CINXE.COM

Sufficient statistic - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Sufficient statistic - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"83298a40-3ee8-42ed-be5f-c5f7b4ddfc1d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Sufficient_statistic","wgTitle":"Sufficient statistic","wgCurRevisionId":1263056173,"wgRevisionId":1263056173,"wgArticleId":140841,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from September 2023","Articles containing proofs","Statistical theory","Statistical principles","Factorization"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Sufficient_statistic","wgRelevantArticleId":140841,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1099110","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Sufficient statistic - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Sufficient_statistic"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Sufficient_statistic&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Sufficient_statistic"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Sufficient_statistic rootpage-Sufficient_statistic skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Sufficient+statistic" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Sufficient+statistic" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Sufficient+statistic" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Sufficient+statistic" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <ul id="toc-Background-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mathematical_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical definition</span> </div> </a> <button aria-controls="toc-Mathematical_definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical definition subsection</span> </button> <ul id="toc-Mathematical_definition-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fisher–Neyman_factorization_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fisher–Neyman_factorization_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Fisher–Neyman factorization theorem</span> </div> </a> <button aria-controls="toc-Fisher–Neyman_factorization_theorem-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Fisher–Neyman factorization theorem subsection</span> </button> <ul id="toc-Fisher–Neyman_factorization_theorem-sublist" class="vector-toc-list"> <li id="toc-Likelihood_principle_interpretation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Likelihood_principle_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Likelihood principle interpretation</span> </div> </a> <ul id="toc-Likelihood_principle_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Proof</span> </div> </a> <ul id="toc-Proof-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Another_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Another_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Another proof</span> </div> </a> <ul id="toc-Another_proof-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Minimal_sufficiency" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Minimal_sufficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Minimal sufficiency</span> </div> </a> <ul id="toc-Minimal_sufficiency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Bernoulli_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bernoulli_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Bernoulli distribution</span> </div> </a> <ul id="toc-Bernoulli_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniform_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Uniform distribution</span> </div> </a> <ul id="toc-Uniform_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_distribution_(with_two_parameters)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniform_distribution_(with_two_parameters)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Uniform distribution (with two parameters)</span> </div> </a> <ul id="toc-Uniform_distribution_(with_two_parameters)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Poisson distribution</span> </div> </a> <ul id="toc-Poisson_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Normal_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normal_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Normal distribution</span> </div> </a> <ul id="toc-Normal_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exponential_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exponential_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Exponential distribution</span> </div> </a> <ul id="toc-Exponential_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gamma_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gamma_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Gamma distribution</span> </div> </a> <ul id="toc-Gamma_distribution-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Rao–Blackwell_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rao–Blackwell_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Rao–Blackwell theorem</span> </div> </a> <ul id="toc-Rao–Blackwell_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exponential_family" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Exponential_family"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Exponential family</span> </div> </a> <ul id="toc-Exponential_family-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_types_of_sufficiency" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Other_types_of_sufficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Other types of sufficiency</span> </div> </a> <button aria-controls="toc-Other_types_of_sufficiency-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other types of sufficiency subsection</span> </button> <ul id="toc-Other_types_of_sufficiency-sublist" class="vector-toc-list"> <li id="toc-Bayesian_sufficiency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bayesian_sufficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Bayesian sufficiency</span> </div> </a> <ul id="toc-Bayesian_sufficiency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_sufficiency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_sufficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Linear sufficiency</span> </div> </a> <ul id="toc-Linear_sufficiency-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Sufficient statistic</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 14 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-14" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">14 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Suffiziente_Statistik" title="Suffiziente Statistik – German" lang="de" hreflang="de" data-title="Suffiziente Statistik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Suficiencia_(estad%C3%ADstica)" title="Suficiencia (estadística) – Spanish" lang="es" hreflang="es" data-title="Suficiencia (estadística)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A2%D9%85%D8%A7%D8%B1%D9%87_%D8%A8%D8%B3%D9%86%D8%AF%D9%87" title="آماره بسنده – Persian" lang="fa" hreflang="fa" data-title="آماره بسنده" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Statistique_exhaustive" title="Statistique exhaustive – French" lang="fr" hreflang="fr" data-title="Statistique exhaustive" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B6%A9%EC%A1%B1_%ED%86%B5%EA%B3%84%EB%9F%89" title="충족 통계량 – Korean" lang="ko" hreflang="ko" data-title="충족 통계량" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Sufficienza_(statistica)" title="Sufficienza (statistica) – Italian" lang="it" hreflang="it" data-title="Sufficienza (statistica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%98%D7%98%D7%99%D7%A1%D7%98%D7%99_%D7%9E%D7%A1%D7%A4%D7%99%D7%A7" title="סטטיסטי מספיק – Hebrew" lang="he" hreflang="he" data-title="סטטיסטי מספיק" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Voldoende_(statistiek)" title="Voldoende (statistiek) – Dutch" lang="nl" hreflang="nl" data-title="Voldoende (statistiek)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8D%81%E5%88%86%E7%B5%B1%E8%A8%88%E9%87%8F" title="十分統計量 – Japanese" lang="ja" hreflang="ja" data-title="十分統計量" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Достаточная статистика – Russian" lang="ru" hreflang="ru" data-title="Достаточная статистика" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BD%D1%8F_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" title="Достатня статистика – Ukrainian" lang="uk" hreflang="uk" data-title="Достатня статистика" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Th%E1%BB%91ng_k%C3%AA_%C4%91%E1%BB%A7" title="Thống kê đủ – Vietnamese" lang="vi" hreflang="vi" data-title="Thống kê đủ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%85%85%E5%88%86%E7%B5%B1%E8%A8%88%E9%87%8F" title="充分統計量 – Cantonese" lang="yue" hreflang="yue" data-title="充分統計量" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%85%85%E5%88%86%E7%BB%9F%E8%AE%A1%E9%87%8F" title="充分统计量 – Chinese" lang="zh" hreflang="zh" data-title="充分统计量" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1099110#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sufficient_statistic" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Sufficient_statistic" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sufficient_statistic"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Sufficient_statistic"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Sufficient_statistic" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Sufficient_statistic" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;oldid=1263056173" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Sufficient_statistic&amp;id=1263056173&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSufficient_statistic"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSufficient_statistic"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Sufficient_statistic&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Sufficient_statistic&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1099110" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Statistical principle</div> <p>In <a href="/wiki/Statistics" title="Statistics">statistics</a>, <b>sufficiency</b> is a property of a <a href="/wiki/Statistic" title="Statistic">statistic</a> computed on a <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sample dataset</a> in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an <a href="/wiki/Ancillary_statistic" title="Ancillary statistic">ancillary statistic</a> which contains no information about the model parameters, and of a <a href="/wiki/Complete_statistic" class="mw-redirect" title="Complete statistic">complete statistic</a> which only contains information about the parameters and no ancillary information. </p><p>A related concept is that of <b>linear sufficiency</b>, which is weaker than <i>sufficiency</i> but can be applied in some cases where there is no sufficient statistic, although it is restricted to linear estimators.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Kolmogorov_structure_function" title="Kolmogorov structure function">Kolmogorov structure function</a> deals with individual finite data; the related notion there is the algorithmic sufficient statistic. </p><p>The concept is due to <a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Sir Ronald Fisher</a> in 1920.<sup id="cite_ref-Fisher19222_2-0" class="reference"><a href="#cite_note-Fisher19222-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Stephen_Stigler" title="Stephen Stigler">Stephen Stigler</a> noted in 1973 that the concept of sufficiency had fallen out of favor in <a href="/wiki/Descriptive_statistics" title="Descriptive statistics">descriptive statistics</a> because of the strong dependence on an assumption of the distributional form (see <a class="mw-selflink-fragment" href="#Exponential_family">Pitman–Koopman–Darmois theorem</a> below), but remained very important in theoretical work.<sup id="cite_ref-Stigler19732_3-0" class="reference"><a href="#cite_note-Stigler19732-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Roughly, given a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> of <a href="/wiki/Independent_identically_distributed" class="mw-redirect" title="Independent identically distributed">independent identically distributed</a> data conditioned on an unknown parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>, a sufficient statistic is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {X} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {X} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d56901d14de601626f4e38798c58f1cff1eb4176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.465ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {X} )}"></span> whose value contains all the information needed to compute any estimate of the parameter (e.g. a <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimate). Due to the factorization theorem (<a href="#Fisher–Neyman_factorization_theorem">see below</a>), for a sufficient statistic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {X} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {X} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d56901d14de601626f4e38798c58f1cff1eb4176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.465ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {X} )}"></span>, the probability density can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathbf {X} }(x;\theta )=h(x)\,g(\theta ,T(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathbf {X} }(x;\theta )=h(x)\,g(\theta ,T(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/692a03a83bafe82b0e87848068fe6c91f09e0dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.851ex; height:2.843ex;" alt="{\displaystyle f_{\mathbf {X} }(x;\theta )=h(x)\,g(\theta ,T(x))}"></span>. From this factorization, it can easily be seen that the maximum likelihood estimate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> will interact with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> only through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {X} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {X} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d56901d14de601626f4e38798c58f1cff1eb4176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.465ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {X} )}"></span>. Typically, the sufficient statistic is a simple function of the data, e.g. the sum of all the data points. </p><p>More generally, the "unknown parameter" may represent a <a href="/wiki/Euclidean_vector" title="Euclidean vector">vector</a> of unknown quantities or may represent everything about the model that is unknown or not fully specified. In such a case, the sufficient statistic may be a set of functions, called a <i>jointly sufficient statistic</i>. Typically, there are as many functions as there are parameters. For example, for a <a href="/wiki/Gaussian_distribution" class="mw-redirect" title="Gaussian distribution">Gaussian distribution</a> with unknown <a href="/wiki/Mean" title="Mean">mean</a> and <a href="/wiki/Variance" title="Variance">variance</a>, the jointly sufficient statistic, from which maximum likelihood estimates of both parameters can be estimated, consists of two functions, the sum of all data points and the sum of all squared data points (or equivalently, the <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a> and <a href="/wiki/Sample_variance" class="mw-redirect" title="Sample variance">sample variance</a>). </p><p>In other words, <b>the <a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">joint probability distribution</a> of the data is conditionally independent of the parameter given the value of the sufficient statistic for the parameter</b>. Both the statistic and the underlying parameter can be vectors. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_definition">Mathematical definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=2" title="Edit section: Mathematical definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A statistic <i>t</i>&#160;=&#160;<i>T</i>(<i>X</i>) is <b>sufficient for underlying parameter <i>θ</i></b> precisely if the <a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">conditional probability distribution</a> of the data <i>X</i>, given the statistic <i>t</i>&#160;=&#160;<i>T</i>(<i>X</i>), does not depend on the parameter <i>θ</i>.<sup id="cite_ref-CasellaBerger_4-0" class="reference"><a href="#cite_note-CasellaBerger-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Alternatively, one can say the statistic&#160;<i>T</i>(<i>X</i>) is sufficient for <i>θ</i> if, for all prior distributions on <i>θ</i>, the <a href="/wiki/Mutual_information" title="Mutual information">mutual information</a> between <i>θ</i> and <i>T(X)</i> equals the mutual information between <i>θ</i> and <i>X</i>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> In other words, the <a href="/wiki/Data_processing_inequality" title="Data processing inequality">data processing inequality</a> becomes an equality: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I{\bigl (}\theta ;T(X){\bigr )}=I(\theta ;X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>&#x03B8;<!