" alt="{\displaystyle G_{2}}" /></span> are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{1}={\frac {1}{a_{1}}}\log(\cosh(a_{1}u))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{1}={\frac {1}{a_{1}}}\log(\cosh(a_{1}u))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97ce65cb6fa16d0746f42e92024debdd13bd31f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.094ex; height:5.509ex;" alt="{\displaystyle G_{1}={\frac {1}{a_{1}}}\log(\cosh(a_{1}u))}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{2}=-\exp(-{\frac {u^{2}}{2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{2}=-\exp(-{\frac {u^{2}}{2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97b221a6d712bd17df16dd970bb9dd3c4a22de0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.565ex; height:5.676ex;" alt="{\displaystyle G_{2}=-\exp(-{\frac {u^{2}}{2}})}" /></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Based_on_infomax">Based on infomax</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=13" title="Edit section: Based on infomax"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Infomax ICA<sup id="cite_ref-Bell-Sejnowski_19-0" class="reference"><a href="#cite_note-Bell-Sejnowski-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> is essentially a multivariate, parallel version of projection pursuit. Whereas projection pursuit extracts a series of signals one at a time from a set of <i>M</i> signal mixtures, ICA extracts <i>M</i> signals in parallel. This tends to make ICA more robust than projection pursuit.<sup id="cite_ref-ReferenceA_20-0" class="reference"><a href="#cite_note-ReferenceA-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>The projection pursuit method uses <a href="/wiki/Gram-Schmidt" class="mw-redirect" title="Gram-Schmidt">Gram-Schmidt</a> orthogonalization to ensure the independence of the extracted signal, while ICA use <a href="/wiki/Infomax" title="Infomax">infomax</a> and <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimate to ensure the independence of the extracted signal. The Non-Normality of the extracted signal is achieved by assigning an appropriate model, or prior, for the signal. </p><p>The process of ICA based on <a href="/wiki/Infomax" title="Infomax">infomax</a> in short is: given a set of signal mixtures <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }" /></span> and a set of identical independent model <a href="/wiki/Cumulative_distribution_functions" class="mw-redirect" title="Cumulative distribution functions">cumulative distribution functions</a>(cdfs) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}" /></span>, we seek the unmixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> which maximizes the joint <a href="/wiki/Entropy" title="Entropy">entropy</a> of the signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} =g(\mathbf {y} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} =g(\mathbf {y} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1010d76e2b7090cb682027e2307997ce6fc8fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.454ex; height:2.843ex;" alt="{\displaystyle \mathbf {Y} =g(\mathbf {y} )}" /></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =\mathbf {Wx} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =\mathbf {Wx} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c06d543d236c28ba1fda9a651e98b307ed69a3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.683ex; height:2.509ex;" alt="{\displaystyle \mathbf {y} =\mathbf {Wx} }" /></span> are the signals extracted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>. Given the optimal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>, the signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c92a7716a99fadda050469747fce1e475e0ec549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {Y} }" /></span> have maximum entropy and are therefore independent, which ensures that the extracted signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =g^{-1}(\mathbf {Y} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =g^{-1}(\mathbf {Y} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6f8572c8c7ea66c571b633986a8f7bc9af8ae4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.789ex; height:3.176ex;" alt="{\displaystyle \mathbf {y} =g^{-1}(\mathbf {Y} )}" /></span> are also independent. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}" /></span> is an invertible function, and is the signal model. Note that if the source signal model <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> matches the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the extracted signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49187b03d71eef32ad351b464fda39afc8e7f62d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:2.489ex; height:2.343ex;" alt="{\displaystyle p_{\mathbf {y} }}" /></span>, then maximizing the joint entropy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}" /></span> also maximizes the amount of <a href="/wiki/Mutual_information" title="Mutual information">mutual information</a> between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c92a7716a99fadda050469747fce1e475e0ec549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {Y} }" /></span>. For this reason, using entropy to extract independent signals is known as <a href="/wiki/Infomax" title="Infomax">infomax</a>. </p><p>Consider the entropy of the vector variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} =g(\mathbf {y} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} =g(\mathbf {y} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1010d76e2b7090cb682027e2307997ce6fc8fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.454ex; height:2.843ex;" alt="{\displaystyle \mathbf {Y} =g(\mathbf {y} )}" /></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} =\mathbf {Wx} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} =\mathbf {Wx} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c06d543d236c28ba1fda9a651e98b307ed69a3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.683ex; height:2.509ex;" alt="{\displaystyle \mathbf {y} =\mathbf {Wx} }" /></span> is the set of signals extracted by the unmixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>. For a finite set of values sampled from a distribution with pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49187b03d71eef32ad351b464fda39afc8e7f62d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:2.489ex; height:2.343ex;" alt="{\displaystyle p_{\mathbf {y} }}" /></span>, the entropy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c92a7716a99fadda050469747fce1e475e0ec549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {Y} }" /></span> can be estimated as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {Y} }(\mathbf {Y} ^{t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {Y} }(\mathbf {Y} ^{t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/483ff847396226d804870a32573d1272d965f01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.639ex; height:7.343ex;" alt="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {Y} }(\mathbf {Y} ^{t})}" /></span></dd></dl> <p>The joint pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {Y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {Y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5dd335e5d2d3135b0039024906af24ff1882b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.919ex; height:2.009ex;" alt="{\displaystyle p_{\mathbf {Y} }}" /></span> can be shown to be related to the joint pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49187b03d71eef32ad351b464fda39afc8e7f62d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:2.489ex; height:2.343ex;" alt="{\displaystyle p_{\mathbf {y} }}" /></span> of the extracted signals by the multivariate form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03875faadce148117edb4bb261a9d1274c3348da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.089ex; width:16.056ex; height:7.843ex;" alt="{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {J} ={\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {J} ={\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e83472d62fd5e856a6415ca413be04e966246603" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.653ex; height:6.009ex;" alt="{\displaystyle \mathbf {J} ={\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}}" /></span> is the <a href="/wiki/Jacobian_matrix" class="mw-redirect" title="Jacobian matrix">Jacobian matrix</a>. We have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {J} |=g'(\mathbf {y} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {J} |=g'(\mathbf {y} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/846fd72fac82a216656cb3a642afe3932e6c7d26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.796ex; height:3.009ex;" alt="{\displaystyle |\mathbf {J} |=g'(\mathbf {y} )}" /></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7a53c0df5d85b36e3fd327c74db998f679f4f55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.803ex; height:2.843ex;" alt="{\displaystyle g'}" /></span> is the pdf assumed for source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'=p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'=p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb54379ce533d4e4234a6c274bf8579e7eaaf1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.074ex; height:2.843ex;" alt="{\displaystyle g'=p_{s}}" /></span>, therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}={\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}={\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59e418f7a33b3b69e25568e7fe4f1737691a50af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.089ex; width:25.61ex; height:7.843ex;" alt="{\displaystyle p_{\mathbf {Y} }(Y)={\frac {p_{\mathbf {y} }(\mathbf {y} )}{|{\frac {\partial \mathbf {Y} }{\partial \mathbf {y} }}|}}={\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}" /></span></dd></dl> <p>therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d1ff33a631c247fee6ce3f4f868a56a65447be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.61ex; height:7.343ex;" alt="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {y} }(\mathbf {y} )}{p_{\mathbf {s} }(\mathbf {y} )}}}" /></span></dd></dl> <p>We know that when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {y} }=p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {y} }=p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a87db1dbed603526af8176cef39841ade8a1d4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:7.76ex; height:2.343ex;" alt="{\displaystyle p_{\mathbf {y} }=p_{s}}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {Y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {Y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5dd335e5d2d3135b0039024906af24ff1882b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.919ex; height:2.009ex;" alt="{\displaystyle p_{\mathbf {Y} }}" /></span> is of uniform distribution, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H({\mathbf {Y} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H({\mathbf {Y} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/003bd89c05fe56091ef15cfb1bd5aa898e0956bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.892ex; height:2.843ex;" alt="{\displaystyle H({\mathbf {Y} })}" /></span> is maximized. Since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {y} }(\mathbf {y} )={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|{\frac {\partial \mathbf {y} }{\partial \mathbf {x} }}|}}={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|\mathbf {W} |}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {y} }(\mathbf {y} )={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|{\frac {\partial \mathbf {y} }{\partial \mathbf {x} }}|}}={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|\mathbf {W} |}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4f19473b1bd95ae14b67400ab1a53a7ba33ce8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.089ex; width:24.818ex; height:7.843ex;" alt="{\displaystyle p_{\mathbf {y} }(\mathbf {y} )={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|{\frac {\partial \mathbf {y} }{\partial \mathbf {x} }}|}}={\frac {p_{\mathbf {x} }(\mathbf {x} )}{|\mathbf {W} |}}}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {W} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {W} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d147816a89807397bce55f38c14a49878535b574" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.056ex; height:2.843ex;" alt="{\displaystyle |\mathbf {W} |}" /></span> is the absolute value of the determinant of the unmixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>. Therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {x} }(\mathbf {x} ^{t})}{|\mathbf {W} |p_{\mathbf {s} }(\mathbf {y} ^{t})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {x} }(\mathbf {x} ^{t})}{|\mathbf {W} |p_{\mathbf {s} }(\mathbf {y} ^{t})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65082630e288aaa774ef20d16b98594fc499a23d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.241ex; height:7.343ex;" alt="{\displaystyle H(\mathbf {Y} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln {\frac {p_{\mathbf {x} }(\mathbf {x} ^{t})}{|\mathbf {W} |p_{\mathbf {s} }(\mathbf {y} ^{t})}}}" /></span></dd></dl> <p>so, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |+H(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |+H(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d46622a526d1de2236490ddae6993c9062c5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.888ex; height:7.343ex;" alt="{\displaystyle H(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |+H(\mathbf {x} )}" /></span></dd></dl> <p>since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\mathbf {x} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {x} }(\mathbf {x} ^{t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\mathbf {x} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {x} }(\mathbf {x} ^{t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b683f5777d9bd53bc93653f2f3cdad164501e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.991ex; height:7.343ex;" alt="{\displaystyle H(\mathbf {x} )=-{\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {x} }(\mathbf {x} ^{t})}" /></span>, and maximizing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> does not affect <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{\mathbf {x} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{\mathbf {x} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49439f720f3917a3654449f6c679abb79021afaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.161ex; height:2.509ex;" alt="{\displaystyle H_{\mathbf {x} }}" /></span>, so we can maximize the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b37f823ab06cf6ca693f9c0cca6265ed7da90e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.039ex; height:7.343ex;" alt="{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{t=1}^{N}\ln p_{\mathbf {s} }(\mathbf {y} ^{t})+\ln |\mathbf {W} |}" /></span></dd></dl> <p>to achieve the independence of the extracted signal. </p><p>If there are <i>M</i> marginal pdfs of the model joint pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {s} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {s} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e243b5acdacb573b96ae9c1aadfd58ee74ace0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.238ex; height:2.009ex;" alt="{\displaystyle p_{\mathbf {s} }}" /></span> are independent and use the commonly super-gaussian model pdf for the source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {s} }=(1-\tanh(\mathbf {s} )^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {s} }=(1-\tanh(\mathbf {s} )^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c5e0ac87eddfb410ae5a3a1853072ea48d30eeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:19.719ex; height:3.176ex;" alt="{\displaystyle p_{\mathbf {s} }=(1-\tanh(\mathbf {s} )^{2})}" /></span>, then we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{i=1}^{M}\sum _{t=1}^{N}\ln(1-\tanh(\mathbf {w} _{i}^{\mathsf {T}}\mathbf {x} ^{t})^{2})+\ln |\mathbf {W} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{i=1}^{M}\sum _{t=1}^{N}\ln(1-\tanh(\mathbf {w} _{i}^{\mathsf {T}}\mathbf {x} ^{t})^{2})+\ln |\mathbf {W} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13a6e9b7b4a19a19df9a3433c8fdeecbb6d95c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.047ex; height:7.343ex;" alt="{\displaystyle h(\mathbf {Y} )={\frac {1}{N}}\sum _{i=1}^{M}\sum _{t=1}^{N}\ln(1-\tanh(\mathbf {w} _{i}^{\mathsf {T}}\mathbf {x} ^{t})^{2})+\ln |\mathbf {W} |}" /></span></dd></dl> <p>In the sum, given an observed signal mixture <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }" /></span>, the corresponding set of extracted signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }" /></span> and source signal model <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\mathbf {s} }=g'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\mathbf {s} }=g'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/303c45374417f36e27b3ab9e4af00cb46d97d8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.139ex; height:2.843ex;" alt="{\displaystyle p_{\mathbf {s} }=g'}" /></span>, we can find the optimal unmixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>, and make the extracted signals independent and non-gaussian. Like the projection pursuit situation, we can use gradient descent method to find the optimal solution of the unmixing matrix. </p> <div class="mw-heading mw-heading3"><h3 id="Based_on_maximum_likelihood_estimation">Based on maximum likelihood estimation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=14" title="Edit section: Based on maximum likelihood estimation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a> estimation (MLE)</b> is a standard statistical tool for finding parameter values (e.g. the unmixing matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>) that provide the best fit of some data (e.g., the extracted signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}" /></span>) to a given a model (e.g., the assumed joint probability density function (pdf) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> of source signals).