-- θ --></mi> <mo>;</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>;</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I{\bigl (}\theta ;T(X){\bigr )}=I(\theta ;X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25a69c1dbbb043b1b10ae23282bb90ff7e06f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.035ex; height:3.176ex;" alt="{\displaystyle I{\bigl (}\theta ;T(X){\bigr )}=I(\theta ;X)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=3" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As an example, the sample mean is sufficient for the mean (<i>μ</i>) of a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> with known variance. Once the sample mean is known, no further information about <i>μ</i> can be obtained from the sample itself. On the other hand, for an arbitrary distribution the <a href="/wiki/Median" title="Median">median</a> is not sufficient for the mean: even if the median of the sample is known, knowing the sample itself would provide further information about the population mean. For example, if the observations that are less than the median are only slightly less, but observations exceeding the median exceed it by a large amount, then this would have a bearing on one's inference about the population mean. </p> <div class="mw-heading mw-heading2"><h2 id="Fisher–Neyman_factorization_theorem"><span id="Fisher.E2.80.93Neyman_factorization_theorem"></span>Fisher–Neyman factorization theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=4" title="Edit section: Fisher–Neyman factorization theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i><a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Fisher's</a> factorization theorem</i> or <i>factorization criterion</i> provides a convenient <b>characterization</b> of a sufficient statistic. If the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> is ƒ<sub><i>θ</i></sub>(<i>x</i>), then <i>T</i> is sufficient for <i>θ</i> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> nonnegative functions <i>g</i> and <i>h</i> can be found such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\theta )=h(x)\,g(\theta ,T(x)),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;\theta )=h(x)\,g(\theta ,T(x)),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6293b4211743e73f2555bc40346977c4affe0dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.977ex; height:2.843ex;" alt="{\displaystyle f(x;\theta )=h(x)\,g(\theta ,T(x)),}"></span></dd></dl> <p>i.e., the density ƒ can be factored into a product such that one factor, <i>h</i>, does not depend on <i>θ</i> and the other factor, which does depend on <i>θ</i>, depends on <i>x</i> only through <i>T</i>(<i>x</i>). A general proof of this was given by Halmos and Savage<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> and the theorem is sometimes referred to as the Halmos–Savage factorization theorem.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The proofs below handle special cases, but an alternative general proof along the same lines can be given.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> In many simple cases the probability density function is fully specified by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1171c29b4c2b5575f50a4ea9313f90448a2cbe05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.775ex; height:2.843ex;" alt="{\displaystyle T(x)}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6397dc3ddab50b85f5c07df2d057a05b65442572" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.739ex; height:2.843ex;" alt="{\displaystyle h(x)=1}"></span> (see <a class="mw-selflink-fragment" href="#Examples">Examples</a>). </p><p>It is easy to see that if <i>F</i>(<i>t</i>) is a one-to-one function and <i>T</i> is a sufficient statistic, then <i>F</i>(<i>T</i>) is a sufficient statistic. In particular we can multiply a sufficient statistic by a nonzero constant and get another sufficient statistic. </p> <div class="mw-heading mw-heading3"><h3 id="Likelihood_principle_interpretation">Likelihood principle interpretation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=5" title="Edit section: Likelihood principle interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An implication of the theorem is that when using likelihood-based inference, two sets of data yielding the same value for the sufficient statistic <i>T</i>(<i>X</i>) will always yield the same inferences about <i>θ</i>. By the factorization criterion, the likelihood's dependence on <i>θ</i> is only in conjunction with <i>T</i>(<i>X</i>). As this is the same in both cases, the dependence on <i>θ</i> will be the same as well, leading to identical inferences. </p> <div class="mw-heading mw-heading3"><h3 id="Proof">Proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=6" title="Edit section: Proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Due to Hogg and Craig.<sup id="cite_ref-HoggCraig_9-0" class="reference"><a href="#cite_note-HoggCraig-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67872301909a9d739e265252ad0c7339cead069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.312ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"></span>, denote a random sample from a distribution having the <a href="/wiki/Probability_density_function" title="Probability density function">pdf</a> <i>f</i>(<i>x</i>,&#160;<i>θ</i>) for <i>ι</i>&#160;&lt;&#160;<i>θ</i>&#160;&lt;&#160;<i>δ</i>. Let <i>Y</i><sub>1</sub>&#160;=&#160;<i>u</i><sub>1</sub>(<i>X</i><sub>1</sub>,&#160;<i>X</i><sub>2</sub>,&#160;...,&#160;<i>X</i><sub><i>n</i></sub>) be a statistic whose pdf is <i>g</i><sub>1</sub>(<i>y</i><sub>1</sub>;&#160;<i>θ</i>). What we want to prove is that <i>Y</i><sub>1</sub>&#160;=&#160;<i>u</i><sub>1</sub>(<i>X</i><sub>1</sub>, <i>X</i><sub>2</sub>,&#160;...,&#160;<i>X</i><sub><i>n</i></sub>) is a sufficient statistic for <i>θ</i> if and only if, for some function <i>H</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>]</mo> </mrow> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300d0134744775a5ef848742ed05d096f98d6671" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.921ex; height:6.843ex;" alt="{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}"></span></dd></dl> <p>First, suppose that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>]</mo> </mrow> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300d0134744775a5ef848742ed05d096f98d6671" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.921ex; height:6.843ex;" alt="{\displaystyle \prod _{i=1}^{n}f(x_{i};\theta )=g_{1}\left[u_{1}(x_{1},x_{2},\dots ,x_{n});\theta \right]H(x_{1},x_{2},\dots ,x_{n}).}"></span></dd></dl> <p>We shall make the transformation <i>y</i><sub><i>i</i></sub>&#160;=&#160;<i>u</i><sub>i</sub>(<i>x</i><sub>1</sub>,&#160;<i>x</i><sub>2</sub>,&#160;...,&#160;<i>x</i><sub><i>n</i></sub>), for <i>i</i>&#160;=&#160;1,&#160;...,&#160;<i>n</i>, having inverse functions <i>x</i><sub><i>i</i></sub>&#160;=&#160;<i>w</i><sub><i>i</i></sub>(<i>y</i><sub>1</sub>,&#160;<i>y</i><sub>2</sub>,&#160;...,&#160;<i>y</i><sub><i>n</i></sub>), for <i>i</i>&#160;=&#160;1,&#160;...,&#160;<i>n</i>, and <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\left[w_{i}/y_{j}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\left[w_{i}/y_{j}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79196b0f96232b5fd84fbb2846b7f5e9c708fb17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.539ex; height:3.009ex;" alt="{\displaystyle J=\left[w_{i}/y_{j}\right]}"></span>. Thus, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{n}f\left[w_{i}(y_{1},y_{2},\dots ,y_{n});\theta \right]=|J|g_{1}(y_{1};\theta )H\left[w_{1}(y_{1},y_{2},\dots ,y_{n}),\dots ,w_{n}(y_{1},y_{2},\dots ,y_{n})\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>H</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{n}f\left[w_{i}(y_{1},y_{2},\dots ,y_{n});\theta \right]=|J|g_{1}(y_{1};\theta )H\left[w_{1}(y_{1},y_{2},\dots ,y_{n}),\dots ,w_{n}(y_{1},y_{2},\dots ,y_{n})\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d5ecbcb4d36592826e4ffa9727c3b3db6bc49b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:84.914ex; height:6.843ex;" alt="{\displaystyle \prod _{i=1}^{n}f\left[w_{i}(y_{1},y_{2},\dots ,y_{n});\theta \right]=|J|g_{1}(y_{1};\theta )H\left[w_{1}(y_{1},y_{2},\dots ,y_{n}),\dots ,w_{n}(y_{1},y_{2},\dots ,y_{n})\right].}"></span></dd></dl> <p>The left-hand member is the joint pdf <i>g</i>(<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, ..., <i>y</i><sub><i>n</i></sub>; θ) of <i>Y</i><sub>1</sub> = <i>u</i><sub>1</sub>(<i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>n</i></sub>), ..., <i>Y</i><sub><i>n</i></sub> = <i>u</i><sub><i>n</i></sub>(<i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>n</i></sub>). In the right-hand member, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}(y_{1};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}(y_{1};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbee8bd2246ea6591355f7a66fe80e9e401a083f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.29ex; height:2.843ex;" alt="{\displaystyle g_{1}(y_{1};\theta )}"></span> is the pdf of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c909ab9869a6ca440f1244dc0e494f42b741b937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle Y_{1}}"></span>, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H[w_{1},\dots ,w_{n}]|J|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">[</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H[w_{1},\dots ,w_{n}]|J|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4805b37a9d870b9d1a813ee0acf70650a6b994" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.902ex; height:2.843ex;" alt="{\displaystyle H[w_{1},\dots ,w_{n}]|J|}"></span> is the quotient of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y_{1},\dots ,y_{n};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y_{1},\dots ,y_{n};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64a98bccf96d2906a5008cc59da757f8751082e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.779ex; height:2.843ex;" alt="{\displaystyle g(y_{1},\dots ,y_{n};\theta )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}(y_{1};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}(y_{1};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbee8bd2246ea6591355f7a66fe80e9e401a083f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.29ex; height:2.843ex;" alt="{\displaystyle g_{1}(y_{1};\theta )}"></span>; that is, it is the conditional pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8eab366403c28bfb0c61ce6a89d5210c1bdc9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.133ex; height:2.843ex;" alt="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{2},\dots ,Y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{2},\dots ,Y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4bf22869c66411cef7b316960aaf81a88461c25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.152ex; height:2.509ex;" alt="{\displaystyle Y_{2},\dots ,Y_{n}}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1}=y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1}=y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fca71c22eeca1698085a948187be02b5b3da18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.697ex; height:2.509ex;" alt="{\displaystyle Y_{1}=y_{1}}"></span>. </p><p>But <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x_{1},x_{2},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x_{1},x_{2},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0322f2531abe62c27b9fc76f3dbf9a9e00bddf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.401ex; height:2.843ex;" alt="{\displaystyle H(x_{1},x_{2},\dots ,x_{n})}"></span>, and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\left[w_{1}(y_{1},\dots ,y_{n}),\dots ,w_{n}(y_{1},\dots ,y_{n}))\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H\left[w_{1}(y_{1},\dots ,y_{n}),\dots ,w_{n}(y_{1},\dots ,y_{n}))\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17978ec5546053cc206c15652db5319d2c746e9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.506ex; height:2.843ex;" alt="{\displaystyle H\left[w_{1}(y_{1},\dots ,y_{n}),\dots ,w_{n}(y_{1},\dots ,y_{n}))\right]}"></span>, was given not to depend upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> was not introduced in the transformation and accordingly not in the Jacobian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span>, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8eab366403c28bfb0c61ce6a89d5210c1bdc9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.133ex; height:2.843ex;" alt="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1};\theta )}"></span> does not depend upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c909ab9869a6ca440f1244dc0e494f42b741b937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle Y_{1}}"></span> is a sufficient statistics for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. </p><p>The converse is proven by taking: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y_{1},\dots ,y_{n};\theta )=g_{1}(y_{1};\theta )h(y_{2},\dots ,y_{n}\mid y_{1}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y_{1},\dots ,y_{n};\theta )=g_{1}(y_{1};\theta )h(y_{2},\dots ,y_{n}\mid y_{1}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d833b5666b207069504e3e5554ce09a88bd2760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.823ex; height:2.843ex;" alt="{\displaystyle g(y_{1},\dots ,y_{n};\theta )=g_{1}(y_{1};\theta )h(y_{2},\dots ,y_{n}\mid y_{1}),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c192ca87a56490a409be0cb32e71f816ab6e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:2.843ex;" alt="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}"></span> does not depend upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{2}...Y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{2}...Y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fa17dde8fbb4d892e46fc613ea9054e1fd1298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.076ex; height:2.509ex;" alt="{\displaystyle Y_{2}...Y_{n}}"></span> depend only upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}...X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}...X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953c30e59739471643b5d384174bd7a8c8339379" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.223ex; height:2.509ex;" alt="{\displaystyle X_{1}...X_{n}}"></span>, which are independent on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc927b19f46d005b4720db7a0f96cd5b6f1a0d9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Theta }"></span> when conditioned by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c909ab9869a6ca440f1244dc0e494f42b741b937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle Y_{1}}"></span>, a sufficient statistics by hypothesis. Now divide both members by the absolute value of the non-vanishing Jacobian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span>, and replace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},\dots ,y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},\dots ,y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd782cc196312fc3cdda55540db15b6e741818f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.729ex; height:2.009ex;" alt="{\displaystyle y_{1},\dots ,y_{n}}"></span> by the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae14aef7ac980d6e482f7a54069debd295328c4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.949ex; height:2.843ex;" alt="{\displaystyle u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n})}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\dots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\dots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5afdbc2d248d8fa9ba2c4f5188d946a0537e753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\dots ,x_{n}}"></span>. This yields </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {g\left[u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n});\theta \right]}{|J^{*}|}}=g_{1}\left[u_{1}(x_{1},\dots ,x_{n});\theta \right]{\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>g</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {g\left[u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n});\theta \right]}{|J^{*}|}}=g_{1}\left[u_{1}(x_{1},\dots ,x_{n});\theta \right]{\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84c2b191bf9b5f2730133a7262a4c9977ab040a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:81.88ex; height:6.509ex;" alt="{\displaystyle {\frac {g\left[u_{1}(x_{1},\dots ,x_{n}),\dots ,u_{n}(x_{1},\dots ,x_{n});\theta \right]}{|J^{*}|}}=g_{1}\left[u_{1}(x_{1},\dots ,x_{n});\theta \right]{\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/549c287e9b24852f88614f8dcd5c85fc5ccb1f69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.58ex; height:2.343ex;" alt="{\displaystyle J^{*}}"></span> is the Jacobian with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},\dots ,y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},\dots ,y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd782cc196312fc3cdda55540db15b6e741818f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.729ex; height:2.009ex;" alt="{\displaystyle y_{1},\dots ,y_{n}}"></span> replaced by their value in terms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\dots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\dots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5afdbc2d248d8fa9ba2c4f5188d946a0537e753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\dots ,x_{n}}"></span>. The left-hand member is necessarily the joint pdf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1};\theta )\cdots f(x_{n};\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1};\theta )\cdots f(x_{n};\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d63af2ca302315d9c8991e374739f58fe7926439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.854ex; height:2.843ex;" alt="{\displaystyle f(x_{1};\theta )\cdots f(x_{n};\theta )}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ed92ce88f900210607bbb8f4d66e14d52d7a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{n}}"></span>. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c192ca87a56490a409be0cb32e71f816ab6e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:2.843ex;" alt="{\displaystyle h(y_{2},\dots ,y_{n}\mid y_{1})}"></span>, and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(u_{2},\dots ,u_{n}\mid u_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(u_{2},\dots ,u_{n}\mid u_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d12883ff668ccdf0478095d1f54ae087467f47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.58ex; height:2.843ex;" alt="{\displaystyle h(u_{2},\dots ,u_{n}\mid u_{1})}"></span>, does not depend upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x_{1},\dots ,x_{n})={\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x_{1},\dots ,x_{n})={\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/470fbf425496952fc9964da74d0ee98ea31bc6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.497ex; height:6.509ex;" alt="{\displaystyle H(x_{1},\dots ,x_{n})={\frac {h(u_{2},\dots ,u_{n}\mid u_{1})}{|J^{*}|}}}"></span></dd></dl> <p>is a function that does not depend upon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Another_proof">Another proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=7" title="Edit section: Another proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A simpler more illustrative proof is as follows, although it applies only in the discrete case. </p><p>We use the shorthand notation to denote the joint probability density of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X,T(X))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X,T(X))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e46f87a323bb440d93d8405cad9c371af4548b91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.249ex; height:2.843ex;" alt="{\displaystyle (X,T(X))}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\theta }(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\theta }(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daa1eabcd39ea3961bb710e7609b3d21265181f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.843ex;" alt="{\displaystyle f_{\theta }(x,t)}"></span>. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\theta }(x,t)=f_{\theta }(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\theta }(x,t)=f_{\theta }(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e951b47a5487d2a0cc9868a55719a1d1eadadf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.535ex; height:2.843ex;" alt="{\displaystyle f_{\theta }(x,t)=f_{\theta }(x)}"></span>, as long as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=T(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=T(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d964cc3c3a637829e20b065d0493311a34f679b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.713ex; height:2.843ex;" alt="{\displaystyle t=T(x)}"></span> and zero otherwise. Therefore: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{\theta }(x)&amp;=f_{\theta }(x,t)\\[5pt]&amp;=f_{\theta }(x\mid t)f_{\theta }(t)\\[5pt]&amp;=f(x\mid t)f_{\theta }(t)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{\theta }(x)&amp;=f_{\theta }(x,t)\\[5pt]&amp;=f_{\theta }(x\mid t)f_{\theta }(t)\\[5pt]&amp;=f(x\mid t)f_{\theta }(t)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7096d760d41aa13f668f63f16aaf72b3e8058ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:21.981ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}f_{\theta }(x)&amp;=f_{\theta }(x,t)\\[5pt]&amp;=f_{\theta }(x\mid t)f_{\theta }(t)\\[5pt]&amp;=f(x\mid t)f_{\theta }(t)\end{aligned}}}"></span></dd></dl> <p>with the last equality being true by the definition of sufficient statistics. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0688175dfc5c4e94196bd378d85924ff140613b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.399ex; height:2.843ex;" alt="{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(x)=f_{X\mid t}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(x)=f_{X\mid t}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71583c0d903c50b8ce0364f30488c3e643d9a09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.429ex; height:3.176ex;" alt="{\displaystyle a(x)=f_{X\mid t}(x)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{\theta }(t)=f_{\theta }(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{\theta }(t)=f_{\theta }(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fcf53f8cedd35b50f2965b49304390e4a657a33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.54ex; height:2.843ex;" alt="{\displaystyle b_{\theta }(t)=f_{\theta }(t)}"></span>. </p><p>Conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0688175dfc5c4e94196bd378d85924ff140613b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.399ex; height:2.843ex;" alt="{\displaystyle f_{\theta }(x)=a(x)b_{\theta }(t)}"></span>, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{\theta }(t)&amp;=\sum _{x:T(x)=t}f_{\theta }(x,t)\\[5pt]&amp;=\sum _{x:T(x)=t}f_{\theta }(x)\\[5pt]&amp;=\sum _{x:T(x)=t}a(x)b_{\theta }(t)\\[5pt]&amp;=\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{\theta }(t)&amp;=\sum _{x:T(x)=t}f_{\theta }(x,t)\\[5pt]&amp;=\sum _{x:T(x)=t}f_{\theta }(x)\\[5pt]&amp;=\sum _{x:T(x)=t}a(x)b_{\theta }(t)\\[5pt]&amp;=\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c41c199e220f1c1e72ca137384beaebdd2fb53a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.381ex; margin-bottom: -0.29ex; width:29.794ex; height:30.509ex;" alt="{\displaystyle {\begin{aligned}f_{\theta }(t)&amp;=\sum _{x:T(x)=t}f_{\theta }(x,t)\\[5pt]&amp;=\sum _{x:T(x)=t}f_{\theta }(x)\\[5pt]&amp;=\sum _{x:T(x)=t}a(x)b_{\theta }(t)\\[5pt]&amp;=\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t).\end{aligned}}}"></span></dd></dl> <p>With the first equality by the <a href="/wiki/Probability_density_function#Densities_associated_with_multiple_variables" title="Probability density function">definition of pdf for multiple variables</a>, the second by the remark above, the third by hypothesis, and the fourth because the summation is not over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X\mid t}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X\mid t}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c1fcf7891793ddeb66c9f5581c413dbb75a1dd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.962ex; height:3.176ex;" alt="{\displaystyle f_{X\mid t}(x)}"></span> denote the conditional probability density of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe67aad4eff628fcb5bb28ee6a2213d28ff12e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle T(X)}"></span>. Then we can derive an explicit expression for this: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X\mid t}(x)&amp;={\frac {f_{\theta }(x,t)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {f_{\theta }(x)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)b_{\theta }(t)}{\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)}{\sum _{x:T(x)=t}a(x)}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>:</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> </mrow> </munder> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X\mid t}(x)&amp;={\frac {f_{\theta }(x,t)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {f_{\theta }(x)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)b_{\theta }(t)}{\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)}{\sum _{x:T(x)=t}a(x)}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d294706ab1c611ca5d2ff515d3d81e0974791807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.193ex; margin-bottom: -0.311ex; width:33.549ex; height:32.176ex;" alt="{\displaystyle {\begin{aligned}f_{X\mid t}(x)&amp;={\frac {f_{\theta }(x,t)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {f_{\theta }(x)}{f_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)b_{\theta }(t)}{\left(\sum _{x:T(x)=t}a(x)\right)b_{\theta }(t)}}\\[5pt]&amp;={\frac {a(x)}{\sum _{x:T(x)=t}a(x)}}.\end{aligned}}}"></span></dd></dl> <p>With the first equality by definition of conditional probability density, the second by the remark above, the third by the equality proven above, and the fourth by simplification. This expression does not depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is a sufficient statistic.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Minimal_sufficiency">Minimal sufficiency</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=8" title="Edit section: Minimal sufficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A sufficient statistic is <b>minimal sufficient</b> if it can be represented as a function of any other sufficient statistic. In other words, <i>S</i>(<i>X</i>) is <b>minimal sufficient</b> if and only if<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><i>S</i>(<i>X</i>) is sufficient, and</li> <li>if <i>T</i>(<i>X</i>) is sufficient, then there exists a function <i>f</i> such that <i>S</i>(<i>X</i>) = <i>f</i>(<i>T</i>(<i>X</i>)).</li></ol> <p>Intuitively, a minimal sufficient statistic <i>most efficiently</i> captures all possible information about the parameter <i>θ</i>. </p><p>A useful characterization of minimal sufficiency is that when the density <i>f</i><sub><i>θ</i></sub> exists, <i>S</i>(<i>X</i>) is <b>minimal sufficient</b> if and only if<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="The classical result (e.g., Theorem 6.2.13 in Casella and Berger) only gives a sufficient condition, not a characterization (September 2023)">citation needed</span></a></i>&#93;</sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f_{\theta }(x)}{f_{\theta }(y)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f_{\theta }(x)}{f_{\theta }(y)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6cb436dddd5597a45e9c537707b5b2f1816116b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:6.118ex; height:6.509ex;" alt="{\displaystyle {\frac {f_{\theta }(x)}{f_{\theta }(y)}}}"></span> is independent of <i>θ</i>&#160;:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Longleftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Longleftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74a3a1a17366e695966bae38466f8466653a43f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.317ex; height:1.843ex;" alt="{\displaystyle \Longleftrightarrow }"></span> <i>S</i>(<i>x</i>) = <i>S</i>(<i>y</i>)</dd></dl> <p>This follows as a consequence from <a href="#Fisher–Neyman_factorization_theorem">Fisher's factorization theorem</a> stated above. </p><p>A case in which there is no minimal sufficient statistic was shown by Bahadur, 1954.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> However, under mild conditions, a minimal sufficient statistic does always exist. In particular, in Euclidean space, these conditions always hold if the random variables (associated with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b182d5f3dbad882191525f97e9570d408a8adebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.496ex; height:2.509ex;" alt="{\displaystyle P_{\theta }}"></span> ) are all discrete or are all continuous. </p><p>If there exists a minimal sufficient statistic, and this is usually the case, then every <a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">complete</a> sufficient statistic is necessarily minimal sufficient<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>(note that this statement does not exclude a pathological case in which a complete sufficient exists while there is no minimal sufficient statistic). While it is hard to find cases in which a minimal sufficient statistic does not exist, it is not so hard to find cases in which there is no complete statistic. </p><p>The collection of likelihood ratios <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\frac {L(X\mid \theta _{i})}{L(X\mid \theta _{0})}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>L</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\frac {L(X\mid \theta _{i})}{L(X\mid \theta _{0})}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d33317345a03a2945a90de5b711a8ecd0ba52f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.776ex; height:6.509ex;" alt="{\displaystyle \left\{{\frac {L(X\mid \theta _{i})}{L(X\mid \theta _{0})}}\right\}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,...,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,...,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcf6d247cb0b372e21e15f075455572df77b230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.444ex; height:2.509ex;" alt="{\displaystyle i=1,...,k}"></span>, is a minimal sufficient statistic if the parameter space is discrete <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{\theta _{0},...,\theta _{k}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{\theta _{0},...,\theta _{k}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/224a2e3bd7246cfbf024c889b5f73ddd6cabee30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.818ex; height:2.843ex;" alt="{\displaystyle \left\{\theta _{0},...,\theta _{k}\right\}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=9" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Bernoulli_distribution">Bernoulli distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=10" title="Edit section: Bernoulli distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>X</i><sub>1</sub>,&#160;....,&#160;<i>X</i><sub><i>n</i></sub> are independent <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli-distributed</a> random variables with expected value <i>p</i>, then the sum <i>T</i>(<i>X</i>) =&#160;<i>X</i><sub>1</sub>&#160;+&#160;...&#160;+&#160;<i>X</i><sub><i>n</i></sub> is a sufficient statistic for <i>p</i> (here 'success' corresponds to <i>X</i><sub><i>i</i></sub>&#160;=&#160;1 and 'failure' to <i>X</i><sub><i>i</i></sub>&#160;=&#160;0; so <i>T</i> is the total number of successes) </p><p>This is seen by considering the joint probability distribution: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr\{X=x\}=\Pr\{X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr\{X=x\}=\Pr\{X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f1cdc602095c7a88e15c9b6fdde48419d7917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.715ex; height:2.843ex;" alt="{\displaystyle \Pr\{X=x\}=\Pr\{X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}\}.}"></span></dd></dl> <p>Because the observations are independent, this can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{x_{1}}(1-p)^{1-x_{1}}p^{x_{2}}(1-p)^{1-x_{2}}\cdots p^{x_{n}}(1-p)^{1-x_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{x_{1}}(1-p)^{1-x_{1}}p^{x_{2}}(1-p)^{1-x_{2}}\cdots p^{x_{n}}(1-p)^{1-x_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ed1195b0db4ffbf47c0f61429471e92a7bff620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:46.632ex; height:3.176ex;" alt="{\displaystyle p^{x_{1}}(1-p)^{1-x_{1}}p^{x_{2}}(1-p)^{1-x_{2}}\cdots p^{x_{n}}(1-p)^{1-x_{n}}}"></span></dd></dl> <p>and, collecting powers of <i>p</i> and 1&#160;−&#160;<i>p</i>, gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}=p^{T(x)}(1-p)^{n-T(x)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}=p^{T(x)}(1-p)^{n-T(x)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/330f362a979f4404107a28d0a1d09d90f22b4edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:39.076ex; height:3.343ex;" alt="{\displaystyle p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}=p^{T(x)}(1-p)^{n-T(x)}}"></span></dd></dl> <p>which satisfies the factorization criterion, with <i>h</i>(<i>x</i>)&#160;=&#160;1 being just a constant. </p><p>Note the crucial feature: the unknown parameter <i>p</i> interacts with the data <i>x</i> only via the statistic <i>T</i>(<i>x</i>) =&#160;Σ&#160;<i>x</i><sub><i>i</i></sub>. </p><p>As a concrete application, this gives a procedure for distinguishing a <a href="/wiki/Fair_coin#Fair_results_from_a_biased_coin" title="Fair coin">fair coin from a biased coin</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Uniform_distribution">Uniform distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=11" title="Edit section: Uniform distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/German_tank_problem" title="German tank problem">German tank problem</a></div> <p>If <i>X</i><sub>1</sub>, ...., <i>X</i><sub><i>n</i></sub> are independent and <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniformly distributed</a> on the interval [0,<i>θ</i>], then <i>T</i>(<i>X</i>) = max(<i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>n</i></sub>) is sufficient for θ — the <a href="/wiki/Sample_maximum" class="mw-redirect" title="Sample maximum">sample maximum</a> is a sufficient statistic for the population maximum. </p><p>To see this, consider the joint <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of <i>X</i>&#160;&#160;(<i>X</i><sub>1</sub>,...,<i>X</i><sub><i>n</i></sub>). Because the observations are independent, the pdf can be written as a product of individual densities </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{\theta }(x_{1},\ldots ,x_{n})&amp;={\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{1}\leq \theta \}}\cdots {\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{n}\leq \theta \}}\\[5pt]&amp;={\frac {1}{\theta ^{n}}}\mathbf {1} _{\{0\leq \min\{x_{i}\}\}}\mathbf {1} _{\{\max\{x_{i}\}\leq \theta \}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{\theta }(x_{1},\ldots ,x_{n})&amp;={\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{1}\leq \theta \}}\cdots {\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{n}\leq \theta \}}\\[5pt]&amp;={\frac {1}{\theta ^{n}}}\mathbf {1} _{\{0\leq \min\{x_{i}\}\}}\mathbf {1} _{\{\max\{x_{i}\}\leq \theta \}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71c7312f9520e077fbffef4a54663432822c9878" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:43.85ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}f_{\theta }(x_{1},\ldots ,x_{n})&amp;={\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{1}\leq \theta \}}\cdots {\frac {1}{\theta }}\mathbf {1} _{\{0\leq x_{n}\leq \theta \}}\\[5pt]&amp;={\frac {1}{\theta ^{n}}}\mathbf {1} _{\{0\leq \min\{x_{i}\}\}}\mathbf {1} _{\{\max\{x_{i}\}\leq \theta \}}\end{aligned}}}"></span></dd></dl> <p>where <b>1</b><sub>{<i>...