<sup id="cite_ref-ReferenceA_20-1" class="reference"><a href="#cite_note-ReferenceA-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>The <b>ML</b> "model" includes a specification of a pdf, which in this case is the pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> of the unknown source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}" /></span>. Using <b>ML ICA</b>, the objective is to find an unmixing matrix that yields extracted signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\mathbf {W} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\mathbf {W} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb18d915a7ba39ef5d7df45932823c0da9b7199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.346ex; height:2.509ex;" alt="{\displaystyle y=\mathbf {W} x}" /></span> with a joint pdf as similar as possible to the joint pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> of the unknown source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}" /></span>. </p><p><b>MLE</b> is thus based on the assumption that if the model pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> and the model parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }" /></span> are correct then a high probability should be obtained for the data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}" /></span> that were actually observed. Conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }" /></span> is far from the correct parameter values then a low probability of the observed data would be expected. </p><p>Using <b>MLE</b>, we call the probability of the observed data for a given set of model parameter values (e.g., a pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> and a matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }" /></span>) the <i>likelihood</i> of the model parameter values given the observed data. </p><p>We define a <i>likelihood</i> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L(W)} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L(W)} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39abcd84ff46a03908b91a8e4c2ff3de9e657c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.45ex; height:2.843ex;" alt="{\displaystyle \mathbf {L(W)} }" /></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L(W)} =p_{s}(\mathbf {W} x)|\det \mathbf {W} |.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L(W)} =p_{s}(\mathbf {W} x)|\det \mathbf {W} |.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/166ac074ab26e79eb41db1d8957c54d7e02bebbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.33ex; height:2.843ex;" alt="{\displaystyle \mathbf {L(W)} =p_{s}(\mathbf {W} x)|\det \mathbf {W} |.}" /></span> </p><p>This equals to the probability density at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}" /></span>, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\mathbf {W} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\mathbf {W} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397fdfd842fc34e4a2a2cd6abe322771e77c6ad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.281ex; height:2.176ex;" alt="{\displaystyle s=\mathbf {W} x}" /></span>. </p><p>Thus, if we wish to find a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> that is most likely to have generated the observed mixtures <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}" /></span> from the unknown source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}" /></span> with pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8201eb39454219ddec719cdb8b3ffd2b3be2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.262ex; height:2.009ex;" alt="{\displaystyle p_{s}}" /></span> then we need only find that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> which maximizes the <i>likelihood</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L(W)} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L(W)} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39abcd84ff46a03908b91a8e4c2ff3de9e657c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.45ex; height:2.843ex;" alt="{\displaystyle \mathbf {L(W)} }" /></span>. The unmixing matrix that maximizes equation is known as the <b>MLE</b> of the optimal unmixing matrix. </p><p>It is common practice to use the log <i>likelihood</i>, because this is easier to evaluate. As the logarithm is a monotonic function, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> that maximizes the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L(W)} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {L(W)} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39abcd84ff46a03908b91a8e4c2ff3de9e657c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.45ex; height:2.843ex;" alt="{\displaystyle \mathbf {L(W)} }" /></span> also maximizes its logarithm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \mathbf {L(W)} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \mathbf {L(W)} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/779a90354b828dc9eca16083700540c4c39d3514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.776ex; height:2.843ex;" alt="{\displaystyle \ln \mathbf {L(W)} }" /></span>. This allows us to take the logarithm of equation above, which yields the log <i>likelihood</i> function </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \mathbf {L(W)} =\sum _{i}\sum _{t}\ln p_{s}(w_{i}^{T}x_{t})+N\ln |\det \mathbf {W} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </munder> <mi>ln</mi> <mo>⁡<!-- --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>N</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \mathbf {L(W)} =\sum _{i}\sum _{t}\ln p_{s}(w_{i}^{T}x_{t})+N\ln |\det \mathbf {W} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75afb362d28516fe88eadc4a49c630eea8395547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.554ex; height:5.509ex;" alt="{\displaystyle \ln \mathbf {L(W)} =\sum _{i}\sum _{t}\ln p_{s}(w_{i}^{T}x_{t})+N\ln |\det \mathbf {W} |}" /></span> </p><p>If we substitute a commonly used high-<a href="/wiki/Kurtosis" title="Kurtosis">Kurtosis</a> model pdf for the source signals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{s}=(1-\tanh(s)^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{s}=(1-\tanh(s)^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fbaee5c2b6141d10094e16a9bb04720b4eff6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:19.779ex; height:3.176ex;" alt="{\displaystyle p_{s}=(1-\tanh(s)^{2})}" /></span> then we have </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \mathbf {L(W)} ={1 \over N}\sum _{i}^{M}\sum _{t}^{N}\ln(1-\tanh(w_{i}^{T}x_{t})^{2})+\ln |\det \mathbf {W} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> <mo mathvariant="bold" stretchy="false">(</mo> <mi mathvariant="bold">W</mi> <mo mathvariant="bold" stretchy="false">)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \mathbf {L(W)} ={1 \over N}\sum _{i}^{M}\sum _{t}^{N}\ln(1-\tanh(w_{i}^{T}x_{t})^{2})+\ln |\det \mathbf {W} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/010baf0a5137a7733e33a37baebb0e3d6dc5d13f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:56.349ex; height:7.343ex;" alt="{\displaystyle \ln \mathbf {L(W)} ={1 \over N}\sum _{i}^{M}\sum _{t}^{N}\ln(1-\tanh(w_{i}^{T}x_{t})^{2})+\ln |\det \mathbf {W} |}" /></span> </p><p>This matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04749f1e87cca59c094da23c79cc64b085b0df12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.763ex; height:2.176ex;" alt="{\displaystyle \mathbf {W} }" /></span> that maximizes this function is the <i><b><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimation</b></i>. </p> <div class="mw-heading mw-heading2"><h2 id="History_and_background">History and background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=15" title="Edit section: History and background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The early general framework for independent component analysis was introduced by Jeanny Hérault and Bernard Ans from 1984,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> further developed by Christian Jutten in 1985 and 1986,<sup id="cite_ref-jutten85_2-1" class="reference"><a href="#cite_note-jutten85-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> and refined by Pierre Comon in 1991,<sup id="cite_ref-pc91_16-1" class="reference"><a href="#cite_note-pc91-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> and popularized in his paper of 1994.<sup id="cite_ref-comon94_8-3" class="reference"><a href="#cite_note-comon94-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In 1995, Tony Bell and <a href="/wiki/Terry_Sejnowski" title="Terry Sejnowski">Terry Sejnowski</a> introduced a fast and efficient ICA algorithm based on <a href="/wiki/Infomax" title="Infomax">infomax</a>, a principle introduced by Ralph Linsker in 1987. A link exists between maximum-likelihood estimation and Infomax approaches.<sup id="cite_ref-card97_24-0" class="reference"><a href="#cite_note-card97-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> A quite comprehensive tutorial on the maximum-likelihood approach to ICA has been published by J-F. Cardoso in 1998.