</i>}</sub> is the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a>. Thus the density takes form required by the Fisher–Neyman factorization theorem, where <i>h</i>(<i>x</i>)&#160;=&#160;<b>1</b><sub>{min{<i>x<sub>i</sub></i>}≥0}</sub>, and the rest of the expression is a function of only <i>θ</i> and <i>T</i>(<i>x</i>)&#160;=&#160;max{<i>x<sub>i</sub></i>}. </p><p>In fact, the <a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">minimum-variance unbiased estimator</a> (MVUE) for <i>θ</i> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n+1}{n}}T(X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n+1}{n}}T(X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24dae714d8173af28f5b1bd917071d3b7b1f67f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.306ex; height:5.176ex;" alt="{\displaystyle {\frac {n+1}{n}}T(X).}"></span></dd></dl> <p>This is the sample maximum, scaled to correct for the <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">bias</a>, and is MVUE by the <a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a>. Unscaled sample maximum <i>T</i>(<i>X</i>) is the <a href="/wiki/Maximum_likelihood_estimator" class="mw-redirect" title="Maximum likelihood estimator">maximum likelihood estimator</a> for <i>θ</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Uniform_distribution_(with_two_parameters)"><span id="Uniform_distribution_.28with_two_parameters.29"></span>Uniform distribution (with two parameters)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=12" title="Edit section: Uniform distribution (with two parameters)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},...,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},...,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58fbe975915ffad86d066318a5ddc3492b078902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.291ex; height:2.509ex;" alt="{\displaystyle X_{1},...,X_{n}}"></span> are independent and <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniformly distributed</a> on the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\alpha ,\beta ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\alpha ,\beta ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/878fce9eb3ba664f0ad4d025f04214fa85ee9583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.147ex; height:2.843ex;" alt="{\displaystyle [\alpha ,\beta ]}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> are unknown parameters), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167963be1cc7dc4eb1c7f7e9474e0ef40de871d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.302ex; height:6.176ex;" alt="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}"></span> is a two-dimensional sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \,,\,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \,,\,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511e360e2a1c250788a4062f5764907ef7974a47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.437ex; height:2.843ex;" alt="{\displaystyle (\alpha \,,\,\beta )}"></span>. </p><p>To see this, consider the joint <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}^{n}=(X_{1},\ldots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}^{n}=(X_{1},\ldots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf309e834af6115faeb39e8ce737d6620a4d3ea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.423ex; height:3.009ex;" alt="{\displaystyle X_{1}^{n}=(X_{1},\ldots ,X_{n})}"></span>. Because the observations are independent, the pdf can be written as a product of individual densities, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \beta -\alpha }\right)\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta \}}=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta ,\,\forall \,i=1,\ldots ,n\}}\\&amp;=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mspace width="thinmathspace" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mspace width="thinmathspace" /> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \beta -\alpha }\right)\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta \}}=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta ,\,\forall \,i=1,\ldots ,n\}}\\&amp;=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530fd48a2ba482d01b89123820f562218c386fb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:67.149ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \beta -\alpha }\right)\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta \}}=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \leq x_{i}\leq \beta ,\,\forall \,i=1,\ldots ,n\}}\\&amp;=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}"></span></dd></dl> <p>The joint density of the sample takes the form required by the Fisher–Neyman factorization theorem, by letting </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\quad g_{(\alpha ,\beta )}(x_{1}^{n})=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mspace width="thinmathspace" /> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\quad g_{(\alpha ,\beta )}(x_{1}^{n})=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ba5a6dc28838e20535b35d7c759ed645485282" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:69.783ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\quad g_{(\alpha ,\beta )}(x_{1}^{n})=\left({1 \over \beta -\alpha }\right)^{n}\mathbf {1} _{\{\alpha \,\leq \,\min _{1\leq i\leq n}X_{i}\}}\mathbf {1} _{\{\max _{1\leq i\leq n}X_{i}\,\leq \,\beta \}}.\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4c8cb5117e13756a55bd4ed755dad784164f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.696ex; height:3.009ex;" alt="{\displaystyle h(x_{1}^{n})}"></span> does not depend on the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha ,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha ,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e26787affffd22458b880995530dfd4fa175e694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.663ex; height:2.843ex;" alt="{\displaystyle (\alpha ,\beta )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d134ef637da10ad7964f782f2f5984534943d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.203ex; height:3.176ex;" alt="{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}"></span> depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0598813fea68a2288fb77cbdbb3792aee0da7b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.548ex; height:2.843ex;" alt="{\displaystyle x_{1}^{n}}"></span> through the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72a5d4d0e8379101c43e8e9f2963e8ee9a9c7a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.336ex; height:6.176ex;" alt="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right),}"></span> </p><p>the Fisher–Neyman factorization theorem implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167963be1cc7dc4eb1c7f7e9474e0ef40de871d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.302ex; height:6.176ex;" alt="{\displaystyle T(X_{1}^{n})=\left(\min _{1\leq i\leq n}X_{i},\max _{1\leq i\leq n}X_{i}\right)}"></span> is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \,,\,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \,,\,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511e360e2a1c250788a4062f5764907ef7974a47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.437ex; height:2.843ex;" alt="{\displaystyle (\alpha \,,\,\beta )}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_distribution">Poisson distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=13" title="Edit section: Poisson distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>X</i><sub>1</sub>,&#160;....,&#160;<i>X</i><sub><i>n</i></sub> are independent and have a <a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a> with parameter <i>λ</i>, then the sum <i>T</i>(<i>X</i>) =&#160;<i>X</i><sub>1</sub>&#160;+&#160;...&#160;+&#160;<i>X</i><sub><i>n</i></sub> is a sufficient statistic for&#160;<i>λ</i>. </p><p>To see this, consider the joint probability distribution: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X=x)=P(X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X=x)=P(X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93fff2305d39cec2a151cd13cffe26f412c97883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.935ex; height:2.843ex;" alt="{\displaystyle \Pr(X=x)=P(X_{1}=x_{1},X_{2}=x_{2},\ldots ,X_{n}=x_{n}).}"></span></dd></dl> <p>Because the observations are independent, this can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {e^{-\lambda }\lambda ^{x_{1}} \over x_{1}!}\cdot {e^{-\lambda }\lambda ^{x_{2}} \over x_{2}!}\cdots {e^{-\lambda }\lambda ^{x_{n}} \over x_{n}!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {e^{-\lambda }\lambda ^{x_{1}} \over x_{1}!}\cdot {e^{-\lambda }\lambda ^{x_{2}} \over x_{2}!}\cdots {e^{-\lambda }\lambda ^{x_{n}} \over x_{n}!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec267cf0bdc29ec1d36c9da261399c91ec7ba49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.554ex; height:6.176ex;" alt="{\displaystyle {e^{-\lambda }\lambda ^{x_{1}} \over x_{1}!}\cdot {e^{-\lambda }\lambda ^{x_{2}} \over x_{2}!}\cdots {e^{-\lambda }\lambda ^{x_{n}} \over x_{n}!}}"></span></dd></dl> <p>which may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-n\lambda }\lambda ^{(x_{1}+x_{2}+\cdots +x_{n})}\cdot {1 \over x_{1}!x_{2}!\cdots x_{n}!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>!</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>!</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-n\lambda }\lambda ^{(x_{1}+x_{2}+\cdots +x_{n})}\cdot {1 \over x_{1}!x_{2}!\cdots x_{n}!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d516f3247de89432aa0805b238f09b97de2e3a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.885ex; height:5.676ex;" alt="{\displaystyle e^{-n\lambda }\lambda ^{(x_{1}+x_{2}+\cdots +x_{n})}\cdot {1 \over x_{1}!x_{2}!\cdots x_{n}!}}"></span></dd></dl> <p>which shows that the factorization criterion is satisfied, where <i>h</i>(<i>x</i>) is the reciprocal of the product of the factorials. Note the parameter λ interacts with the data only through its sum <i>T</i>(<i>X</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Normal_distribution">Normal distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=14" title="Edit section: Normal distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac794f5521dcce89913085a6d566e7cdb615dbb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n}}"></span> are independent and <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a> with expected value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> (a parameter) and known finite variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a764649083488329df67b3c0c05c2673c4b39d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.032ex; height:3.009ex;" alt="{\displaystyle \sigma ^{2},}"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82c35abc5cd455ec2a353e9f35b25e6d12dc2b6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.386ex; height:6.843ex;" alt="{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"></span></dd></dl> <p>is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/082e8402f1cbddec479b88e2ff0d1be5e9b95bd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.737ex; height:2.176ex;" alt="{\displaystyle \theta .}"></span> </p><p>To see this, consider the joint <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f84397fc4b69e3f797adca3aa13d69f24c9c2fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.423ex; height:3.009ex;" alt="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"></span>. Because the observations are independent, the pdf can be written as a product of individual densities, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {\left(\left(x_{i}-{\overline {x}}\right)-\left(\theta -{\overline {x}}\right)\right)^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+\sum _{i=1}^{n}(\theta -{\overline {x}})^{2}-2\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})\right)\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+n(\theta -{\overline {x}})^{2}\right)\right)&amp;&amp;\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})=0\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {\left(\left(x_{i}-{\overline {x}}\right)-\left(\theta -{\overline {x}}\right)\right)^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+\sum _{i=1}^{n}(\theta -{\overline {x}})^{2}-2\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})\right)\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+n(\theta -{\overline {x}})^{2}\right)\right)&amp;&amp;\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})=0\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cf9df826ccf55f3e4ce4eafda4e3b19d38af60c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -25.838ex; width:117.95ex; height:52.843ex;" alt="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {(x_{i}-\theta )^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-\sum _{i=1}^{n}{\frac {\left(\left(x_{i}-{\overline {x}}\right)-\left(\theta -{\overline {x}}\right)\right)^{2}}{2\sigma ^{2}}}\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+\sum _{i=1}^{n}(\theta -{\overline {x}})^{2}-2\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})\right)\right)\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\left(\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}+n(\theta -{\overline {x}})^{2}\right)\right)&amp;&amp;\sum _{i=1}^{n}(x_{i}-{\overline {x}})(\theta -{\overline {x}})=0\\[6pt]&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}"></span></dd></dl> <p>The joint density of the sample takes the form required by the Fisher–Neyman factorization theorem, by letting </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}h(x_{1}^{n})&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\\[6pt]g_{\theta }(x_{1}^{n})&amp;=\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}h(x_{1}^{n})&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\\[6pt]g_{\theta }(x_{1}^{n})&amp;=\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b35824d139474c795421fe2d244115a6af5b05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:46.988ex; height:15.176ex;" alt="{\displaystyle {\begin{aligned}h(x_{1}^{n})&amp;=(2\pi \sigma ^{2})^{-{\frac {n}{2}}}\exp \left(-{1 \over 2\sigma ^{2}}\sum _{i=1}^{n}(x_{i}-{\overline {x}})^{2}\right)\\[6pt]g_{\theta }(x_{1}^{n})&amp;=\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right)\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4c8cb5117e13756a55bd4ed755dad784164f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.696ex; height:3.009ex;" alt="{\displaystyle h(x_{1}^{n})}"></span> does not depend on the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\theta }(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\theta }(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530700cf875e12d246b13d9fbd8f95ee2ea67b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.47ex; height:3.009ex;" alt="{\displaystyle g_{\theta }(x_{1}^{n})}"></span> depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0598813fea68a2288fb77cbdbb3792aee0da7b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.548ex; height:2.843ex;" alt="{\displaystyle x_{1}^{n}}"></span> through the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/227742fbc1e029fe0ee9c541fa26df32b60e63d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.033ex; height:6.843ex;" alt="{\displaystyle T(X_{1}^{n})={\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i},}"></span></dd></dl> <p>the Fisher–Neyman factorization theorem implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7a83c25d2a9d4d891394ea909d1cdd76f7dae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.661ex; height:3.009ex;" alt="{\displaystyle T(X_{1}^{n})}"></span> is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> is unknown and since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b07377536affa2a81e6058ead57e7bd8084464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.884ex; height:6.843ex;" alt="{\displaystyle s^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\overline {x}}\right)^{2}}"></span>, the above likelihood can be rewritten as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})=(2\pi \sigma ^{2})^{-n/2}\exp \left(-{\frac {n-1}{2\sigma ^{2}}}s^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})=(2\pi \sigma ^{2})^{-n/2}\exp \left(-{\frac {n-1}{2\sigma ^{2}}}s^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/045b7b5f3a792c6e3aae9e7cd2478ef41f82d643" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:62.77ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})=(2\pi \sigma ^{2})^{-n/2}\exp \left(-{\frac {n-1}{2\sigma ^{2}}}s^{2}\right)\exp \left(-{\frac {n}{2\sigma ^{2}}}(\theta -{\overline {x}})^{2}\right).\end{aligned}}}"></span></dd></dl> <p>The Fisher–Neyman factorization theorem still holds and implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\overline {x}},s^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\overline {x}},s^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657a081c3f970db9240d6fcb9c879a05973f3ec5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.433ex; height:3.176ex;" alt="{\displaystyle ({\overline {x}},s^{2})}"></span> is a joint sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\theta ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\theta ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dae66702a0406bebe0760c2e09fe2157eac352b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.318ex; height:3.176ex;" alt="{\displaystyle (\theta ,\sigma ^{2})}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Exponential_distribution">Exponential distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=15" title="Edit section: Exponential distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ed92ce88f900210607bbb8f4d66e14d52d7a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{n}}"></span> are independent and <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponentially distributed</a> with expected value <i>θ</i> (an unknown real-valued positive parameter), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f11bbfa3d4ae192d7d0186f01c252c92aba7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.225ex; height:6.843ex;" alt="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"></span> is a sufficient statistic for θ. </p><p>To see this, consider the joint <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f84397fc4b69e3f797adca3aa13d69f24c9c2fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.423ex; height:3.009ex;" alt="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"></span>. Because the observations are independent, the pdf can be written as a product of individual densities, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{1 \over \theta }\,e^{{-1 \over \theta }x_{i}}={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{1 \over \theta }\,e^{{-1 \over \theta }x_{i}}={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aac1ec10ee9021be14d2c2823d18edc4c21bb55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:40.66ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}{1 \over \theta }\,e^{{-1 \over \theta }x_{i}}={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"></span></dd></dl> <p>The joint density of the sample takes the form required by the Fisher–Neyman factorization theorem, by letting </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{\theta }(x_{1}^{n})={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{\theta }(x_{1}^{n})={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/127276ce6846db82a525b47c9511053de4f5efed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.835ex; margin-bottom: -0.337ex; width:36.913ex; height:5.343ex;" alt="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{\theta }(x_{1}^{n})={1 \over \theta ^{n}}\,e^{{-1 \over \theta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4c8cb5117e13756a55bd4ed755dad784164f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.696ex; height:3.009ex;" alt="{\displaystyle h(x_{1}^{n})}"></span> does not depend on the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\theta }(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\theta }(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530700cf875e12d246b13d9fbd8f95ee2ea67b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.47ex; height:3.009ex;" alt="{\displaystyle g_{\theta }(x_{1}^{n})}"></span> depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0598813fea68a2288fb77cbdbb3792aee0da7b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.548ex; height:2.843ex;" alt="{\displaystyle x_{1}^{n}}"></span> through the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f11bbfa3d4ae192d7d0186f01c252c92aba7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.225ex; height:6.843ex;" alt="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"></span> </p><p>the Fisher–Neyman factorization theorem implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f11bbfa3d4ae192d7d0186f01c252c92aba7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.225ex; height:6.843ex;" alt="{\displaystyle T(X_{1}^{n})=\sum _{i=1}^{n}X_{i}}"></span> is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Gamma_distribution">Gamma distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=16" title="Edit section: Gamma distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ed92ce88f900210607bbb8f4d66e14d52d7a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{n}}"></span> are independent and distributed as a <a href="/wiki/Gamma_distribution" title="Gamma distribution"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (\alpha \,,\,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (\alpha \,,\,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e726228c5c31d187df7eaf282ec8260671f7f28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.89ex; height:2.843ex;" alt="{\displaystyle \Gamma (\alpha \,,\,\beta )}"></span></a>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> are unknown parameters of a <a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma distribution</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}{X_{i}},\sum _{i=1}^{n}X_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>,</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}{X_{i}},\sum _{i=1}^{n}X_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/667d121c05895a30b9fa0d0b1b081673923edc7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.021ex; height:7.509ex;" alt="{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}{X_{i}},\sum _{i=1}^{n}X_{i}\right)}"></span> is a two-dimensional sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha ,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha ,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e26787affffd22458b880995530dfd4fa175e694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.663ex; height:2.843ex;" alt="{\displaystyle (\alpha ,\beta )}"></span>. </p><p>To see this, consider the joint <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f84397fc4b69e3f797adca3aa13d69f24c9c2fe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.423ex; height:3.009ex;" alt="{\displaystyle X_{1}^{n}=(X_{1},\dots ,X_{n})}"></span>. Because the observations are independent, the pdf can be written as a product of individual densities, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)x_{i}^{\alpha -1}e^{(-1/\beta )x_{i}}\\[5pt]&amp;=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)x_{i}^{\alpha -1}e^{(-1/\beta )x_{i}}\\[5pt]&amp;=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348e96b023012c3e65fe8627f683126355659528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:48.263ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}f_{X_{1}^{n}}(x_{1}^{n})&amp;=\prod _{i=1}^{n}\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)x_{i}^{\alpha -1}e^{(-1/\beta )x_{i}}\\[5pt]&amp;=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"></span></dd></dl> <p>The joint density of the sample takes the form required by the Fisher–Neyman factorization theorem, by letting </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{(\alpha \,,\,\beta )}(x_{1}^{n})=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{(\alpha \,,\,\beta )}(x_{1}^{n})=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc6a86fe3671030ea025ea0b56f271407ad360d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:62.513ex; height:7.843ex;" alt="{\displaystyle {\begin{aligned}h(x_{1}^{n})=1,\,\,\,g_{(\alpha \,,\,\beta )}(x_{1}^{n})=\left({1 \over \Gamma (\alpha )\beta ^{\alpha }}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{\alpha -1}e^{{-1 \over \beta }\sum _{i=1}^{n}x_{i}}.\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4c8cb5117e13756a55bd4ed755dad784164f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.696ex; height:3.009ex;" alt="{\displaystyle h(x_{1}^{n})}"></span> does not depend on the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \,,\,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \,,\,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511e360e2a1c250788a4062f5764907ef7974a47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.437ex; height:2.843ex;" alt="{\displaystyle (\alpha \,,\,\beta )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d134ef637da10ad7964f782f2f5984534943d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.203ex; height:3.176ex;" alt="{\displaystyle g_{(\alpha \,,\,\beta )}(x_{1}^{n})}"></span> depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0598813fea68a2288fb77cbdbb3792aee0da7b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.548ex; height:2.843ex;" alt="{\displaystyle x_{1}^{n}}"></span> through the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x_{1}^{n})=\left(\prod _{i=1}^{n}x_{i},\sum _{i=1}^{n}x_{i}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(x_{1}^{n})=\left(\prod _{i=1}^{n}x_{i},\sum _{i=1}^{n}x_{i}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/668f4a6c6eb68759065e60647fafc55228625a1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.199ex; height:7.509ex;" alt="{\displaystyle T(x_{1}^{n})=\left(\prod _{i=1}^{n}x_{i},\sum _{i=1}^{n}x_{i}\right),}"></span> </p><p>the Fisher–Neyman factorization theorem implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}X_{i},\sum _{i=1}^{n}X_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}X_{i},\sum _{i=1}^{n}X_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d38bd153ebc6e0c26aab05a802b4f06c4a1e36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.021ex; height:7.509ex;" alt="{\displaystyle T(X_{1}^{n})=\left(\prod _{i=1}^{n}X_{i},\sum _{i=1}^{n}X_{i}\right)}"></span> is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha \,,\,\beta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha \,,\,\beta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd89cc2270330ab7b35d3f9c87bf7562eb96367e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.084ex; height:2.843ex;" alt="{\displaystyle (\alpha \,,\,\beta ).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Rao–Blackwell_theorem"><span id="Rao.E2.80.93Blackwell_theorem"></span>Rao–Blackwell theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=17" title="Edit section: Rao–Blackwell theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Sufficiency</b> finds a useful application in the <a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwell theorem</a>, which states that if <i>g</i>(<i>X</i>) is any kind of estimator of <i>θ</i>, then typically the <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a> of <i>g</i>(<i>X</i>) given sufficient statistic <i>T</i>(<i>X</i>) is a better (in the sense of having lower <a href="/wiki/Variance" title="Variance">variance</a>) estimator of <i>θ</i>, and is never worse. Sometimes one can very easily construct a very crude estimator <i>g</i>(<i>X</i>), and then evaluate that conditional expected value to get an estimator that is in various senses optimal. </p> <div class="mw-heading mw-heading2"><h2 id="Exponential_family">Exponential family</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=18" title="Edit section: Exponential family"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Exponential_family" title="Exponential family">Exponential family</a></div> <p>According to the <b>Pitman–Koopman–Darmois theorem,</b> among families of probability distributions whose domain does not vary with the parameter being estimated, only in <a href="/wiki/Exponential_family" title="Exponential family">exponential families</a> is there a sufficient statistic whose dimension remains bounded as sample size increases. Intuitively, this states that nonexponential families of distributions on the real line require <a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">nonparametric statistics</a> to fully capture the information in the data. </p><p>Less tersely, suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n},n=1,2,3,\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n},n=1,2,3,\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19bde371891143900730c2eafeba32300c2e52ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.982ex; height:2.509ex;" alt="{\displaystyle X_{n},n=1,2,3,\dots }"></span> are <a href="/wiki/Independent_identically_distributed" class="mw-redirect" title="Independent identically distributed">independent identically distributed</a> <b>real</b> random variables whose distribution is known to be in some family of probability distributions, parametrized by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>, satisfying certain technical regularity conditions, then that family is an <i>exponential</i> family if and only if there is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a87a024931038d1858dc22e8a194e5978c3412e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.353ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{m}}"></span>-valued sufficient statistic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(X_{1},\dots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(X_{1},\dots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaba80a390a481403f8e12ddf37877d1f7011fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.745ex; height:2.843ex;" alt="{\displaystyle T(X_{1},\dots ,X_{n})}"></span> whose number of scalar components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> does not increase as the sample size <i>n</i> increases.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>This theorem shows that the existence of a finite-dimensional, real-vector-valued sufficient statistics sharply restricts the possible forms of a family of distributions on the <b>real line</b>. </p><p>When the parameters or the random variables are no longer real-valued, the situation is more complex.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_types_of_sufficiency">Other types of sufficiency</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=19" title="Edit section: Other types of sufficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Bayesian_sufficiency">Bayesian sufficiency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=20" title="Edit section: Bayesian sufficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An alternative formulation of the condition that a statistic be sufficient, set in a Bayesian context, involves the posterior distributions obtained by using the full data-set and by using only a statistic. Thus the requirement is that, for almost every <i>x</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(\theta \mid X=x)=\Pr(\theta \mid T(X)=t(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(\theta \mid X=x)=\Pr(\theta \mid T(X)=t(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71d957f2dbdc71244003a47cd931556bc44019b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.319ex; height:2.843ex;" alt="{\displaystyle \Pr(\theta \mid X=x)=\Pr(\theta \mid T(X)=t(x)).}"></span></dd></dl> <p>More generally, without assuming a parametric model, we can say that the statistics <i>T</i> is <i>predictive sufficient</i> if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X'=x'\mid X=x)=\Pr(X'=x'\mid T(X)=t(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2223;<!-- ∣ --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X'=x'\mid X=x)=\Pr(X'=x'\mid T(X)=t(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77272df01c8a1c118f1170a093b5903ff9ffecda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.727ex; height:3.009ex;" alt="{\displaystyle \Pr(X&#039;=x&#039;\mid X=x)=\Pr(X&#039;=x&#039;\mid T(X)=t(x)).}"></span></dd></dl> <p>It turns out that this "Bayesian sufficiency" is a consequence of the formulation above,<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> however they are not directly equivalent in the infinite-dimensional case.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> A range of theoretical results for sufficiency in a Bayesian context is available.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Linear_sufficiency">Linear sufficiency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=21" title="Edit section: Linear sufficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A concept called "linear sufficiency" can be formulated in a Bayesian context,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> and more generally.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> First define the best linear predictor of a vector <i>Y</i> based on <i>X</i> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {E}}[Y\mid X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {E}}[Y\mid X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50ea0faca0a7772ac74910f37011085bd9277e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.76ex; height:3.343ex;" alt="{\displaystyle {\hat {E}}[Y\mid X]}"></span>. Then a linear statistic <i>T</i>(<i>x</i>) is linear sufficient<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {E}}[\theta \mid X]={\hat {E}}[\theta \mid T(X)].