<sup id="cite_ref-card98_25-0" class="reference"><a href="#cite_note-card98-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>There are many algorithms available in the literature which do ICA. A largely used one, including in industrial applications, is the FastICA algorithm, developed by Hyvärinen and Oja,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> which uses the <a href="/wiki/Negentropy" title="Negentropy">negentropy</a> as cost function, already proposed 7 years before by Pierre Comon in this context.<sup id="cite_ref-comon94_8-4" class="reference"><a href="#cite_note-comon94-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Other examples are rather related to <a href="/wiki/Blind_source_separation" class="mw-redirect" title="Blind source separation">blind source separation</a> where a more general approach is used. For example, one can drop the independence assumption and separate mutually correlated signals, thus, statistically "dependent" signals. Sepp Hochreiter and <a href="/wiki/J%C3%BCrgen_Schmidhuber" title="Jürgen Schmidhuber">Jürgen Schmidhuber</a> showed how to obtain non-linear ICA or source separation as a by-product of <a href="/wiki/Regularization_(mathematics)" title="Regularization (mathematics)">regularization</a> (1999).<sup id="cite_ref-HochreiterSchmidhuber1999_27-0" class="reference"><a href="#cite_note-HochreiterSchmidhuber1999-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> Their method does not require a priori knowledge about the number of independent sources. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=16" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ICA can be extended to analyze non-physical signals. For instance, ICA has been applied to discover discussion topics on a bag of news list archives. </p><p>Some ICA applications are listed below:<sup id="cite_ref-Stone_2004_6-1" class="reference"><a href="#cite_note-Stone_2004-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Independent_component_analysis_in_EEGLAB.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Independent_component_analysis_in_EEGLAB.png/220px-Independent_component_analysis_in_EEGLAB.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Independent_component_analysis_in_EEGLAB.png/330px-Independent_component_analysis_in_EEGLAB.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Independent_component_analysis_in_EEGLAB.png/440px-Independent_component_analysis_in_EEGLAB.png 2x" data-file-width="1201" data-file-height="901" /></a><figcaption>Independent component analysis in <a href="/wiki/EEGLAB" title="EEGLAB">EEGLAB</a></figcaption></figure> <ul><li>optical Imaging of neurons<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></li> <li>neuronal spike sorting<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li> <li>face recognition<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></li> <li>modelling receptive fields of primary visual neurons<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></li> <li>predicting stock market prices<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li> <li>mobile phone communications<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></li> <li>colour based detection of the ripeness of tomatoes<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li>removing artifacts, such as eye blinks, from <a href="/wiki/EEG" class="mw-redirect" title="EEG">EEG</a> data.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li> <li>predicting decision-making using EEG<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></li> <li>analysis of changes in gene expression over time in single <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> <a href="/wiki/RNA-sequencing" class="mw-redirect" title="RNA-sequencing">RNA-sequencing</a> experiments.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup></li> <li>studies of the <a href="/wiki/Resting_state_fMRI" title="Resting state fMRI">resting state network</a> of the brain.<sup id="cite_ref-Kiviniemi2003_38-0" class="reference"><a href="#cite_note-Kiviniemi2003-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li> <li>astronomy and cosmology<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li> <li>finance<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Availability">Availability</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=17" title="Edit section: Availability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ICA can be applied through the following software: </p> <ul><li><a href="/wiki/SAS_language" title="SAS language">SAS</a> PROC ICA</li> <li><a href="/wiki/R_(programming_language)" title="R (programming language)">R</a> ICA package</li> <li><a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a> Python implementation <a rel="nofollow" class="external text" href="https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html">sklearn.decomposition.FastICA</a></li> <li><a href="/wiki/Mlpack" title="Mlpack">mlpack</a> C++ implementation of RADICAL (The Robust Accurate, Direct ICA aLgorithm (RADICAL).) <a rel="nofollow" class="external autonumber" href="https://github.com/mlpack/mlpack/tree/master/src/mlpack/methods/radical">[1]</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=18" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Blind_deconvolution" title="Blind deconvolution">Blind deconvolution</a></li> <li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li> <li><a href="/wiki/Hilbert_spectrum" title="Hilbert spectrum">Hilbert spectrum</a></li> <li><a href="/wiki/Image_processing" class="mw-redirect" title="Image processing">Image processing</a></li> <li><a href="/wiki/Non-negative_matrix_factorization" title="Non-negative matrix factorization">Non-negative matrix factorization (NMF)</a></li> <li><a href="/wiki/Nonlinear_dimensionality_reduction" title="Nonlinear dimensionality reduction">Nonlinear dimensionality reduction</a></li> <li><a href="/wiki/Projection_pursuit" title="Projection pursuit">Projection pursuit</a></li> <li><a href="/wiki/Varimax_rotation" title="Varimax rotation">Varimax rotation</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=19" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://research.ics.aalto.fi/ica/icademo/">"Independent Component Analysis: A Demo"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Independent+Component+Analysis%3A+A+Demo&rft_id=http%3A%2F%2Fresearch.ics.aalto.fi%2Fica%2Ficademo%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-jutten85-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-jutten85_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jutten85_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Ans, B., Hérault, J., & Jutten, C. (1985). Architectures neuromimétiques adaptatives  : Détection de primitives. <i>Cognitiva 85</i> (Vol. 2, pp. 593-597). Paris: CESTA.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinen2013" class="citation journal cs1">Hyvärinen, Aapo (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538438">"Independent component analysis: recent advances"</a>. <i>Philosophical Transactions: Mathematical, Physical and Engineering Sciences</i>. <b>371</b> (1984): 20110534. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012RSPTA.37110534H">2012RSPTA.37110534H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.2011.0534">10.1098/rsta.2011.0534</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1364-503X">1364-503X</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41739975">41739975</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538438">3538438</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23277597">23277597</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=Independent+component+analysis%3A+recent+advances&rft.volume=371&rft.issue=1984&rft.pages=20110534&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3538438%23id-name%3DPMC&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41739975%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F2012RSPTA.37110534H&rft_id=info%3Apmid%2F23277597&rft_id=info%3Adoi%2F10.1098%2Frsta.2011.0534&rft.issn=1364-503X&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=Aapo&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3538438&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIsomuraToyoizumi2016" class="citation journal cs1">Isomura, Takuya; Toyoizumi, Taro (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914970">"A local learning rule for independent component analysis"</a>. <i>Scientific Reports</i>. <b>6</b>: 28073. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatSR...628073I">2016NatSR...628073I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep28073">10.1038/srep28073</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914970">4914970</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27323661">27323661</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=A+local+learning+rule+for+independent+component+analysis&rft.volume=6&rft.pages=28073&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4914970%23id-name%3DPMC&rft_id=info%3Apmid%2F27323661&rft_id=info%3Adoi%2F10.1038%2Fsrep28073&rft_id=info%3Abibcode%2F2016NatSR...628073I&rft.aulast=Isomura&rft.aufirst=Takuya&rft.au=Toyoizumi%2C+Taro&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4914970&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-ComoJ2010-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-ComoJ2010_5-0">^</a></b></span> <span class="reference-text">Comon, P.; Jutten C., (2010): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, Oxford UK. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-374726-6" title="Special:BookSources/978-0-12-374726-6">978-0-12-374726-6</a></span> </li> <li id="cite_note-Stone_2004-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stone_2004_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stone_2004_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFStone2004" class="citation book cs1">Stone, James V. (2004). <i>Independent component analysis : a tutorial introduction</i>. Cambridge, Massachusetts: MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-69315-8" title="Special:BookSources/978-0-262-69315-8"><bdi>978-0-262-69315-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Independent+component+analysis+%3A+a+tutorial+introduction&rft.place=Cambridge%2C+Massachusetts&rft.pub=MIT+Press&rft.date=2004&rft.isbn=978-0-262-69315-8&rft.aulast=Stone&rft.aufirst=James+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinenKarhunenOja2001" class="citation book cs1">Hyvärinen, Aapo; Karhunen, Juha; Oja, Erkki (2001). <i>Independent component analysis</i> (1st ed.). New York: John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-22131-9" title="Special:BookSources/978-0-471-22131-9"><bdi>978-0-471-22131-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Independent+component+analysis&rft.place=New+York&rft.edition=1st&rft.pub=John+Wiley+%26+Sons&rft.date=2001&rft.isbn=978-0-471-22131-9&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=Aapo&rft.au=Karhunen%2C+Juha&rft.au=Oja%2C+Erkki&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-comon94-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-comon94_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-comon94_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-comon94_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-comon94_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-comon94_8-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">Pierre Comon (1994) Independent component analysis, a new concept? <a rel="nofollow" class="external free" href="http://www.ece.ucsb.edu/wcsl/courses/ECE594/594C_F10Madhow/comon94.pdf">http://www.ece.ucsb.edu/wcsl/courses/ECE594/594C_F10Madhow/comon94.pdf</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Theorem 11, Comon, Pierre. "Independent component analysis, a new concept?." Signal processing 36.3 (1994): 287-314.</span> </li> <li id="cite_note-Hyvärinen-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hyvärinen_10-0">^</a></b></span> <span class="reference-text">Johan Himbergand Aapo Hyvärinen, <i><a rel="nofollow" class="external text" href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8895">Independent Component Analysis For Binary Data: An Experimental Study</a></i>, Proc. Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA2001), San Diego, California, 2001.</span> </li> <li id="cite_note-Huyna-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Huyna_11-0">^</a></b></span> <span class="reference-text">Huy Nguyen and Rong Zheng, <i><a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5753957">Binary Independent Component Analysis With or Mixtures</a></i>, IEEE Transactions on Signal Processing, Vol. 59, Issue 7. (July 2011), pp. 3168–3181.</span> </li> <li id="cite_note-Generalized_Binary_ICA-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Generalized_Binary_ICA_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPainskyRossetFeder2014" class="citation book cs1">Painsky, Amichai; Rosset, Saharon; Feder, Meir (2014). "Generalized binary independent component analysis". <i>2014 IEEE International Symposium on Information Theory</i>. pp. <span class="nowrap">1326–</span>1330. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FISIT.2014.6875048">10.1109/ISIT.2014.6875048</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4799-5186-4" title="Special:BookSources/978-1-4799-5186-4"><bdi>978-1-4799-5186-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18579555">18579555</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Generalized+binary+independent+component+analysis&rft.btitle=2014+IEEE+International+Symposium+on+Information+Theory&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1326-%3C%2Fspan%3E1330&rft.date=2014&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18579555%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FISIT.2014.6875048&rft.isbn=978-1-4799-5186-4&rft.aulast=Painsky&rft.aufirst=Amichai&rft.au=Rosset%2C+Saharon&rft.au=Feder%2C+Meir&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-James_V._Stone_2004-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-James_V._Stone_2004_13-0">^</a></b></span> <span class="reference-text">James V. Stone(2004); "Independent Component Analysis: A Tutorial Introduction", The MIT Press Cambridge, Massachusetts, London, England; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-69315-1" title="Special:BookSources/0-262-69315-1">0-262-69315-1</a></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Kruskal, JB. 1969; "Toward a practical method which helps uncover the structure of a set of observations by finding the line transformation which optimizes a new "index of condensation", Pages 427–440 of: Milton, RC, & Nelder, JA (eds), Statistical computation; New York, Academic Press</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinenErkki_Oja2000" class="citation journal cs1">Hyvärinen, Aapo; Erkki Oja (2000). "Independent Component Analysis:Algorithms and Applications". <i>Neural Networks</i>. 4-5. <b>13</b> (<span class="nowrap">4–</span>5): <span class="nowrap">411–</span>430. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.7003">10.1.1.79.7003</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0893-6080%2800%2900026-5">10.1016/s0893-6080(00)00026-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10946390">10946390</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11959218">11959218</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neural+Networks&rft.atitle=Independent+Component+Analysis%3AAlgorithms+and+Applications&rft.volume=13&rft.issue=%3Cspan+class%3D%22nowrap%22%3E4%E2%80%93%3C%2Fspan%3E5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E411-%3C%2Fspan%3E430&rft.date=2000&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.79.7003%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11959218%23id-name%3DS2CID&rft_id=info%3Apmid%2F10946390&rft_id=info%3Adoi%2F10.1016%2Fs0893-6080%2800%2900026-5&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=Aapo&rft.au=Erkki+Oja&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-pc91-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-pc91_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pc91_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">P.Comon, Independent Component Analysis, Workshop on Higher-Order Statistics, July 1991, republished in J-L. Lacoume, editor, Higher Order Statistics, pp. 29-38. Elsevier, Amsterdam, London, 1992. <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-00346684">HAL link</a></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinenKarhunenOja2001" class="citation book cs1">Hyvärinen, Aapo; Karhunen, Juha; Oja, Erkki (2001). <i>Independent component analysis</i> (Reprint ed.). New York, NY: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-40540-5" title="Special:BookSources/978-0-471-40540-5"><bdi>978-0-471-40540-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Independent+component+analysis&rft.place=New+York%2C+NY&rft.edition=Reprint&rft.pub=Wiley&rft.date=2001&rft.isbn=978-0-471-40540-5&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=Aapo&rft.au=Karhunen%2C+Juha&rft.au=Oja%2C+Erkki&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinen1998" class="citation journal cs1">Hyvärinen, Aapo (1998). "New approximations of differential entropy for independent component analysis and projection pursuit". <i>Advances in Neural Information Processing Systems</i>. <b>10</b>: <span class="nowrap">273–</span>279.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Neural+Information+Processing+Systems&rft.atitle=New+approximations+of+differential+entropy+for+independent+component+analysis+and+projection+pursuit.