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {E}}[\theta \mid X]={\hat {E}}[\theta \mid T(X)].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/934e7cbbf385774b0d83d658e73d523bbc9f46c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.345ex; height:3.343ex;" alt="{\displaystyle {\hat {E}}[\theta \mid X]={\hat {E}}[\theta \mid T(X)].}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">Completeness</a> of a statistic</li> <li><a href="/wiki/Basu%27s_theorem" title="Basu&#39;s theorem">Basu's theorem</a> on independence of complete sufficient and ancillary statistics</li> <li><a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a>: a complete sufficient estimator is the best estimator of its expectation</li> <li><a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwell theorem</a></li> <li><a href="/wiki/Chentsov%27s_theorem" title="Chentsov&#39;s theorem">Chentsov's theorem</a></li> <li><a href="/wiki/Sufficient_dimension_reduction" title="Sufficient dimension reduction">Sufficient dimension reduction</a></li> <li><a href="/wiki/Ancillary_statistic" title="Ancillary statistic">Ancillary statistic</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=23" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Dodge, Y. (2003) — entry for linear sufficiency</span> </li> <li id="cite_note-Fisher19222-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fisher19222_2-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFFisher1922" class="citation journal cs1"><a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Fisher, R.A.</a> (1922). <a rel="nofollow" class="external text" href="http://digital.library.adelaide.edu.au/dspace/handle/2440/15172">"On the mathematical foundations of theoretical statistics"</a>. <i>Philosophical Transactions of the Royal Society A</i>. <b>222</b> (<span class="nowrap">594–</span>604): <span class="nowrap">309–</span>368. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1922RSPTA.222..309F">1922RSPTA.222..309F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1922.0009">10.1098/rsta.1922.0009</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2440%2F15172">2440/15172</a></span>. <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:48.1280.02">48.1280.02</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/91208">91208</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+A&amp;rft.atitle=On+the+mathematical+foundations+of+theoretical+statistics&amp;rft.volume=222&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E594%E2%80%93%3C%2Fspan%3E604&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E309-%3C%2Fspan%3E368&amp;rft.date=1922&amp;rft_id=info%3Ahdl%2F2440%2F15172&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F91208%23id-name%3DJSTOR&amp;rft_id=info%3Abibcode%2F1922RSPTA.222..309F&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A48.1280.02%23id-name%3DJFM&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1922.0009&amp;rft.aulast=Fisher&amp;rft.aufirst=R.A.&amp;rft_id=http%3A%2F%2Fdigital.library.adelaide.edu.au%2Fdspace%2Fhandle%2F2440%2F15172&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-Stigler19732-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stigler19732_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStigler1973" class="citation journal cs1"><a href="/wiki/Stephen_Stigler" title="Stephen Stigler">Stigler, Stephen</a> (December 1973). "Studies in the History of Probability and Statistics. XXXII: Laplace, Fisher and the Discovery of the Concept of Sufficiency". <i>Biometrika</i>. <b>60</b> (3): <span class="nowrap">439–</span>445. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F60.3.439">10.1093/biomet/60.3.439</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2334992">2334992</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0326872">0326872</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Studies+in+the+History+of+Probability+and+Statistics.+XXXII%3A+Laplace%2C+Fisher+and+the+Discovery+of+the+Concept+of+Sufficiency&amp;rft.volume=60&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E439-%3C%2Fspan%3E445&amp;rft.date=1973-12&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0326872%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2334992%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F60.3.439&amp;rft.aulast=Stigler&amp;rft.aufirst=Stephen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-CasellaBerger-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-CasellaBerger_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasellaBerger,_Roger_L.2002" class="citation book cs1">Casella, George; Berger, Roger L. (2002). <i>Statistical Inference, 2nd ed</i>. Duxbury Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Inference%2C+2nd+ed&amp;rft.pub=Duxbury+Press&amp;rft.date=2002&amp;rft.aulast=Casella&amp;rft.aufirst=George&amp;rft.au=Berger%2C+Roger+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCover2006" class="citation book cs1">Cover, Thomas M. (2006). <i>Elements of Information Theory</i>. Joy A. Thomas (2nd&#160;ed.). Hoboken, N.J.: Wiley-Interscience. p.&#160;36. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-24195-4" title="Special:BookSources/0-471-24195-4"><bdi>0-471-24195-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/59879802">59879802</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Information+Theory&amp;rft.place=Hoboken%2C+N.J.&amp;rft.pages=36&amp;rft.edition=2nd&amp;rft.pub=Wiley-Interscience&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F59879802&amp;rft.isbn=0-471-24195-4&amp;rft.aulast=Cover&amp;rft.aufirst=Thomas+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmosSavage1949" class="citation journal cs1">Halmos, P. R.; Savage, L. J. (1949). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.aoms/1177730032">"Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics"</a>. <i>The Annals of Mathematical Statistics</i>. <b>20</b> (2): <span class="nowrap">225–</span>241. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177730032">10.1214/aoms/1177730032</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-4851">0003-4851</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Mathematical+Statistics&amp;rft.atitle=Application+of+the+Radon-Nikodym+Theorem+to+the+Theory+of+Sufficient+Statistics&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E225-%3C%2Fspan%3E241&amp;rft.date=1949&amp;rft_id=info%3Adoi%2F10.1214%2Faoms%2F1177730032&amp;rft.issn=0003-4851&amp;rft.aulast=Halmos&amp;rft.aufirst=P.+R.&amp;rft.au=Savage%2C+L.+J.&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.aoms%2F1177730032&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Factorization_theorem">"Factorization theorem - Encyclopedia of Mathematics"</a>. <i>encyclopediaofmath.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-09-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=encyclopediaofmath.org&amp;rft.atitle=Factorization+theorem+-+Encyclopedia+of+Mathematics&amp;rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FFactorization_theorem&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaraldsen2022" class="citation journal cs1">Taraldsen, G. (2022). "The Factorization Theorem for Sufficiency". <i>Preprint</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.13140%2FRG.2.2.15068.87687">10.13140/RG.2.2.15068.87687</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Preprint&amp;rft.atitle=The+Factorization+Theorem+for+Sufficiency&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.13140%2FRG.2.2.15068.87687&amp;rft.aulast=Taraldsen&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-HoggCraig-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-HoggCraig_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoggCraig,_Allen_T.1995" class="citation book cs1">Hogg, Robert V.; Craig, Allen T. (1995). <i>Introduction to Mathematical Statistics</i>. Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-02-355722-4" title="Special:BookSources/978-0-02-355722-4"><bdi>978-0-02-355722-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Mathematical+Statistics&amp;rft.pub=Prentice+Hall&amp;rft.date=1995&amp;rft.isbn=978-0-02-355722-4&amp;rft.aulast=Hogg&amp;rft.aufirst=Robert+V.&amp;rft.au=Craig%2C+Allen+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://cnx.org/content/m11480/1.6/">"The Fisher–Neyman Factorization Theorem"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Fisher%E2%80%93Neyman+Factorization+Theorem&amp;rft_id=http%3A%2F%2Fcnx.org%2Fcontent%2Fm11480%2F1.6%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span>. Webpage at Connexions (cnx.org)</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Dodge (2003) — entry for minimal sufficient statistics</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Lehmann and Casella (1998), <i>Theory of Point Estimation</i>, 2nd Edition, Springer, p 37</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Lehmann and Casella (1998), <i>Theory of Point Estimation</i>, 2nd Edition, Springer, page 42</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTikochinskyTishbyLevine1984" class="citation journal cs1">Tikochinsky, Y.; Tishby, N. Z.; Levine, R. D. (1984-11-01). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/physreva.30.2638">"Alternative approach to maximum-entropy inference"</a>. <i>Physical Review A</i>. <b>30</b> (5): <span class="nowrap">2638–</span>2644. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984PhRvA..30.2638T">1984PhRvA..30.2638T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.30.2638">10.1103/physreva.30.2638</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0556-2791">0556-2791</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Alternative+approach+to+maximum-entropy+inference&amp;rft.volume=30&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2638-%3C%2Fspan%3E2644&amp;rft.date=1984-11-01&amp;rft.issn=0556-2791&amp;rft_id=info%3Adoi%2F10.1103%2Fphysreva.30.2638&amp;rft_id=info%3Abibcode%2F1984PhRvA..30.2638T&amp;rft.aulast=Tikochinsky&amp;rft.aufirst=Y.&amp;rft.au=Tishby%2C+N.+Z.&amp;rft.au=Levine%2C+R.+D.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Fphysreva.30.2638&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersen1970" class="citation journal cs1">Andersen, Erling Bernhard (September 1970). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080/01621459.1970.10481160">"Sufficiency and Exponential Families for Discrete Sample Spaces"</a>. <i>Journal of the American Statistical Association</i>. <b>65</b> (331): <span class="nowrap">1248–</span>1255. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1970.10481160">10.1080/01621459.1970.10481160</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0162-1459">0162-1459</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Statistical+Association&amp;rft.atitle=Sufficiency+and+Exponential+Families+for+Discrete+Sample+Spaces&amp;rft.volume=65&amp;rft.issue=331&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1248-%3C%2Fspan%3E1255&amp;rft.date=1970-09&amp;rft_id=info%3Adoi%2F10.1080%2F01621459.1970.10481160&amp;rft.issn=0162-1459&amp;rft.aulast=Andersen&amp;rft.aufirst=Erling+Bernhard&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1080%2F01621459.1970.10481160&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernardoSmith1994" class="citation book cs1"><a href="/wiki/Jos%C3%A9-Miguel_Bernardo" title="José-Miguel Bernardo">Bernardo, J.M.</a>; <a href="/wiki/Adrian_Smith_(academic)" class="mw-redirect" title="Adrian Smith (academic)">Smith, A.F.M.</a> (1994). "Section 5.1.4". <i>Bayesian Theory</i>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-92416-4" title="Special:BookSources/0-471-92416-4"><bdi>0-471-92416-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+5.1.4&amp;rft.btitle=Bayesian+Theory&amp;rft.pub=Wiley&amp;rft.date=1994&amp;rft.isbn=0-471-92416-4&amp;rft.aulast=Bernardo&amp;rft.aufirst=J.M.&amp;rft.au=Smith%2C+A.F.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlackwellRamamoorthi1982" class="citation journal cs1"><a href="/wiki/David_Blackwell" title="David Blackwell">Blackwell, D.</a>; Ramamoorthi, R. V. (1982). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faos%2F1176345895">"A Bayes but not classically sufficient statistic"</a>. <i><a href="/wiki/Annals_of_Statistics" title="Annals of Statistics">Annals of Statistics</a></i>. <b>10</b> (3): <span class="nowrap">1025–</span>1026. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faos%2F1176345895">10.1214/aos/1176345895</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0663456">0663456</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0485.62004">0485.62004</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Statistics&amp;rft.atitle=A+Bayes+but+not+classically+sufficient+statistic.&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1025-%3C%2Fspan%3E1026&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0485.62004%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D663456%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1214%2Faos%2F1176345895&amp;rft.aulast=Blackwell&amp;rft.aufirst=D.&amp;rft.au=Ramamoorthi%2C+R.+V.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faos%252F1176345895&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNogalesOyolaPerez2000" class="citation journal cs1">Nogales, A.G.; Oyola, J.A.; Perez, P. (2000). <a rel="nofollow" class="external text" href="https://dialnet.unirioja.es/servlet/oaiart?codigo=118597">"On conditional independence and the relationship between sufficiency and invariance under the Bayesian point of view"</a>. <i>Statistics &amp; Probability Letters</i>. <b>46</b> (1): <span class="nowrap">75–</span>84. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0167-7152%2899%2900089-9">10.1016/S0167-7152(99)00089-9</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1731351">1731351</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0964.62003">0964.62003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=On+conditional+independence+and+the+relationship+between+sufficiency+and+invariance+under+the+Bayesian+point+of+view&amp;rft.volume=46&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E75-%3C%2Fspan%3E84&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0964.62003%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1731351%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1016%2FS0167-7152%2899%2900089-9&amp;rft.aulast=Nogales&amp;rft.aufirst=A.G.&amp;rft.au=Oyola%2C+J.A.&amp;rft.au=Perez%2C+P.&amp;rft_id=https%3A%2F%2Fdialnet.unirioja.es%2Fservlet%2Foaiart%3Fcodigo%3D118597&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinO&#39;Hagan1996" class="citation journal cs1">Goldstein, M.; O'Hagan, A. (1996). "Bayes Linear Sufficiency and Systems of Expert Posterior Assessments". <i><a href="/wiki/Journal_of_the_Royal_Statistical_Society" title="Journal of the Royal Statistical Society">Journal of the Royal Statistical Society</a></i>. Series B. <b>58</b> (2): <span class="nowrap">301–</span>316. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.2517-6161.1996.tb02083.x">10.1111/j.2517-6161.1996.tb02083.x</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2345978">2345978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society&amp;rft.atitle=Bayes+Linear+Sufficiency+and+Systems+of+Expert+Posterior+Assessments&amp;rft.volume=58&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E301-%3C%2Fspan%3E316&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1111%2Fj.2517-6161.1996.tb02083.x&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2345978%23id-name%3DJSTOR&amp;rft.aulast=Goldstein&amp;rft.aufirst=M.&amp;rft.au=O%27Hagan%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodambe1966" class="citation journal cs1">Godambe, V. P. (1966). "A New Approach to Sampling from Finite Populations. II Distribution-Free Sufficiency". <i><a href="/wiki/Journal_of_the_Royal_Statistical_Society" title="Journal of the Royal Statistical Society">Journal of the Royal Statistical Society</a></i>. Series B. <b>28</b> (2): <span class="nowrap">320–</span>328. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.2517-6161.1966.tb00645.x">10.1111/j.2517-6161.1966.tb00645.x</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2984375">2984375</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society&amp;rft.atitle=A+New+Approach+to+Sampling+from+Finite+Populations.+II+Distribution-Free+Sufficiency&amp;rft.volume=28&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E320-%3C%2Fspan%3E328&amp;rft.date=1966&amp;rft_id=info%3Adoi%2F10.1111%2Fj.2517-6161.1966.tb00645.x&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2984375%23id-name%3DJSTOR&amp;rft.aulast=Godambe&amp;rft.aufirst=V.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitting1987" class="citation journal cs1">Witting, T. (1987). <a rel="nofollow" class="external text" href="https://doi.org/10.2143%2Fast.17.1.2014984">"The linear Markov property in credibility theory"</a>. <i>ASTIN Bulletin</i>. <b>17</b> (1): <span class="nowrap">71–</span>84. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2143%2Fast.17.1.2014984">10.2143/ast.17.1.2014984</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11850%2F422507">20.500.11850/422507</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ASTIN+Bulletin&amp;rft.atitle=The+linear+Markov+property+in+credibility+theory&amp;rft.volume=17&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E71-%3C%2Fspan%3E84&amp;rft.date=1987&amp;rft_id=info%3Ahdl%2F20.500.11850%2F422507&amp;rft_id=info%3Adoi%2F10.2143%2Fast.17.1.2014984&amp;rft.aulast=Witting&amp;rft.aufirst=T.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2143%252Fast.17.1.2014984&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sufficient_statistic&amp;action=edit&amp;section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKholevo2001" class="citation cs2">Kholevo, A.S. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Sufficient_statistic">"Sufficient statistic"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sufficient+statistic&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Kholevo&amp;rft.aufirst=A.S.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DSufficient_statistic&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLehmannCasella,_G.1998" class="citation book cs1">Lehmann, E. L.; Casella, G. (1998). <i>Theory of Point Estimation</i> (2nd&#160;ed.). Springer. Chapter 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98502-6" title="Special:BookSources/0-387-98502-6"><bdi>0-387-98502-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Point+Estimation&amp;rft.pages=Chapter+4&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.isbn=0-387-98502-6&amp;rft.aulast=Lehmann&amp;rft.aufirst=E.+L.&amp;rft.au=Casella%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASufficient+statistic" class="Z3988"></span></li> <li>Dodge, Y. (2003) <i>The Oxford Dictionary of Statistical Terms</i>, OUP. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-920613-9" title="Special:BookSources/0-19-920613-9">0-19-920613-9</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div><div role="navigation" class="navbox" aria-labelledby="Statistics636" style="padding:3px"><table class="nowraplinks hlist mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Statistics" title="Template:Statistics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Statistics" title="Template talk:Statistics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Statistics" title="Special:EditPage/Template:Statistics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Statistics636" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistics" title="Statistics">Statistics</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_statistics" title="Outline of statistics">Outline</a></li> <li><a href="/wiki/List_of_statistics_articles" title="List of statistics articles">Index</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Descriptive_statistics636" style="font-size:114%;margin:0 4em"><a href="/wiki/Descriptive_statistics" title="Descriptive statistics">Descriptive statistics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">Continuous data</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Central_tendency" title="Central tendency">Center</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean" title="Mean">Mean</a> <ul><li><a href="/wiki/Arithmetic_mean" title="Arithmetic mean">Arithmetic</a></li> <li><a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">Arithmetic-Geometric</a></li> <li><a href="/wiki/Contraharmonic_mean" title="Contraharmonic mean">Contraharmonic</a></li> <li><a href="/wiki/Cubic_mean" title="Cubic mean">Cubic</a></li> <li><a href="/wiki/Generalized_mean" title="Generalized mean">Generalized/power</a></li> <li><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric</a></li> <li><a href="/wiki/Harmonic_mean" title="Harmonic mean">Harmonic</a></li> <li><a href="/wiki/Heronian_mean" title="Heronian mean">Heronian</a></li> <li><a href="/wiki/Heinz_mean" title="Heinz mean">Heinz</a></li> <li><a href="/wiki/Lehmer_mean" title="Lehmer mean">Lehmer</a></li></ul></li> <li><a href="/wiki/Median" title="Median">Median</a></li> <li><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_dispersion" title="Statistical dispersion">Dispersion</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">Average absolute deviation</a></li> <li><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></li> <li><a href="/wiki/Interquartile_range" title="Interquartile range">Interquartile range</a></li> <li><a href="/wiki/Percentile" title="Percentile">Percentile</a></li> <li><a href="/wiki/Range_(statistics)" title="Range (statistics)">Range</a></li> <li><a href="/wiki/Standard_deviation" title="Standard deviation">Standard deviation</a></li> <li><a href="/wiki/Variance#Sample_variance" title="Variance">Variance</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Shape_of_the_distribution" class="mw-redirect" title="Shape of the distribution">Shape</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">Moments</a> <ul><li><a href="/wiki/Kurtosis" title="Kurtosis">Kurtosis</a></li> <li><a href="/wiki/L-moment" title="L-moment">L-moments</a></li> <li><a href="/wiki/Skewness" title="Skewness">Skewness</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Count_data" title="Count data">Count data</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Index_of_dispersion" title="Index of dispersion">Index of dispersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Summary tables</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Frequency_distribution" class="mw-redirect" title="Frequency distribution">Frequency distribution</a></li> <li><a href="/wiki/Grouped_data" title="Grouped data">Grouped data</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Dependence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Pearson_correlation_coefficient" title="Pearson correlation coefficient">Pearson product-moment correlation</a></li> <li><a href="/wiki/Rank_correlation" title="Rank correlation">Rank correlation</a> <ul><li><a href="/wiki/Kendall_rank_correlation_coefficient" title="Kendall rank correlation coefficient">Kendall's τ</a></li> <li><a href="/wiki/Spearman%27s_rank_correlation_coefficient" title="Spearman&#39;s rank correlation coefficient">Spearman's ρ</a></li></ul></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_graphics" title="Statistical graphics">Graphics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bar_chart" title="Bar chart">Bar chart</a></li> <li><a href="/wiki/Biplot" title="Biplot">Biplot</a></li> <li><a href="/wiki/Box_plot" title="Box plot">Box plot</a></li> <li><a href="/wiki/Control_chart" title="Control chart">Control chart</a></li> <li><a href="/wiki/Correlogram" title="Correlogram">Correlogram</a></li> <li><a href="/wiki/Fan_chart_(statistics)" title="Fan chart (statistics)">Fan chart</a></li> <li><a href="/wiki/Forest_plot" title="Forest plot">Forest plot</a></li> <li><a href="/wiki/Histogram" title="Histogram">Histogram</a></li> <li><a href="/wiki/Pie_chart" title="Pie chart">Pie chart</a></li> <li><a href="/wiki/Q%E2%80%93Q_plot" title="Q–Q plot">Q–Q plot</a></li> <li><a href="/wiki/Radar_chart" title="Radar chart">Radar chart</a></li> <li><a href="/wiki/Run_chart" title="Run chart">Run chart</a></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li> <li><a href="/wiki/Stem-and-leaf_display" title="Stem-and-leaf display">Stem-and-leaf display</a></li> <li><a href="/wiki/Violin_plot" title="Violin plot">Violin plot</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Data_collection636" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_collection" title="Data collection">Data collection</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Design_of_experiments" title="Design of experiments">Study design</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Effect_size" title="Effect size">Effect size</a></li> <li><a href="/wiki/Missing_data" title="Missing data">Missing data</a></li> <li><a href="/wiki/Optimal_design" class="mw-redirect" title="Optimal design">Optimal design</a></li> <li><a href="/wiki/Statistical_population" title="Statistical population">Population</a></li> <li><a href="/wiki/Replication_(statistics)" title="Replication (statistics)">Replication</a></li> <li><a href="/wiki/Sample_size_determination" title="Sample size determination">Sample size determination</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Statistical_power" class="mw-redirect" title="Statistical power">Statistical power</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survey_methodology" title="Survey methodology">Survey methodology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">Sampling</a> <ul><li><a href="/wiki/Cluster_sampling" title="Cluster sampling">Cluster</a></li> <li><a href="/wiki/Stratified_sampling" title="Stratified sampling">Stratified</a></li></ul></li> <li><a href="/wiki/Opinion_poll" title="Opinion poll">Opinion poll</a></li> <li><a href="/wiki/Questionnaire" title="Questionnaire">Questionnaire</a></li> <li><a href="/wiki/Standard_error" title="Standard error">Standard error</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Experiment" title="Experiment">Controlled experiments</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blocking_(statistics)" title="Blocking (statistics)">Blocking</a></li> <li><a href="/wiki/Factorial_experiment" title="Factorial experiment">Factorial experiment</a></li> <li><a href="/wiki/Interaction_(statistics)" title="Interaction (statistics)">Interaction</a></li> <li><a href="/wiki/Random_assignment" title="Random assignment">Random assignment</a></li> <li><a href="/wiki/Randomized_controlled_trial" title="Randomized controlled trial">Randomized controlled trial</a></li> <li><a href="/wiki/Randomized_experiment" title="Randomized experiment">Randomized experiment</a></li> <li><a href="/wiki/Scientific_control" title="Scientific control">Scientific control</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Adaptive designs</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_clinical_trial" class="mw-redirect" title="Adaptive clinical trial">Adaptive clinical trial</a></li> <li><a href="/wiki/Stochastic_approximation" title="Stochastic approximation">Stochastic approximation</a></li> <li><a href="/wiki/Up-and-Down_Designs" class="mw-redirect" title="Up-and-Down Designs">Up-and-down designs</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Observational_study" title="Observational study">Observational studies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohort_study" title="Cohort study">Cohort study</a></li> <li><a href="/wiki/Cross-sectional_study" title="Cross-sectional study">Cross-sectional study</a></li> <li><a href="/wiki/Natural_experiment" title="Natural experiment">Natural experiment</a></li> <li><a href="/wiki/Quasi-experiment" title="Quasi-experiment">Quasi-experiment</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Statistical_inference636" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistical_inference" title="Statistical inference">Statistical inference</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_theory" title="Statistical theory">Statistical theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Population_(statistics)" class="mw-redirect" title="Population (statistics)">Population</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a></li> <li><a href="/wiki/Sampling_distribution" title="Sampling distribution">Sampling distribution</a> <ul><li><a href="/wiki/Order_statistic" title="Order statistic">Order statistic</a></li></ul></li> <li><a href="/wiki/Empirical_distribution_function" title="Empirical distribution function">Empirical distribution</a> <ul><li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li></ul></li> <li><a href="/wiki/Statistical_model" title="Statistical model">Statistical model</a> <ul><li><a href="/wiki/Model_specification" class="mw-redirect" title="Model specification">Model specification</a></li> <li><a href="/wiki/Lp_space" title="Lp space">L<sup><i>p</i></sup> space</a></li></ul></li> <li><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameter</a> <ul><li><a href="/wiki/Location_parameter" title="Location parameter">location</a></li> <li><a href="/wiki/Scale_parameter" title="Scale parameter">scale</a></li> <li><a href="/wiki/Shape_parameter" title="Shape parameter">shape</a></li></ul></li> <li><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric family</a> <ul><li><a href="/wiki/Likelihood_function" title="Likelihood function">Likelihood</a>&#160;<a href="/wiki/Monotone_likelihood_ratio" title="Monotone likelihood ratio"><span style="font-size:85%;">(monotone)</span></a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale family</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential family</a></li></ul></li> <li><a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">Completeness</a></li> <li><a class="mw-selflink selflink">Sufficiency</a></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Statistical functional</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/U-statistic" title="U-statistic">U</a></li> <li><a href="/wiki/V-statistic" title="V-statistic">V</a></li></ul></li> <li><a href="/wiki/Optimal_decision" title="Optimal decision">Optimal decision</a> <ul><li><a href="/wiki/Loss_function" title="Loss function">loss function</a></li></ul></li> <li><a href="/wiki/Efficiency_(statistics)" title="Efficiency (statistics)">Efficiency</a></li> <li><a href="/wiki/Statistical_distance" title="Statistical distance">Statistical distance</a> <ul><li><a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergence</a></li></ul></li> <li><a href="/wiki/Asymptotic_theory_(statistics)" title="Asymptotic theory (statistics)">Asymptotics</a></li> <li><a href="/wiki/Robust_statistics" title="Robust statistics">Robustness</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Frequentist_inference" title="Frequentist inference">Frequentist inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Point_estimation" title="Point estimation">Point estimation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Estimating_equations" title="Estimating equations">Estimating equations</a> <ul><li><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a></li> <li><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a></li> <li><a href="/wiki/M-estimator" title="M-estimator">M-estimator</a></li> <li><a href="/wiki/Minimum_distance_estimation" class="mw-redirect" title="Minimum distance estimation">Minimum distance</a></li></ul></li> <li><a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">Unbiased estimators</a> <ul><li><a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">Mean-unbiased minimum-variance</a> <ul><li><a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwellization</a></li> <li><a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a></li></ul></li> <li><a href="/wiki/Median-unbiased_estimator" class="mw-redirect" title="Median-unbiased estimator">Median unbiased</a></li></ul></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Plug-in</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Interval_estimation" title="Interval estimation">Interval estimation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Confidence_interval" title="Confidence interval">Confidence interval</a></li> <li><a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivot</a></li> <li><a href="/wiki/Likelihood_interval" class="mw-redirect" title="Likelihood interval">Likelihood interval</a></li> <li><a href="/wiki/Prediction_interval" title="Prediction interval">Prediction interval</a></li> <li><a href="/wiki/Tolerance_interval" title="Tolerance interval">Tolerance interval</a></li> <li><a href="/wiki/Resampling_(statistics)" title="Resampling (statistics)">Resampling</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/Jackknife_resampling" title="Jackknife resampling">Jackknife</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">Testing hypotheses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/One-_and_two-tailed_tests" title="One- and two-tailed tests">1- &amp; 2-tails</a></li> <li><a href="/wiki/Power_(statistics)" title="Power (statistics)">Power</a> <ul><li><a href="/wiki/Uniformly_most_powerful_test" title="Uniformly most powerful test">Uniformly most powerful test</a></li></ul></li> <li><a href="/wiki/Permutation_test" title="Permutation test">Permutation test</a> <ul><li><a href="/wiki/Randomization_test" class="mw-redirect" title="Randomization test">Randomization test</a></li></ul></li> <li><a href="/wiki/Multiple_comparisons" class="mw-redirect" title="Multiple comparisons">Multiple comparisons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio</a></li> <li><a href="/wiki/Score_test" title="Score test">Score/Lagrange multiplier</a></li> <li><a href="/wiki/Wald_test" title="Wald test">Wald</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/List_of_statistical_tests" title="List of statistical tests">Specific tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-test" title="Z-test"><i>Z</i>-test <span style="font-size:85%;">(normal)</span></a></li> <li><a href="/wiki/Student%27s_t-test" title="Student&#39;s t-test">Student's <i>t</i>-test</a></li> <li><a href="/wiki/F-test" title="F-test"><i>F</i>-test</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chi-squared_test" title="Chi-squared test">Chi-squared</a></li> <li><a href="/wiki/G-test" title="G-test"><i>G</i>-test</a></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov–Smirnov</a></li> <li><a href="/wiki/Anderson%E2%80%93Darling_test" title="Anderson–Darling test">Anderson–Darling</a></li> <li><a href="/wiki/Lilliefors_test" title="Lilliefors test">Lilliefors</a></li> <li><a href="/wiki/Jarque%E2%80%93Bera_test" title="Jarque–Bera test">Jarque–Bera</a></li> <li><a