&rft.volume=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E273-%3C%2Fspan%3E279&rft.date=1998&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=Aapo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Bell-Sejnowski-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bell-Sejnowski_19-0">^</a></b></span> <span class="reference-text">Bell, A. J.; Sejnowski, T. J. (1995). "An Information-Maximization Approach to Blind Separation and Blind Deconvolution", Neural Computation, 7, 1129-1159</span> </li> <li id="cite_note-ReferenceA-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">James V. Stone (2004). "Independent Component Analysis: A Tutorial Introduction", The MIT Press Cambridge, Massachusetts, London, England; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-69315-1" title="Special:BookSources/0-262-69315-1">0-262-69315-1</a></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHéraultAns1984" class="citation journal cs1">Hérault, J.; Ans, B. (1984). "Réseau de neurones à synapses modifiables : Décodage de messages sensoriels composites par apprentissage non supervisé et permanent". <i>Comptes Rendus de l'Académie des Sciences, Série III</i>. <b>299</b>: <span class="nowrap">525–</span>528.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences%2C+S%C3%A9rie+III&rft.atitle=R%C3%A9seau+de+neurones+%C3%A0+synapses+modifiables+%3A+D%C3%A9codage+de+messages+sensoriels+composites+par+apprentissage+non+supervis%C3%A9+et+permanent&rft.volume=299&rft.pages=%3Cspan+class%3D%22nowrap%22%3E525-%3C%2Fspan%3E528&rft.date=1984&rft.aulast=H%C3%A9rault&rft.aufirst=J.&rft.au=Ans%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Hérault, J., Jutten, C., & Ans, B. (1985). Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. <i>Proceedings of the 10th Workshop Traitement du signal et ses applications</i> (Vol. 2, pp. 1017-1022). Nice (France): GRETSI.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Hérault, J., & Jutten, C. (1986). Space or time adaptive signal processing by neural networks models. <i>Intern. Conf. on Neural Networks for Computing</i> (pp. 206-211). Snowbird (Utah, USA).</span> </li> <li id="cite_note-card97-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-card97_24-0">^</a></b></span> <span class="reference-text">J-F.Cardoso, "Infomax and Maximum Likelihood for source separation", IEEE Sig. Proc. Letters, 1997, 4(4):112-114.</span> </li> <li id="cite_note-card98-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-card98_25-0">^</a></b></span> <span class="reference-text">J-F.Cardoso, "Blind signal separation: statistical principles", Proc. of the IEEE, 1998, 90(8):2009-2025.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvärinenOja2000" class="citation journal cs1">Hyvärinen, A.; Oja, E. (2000-06-01). <a rel="nofollow" class="external text" href="http://www.cse.msu.edu/~cse902/S03/icasurvey.pdf">"Independent component analysis: algorithms and applications"</a> <span class="cs1-format">(PDF)</span>. <i>Neural Networks</i>. <b>13</b> (4): <span class="nowrap">411–</span>430. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0893-6080%2800%2900026-5">10.1016/S0893-6080(00)00026-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0893-6080">0893-6080</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10946390">10946390</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11959218">11959218</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neural+Networks&rft.atitle=Independent+component+analysis%3A+algorithms+and+applications&rft.volume=13&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E411-%3C%2Fspan%3E430&rft.date=2000-06-01&rft.issn=0893-6080&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11959218%23id-name%3DS2CID&rft_id=info%3Apmid%2F10946390&rft_id=info%3Adoi%2F10.1016%2FS0893-6080%2800%2900026-5&rft.aulast=Hyv%C3%A4rinen&rft.aufirst=A.&rft.au=Oja%2C+E.&rft_id=http%3A%2F%2Fwww.cse.msu.edu%2F~cse902%2FS03%2Ficasurvey.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-HochreiterSchmidhuber1999-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-HochreiterSchmidhuber1999_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHochreiterSchmidhuber1999" class="citation journal cs1">Hochreiter, Sepp; Schmidhuber, Jürgen (1999). <a rel="nofollow" class="external text" href="ftp://ftp.idsia.ch/pub/juergen/lococode.pdf">"Feature Extraction Through LOCOCODE"</a> <span class="cs1-format">(PDF)</span>. <i>Neural Computation</i>. <b>11</b> (3): <span class="nowrap">679–</span>714. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2F089976699300016629">10.1162/089976699300016629</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0899-7667">0899-7667</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10085426">10085426</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1642107">1642107</a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 February</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neural+Computation&rft.atitle=Feature+Extraction+Through+LOCOCODE&rft.volume=11&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E679-%3C%2Fspan%3E714&rft.date=1999&rft.issn=0899-7667&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1642107%23id-name%3DS2CID&rft_id=info%3Apmid%2F10085426&rft_id=info%3Adoi%2F10.1162%2F089976699300016629&rft.aulast=Hochreiter&rft.aufirst=Sepp&rft.au=Schmidhuber%2C+J%C3%BCrgen&rft_id=ftp%3A%2F%2Fftp.idsia.ch%2Fpub%2Fjuergen%2Flococode.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBrownYamada,_SSejnowski,_TJ2001" class="citation journal cs1">Brown, GD; Yamada, S; Sejnowski, TJ (2001). "Independent components analysis at the neural cocktail party". <i>Trends in Neurosciences</i>. <b>24</b> (1): <span class="nowrap">54–</span>63. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0166-2236%2800%2901683-0">10.1016/s0166-2236(00)01683-0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11163888">11163888</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:511254">511254</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Neurosciences&rft.atitle=Independent+components+analysis+at+the+neural+cocktail+party&rft.volume=24&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E54-%3C%2Fspan%3E63&rft.date=2001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A511254%23id-name%3DS2CID&rft_id=info%3Apmid%2F11163888&rft_id=info%3Adoi%2F10.1016%2Fs0166-2236%2800%2901683-0&rft.aulast=Brown&rft.aufirst=GD&rft.au=Yamada%2C+S&rft.au=Sejnowski%2C+TJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLewicki1998" class="citation journal cs1">Lewicki, MS (1998). "Areview of methods for spike sorting: detection and classification of neural action potentials". <i>Network: Computation in Neural Systems</i>. <b>9</b> (4): <span class="nowrap">53–</span>78. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0954-898X_9_4_001">10.1088/0954-898X_9_4_001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10290908">10290908</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Network%3A+Computation+in+Neural+Systems&rft.atitle=Areview+of+methods+for+spike+sorting%3A+detection+and+classification+of+neural+action+potentials&rft.volume=9&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E53-%3C%2Fspan%3E78&rft.date=1998&rft_id=info%3Adoi%2F10.1088%2F0954-898X_9_4_001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10290908%23id-name%3DS2CID&rft.aulast=Lewicki&rft.aufirst=MS&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBarlett2001" class="citation book cs1">Barlett, MS (2001). <i>Face image analysis by unsupervised learning</i>. Boston: Kluwer International Series on Engineering and Computer Science.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Face+image+analysis+by+unsupervised+learning&rft.place=Boston&rft.pub=Kluwer+International+Series+on+Engineering+and+Computer+Science&rft.date=2001&rft.aulast=Barlett&rft.aufirst=MS&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBellSejnowski,_TJ1997" class="citation journal cs1">Bell, AJ; Sejnowski, TJ (1997). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882863">"The independent components of natural scenes are edge filters"</a>. <i>Vision Research</i>. <b>37</b> (23): <span class="nowrap">3327–</span>3338. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0042-6989%2897%2900121-1">10.1016/s0042-6989(97)00121-1</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882863">2882863</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9425547">9425547</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Vision+Research&rft.atitle=The+independent+components+of+natural+scenes+are+edge+filters&rft.volume=37&rft.issue=23&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3327-%3C%2Fspan%3E3338&rft.date=1997&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2882863%23id-name%3DPMC&rft_id=info%3Apmid%2F9425547&rft_id=info%3Adoi%2F10.1016%2Fs0042-6989%2897%2900121-1&rft.aulast=Bell&rft.aufirst=AJ&rft.au=Sejnowski%2C+TJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2882863&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBackWeigend,_AS1997" class="citation journal cs1">Back, AD; Weigend, AS (1997). <a rel="nofollow" class="external text" href="http://archive.nyu.edu/handle/2451/14180">"A first application of independent component analysis to extracting structure from stock returns"</a>. <i>International Journal of Neural Systems</i>. <b>8</b> (4): <span class="nowrap">473–</span>484. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs0129065797000458">10.1142/s0129065797000458</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9730022">9730022</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:872703">872703</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Neural+Systems&rft.atitle=A+first+application+of+independent+component+analysis+to+extracting+structure+from+stock+returns&rft.volume=8&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E473-%3C%2Fspan%3E484&rft.date=1997&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A872703%23id-name%3DS2CID&rft_id=info%3Apmid%2F9730022&rft_id=info%3Adoi%2F10.1142%2Fs0129065797000458&rft.aulast=Back&rft.aufirst=AD&rft.au=Weigend%2C+AS&rft_id=http%3A%2F%2Farchive.nyu.edu%2Fhandle%2F2451%2F14180&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHyvarinen2001a" class="citation book cs1">Hyvarinen, A, Karhunen, J & Oja, E (2001a). <i>Independent component analysis</i>. New York: John Wiley and Sons.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Independent+component+analysis&rft.place=New+York&rft.pub=John+Wiley+and+Sons&rft.date=2001&rft.aulast=Hyvarinen&rft.aufirst=A%2C+Karhunen%2C+J+%26+Oja%2C+E&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPoldervan_der_Heijen,_FWAM2003" class="citation book cs1">Polder, G; van der Heijen, FWAM (2003). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/40791216">"Estimation of compound distribution in spectral images of tomatoes using independent component analysis"</a>. In R. Leitner (ed.). <i>Spectral Imaging. Proceedings of the International Workshop of the Carinthian Tech Research AG, Graz, Austria, 3 April 2003</i>. Vienna, Austria: Austrian Computer Society. pp. <span class="nowrap">57–</span>64.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Estimation+of+compound+distribution+in+spectral+images+of+tomatoes+using+independent+component+analysis&rft.btitle=Spectral+Imaging.+Proceedings+of+the+International+Workshop+of+the+Carinthian+Tech+Research+AG%2C+Graz%2C+Austria%2C+3+April+2003&rft.place=Vienna%2C+Austria&rft.pages=%3Cspan+class%3D%22nowrap%22%3E57-%3C%2Fspan%3E64&rft.pub=Austrian+Computer+Society&rft.date=2003&rft.aulast=Polder&rft.aufirst=G&rft.au=van+der+Heijen%2C+FWAM&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F40791216&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDelormeSejnowski,_TMakeig,_S2007" class="citation journal cs1">Delorme, A; Sejnowski, T; Makeig, S (2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895624">"Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis"</a>. <i>NeuroImage</i>. <b>34</b> (4): <span class="nowrap">1443–</span>1449. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neuroimage.2006.11.004">10.1016/j.neuroimage.2006.11.004</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895624">2895624</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17188898">17188898</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NeuroImage&rft.atitle=Enhanced+detection+of+artifacts+in+EEG+data+using+higher-order+statistics+and+independent+component+analysis&rft.volume=34&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1443-%3C%2Fspan%3E1449&rft.date=2007&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2895624%23id-name%3DPMC&rft_id=info%3Apmid%2F17188898&rft_id=info%3Adoi%2F10.1016%2Fj.neuroimage.2006.11.004&rft.aulast=Delorme&rft.aufirst=A&rft.au=Sejnowski%2C+T&rft.au=Makeig%2C+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2895624&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFDouglas2013" class="citation journal cs1">Douglas, P (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728485">"Single trial decoding of belief decision making from EEG and fMRI data using independent components features"</a>. <i>Frontiers in Human Neuroscience</i>. <b>7</b>: 392. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffnhum.2013.00392">10.3389/fnhum.2013.00392</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728485">3728485</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23914164">23914164</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Human+Neuroscience&rft.atitle=Single+trial+decoding+of+belief+decision+making+from+EEG+and+fMRI+data+using+independent+components+features&rft.volume=7&rft.pages=392&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3728485%23id-name%3DPMC&rft_id=info%3Apmid%2F23914164&rft_id=info%3Adoi%2F10.3389%2Ffnhum.2013.00392&rft.aulast=Douglas&rft.aufirst=P&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3728485&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFTrapnellCacchiarelli,_DGrimsby,_J2014" class="citation journal cs1">Trapnell, C; Cacchiarelli, D; Grimsby, J (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122333">"The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells"</a>. <i>Nature Biotechnology</i>. <b>32</b> (4): <span class="nowrap">381–</span>386. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnbt.2859">10.1038/nbt.2859</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122333">4122333</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24658644">24658644</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Biotechnology&rft.atitle=The+dynamics+and+regulators+of+cell+fate+decisions+are+revealed+by+pseudotemporal+ordering+of+single+cells&rft.volume=32&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E381-%3C%2Fspan%3E386&rft.date=2014&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4122333%23id-name%3DPMC&rft_id=info%3Apmid%2F24658644&rft_id=info%3Adoi%2F10.1038%2Fnbt.2859&rft.aulast=Trapnell&rft.aufirst=C&rft.au=Cacchiarelli%2C+D&rft.au=Grimsby%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4122333&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Kiviniemi2003-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kiviniemi2003_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKiviniemiKantolaJauhiainenHyvärinen2003" class="citation journal cs1">Kiviniemi, Vesa J.; Kantola, Juha-Heikki; Jauhiainen, Jukka; Hyvärinen, Aapo; Tervonen, Osmo (2003). "Independent component analysis of nondeterministic fMRI signal sources". <i>NeuroImage</i>. <b>19</b> (2): <span class="nowrap">253–</span>260. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1053-8119%2803%2900097-1">10.1016/S1053-8119(03)00097-1</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12814576">12814576</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17110486">17110486</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NeuroImage&rft.atitle=Independent+component+analysis+of+nondeterministic+fMRI+signal+sources&rft.volume=19&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E253-%3C%2Fspan%3E260&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17110486%23id-name%3DS2CID&rft_id=info%3Apmid%2F12814576&rft_id=info%3Adoi%2F10.1016%2FS1053-8119%2803%2900097-1&rft.aulast=Kiviniemi&rft.aufirst=Vesa+J.&rft.au=Kantola%2C+Juha-Heikki&rft.au=Jauhiainen%2C+Jukka&rft.au=Hyv%C3%A4rinen%2C+Aapo&rft.au=Tervonen%2C+Osmo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWangXuGuAn2010" class="citation journal cs1">Wang, Jingying; Xu, Haiguang; Gu, Junhua; An, Tao; Cui, Haijuan; Li, Jianxun; Zhang, Zhongli; Zheng, Qian; Wu, Xiang-Ping (2010-11-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F723%2F1%2F620">"How to Identify and Separate Bright Galaxy Clusters from the Low-frequency Radio Sky?"</a>. <i>The Astrophysical Journal</i>. <b>723</b> (1): <span class="nowrap">620–</span>633. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1008.3391">1008.3391</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ApJ...723..620W">2010ApJ...723..620W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0004-637X%2F723%2F1%2F620">10.1088/0004-637X/723/1/620</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-637X">0004-637X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=How+to+Identify+and+Separate+Bright+Galaxy+Clusters+from+the+Low-frequency+Radio+Sky%3F&rft.volume=723&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E620-%3C%2Fspan%3E633&rft.date=2010-11-01&rft_id=info%3Aarxiv%2F1008.3391&rft.issn=0004-637X&rft_id=info%3Adoi%2F10.1088%2F0004-637X%2F723%2F1%2F620&rft_id=info%3Abibcode%2F2010ApJ...723..620W&rft.aulast=Wang&rft.aufirst=Jingying&rft.au=Xu%2C+Haiguang&rft.au=Gu%2C+Junhua&rft.au=An%2C+Tao&rft.au=Cui%2C+Haijuan&rft.au=Li%2C+Jianxun&rft.au=Zhang%2C+Zhongli&rft.au=Zheng%2C+Qian&rft.au=Wu%2C+Xiang-Ping&rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F0004-637X%252F723%252F1%252F620&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMorauxVilla2003" class="citation book cs1">Moraux, Franck; Villa, Christophe (2003). "The dynamics of the term structure of interest rates: An Independent Component Analysis". <i>Connectionist Approaches in Economics and Management Sciences</i>. Advances in Computational Management Science. Vol. 6. pp. <span class="nowrap">215–</span>232. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-3722-6_11">10.1007/978-1-4757-3722-6_11</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4757-3722-6" title="Special:BookSources/978-1-4757-3722-6"><bdi>978-1-4757-3722-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+dynamics+of+the+term+structure+of+interest+rates%3A+An+Independent+Component+Analysis&rft.btitle=Connectionist+Approaches+in+Economics+and+Management+Sciences&rft.series=Advances+in+Computational+Management+Science&rft.pages=%3Cspan+class%3D%22nowrap%22%3E215-%3C%2Fspan%3E232&rft.date=2003&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-3722-6_11&rft.isbn=978-1-4757-3722-6&rft.aulast=Moraux&rft.aufirst=Franck&rft.au=Villa%2C+Christophe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AIndependent+component+analysis" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Comon, Pierre (1994): <a rel="nofollow" class="external text" href="http://mlsp.cs.cmu.edu/courses/fall2012/lectures/ICA.pdf">"Independent Component Analysis: a new concept?"</a>, <i>Signal Processing</i>, 36(3):287–314 (The original paper describing the concept of ICA)</li> <li>Hyvärinen, A.; Karhunen, J.; Oja, E. (2001): <i><a rel="nofollow" class="external text" href="http://www.cis.hut.fi/projects/ica/book/">Independent Component Analysis</a></i>, New York: Wiley, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-40540-5" title="Special:BookSources/978-0-471-40540-5">978-0-471-40540-5</a> ( <a rel="nofollow" class="external text" href="http://www.cis.hut.fi/projects/ica/book/intro.pdf">Introductory chapter</a> )</li> <li>Hyvärinen, A.; Oja, E. (2000): <a rel="nofollow" class="external text" href="http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf">"Independent Component Analysis: Algorithms and Application"</a>, <i>Neural Networks</i>, 13(4-5):411-430. (Technical but pedagogical introduction).</li> <li>Comon, P.; Jutten C., (2010): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, Oxford UK. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-374726-6" title="Special:BookSources/978-0-12-374726-6">978-0-12-374726-6</a></li> <li>Lee, T.-W. (1998): <i>Independent component analysis: Theory and applications</i>, Boston, Mass: Kluwer Academic Publishers, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-8261-7" title="Special:BookSources/0-7923-8261-7">0-7923-8261-7</a></li> <li>Acharyya, Ranjan (2008): <i>A New Approach for Blind Source Separation of Convolutive Sources - Wavelet Based Separation Using Shrinkage Function</i> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-639-07797-0" title="Special:BookSources/3-639-07797-0">3-639-07797-0</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3639077971" title="Special:BookSources/978-3639077971">978-3639077971</a> (this book focuses on unsupervised learning with Blind Source Separation)</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Independent_component_analysis&action=edit&section=21" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml">What is independent component analysis?</a> by Aapo Hyvärinen</li> <li><a rel="nofollow" class="external text" href="http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html">Independent Component Analysis: A Tutorial</a> by Aapo Hyvärinen</li> <li><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.2986">A Tutorial on Independent Component Analysis</a></li> <li><a rel="nofollow" class="external text" href="http://www.cis.hut.fi/projects/ica/fastica/">FastICA as a package for Matlab, in R language, C++</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060630205321/http://www.bsp.brain.riken.go.jp/ICALAB/">ICALAB Toolboxes</a> for Matlab, developed at <a href="/wiki/RIKEN" class="mw-redirect" title="RIKEN">RIKEN</a></li> <li><a rel="nofollow" class="external text" href="http://nic.uoregon.edu/projects/hipersat/index.php">High Performance Signal Analysis Toolkit</a> provides C++ implementations of FastICA and Infomax</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070613191045/http://isp.imm.dtu.dk/toolbox/">ICA toolbox</a> Matlab tools for ICA with Bell-Sejnowski, Molgedey-Schuster and mean field ICA. Developed at DTU.</li> <li><a rel="nofollow" class="external text" href="http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi">Demonstration of the cocktail party problem</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100313152128/http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi">Archived</a> 2010-03-13 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://sccn.ucsd.edu/eeglab/">EEGLAB Toolbox</a> ICA of <a href="/wiki/Electroencephalogram" class="mw-redirect" title="Electroencephalogram">EEG</a> for Matlab, developed at UCSD.</li> <li><a rel="nofollow" class="external text" href="http://sccn.ucsd.edu/fmrlab/">FMRLAB Toolbox</a> ICA of <a href="/wiki/FMRI" class="mw-redirect" title="FMRI">fMRI</a> for Matlab, developed at UCSD</li> <li><a rel="nofollow" class="external text" href="https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC">MELODIC</a>, part of the <a href="/wiki/FMRIB_Software_Library" title="FMRIB Software Library">FMRIB Software Library</a>.</li> <li><a rel="nofollow" class="external text" href="http://brandon-merkl.blogspot.com/2005/12/independent-component-analysis.html">Discussion of ICA used in a biomedical shape-representation context</a></li> <li><a rel="nofollow" class="external text" href="http://mdp-toolkit.sourceforge.net/">FastICA, CuBICA, JADE and TDSEP algorithm for Python and more...</a></li> <li><a rel="nofollow" class="external text" href="http://icatb.sourceforge.net/">Group ICA Toolbox and Fusion ICA Toolbox</a></li> <li><a rel="nofollow" class="external text" href="http://www.nbtwiki.net/doku.php?id=tutorial:compute_independent_component_analysis">Tutorial: Using ICA for cleaning EEG signals</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7b4fff7949‐9tqpb Cached time: 20250326150952 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.656 seconds Real time usage: 1.011 seconds Preprocessor visited node count: 5110/1000000 Post‐expand include size: 115565/2097152 bytes Template argument size: 4185/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 146610/5000000 bytes Lua time usage: 0.307/10.000 seconds Lua memory usage: 7325757/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 537.920 1 -total 42.31% 227.589 1 Template:Reflist 18.01% 96.898 1 Template:Machine_learning 17.12% 92.101 1 Template:Sidebar_with_collapsible_lists 14.54% 78.236 1 Template:Short_description 14.00% 75.324 16 Template:Cite_journal 13.88% 74.651 1 Template:Cite_web 9.49% 51.031 1 Template:More_citations_needed 9.23% 49.624 2 Template:Pagetype 8.78% 47.232 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:598031:|#|:idhash:canonical and timestamp 20250326150952 and revision id 1270540662. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Independent_component_analysis&oldid=1270540662">https://en.wikipedia.org/w/index.php?title=Independent_component_analysis&oldid=1270540662</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Signal_estimation" title="Category:Signal estimation">Signal estimation</a></li><li><a href="/wiki/Category:Dimension_reduction" title="Category:Dimension reduction">Dimension reduction</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_October_2011" title="Category:Articles needing additional references from October 2011">Articles needing additional references from October 2011</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2012" title="Category:Articles with unsourced statements from October 2012">Articles with unsourced statements from October 2012</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 January 2025, at 01:17<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Independent_component_analysis&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Independent component analysis</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>15 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-585dc88b6-62q65","wgBackendResponseTime":226,"wgPageParseReport":{"limitreport":{"cputime":"0.656","walltime":"1.011","ppvisitednodes":{"value":5110,"limit":1000000},"postexpandincludesize":{"value":115565,"limit":2097152},"templateargumentsize":{"value":4185,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":146610,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 537.920 1 -total"," 42.31% 227.589 1 Template:Reflist"," 18.01% 96.898 1 Template:Machine_learning"," 17.12% 92.101 1 Template:Sidebar_with_collapsible_lists"," 14.54% 78.236 1 Template:Short_description"," 14.00% 75.324 16 Template:Cite_journal"," 13.88% 74.651 1 Template:Cite_web"," 9.49% 51.031 1 Template:More_citations_needed"," 9.23% 49.624 2 Template:Pagetype"," 8.78% 47.232 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.307","limit":"10.000"},"limitreport-memusage":{"value":7325757,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7b4fff7949-9tqpb","timestamp":"20250326150952","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Independent component analysis","url":"https:\/\/en.wikipedia.org\/wiki\/Independent_component_analysis","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1259145","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1259145","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-04-15T12:36:21Z","dateModified":"2025-01-20T01:17:17Z","headline":"in signal processing, a computational method"}</script> </body> </html>