href="/wiki/Shapiro%E2%80%93Wilk_test" title="Shapiro–Wilk test">Normality <span style="font-size:85%;">(Shapiro–Wilk)</span></a></li> <li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio test</a></li> <li><a href="/wiki/Model_selection" title="Model selection">Model selection</a> <ul><li><a href="/wiki/Cross-validation_(statistics)" title="Cross-validation (statistics)">Cross validation</a></li> <li><a href="/wiki/Akaike_information_criterion" title="Akaike information criterion">AIC</a></li> <li><a href="/wiki/Bayesian_information_criterion" title="Bayesian information criterion">BIC</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Rank_statistics" class="mw-redirect" title="Rank statistics">Rank statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sign_test" title="Sign test">Sign</a> <ul><li><a href="/wiki/Sample_median" class="mw-redirect" title="Sample median">Sample median</a></li></ul></li> <li><a href="/wiki/Wilcoxon_signed-rank_test" title="Wilcoxon signed-rank test">Signed rank <span style="font-size:85%;">(Wilcoxon)</span></a> <ul><li><a href="/wiki/Hodges%E2%80%93Lehmann_estimator" title="Hodges–Lehmann estimator">Hodges–Lehmann estimator</a></li></ul></li> <li><a href="/wiki/Mann%E2%80%93Whitney_U_test" title="Mann–Whitney U test">Rank sum <span style="font-size:85%;">(Mann–Whitney)</span></a></li> <li><a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">Nonparametric</a> <a href="/wiki/Analysis_of_variance" title="Analysis of variance">anova</a> <ul><li><a href="/wiki/Kruskal%E2%80%93Wallis_test" title="Kruskal–Wallis test">1-way <span style="font-size:85%;">(Kruskal–Wallis)</span></a></li> <li><a href="/wiki/Friedman_test" title="Friedman test">2-way <span style="font-size:85%;">(Friedman)</span></a></li> <li><a href="/wiki/Jonckheere%27s_trend_test" title="Jonckheere&#39;s trend test">Ordered alternative <span style="font-size:85%;">(Jonckheere–Terpstra)</span></a></li></ul></li> <li><a href="/wiki/Van_der_Waerden_test" title="Van der Waerden test">Van der Waerden test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian probability</a> <ul><li><a href="/wiki/Prior_probability" title="Prior probability">prior</a></li> <li><a href="/wiki/Posterior_probability" title="Posterior probability">posterior</a></li></ul></li> <li><a href="/wiki/Credible_interval" title="Credible interval">Credible interval</a></li> <li><a href="/wiki/Bayes_factor" title="Bayes factor">Bayes factor</a></li> <li><a href="/wiki/Bayes_estimator" title="Bayes estimator">Bayesian estimator</a> <ul><li><a href="/wiki/Maximum_a_posteriori_estimation" title="Maximum a posteriori estimation">Maximum posterior estimator</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="CorrelationRegression_analysis636" style="font-size:114%;margin:0 4em"><div class="hlist"><ul><li><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></li><li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></li></ul></div></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson product-moment</a></li> <li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Confounding" title="Confounding">Confounding variable</a></li> <li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Mixed effects models</a></li> <li><a href="/wiki/Simultaneous_equations_model" title="Simultaneous equations model">Simultaneous equations models</a></li> <li><a href="/wiki/Multivariate_adaptive_regression_splines" class="mw-redirect" title="Multivariate adaptive regression splines">Multivariate adaptive regression splines (MARS)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple linear regression</a></li> <li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Non-standard predictors</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Homoscedasticity_and_heteroscedasticity" title="Homoscedasticity and heteroscedasticity">Homoscedasticity and Heteroscedasticity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exponential_family" title="Exponential family">Exponential families</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic <span style="font-size:85%;">(Bernoulli)</span></a>&#160;/&#32;<a href="/wiki/Binomial_regression" title="Binomial regression">Binomial</a>&#160;/&#32;<a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regressions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Partition_of_sums_of_squares" title="Partition of sums of squares">Partition of variance</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analysis_of_variance" title="Analysis of variance">Analysis of variance (ANOVA, anova)</a></li> <li><a href="/wiki/Analysis_of_covariance" title="Analysis of covariance">Analysis of covariance</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Multivariate ANOVA</a></li> <li><a href="/wiki/Degrees_of_freedom_(statistics)" title="Degrees of freedom (statistics)">Degrees of freedom</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Categorical_/_Multivariate_/_Time-series_/_Survival_analysis636" style="font-size:114%;margin:0 4em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a>&#160;/&#32;<a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a>&#160;/&#32;<a href="/wiki/Time_series" title="Time series">Time-series</a>&#160;/&#32;<a href="/wiki/Survival_analysis" title="Survival analysis">Survival analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohen%27s_kappa" title="Cohen&#39;s kappa">Cohen's kappa</a></li> <li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Graphical_model" title="Graphical model">Graphical model</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Log-linear model</a></li> <li><a href="/wiki/McNemar%27s_test" title="McNemar&#39;s test">McNemar's test</a></li> <li><a href="/wiki/Cochran%E2%80%93Mantel%E2%80%93Haenszel_statistics" title="Cochran–Mantel–Haenszel statistics">Cochran–Mantel–Haenszel statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_linear_model" title="General linear model">Regression</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Manova</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal components</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">Canonical correlation</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">Discriminant analysis</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Cluster analysis</a></li> <li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Structural_equation_modeling" title="Structural equation modeling">Structural equation model</a> <ul><li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li></ul></li> <li><a href="/wiki/Multivariate_distribution" class="mw-redirect" title="Multivariate distribution">Multivariate distributions</a> <ul><li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical distributions</a> <ul><li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Normal</a></li></ul></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Time_series" title="Time series">Time-series</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Decomposition_of_time_series" title="Decomposition of time series">Decomposition</a></li> <li><a href="/wiki/Trend_estimation" class="mw-redirect" title="Trend estimation">Trend</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationarity</a></li> <li><a href="/wiki/Seasonal_adjustment" title="Seasonal adjustment">Seasonal adjustment</a></li> <li><a href="/wiki/Exponential_smoothing" title="Exponential smoothing">Exponential smoothing</a></li> <li><a href="/wiki/Cointegration" title="Cointegration">Cointegration</a></li> <li><a href="/wiki/Structural_break" title="Structural break">Structural break</a></li> <li><a href="/wiki/Granger_causality" title="Granger causality">Granger causality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Specific tests</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dickey%E2%80%93Fuller_test" title="Dickey–Fuller test">Dickey–Fuller</a></li> <li><a href="/wiki/Johansen_test" title="Johansen test">Johansen</a></li> <li><a href="/wiki/Ljung%E2%80%93Box_test" title="Ljung–Box test">Q-statistic <span style="font-size:85%;">(Ljung–Box)</span></a></li> <li><a href="/wiki/Durbin%E2%80%93Watson_statistic" title="Durbin–Watson statistic">Durbin–Watson</a></li> <li><a href="/wiki/Breusch%E2%80%93Godfrey_test" title="Breusch–Godfrey test">Breusch–Godfrey</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Time_domain" title="Time domain">Time domain</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autocorrelation" title="Autocorrelation">Autocorrelation (ACF)</a> <ul><li><a href="/wiki/Partial_autocorrelation_function" title="Partial autocorrelation function">partial (PACF)</a></li></ul></li> <li><a href="/wiki/Cross-correlation" title="Cross-correlation">Cross-correlation (XCF)</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">ARMA model</a></li> <li><a href="/wiki/Box%E2%80%93Jenkins_method" title="Box–Jenkins method">ARIMA model <span style="font-size:85%;">(Box–Jenkins)</span></a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH)</a></li> <li><a href="/wiki/Vector_autoregression" title="Vector autoregression">Vector autoregression (VAR)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Frequency_domain" title="Frequency domain">Frequency domain</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Wavelet" title="Wavelet">Wavelet</a></li> <li><a href="/wiki/Whittle_likelihood" title="Whittle likelihood">Whittle likelihood</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survival_analysis" title="Survival analysis">Survival</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Survival_function" title="Survival function">Survival function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kaplan%E2%80%93Meier_estimator" title="Kaplan–Meier estimator">Kaplan–Meier estimator (product limit)</a></li> <li><a href="/wiki/Proportional_hazards_model" title="Proportional hazards model">Proportional hazards models</a></li> <li><a href="/wiki/Accelerated_failure_time_model" title="Accelerated failure time model">Accelerated failure time (AFT) model</a></li> <li><a href="/wiki/First-hitting-time_model" title="First-hitting-time model">First hitting time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Failure_rate" title="Failure rate">Hazard function</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nelson%E2%80%93Aalen_estimator" title="Nelson–Aalen estimator">Nelson–Aalen estimator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Test</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Log-rank_test" class="mw-redirect" title="Log-rank test">Log-rank test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Applications636" style="font-size:114%;margin:0 4em"><a href="/wiki/List_of_fields_of_application_of_statistics" title="List of fields of application of statistics">Applications</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Biostatistics" title="Biostatistics">Biostatistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Clinical_trial" title="Clinical trial">Clinical trials</a>&#160;/&#32;<a href="/wiki/Clinical_study_design" title="Clinical study design">studies</a></li> <li><a href="/wiki/Epidemiology" title="Epidemiology">Epidemiology</a></li> <li><a href="/wiki/Medical_statistics" title="Medical statistics">Medical statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Engineering_statistics" title="Engineering statistics">Engineering statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chemometrics" title="Chemometrics">Chemometrics</a></li> <li><a href="/wiki/Methods_engineering" title="Methods engineering">Methods engineering</a></li> <li><a href="/wiki/Probabilistic_design" title="Probabilistic design">Probabilistic design</a></li> <li><a href="/wiki/Statistical_process_control" title="Statistical process control">Process</a>&#160;/&#32;<a href="/wiki/Quality_control" title="Quality control">quality control</a></li> <li><a href="/wiki/Reliability_engineering" title="Reliability engineering">Reliability</a></li> <li><a href="/wiki/System_identification" title="System identification">System identification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Social_statistics" title="Social statistics">Social statistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_science" title="Actuarial science">Actuarial science</a></li> <li><a href="/wiki/Census" title="Census">Census</a></li> <li><a href="/wiki/Crime_statistics" title="Crime statistics">Crime statistics</a></li> <li><a href="/wiki/Demographic_statistics" title="Demographic statistics">Demography</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Jurimetrics" title="Jurimetrics">Jurimetrics</a></li> <li><a href="/wiki/National_accounts" title="National accounts">National accounts</a></li> <li><a href="/wiki/Official_statistics" title="Official statistics">Official statistics</a></li> <li><a href="/wiki/Population_statistics" class="mw-redirect" title="Population statistics">Population statistics</a></li> <li><a href="/wiki/Psychometrics" title="Psychometrics">Psychometrics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Spatial_analysis" title="Spatial analysis">Spatial statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartography" title="Cartography">Cartography</a></li> <li><a href="/wiki/Environmental_statistics" title="Environmental statistics">Environmental statistics</a></li> <li><a href="/wiki/Geographic_information_system" title="Geographic information system">Geographic information system</a></li> <li><a href="/wiki/Geostatistics" title="Geostatistics">Geostatistics</a></li> <li><a href="/wiki/Kriging" title="Kriging">Kriging</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Statistics" title="Category:Statistics">Category</a></b></li> <li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span><b><a href="https://commons.wikimedia.org/wiki/Category:Statistics" class="extiw" title="commons:Category:Statistics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Statistics" title="Wikipedia:WikiProject Statistics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐68d95c4d5‐z6t5s Cached time: 20250212190253 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.597 seconds Real time usage: 0.784 seconds Preprocessor visited node count: 3274/1000000 Post‐expand include size: 186328/2097152 bytes Template argument size: 1760/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 89462/5000000 bytes Lua time usage: 0.277/10.000 seconds Lua memory usage: 6090370/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 455.728 1 -total 34.78% 158.496 1 Template:Reflist 26.43% 120.431 1 Template:Statistics 25.89% 117.966 1 Template:Navbox_with_collapsible_groups 25.32% 115.387 11 Template:Cite_journal 16.34% 74.471 1 Template:Short_description 11.64% 53.053 2 Template:Pagetype 8.25% 37.580 11 Template:Navbox 6.65% 30.310 1 Template:Citation_needed 5.76% 26.271 1 Template:Hlist --> <!-- Saved in parser cache with key enwiki:pcache:140841:|#|:idhash:canonical and timestamp 20250212190253 and revision id 1263056173. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Sufficient_statistic&amp;oldid=1263056173">https://en.wikipedia.org/w/index.php?title=Sufficient_statistic&amp;oldid=1263056173</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Statistical_theory" title="Category:Statistical theory">Statistical theory</a></li><li><a href="/wiki/Category:Statistical_principles" title="Category:Statistical principles">Statistical principles</a></li><li><a href="/wiki/Category:Factorization" title="Category:Factorization">Factorization</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2023" title="Category:Articles with unsourced statements from September 2023">Articles with unsourced statements from September 2023</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 December 2024, at 13:02<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Sufficient_statistic&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Sufficient statistic</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>14 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-68d95c4d5-bsjdw","wgBackendResponseTime":131,"wgPageParseReport":{"limitreport":{"cputime":"0.597","walltime":"0.784","ppvisitednodes":{"value":3274,"limit":1000000},"postexpandincludesize":{"value":186328,"limit":2097152},"templateargumentsize":{"value":1760,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":89462,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 455.728 1 -total"," 34.78% 158.496 1 Template:Reflist"," 26.43% 120.431 1 Template:Statistics"," 25.89% 117.966 1 Template:Navbox_with_collapsible_groups"," 25.32% 115.387 11 Template:Cite_journal"," 16.34% 74.471 1 Template:Short_description"," 11.64% 53.053 2 Template:Pagetype"," 8.25% 37.580 11 Template:Navbox"," 6.65% 30.310 1 Template:Citation_needed"," 5.76% 26.271 1 Template:Hlist"]},"scribunto":{"limitreport-timeusage":{"value":"0.277","limit":"10.000"},"limitreport-memusage":{"value":6090370,"limit":52428800},"limitreport-logs":"table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-68d95c4d5-z6t5s","timestamp":"20250212190253","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Sufficient statistic","url":"https:\/\/en.wikipedia.org\/wiki\/Sufficient_statistic","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1099110","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1099110","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-27T23:46:03Z","dateModified":"2024-12-14T13:02:07Z","headline":"concept"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10