CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 64 results for author: <span class="mathjax">Schmidt, L P H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schmidt, L P H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schmidt%2C+L+P+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schmidt, L P H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14620">arXiv:2411.14620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14620">pdf</a>, <a href="https://arxiv.org/format/2411.14620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Non-Exponential Auger-Meitner Decay of Inner-Shell-Excited CO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Goy%2C+C">C. Goy</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rauch%2C+C">C. Rauch</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sisourat%2C+N">N. Sisourat</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14620v1-abstract-short" style="display: inline;"> Electronically excited atoms or molecules may deexcite by emission of a secondary electron through an Auger-Meitner decay. This deexcitation process is typically considered to be exponential in time. This is strictly speaking, however, only true for the case of an atom. Here, we present a study experimentally demonstrating the non-exponential time dependence of the decay of an inner-shell hole in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14620v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14620v1-abstract-full" style="display: none;"> Electronically excited atoms or molecules may deexcite by emission of a secondary electron through an Auger-Meitner decay. This deexcitation process is typically considered to be exponential in time. This is strictly speaking, however, only true for the case of an atom. Here, we present a study experimentally demonstrating the non-exponential time dependence of the decay of an inner-shell hole in a diatomic molecule. In addition, we provide an intuitive explanation for the origin of the observed variation of the molecular lifetimes and their dependence on the kinetic energy of the ionic fragments measured in coincidence with the photoelectrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14620v1-abstract-full').style.display = 'none'; document.getElementById('2411.14620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00304">arXiv:2404.00304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00304">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adn1555">10.1126/science.adn1555 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Kapitza-Dirac effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Hao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Jacob%2C+S">Sina Jacob</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Q">Qinying Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00304v1-abstract-short" style="display: inline;"> Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description the effect is time-independent. In the present work, we extend the Kapitza-Dirac concept to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a femt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00304v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00304v1-abstract-full" style="display: none;"> Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description the effect is time-independent. In the present work, we extend the Kapitza-Dirac concept to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a femtosecond (10 15 second) standing wave pulse in a pump-probe scheme, we observe so far unseen time-dependent diffraction patterns. The fringe spacing in the observed pattern differs from that generated by the conventional Kapitza-Dirac effect, moreover it decreases as the pump-probe delay time increases. By exploiting this time-resolved diffraction scheme, we gather access to the time evolution of the previously inaccessible phase properties of a free electron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00304v1-abstract-full').style.display = 'none'; document.getElementById('2404.00304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03215">arXiv:2402.03215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.03215">pdf</a>, <a href="https://arxiv.org/format/2402.03215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Sub-cycle resolved strong field ionization of chiral molecules and the origin of chiral photoelectron asymmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Kruse%2C+J">J. Kruse</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03215v1-abstract-short" style="display: inline;"> We report on strong field ionization of S- and R-propylene oxide in circularly polarized two-color laser fields. We find that the relative helicity of the two single color laser fields affects the photoelectron circular dichroism (PECD). Further, we observe that PECD is modulated as a function of the sub-cycle release time of the electron. Our experimental observations are successfully described b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03215v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03215v1-abstract-full" style="display: none;"> We report on strong field ionization of S- and R-propylene oxide in circularly polarized two-color laser fields. We find that the relative helicity of the two single color laser fields affects the photoelectron circular dichroism (PECD). Further, we observe that PECD is modulated as a function of the sub-cycle release time of the electron. Our experimental observations are successfully described by a heuristic model based on electrons in chiral initial states, which are selectively liberated by the laser field and, after tunneling, interact with an achiral Coulomb potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03215v1-abstract-full').style.display = 'none'; document.getElementById('2402.03215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08573">arXiv:2307.08573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08573">pdf</a>, <a href="https://arxiv.org/format/2307.08573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Ideal Two-Color Field Ratio for Holographic Angular Streaking of Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08573v1-abstract-short" style="display: inline;"> We study strong field ionization of molecular hydrogen in highly intense co-rotating two-color (CoRTC) laser fields. The measured electron momentum distributions show alternating half-rings (AHR) that are characteristic for sub-cycle interference. We report on the role of the two-color field ratio for the visibility of this sub-cycle interference. The ratio of the peak electric field at 780 nm com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08573v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08573v1-abstract-full" style="display: none;"> We study strong field ionization of molecular hydrogen in highly intense co-rotating two-color (CoRTC) laser fields. The measured electron momentum distributions show alternating half-rings (AHR) that are characteristic for sub-cycle interference. We report on the role of the two-color field ratio for the visibility of this sub-cycle interference. The ratio of the peak electric field at 780 nm compared to the peak electric field at 390 nm $E_{780}/E_{390}$ is varied from 0.037 to 0.18. We find very good agreement with the results from our semiclassical simulation. We conclude that the AHR pattern is visible if two conditions are fulfilled. First, the amplitudes of the two pathways that lead to the sub-cycle interference have to be similar, which is the case for low two-color field ratios $E_{780}/E_{390}$. Second, the phase difference of the two pathways must be strong enough to allow for destructive interference, which is the case for high two-color field ratios $E_{780}/E_{390}$. For typical experimental conditions, we find that two-color field ratios $E_{780}/E_{390}$ in the range from 0.037 to 0.12 lead to good visibility of the AHR pattern. This guides future experiments to measure the Wigner time delay using holographic angular streaking of electrons (HASE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08573v1-abstract-full').style.display = 'none'; document.getElementById('2307.08573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00481">arXiv:2302.00481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00481">pdf</a>, <a href="https://arxiv.org/ps/2302.00481">ps</a>, <a href="https://arxiv.org/format/2302.00481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.023118">10.1103/PhysRevResearch.5.023118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular dependence of the Wigner time delay upon strong field ionization from an aligned p-orbital </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00481v1-abstract-short" style="display: inline;"> We present experimental data on the strong-field ionization of the argon dimer in a co-rotating two-color (CoRTC) laser field. We observe a sub-cycle interference pattern in the photoelectron momentum distribution and infer the Wigner time delay using holographic angular streaking of electrons (HASE). We find that the Wigner time delay varies by more than 400 attoseconds as a function of the elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00481v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00481v1-abstract-full" style="display: none;"> We present experimental data on the strong-field ionization of the argon dimer in a co-rotating two-color (CoRTC) laser field. We observe a sub-cycle interference pattern in the photoelectron momentum distribution and infer the Wigner time delay using holographic angular streaking of electrons (HASE). We find that the Wigner time delay varies by more than 400 attoseconds as a function of the electron emission direction with respect to the molecular axis. The measured time delay is found to be independent of the parity of the dimer-cation and is in good agreement with our theoretical model based on the ionization of an aligned atomic p-orbital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00481v1-abstract-full').style.display = 'none'; document.getElementById('2302.00481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023) 0231189 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01791">arXiv:2211.01791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01791">pdf</a>, <a href="https://arxiv.org/format/2211.01791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033094">10.1103/PhysRevResearch.5.033094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental fingerprint of the electron&#39;s longitudinal momentum at the tunnel exit in strong field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">N. Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01791v1-abstract-short" style="display: inline;"> We present experimental data on the strong field tunnel ionization of argon in a counter-rotating two-color (CRTC) laser field. We find that the initial momentum component along the tunneling direction changes sign comparing the rising and the falling edge of the CRTC field. If the initial momentum at the tunnel exit points in the direction of the ion at the instant of tunneling, this manifests as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01791v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01791v1-abstract-full" style="display: none;"> We present experimental data on the strong field tunnel ionization of argon in a counter-rotating two-color (CRTC) laser field. We find that the initial momentum component along the tunneling direction changes sign comparing the rising and the falling edge of the CRTC field. If the initial momentum at the tunnel exit points in the direction of the ion at the instant of tunneling, this manifests as an enhanced Coulomb interaction of the outgoing electron with its parent ion. Our conclusions are in accordance with predictions based on strong field approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01791v1-abstract-full').style.display = 'none'; document.getElementById('2211.01791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023) 033094 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09831">arXiv:2110.09831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09831">pdf</a>, <a href="https://arxiv.org/format/2110.09831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.053001">10.1103/PhysRevLett.128.053001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion and Electron Momentum Distributions from Single and Double Ionization of Helium Induced by Compton Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A">A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Kirchner%2C+D">D. Kirchner</a>, <a href="/search/physics?searchtype=author&amp;query=Honkim%C3%A4ki%2C+V">V. Honkim盲ki</a>, <a href="/search/physics?searchtype=author&amp;query=Houamer%2C+S">S. Houamer</a>, <a href="/search/physics?searchtype=author&amp;query=Chuluunbaatar%2C+O">O. Chuluunbaatar</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+Y+V">Yu. V. Popov</a>, <a href="/search/physics?searchtype=author&amp;query=Volobuev%2C+I+P">I. P. Volobuev</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09831v1-abstract-short" style="display: inline;"> We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with $h谓=40$ keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09831v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09831v1-abstract-full" style="display: none;"> We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with $h谓=40$ keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, non-relativistic calculations require the use of highly correlated initial- and final-state wavefunctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09831v1-abstract-full').style.display = 'none'; document.getElementById('2110.09831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 053001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08601">arXiv:2110.08601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.08601">pdf</a>, <a href="https://arxiv.org/format/2110.08601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.023201">10.1103/PhysRevLett.128.023201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field effect in high-order above-threshold ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+H">Hongcheng Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+X">Xiao-Min Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Burgd%C3%B6rfer%2C+J">Joachim Burgd枚rfer</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+F">Feng He</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08601v1-abstract-short" style="display: inline;"> We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the classical cutoff is found to be vastly different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08601v1-abstract-full').style.display = 'inline'; document.getElementById('2110.08601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08601v1-abstract-full" style="display: none;"> We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the classical cutoff is found to be vastly different from that below the cutoff. A V-shape structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schr枚dinger equation simulations for different model potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08601v1-abstract-full').style.display = 'none'; document.getElementById('2110.08601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04027">arXiv:2110.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04027">pdf</a>, <a href="https://arxiv.org/format/2110.04027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Photoelectron energy peaks shift against the radiation pressure in strong field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04027v1-abstract-short" style="display: inline;"> The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules the photoelectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04027v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04027v1-abstract-full" style="display: none;"> The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules the photoelectron energy does not depend on the electron&#39;s emission direction but theoretical studies have questioned this since 1990. Here we provide experimental evidence, that the energies of photoelectrons emitted against the light-propagation direction are shifted towards higher values while those electrons that are emitted along the light-propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution from the interaction of the moving electrons with the incident photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04027v1-abstract-full').style.display = 'none'; document.getElementById('2110.04027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10426">arXiv:2108.10426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10426">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abq8227">10.1126/sciadv.abq8227 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast preparation and strong-field ionization of an atomic Bell-like state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10426v1-abstract-short" style="display: inline;"> Molecules are many body systems with a substantial amount of entanglement between their electrons. Is there a way to break the molecular bond of a diatomic molecule and obtain two atoms in their ground state which are still entangled and form a Bell-like state? We present a scheme that allows for the preparation of such entangled atomic states from single oxygen molecules on femtosecond time scale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10426v1-abstract-full').style.display = 'inline'; document.getElementById('2108.10426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10426v1-abstract-full" style="display: none;"> Molecules are many body systems with a substantial amount of entanglement between their electrons. Is there a way to break the molecular bond of a diatomic molecule and obtain two atoms in their ground state which are still entangled and form a Bell-like state? We present a scheme that allows for the preparation of such entangled atomic states from single oxygen molecules on femtosecond time scales. The two neutral oxygen atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we employ non-adiabatic tunnel ionization, which is a magnetic quantum number-sensitive mechanism. We then investigate correlations by comparing single and double ionization probabilities of the Bell-like state. The experimental results agree with the predictions for an entangled state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10426v1-abstract-full').style.display = 'none'; document.getElementById('2108.10426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 9 (2023) eabq8227 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13844">arXiv:2107.13844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13844">pdf</a>, <a href="https://arxiv.org/ps/2107.13844">ps</a>, <a href="https://arxiv.org/format/2107.13844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.273201">10.1103/PhysRevLett.127.273201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-adiabatic Strong Field Ionization of Atomic Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13844v3-abstract-short" style="display: inline;"> We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schr枚dinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electron&#39;s energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13844v3-abstract-full').style.display = 'inline'; document.getElementById('2107.13844v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13844v3-abstract-full" style="display: none;"> We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schr枚dinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electron&#39;s energy spectrum. The most probable emission angle (also known as &#39;attoclock-offset angle&#39; or &#39;streaking angle&#39;) is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection-angle can be explained by a model that includes non-adiabatic corrections of the initial momentum distribution at the tunnel exit and non-adiabatic corrections of the tunnel exit position itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13844v3-abstract-full').style.display = 'none'; document.getElementById('2107.13844v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 273201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05994">arXiv:2107.05994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05994">pdf</a>, <a href="https://arxiv.org/format/2107.05994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26994-2">10.1038/s41467-021-26994-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the photoelectron emission delay in the molecular frame </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Klyssek%2C+K">Kim Klyssek</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">Nikolay M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-P%C3%A9rez%2C+I">Isabel Vela-P茅rez</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Tsitsonis%2C+D">Dimitrios Tsitsonis</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">Juliane Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">Angelina Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">Niklas Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarz%2C+C">Christian Schwarz</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">Leon Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+V+T">Vernon T. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05994v1-abstract-short" style="display: inline;"> If matter absorbs a photon of sufficient energy it emits an electron. The question of the duration of the emission process has intrigued scientists for decades. With the advent of attosecond metrology, experiments addressing such ultrashort intervals became possible. While these types of studies require attosecond experimental precision, we present here a novel measurement approach that avoids tho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05994v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05994v1-abstract-full" style="display: none;"> If matter absorbs a photon of sufficient energy it emits an electron. The question of the duration of the emission process has intrigued scientists for decades. With the advent of attosecond metrology, experiments addressing such ultrashort intervals became possible. While these types of studies require attosecond experimental precision, we present here a novel measurement approach that avoids those experimental difficulties. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion&#39;s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The measured emission times depend drastically on the emission direction and exhibit characteristic changes along the shape resonance of the molecule. Our approach can be routinely extended to other electron orbitals and more complex molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05994v1-abstract-full').style.display = 'none'; document.getElementById('2107.05994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 12, 6657 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14170">arXiv:2106.14170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14170">pdf</a>, <a href="https://arxiv.org/format/2106.14170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.103201">10.1103/PhysRevLett.127.103201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fourfold Differential Photoelectron Circular Dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">A. Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Hans%2C+A">A. Hans</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">L. Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">A. Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuzawa%2C+H">H. Fukuzawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14170v1-abstract-short" style="display: inline;"> We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s-photoelectrons in coincidence with fragment ions, we deduce the molecule&#39;s orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14170v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14170v1-abstract-full" style="display: none;"> We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s-photoelectrons in coincidence with fragment ions, we deduce the molecule&#39;s orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14170v1-abstract-full').style.display = 'none'; document.getElementById('2106.14170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 103201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02028">arXiv:2105.02028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02028">pdf</a>, <a href="https://arxiv.org/format/2105.02028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.193001">10.1103/PhysRevLett.123.193001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon-momentum-induced molecular dynamics in photoionization of N$_2$ at $h谓=40$ keV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">J. Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Janssen%2C+R">R. Janssen</a>, <a href="/search/physics?searchtype=author&amp;query=Honkim%C3%A4ki%2C+V">V. Honkim盲ki</a>, <a href="/search/physics?searchtype=author&amp;query=Drnec%2C+J">J. Drnec</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02028v1-abstract-short" style="display: inline;"> We investigate K-shell ionization of N$_2$ at 40 keV photon energy. Using a COLTRIMS reaction microscope we determine the vector momenta of the photoelectron, the Auger electron and both N$^+$ fragments. These fully differential data show that the dissociation process of the N$_2^{2+}$ ion is significantly modified not only by the recoil momentum of the photoelectron, but also by the photon moment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02028v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02028v1-abstract-full" style="display: none;"> We investigate K-shell ionization of N$_2$ at 40 keV photon energy. Using a COLTRIMS reaction microscope we determine the vector momenta of the photoelectron, the Auger electron and both N$^+$ fragments. These fully differential data show that the dissociation process of the N$_2^{2+}$ ion is significantly modified not only by the recoil momentum of the photoelectron, but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30/70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02028v1-abstract-full').style.display = 'none'; document.getElementById('2105.02028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 193001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01955">arXiv:2105.01955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.01955">pdf</a>, <a href="https://arxiv.org/format/2105.01955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.243201">10.1103/PhysRevLett.123.243201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recoil-Induced Asymmetry of Nondipole Molecular Frame Photoelectron Angular Distributions in the Hard X-ray Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">N. Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">I. Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Mletzko%2C+T">T. Mletzko</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">J. Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Janssen%2C+R">R. Janssen</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Artemyev%2C+A+N">A. N. Artemyev</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01955v1-abstract-short" style="display: inline;"> We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h 谓=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01955v1-abstract-full').style.display = 'inline'; document.getElementById('2105.01955v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01955v1-abstract-full" style="display: none;"> We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h 谓=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at XFELs operating in the few tens of keV regime, where such nondipole and recoil effects will be essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01955v1-abstract-full').style.display = 'none'; document.getElementById('2105.01955v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 243201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03375">arXiv:2101.03375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP03090J">10.1039/D2CP03090J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new route for enantio-sensitive structure determination by photoelectron scattering on molecules in the gas phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Novikovskiy%2C+N+M">N. M. Novikovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">Ch. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">G. Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Knie%2C+A">A. Knie</a>, <a href="/search/physics?searchtype=author&amp;query=Hans%2C+A">A. Hans</a>, <a href="/search/physics?searchtype=author&amp;query=Ltaief%2C+L+B">L. Ben Ltaief</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+A">A. Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuzawa%2C+H">H. Fukuzawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03375v2-abstract-short" style="display: inline;"> X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas-phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03375v2-abstract-full').style.display = 'inline'; document.getElementById('2101.03375v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03375v2-abstract-full" style="display: none;"> X-ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas-phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight to the structure, handedness and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, as, e.g., protons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03375v2-abstract-full').style.display = 'none'; document.getElementById('2101.03375v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. 24, 26458-26465 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08554">arXiv:2011.08554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.083201">10.1103/PhysRevLett.126.083201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Differential Photoion Circular Dichroism in Strong-Field Ionization of Chiral Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+M">M. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Braun%2C+H">H. Braun</a>, <a href="/search/physics?searchtype=author&amp;query=Baumert%2C+T">T. Baumert</a>, <a href="/search/physics?searchtype=author&amp;query=Stohner%2C+J">J. Stohner</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Ph. V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08554v1-abstract-short" style="display: inline;"> We investigate the differential ionization probability of chiral molecules in the strong field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. We observe a variation of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08554v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08554v1-abstract-full" style="display: none;"> We investigate the differential ionization probability of chiral molecules in the strong field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. We observe a variation of the differential ionization probability in a range of several percent. Accordingly, we conclude that the helicity of light is a quantity that should be considered for the theoretical description of the strong field ionization rate of chiral molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08554v1-abstract-full').style.display = 'none'; document.getElementById('2011.08554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> v1 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 083201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07032">arXiv:2011.07032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-01081-3">10.1038/s41567-020-01081-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swirling the weakly bound helium dimer from inside </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Q">Qingze Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Maschkiwitz%2C+H">Holger Maschkiwitz</a>, <a href="/search/physics?searchtype=author&amp;query=Hahnenbruch%2C+J">J枚rg Hahnenbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">Stefan Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Blume%2C+D">D枚rte Blume</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07032v1-abstract-short" style="display: inline;"> Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose and Fermi gases and Efimov physics. Such control usually prepares samples that are stationary or evolve adiabatically in time. On the other hand, in molecular physics external ultrashort laser fields are employed to create anisotropic poten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07032v1-abstract-full').style.display = 'inline'; document.getElementById('2011.07032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07032v1-abstract-full" style="display: none;"> Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose and Fermi gases and Efimov physics. Such control usually prepares samples that are stationary or evolve adiabatically in time. On the other hand, in molecular physics external ultrashort laser fields are employed to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space. Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of $2\hbar$ and evoking an initially confined dissociative wave packet. We record a movie of the density and phase of this wave packet as it evolves from the inside out. At large internuclear distances, where the interaction between the two helium atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems such as halo and Efimov states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07032v1-abstract-full').style.display = 'none'; document.getElementById('2011.07032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, to be published in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 17, 174-178 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08298">arXiv:2010.08298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08298">pdf</a>, <a href="https://arxiv.org/format/2010.08298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abb9318">10.1126/science.abb9318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zeptosecond Birth Time Delay in Molecular Photoionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">Nico Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">Andreas Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">Leon Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">Miriam Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08298v1-abstract-short" style="display: inline;"> Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosecond ($10^{-18}$ s) domain between electron ejection from different orbitals, electronic bands, or in different directions. Here, we demonstrate that a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08298v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08298v1-abstract-full" style="display: none;"> Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosecond ($10^{-18}$ s) domain between electron ejection from different orbitals, electronic bands, or in different directions. Here, we demonstrate that across a molecular orbital the electron is not launched at the same time. The birth time rather depends on the travel time of the photon across the molecule, which is 247 zeptoseconds ($10^{-21}$ s) for the average bond length of H$_2$. Using an electron interferometric technique, we resolve this birth time delay between electron emission from the two centers of the hydrogen molecule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08298v1-abstract-full').style.display = 'none'; document.getElementById('2010.08298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 16 Oct 2020: Vol. 370, Issue 6514, pp. 339-341 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07638">arXiv:2008.07638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07638">pdf</a>, <a href="https://arxiv.org/format/2008.07638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.053202">10.1103/PhysRevLett.126.053202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Nondipole Effect in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">S. Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">K. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07638v3-abstract-short" style="display: inline;"> Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07638v3-abstract-full').style.display = 'inline'; document.getElementById('2008.07638v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07638v3-abstract-full" style="display: none;"> Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-dipole effect in strong-field ionization. We find that an electric non-dipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric non-dipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric non-dipole effect and compare our findings with a classical model and quantum calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07638v3-abstract-full').style.display = 'none'; document.getElementById('2008.07638v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 053202 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09584">arXiv:2005.09584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09584">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-21845-6">10.1038/s41467-021-21845-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular dependence of the Wigner time delay upon tunnel ionization of $H_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">Simon Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">Angelina Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">Markus S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09584v3-abstract-short" style="display: inline;"> More than 100 years after its discovery and its explanation in the energy domain, the duration of the photoelectric effect is still heavily studied. The emission time of a photoelectron can be quantified by the Wigner time delay. Experiments addressing this time delay for single-photon ionization became feasible during the last 10 years. A missing piece, which has not been studied, so far, is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09584v3-abstract-full').style.display = 'inline'; document.getElementById('2005.09584v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09584v3-abstract-full" style="display: none;"> More than 100 years after its discovery and its explanation in the energy domain, the duration of the photoelectric effect is still heavily studied. The emission time of a photoelectron can be quantified by the Wigner time delay. Experiments addressing this time delay for single-photon ionization became feasible during the last 10 years. A missing piece, which has not been studied, so far, is the Wigner time delay for strong-field ionization of molecules. Here we show experimental data on the Wigner time delay for tunnel ionization of $H_{2}$ molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the electrons that are due to spatial shifts of the electron&#39;s birth position after tunneling. This introduces an intuitive perspective towards the Wigner time delay in strong-field ionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09584v3-abstract-full').style.display = 'none'; document.getElementById('2005.09584v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 12, 1697 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04148">arXiv:2005.04148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04148">pdf</a>, <a href="https://arxiv.org/format/2005.04148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.043115">10.1103/PhysRevA.102.043115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sideband Modulation by Sub-Cycle Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+A">A. Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">K. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04148v4-abstract-short" style="display: inline;"> We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 39&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04148v4-abstract-full').style.display = 'inline'; document.getElementById('2005.04148v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04148v4-abstract-full" style="display: none;"> We experimentally and theoretically show that the electron energy spectra strongly depend on the relative helicity in highly intense, circularly polarized two-color laser fields which is an unexpected finding. The employed counter-rotating two-color (CRTC) fields and the co-rotating two-color (CoRTC) fields are both a superposition of circularly polarized laser pulses at a central wavelength of 390 nm and 780 nm (intensitiy ratio $I_{390}/I_{780}\approx 250$). For the CRTC field, the measured electron energy spectrum is dominated by peaks that are spaced by 3.18 eV (corresponds to the photon energy of light at a wavelength of 390 nm). For the CoRTC field, we observe additional energy peaks (sidebands). Using our semi-classical, trajectory-based models, we conclude that the sideband intensity is modulated by a sub-cycle interference, which sensitively depends on the relative helicity in circularly polarized two-color fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04148v4-abstract-full').style.display = 'none'; document.getElementById('2005.04148v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 043115 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10706">arXiv:2003.10706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10706">pdf</a>, <a href="https://arxiv.org/format/2003.10706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.233201">10.1103/PhysRevLett.124.233201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Photoion Backward Emission in Photoionization of He and N2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">Sven Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">Max Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Vela-Perez%2C+I">Isabel Vela-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Nalin%2C+G">Giammarco Nalin</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Anders%2C+N">Nils Anders</a>, <a href="/search/physics?searchtype=author&amp;query=Melzer%2C+N">Niklas Melzer</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">Andreas Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">Nico Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Siebert%2C+J">Juliane Siebert</a>, <a href="/search/physics?searchtype=author&amp;query=Demekhin%2C+P+V">Philipp V. Demekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schoeffler%2C+M+S">Markus S. Schoeffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Doerner%2C+R">Reinhard Doerner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10706v1-abstract-short" style="display: inline;"> We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV $\leq~E_纬~\leq$ 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system&#39;s center of mass. Nevertheless, the mean value&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10706v1-abstract-full').style.display = 'inline'; document.getElementById('2003.10706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10706v1-abstract-full" style="display: none;"> We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV $\leq~E_纬~\leq$ 40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system&#39;s center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by $-3/5$ times the photon momentum. These results experimentally confirm a 90 year old prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10706v1-abstract-full').style.display = 'none'; document.getElementById('2003.10706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 233201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07713">arXiv:2001.07713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07713">pdf</a>, <a href="https://arxiv.org/format/2001.07713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033080">10.1103/PhysRevResearch.2.033080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the Two-Electron Cusp in the Ground States of He and H2 via Quasifree Double Photoionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Serov%2C+V">V. Serov</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Kircher%2C+M">M. Kircher</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+L">L. Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Bray%2C+A+W">A. W. Bray</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A+S">A. S. Kheifets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07713v2-abstract-short" style="display: inline;"> We report on kinematically complete measurements and ab initio non-perturbative calculations of double ionization of He and H2 by a single 800 eV circularly polarized photon. We confirm the quasifree mechanism of photoionization for H2 and show how it originates from the two-electron cusp in the ground state of a two-electron target. Our approach establishes a new method for mapping electrons rela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07713v2-abstract-full').style.display = 'inline'; document.getElementById('2001.07713v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07713v2-abstract-full" style="display: none;"> We report on kinematically complete measurements and ab initio non-perturbative calculations of double ionization of He and H2 by a single 800 eV circularly polarized photon. We confirm the quasifree mechanism of photoionization for H2 and show how it originates from the two-electron cusp in the ground state of a two-electron target. Our approach establishes a new method for mapping electrons relative to each other and provides valuable insight into photoionization beyond the electric-dipole approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07713v2-abstract-full').style.display = 'none'; document.getElementById('2001.07713v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033080 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07278">arXiv:1902.07278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0653-y">10.1038/s41567-019-0653-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic fields alter tunneling in strong-field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Brennecke%2C+S">S. Brennecke</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">H. Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Hoehl%2C+J">J. Hoehl</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07278v1-abstract-short" style="display: inline;"> When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_纬=E_纬/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ionization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07278v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07278v1-abstract-full" style="display: none;"> When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_纬=E_纬/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ionization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are very challenging due to the extremely small photon momentum ($~10^{-4}$ a.u.) and their precision has been too limited, so far, to ultimately resolve the debate. Here, by utilizing a novel experimental approach of two counter-propagating laser pulses, we present a detailed study on the effects of the photon momentum in strong-field ionization. The high precision and self-referencing of the method allows to unambiguously demonstrate the action of the light&#39;s magnetic field on the electron while it is under the tunnel barrier, confirming theoretical predictions, disproving others. Our results deepen the understanding of, for example, molecular imaging and time-resolved photoelectron holography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07278v1-abstract-full').style.display = 'none'; document.getElementById('1902.07278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05898">arXiv:1805.05898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.05898">pdf</a>, <a href="https://arxiv.org/ps/1805.05898">ps</a>, <a href="https://arxiv.org/format/1805.05898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.163202">10.1103/PhysRevLett.121.163202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Experimental Access to the Nonadiabatic Initial Momentum Offset upon Tunnel Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Eicke%2C+N">N. Eicke</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Strenger%2C+N">N. Strenger</a>, <a href="/search/physics?searchtype=author&amp;query=Pier%2C+A">A. Pier</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">M. Lein</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05898v2-abstract-short" style="display: inline;"> We report on the non-adiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of non-adiabaticity. Two-color counter- and co-rotating fields (390 and 780 nm) are compared to show that the non-adiabatic offset strongly depends on the temporal evolution of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05898v2-abstract-full').style.display = 'inline'; document.getElementById('1805.05898v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05898v2-abstract-full" style="display: none;"> We report on the non-adiabatic offset of the initial electron momentum distribution in the plane of polarization upon single ionization of argon by strong field tunneling and show how to experimentally control the degree of non-adiabaticity. Two-color counter- and co-rotating fields (390 and 780 nm) are compared to show that the non-adiabatic offset strongly depends on the temporal evolution of the laser electric field. We introduce a simple method for the direct access to the non-adiabatic offset using two-color counter- and co-rotating fields. Further, for a single-color circularly polarized field at 780 nm we show that the radius of the experimentally observed donut-like distribution increases for increasing momentum in the light propagation direction. Our observed initial momentum offsets are well reproduced by the strong-field approximation (SFA). A mechanistic picture is introduced that links the measured non-adiabatic offset to the magnetic quantum number of virtually populated intermediate states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05898v2-abstract-full').style.display = 'none'; document.getElementById('1805.05898v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 163202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.04685">arXiv:1804.04685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.04685">pdf</a>, <a href="https://arxiv.org/ps/1804.04685">ps</a>, <a href="https://arxiv.org/format/1804.04685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.223204">10.1103/PhysRevLett.120.223204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">H. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+X">X. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Schoffler%2C+M">M. Schoffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Dorner%2C+R">R. Dorner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.04685v1-abstract-short" style="display: inline;"> We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04685v1-abstract-full').style.display = 'inline'; document.getElementById('1804.04685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.04685v1-abstract-full" style="display: none;"> We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04685v1-abstract-full').style.display = 'none'; document.getElementById('1804.04685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 223204 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.10841">arXiv:1803.10841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.10841">pdf</a>, <a href="https://arxiv.org/ps/1803.10841">ps</a>, <a href="https://arxiv.org/format/1803.10841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.173003">10.1103/PhysRevLett.121.173003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating Dipole and Quadrupole Contributions to Single-Photon Double Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grundmann%2C+S">S. Grundmann</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Bray%2C+A+W">A. W. Bray</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Klumpp%2C+S">S. Klumpp</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A+S">A. S. Kheifets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.10841v2-abstract-short" style="display: inline;"> We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10841v2-abstract-full').style.display = 'inline'; document.getElementById('1803.10841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.10841v2-abstract-full" style="display: none;"> We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.10841v2-abstract-full').style.display = 'none'; document.getElementById('1803.10841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 3 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 173003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08380">arXiv:1803.08380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08380">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5022564">10.1063/1.5022564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Trojanowskaja%2C+D">D. Trojanowskaja</a>, <a href="/search/physics?searchtype=author&amp;query=Gatzke%2C+J">J. Gatzke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Stohner%2C+J">J. Stohner</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Jagutzki%2C+O">O. Jagutzki</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08380v1-abstract-short" style="display: inline;"> Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency e is as high as possible, as the overall efficiency scales with e over n, i.e. the power of the number of detected particles. Here we present measured abs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08380v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08380v1-abstract-full" style="display: none;"> Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency e is as high as possible, as the overall efficiency scales with e over n, i.e. the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced &#34;funnel MCPs&#34;. Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The &#34;funnel&#34; MCPs exhibit an efficiency of approx. 90 percent, gaining a factor of 24 (as compared to &#34;normal&#34; MCPs) in case of a five-fold ion coincidence detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08380v1-abstract-full').style.display = 'none'; document.getElementById('1803.08380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figues, submitted to Review of Scientific Instruments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 89, 045112 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07355">arXiv:1803.07355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-07882-8">10.1038/s41467-018-07882-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-slit photoelectron interference in strong-field ionization of the neon dimer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Eicke%2C+N">Nicolas Eicke</a>, <a href="/search/physics?searchtype=author&amp;query=Huber%2C+P">Pia Huber</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6hler%2C+J">Jonas K枚hler</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">Stefan Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J枚rg Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">Nikolai Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">Kevin Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">Hendrik Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Lein%2C+M">Manfred Lein</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07355v1-abstract-short" style="display: inline;"> Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. In this letter, we report on the observation of two-ce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07355v1-abstract-full').style.display = 'inline'; document.getElementById('1803.07355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07355v1-abstract-full" style="display: none;"> Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. In this letter, we report on the observation of two-center interference in the molecular frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which were measured in coincidence with electrons, allowed choosing the symmetry of the continuum electronic wave function, leading to observation of both, gerade and ungerade, types of interference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07355v1-abstract-full').style.display = 'none'; document.getElementById('1803.07355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 10, 1 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06630">arXiv:1802.06630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06630">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0080-5">10.1038/s41567-018-0080-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Preparation and Detection of Ring Currents in Single Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">Martin Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">Jonas Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">Kilian Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">Nikolai Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">Kevin Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kunlong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Barth%2C+I">Ingo Barth</a>, <a href="/search/physics?searchtype=author&amp;query=Kaushal%2C+J">Jivesh Kaushal</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+F">Felipe Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+M">Misha Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnova%2C+O">Olga Smirnova</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06630v1-abstract-short" style="display: inline;"> Quantum particles can penetrate potential barriers by tunneling (1). If that barrier is rotating, the tunneling process is modified (2,3). This is typical for electrons in atoms, molecules or solids exposed to strong circularly polarized laser pulses (4,5). Here we measure how the transmission probability through a rotating tunnel depends on the sign of the magnetic quantum number m of the electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06630v1-abstract-full').style.display = 'inline'; document.getElementById('1802.06630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06630v1-abstract-full" style="display: none;"> Quantum particles can penetrate potential barriers by tunneling (1). If that barrier is rotating, the tunneling process is modified (2,3). This is typical for electrons in atoms, molecules or solids exposed to strong circularly polarized laser pulses (4,5). Here we measure how the transmission probability through a rotating tunnel depends on the sign of the magnetic quantum number m of the electron and thus on the initial sense of rotation of its quantum phase. We further show that the electron keeps part of that rotary motion on its way through the tunnel by measuring m-dependent modification of the electron emission pattern. These findings are relevant for attosecond metrology as well as for interpretation of strong field electron emission from atoms and molecules (6-13) and directly demonstrates the creation of ring currents in bound states of ions with attosecond precision. In solids, this could open a way to inducing and controlling ring-current related topological phenomena (14). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06630v1-abstract-full').style.display = 'none'; document.getElementById('1802.06630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, Nature Physics accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Phys 14, 701-704 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02787">arXiv:1802.02787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02787">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.083002">10.1103/PhysRevLett.121.083002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the He-He, Ne-Ne, Ar-Ar, and H$_{2}$ interaction potential by wave function imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">T. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02787v1-abstract-short" style="display: inline;"> We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Schr枚dinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02787v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02787v1-abstract-full" style="display: none;"> We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Schr枚dinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02787v1-abstract-full').style.display = 'none'; document.getElementById('1802.02787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages with 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 083002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03746">arXiv:1801.03746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.03746">pdf</a>, <a href="https://arxiv.org/format/1801.03746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-04740-5">10.1038/s41467-018-04740-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging the square of the correlated two-electron wave function of a hydrogen molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Bello%2C+R+Y">R. Y. Bello</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Lower%2C+J">J. Lower</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schober%2C+C">C. Schober</a>, <a href="/search/physics?searchtype=author&amp;query=Keiling%2C+M">M. Keiling</a>, <a href="/search/physics?searchtype=author&amp;query=Lenz%2C+U">U. Lenz</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+K">K. Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+M">M. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Klumpp%2C+S">S. Klumpp</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">T. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Serov%2C+V+V">V. V. Serov</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A+S">A. S. Kheifets</a>, <a href="/search/physics?searchtype=author&amp;query=Argenti%2C+L">L. Argenti</a>, <a href="/search/physics?searchtype=author&amp;query=Palacios%2C+A">A. Palacios</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+F">F. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03746v1-abstract-short" style="display: inline;"> The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have esc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03746v1-abstract-full').style.display = 'inline'; document.getElementById('1801.03746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03746v1-abstract-full" style="display: none;"> The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03746v1-abstract-full').style.display = 'none'; document.getElementById('1801.03746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8, Article number: 2266 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03935">arXiv:1711.03935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.03935">pdf</a>, <a href="https://arxiv.org/ps/1711.03935">ps</a>, <a href="https://arxiv.org/format/1711.03935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.043202">10.1103/PhysRevLett.120.043202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of spin and angular momentum in strong-field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03935v2-abstract-short" style="display: inline;"> The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at $6\cdot10^{13}$ W/cm$^2$ has been measured. At this photon energy of 3.14 eV the above threshold ionization peaks connected to Xe$^+$ ions in the ground state ($J=3/2$, ionization potential $I_p=12.1$ eV) and the first exicted state ($J=1/2$, $I_p=13.4$ eV) are clearly separated in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03935v2-abstract-full').style.display = 'inline'; document.getElementById('1711.03935v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03935v2-abstract-full" style="display: none;"> The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at $6\cdot10^{13}$ W/cm$^2$ has been measured. At this photon energy of 3.14 eV the above threshold ionization peaks connected to Xe$^+$ ions in the ground state ($J=3/2$, ionization potential $I_p=12.1$ eV) and the first exicted state ($J=1/2$, $I_p=13.4$ eV) are clearly separated in the electron energy distribution. These two combs of ATI peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of two higher for the $J=1/2$ than for the $J=3/2$ final ionic state. In turn the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03935v2-abstract-full').style.display = 'none'; document.getElementById('1711.03935v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 043202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03880">arXiv:1711.03880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.03880">pdf</a>, <a href="https://arxiv.org/ps/1711.03880">ps</a>, <a href="https://arxiv.org/format/1711.03880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.041402">10.1103/PhysRevA.97.041402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-Cycle Interference upon Tunnel-Ionization by Counterrotating Two-Color Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+I">I. Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Fehre%2C+K">K. Fehre</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">D. Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">N. Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kheifets%2C+A">A. Kheifets</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03880v2-abstract-short" style="display: inline;"> We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counterrotating circularly polarized fields (390 nm and 780 nm). A pronounced 3D low energy structure and sub-cycle interferences are observed experimentally and reproduced numerically using a trajectory based semi-classical simulation. The orientation of the low&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03880v2-abstract-full').style.display = 'inline'; document.getElementById('1711.03880v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03880v2-abstract-full" style="display: none;"> We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counterrotating circularly polarized fields (390 nm and 780 nm). A pronounced 3D low energy structure and sub-cycle interferences are observed experimentally and reproduced numerically using a trajectory based semi-classical simulation. The orientation of the low energy structure in the polarization plane is verified by numerical simulations solving the time dependent Schr枚dinger equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03880v2-abstract-full').style.display = 'none'; document.getElementById('1711.03880v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, PRA Rapid Communications accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 041402 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02778">arXiv:1702.02778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.02778">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphoton.2016.109">10.1038/nphoton.2016.109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron spin polarization in strong-field ionization of Xenon atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">Alexander Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+F">Felipe Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">Kevin Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Laucke%2C+A">Alina Laucke</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">Martin Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+M">Misha Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Smirnova%2C+O">Olga Smirnova</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02778v1-abstract-short" style="display: inline;"> As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter from solids to molecules and atoms, e.g. causing magnetism. Yet, despite its importance, the spin dynamics of electrons released during the interaction of atoms with strong ultrashort laser pulses has remained unexplored. Here we report on the experimental detection of electron spin pola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02778v1-abstract-full').style.display = 'inline'; document.getElementById('1702.02778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02778v1-abstract-full" style="display: none;"> As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter from solids to molecules and atoms, e.g. causing magnetism. Yet, despite its importance, the spin dynamics of electrons released during the interaction of atoms with strong ultrashort laser pulses has remained unexplored. Here we report on the experimental detection of electron spin polarization by strong-field ionization of Xenon atoms and support our results by theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to production of subfemtosecond spin polarized electron pulses with applications ranging from probing magnetic properties of matter at ultrafast time scales to testing chiral molecular systems with subfemtosecond temporal and sub-脜ngstr枚m spatial resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02778v1-abstract-full').style.display = 'none'; document.getElementById('1702.02778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 10 (2016) 526 - 528 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.07913">arXiv:1609.07913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.07913">pdf</a>, <a href="https://arxiv.org/format/1609.07913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/49/23/234001">10.1088/0953-4075/49/23/234001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stereochemical configuration and selective excitation of the chiral molecule halothane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">Martin Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">Gregor Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Burzynski%2C+P">Phillip Burzynski</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">Miriam Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">Daniel Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Neff%2C+J">Jonathan Neff</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">Markus Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">Florian Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">Joshua B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%C3%B6cking%2C+H">Horst Schmidt-B枚cking</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+R">Robert Berger</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.07913v1-abstract-short" style="display: inline;"> X-ray single-photon ionization and fragmentation of the chiral molecule halothane (CHBrClCF${}_{3}$) from a racemic mixture have been investigated using the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) technique. Two important facets related to the core ionization of this species are examined: Firstly, the distinction of enantiomers (mirror isomers) and the determination of absolute con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07913v1-abstract-full').style.display = 'inline'; document.getElementById('1609.07913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.07913v1-abstract-full" style="display: none;"> X-ray single-photon ionization and fragmentation of the chiral molecule halothane (CHBrClCF${}_{3}$) from a racemic mixture have been investigated using the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) technique. Two important facets related to the core ionization of this species are examined: Firstly, the distinction of enantiomers (mirror isomers) and the determination of absolute configuration on a single-molecule level by four-body Coulomb explosion; secondly, the interplay of site-selective excitation and fragmentation patterns. These results are easily transferrable to other molecular species and show the wealth of features <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07913v1-abstract-full').style.display = 'none'; document.getElementById('1609.07913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.07275">arXiv:1607.07275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.07275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.083002">10.1103/PhysRevLett.117.083002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-particle interference of electron pairs on a molecular level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Lower%2C+J">J. Lower</a>, <a href="/search/physics?searchtype=author&amp;query=Schober%2C+C">C. Schober</a>, <a href="/search/physics?searchtype=author&amp;query=Keiling%2C+M">M. Keiling</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+K">K. Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+M">M. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Klumpp%2C+S">S. Klumpp</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">T. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%C3%B6cking%2C+H">H. Schmidt-B枚cking</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+F">F. Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Miyabe%2C+S">S. Miyabe</a>, <a href="/search/physics?searchtype=author&amp;query=Rescigno%2C+T+N">T. N. Rescigno</a>, <a href="/search/physics?searchtype=author&amp;query=McCurdy%2C+C+W">C. W. McCurdy</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+F">F. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.07275v1-abstract-short" style="display: inline;"> We investigate the photo-doubleionization of $H_2$ molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the &#34;dielectron&#34;) does. The work highlights the fact that non-local effects are embedded every&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07275v1-abstract-full').style.display = 'inline'; document.getElementById('1607.07275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.07275v1-abstract-full" style="display: none;"> We investigate the photo-doubleionization of $H_2$ molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the &#34;dielectron&#34;) does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07275v1-abstract-full').style.display = 'none'; document.getElementById('1607.07275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 083002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07303">arXiv:1606.07303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07303">pdf</a>, <a href="https://arxiv.org/format/1606.07303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.133202">10.1103/PhysRevLett.117.133202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Sequential Double Ionization by Counter Rotating Circularly Polarized Two-Color Laser Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">S. Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Henrichs%2C+K">K. Henrichs</a>, <a href="/search/physics?searchtype=author&amp;query=Schlott%2C+N">N. Schlott</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">H. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+T">T. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">H. Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07303v2-abstract-short" style="display: inline;"> We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields and shows a &#34;knee&#34;-like structure as function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07303v2-abstract-full').style.display = 'inline'; document.getElementById('1606.07303v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07303v2-abstract-full" style="display: none;"> We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields and shows a &#34;knee&#34;-like structure as function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar$^+$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07303v2-abstract-full').style.display = 'none'; document.getElementById('1606.07303v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, Phys.Rev.Lett. accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 133202 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.00781">arXiv:1604.00781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.00781">pdf</a>, <a href="https://arxiv.org/format/1604.00781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.033416">10.1103/PhysRevA.94.033416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionization in Orthogonal Two-Color Laser Fields - Origin and Phase Dependence of Trajectory-Resolved Coulomb Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">Martin Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.00781v1-abstract-short" style="display: inline;"> We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusp like feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00781v1-abstract-full').style.display = 'inline'; document.getElementById('1604.00781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.00781v1-abstract-full" style="display: none;"> We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusp like feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors, surprisingly the Coulomb focused structure is almost not influenced by the weak second harmonic streaking field. This effect is explained by the use of a CTMC simulation which describes the tunneled electron wave packet in terms of classical trajectories under the influence of the combined Coulomb- and OTC laser field. We find a subtle interplay between the initial momentum of the electron upon tunneling, the ionization phase and the action of the Coulomb field that makes the Coulomb focused part of the momentum spectrum apparently insensitive to the weaker streaking field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00781v1-abstract-full').style.display = 'none'; document.getElementById('1604.00781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 033416 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.06012">arXiv:1601.06012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.06012">pdf</a>, <a href="https://arxiv.org/format/1601.06012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.043001">10.1103/PhysRevLett.116.043001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron localization in dissociating $H_2^+$ by retroaction of a photoelectron onto its source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Aslit%C3%BCrk%2C+D">D. Aslit眉rk</a>, <a href="/search/physics?searchtype=author&amp;query=Wechselberger%2C+N">N. Wechselberger</a>, <a href="/search/physics?searchtype=author&amp;query=Gill%2C+H+K">H. K. Gill</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Goihl%2C+C">C. Goihl</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+T">T. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Sturm%2C+F+P">F. P. Sturm</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schiwietz%2C+G">G. Schiwietz</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+T">T. Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.06012v1-abstract-short" style="display: inline;"> We investigate the dissociation of $H_2^+$ into a proton and a $H^0$ after single ionization with photons of an energy close to the threshold. We find that the $p^+$ and the $H^0$ do not emerge symmetrically in case of the $H_2^+$ dissociating along the $1s蟽_g$ ground state. Instead, a preference for the ejection of the $p^+$ in the direction of the escaping photoelectron can be observed. This sym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06012v1-abstract-full').style.display = 'inline'; document.getElementById('1601.06012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.06012v1-abstract-full" style="display: none;"> We investigate the dissociation of $H_2^+$ into a proton and a $H^0$ after single ionization with photons of an energy close to the threshold. We find that the $p^+$ and the $H^0$ do not emerge symmetrically in case of the $H_2^+$ dissociating along the $1s蟽_g$ ground state. Instead, a preference for the ejection of the $p^+$ in the direction of the escaping photoelectron can be observed. This symmetry breaking is strongest for very small electron energies. Our experiment is consistent with a recent prediction by Serov and Kheifets [Phys. Rev. A 89, 031402 (2014)]. In their model, which treats the photoelectron classically, the symmetry breaking is induced by the retroaction of the long range Coulomb potential onto the dissociating $H_2^+$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06012v1-abstract-full').style.display = 'none'; document.getElementById('1601.06012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys.Rev.Lett. 1/11/2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 043001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.03247">arXiv:1601.03247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.03247">pdf</a>, <a href="https://arxiv.org/format/1601.03247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1610688113">10.1073/pnas.1610688113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging the He$_2$ quantum halo state using a free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">M. Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Schottelius%2C+A">A. Schottelius</a>, <a href="/search/physics?searchtype=author&amp;query=Schober%2C+C">C. Schober</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Sann%2C+H">H. Sann</a>, <a href="/search/physics?searchtype=author&amp;query=Hartung%2C+A">A. Hartung</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+T">T. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Goihl%2C+C">C. Goihl</a>, <a href="/search/physics?searchtype=author&amp;query=Janke%2C+C">C. Janke</a>, <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">M. Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">A. Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Kitzler%2C+M">M. Kitzler</a>, <a href="/search/physics?searchtype=author&amp;query=Braune%2C+M">M. Braune</a>, <a href="/search/physics?searchtype=author&amp;query=Grisenti%2C+R+E">R. E. Grisenti</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6llkopf%2C+W">W. Sch枚llkopf</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffer%2C+M">M. Sch枚ffer</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.03247v2-abstract-short" style="display: inline;"> We report on coulomb explosion imaging of the wavefunction of the quantum halo system He$_2$. Each atom of this system is ionized by tunnelionization in a femto second laser pulse and in a second experiment by single photon ionization employing a free electron laser. We visualize the exponential decay of the probability density of the tunneling particle over distance for over two orders of magnitu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03247v2-abstract-full').style.display = 'inline'; document.getElementById('1601.03247v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.03247v2-abstract-full" style="display: none;"> We report on coulomb explosion imaging of the wavefunction of the quantum halo system He$_2$. Each atom of this system is ionized by tunnelionization in a femto second laser pulse and in a second experiment by single photon ionization employing a free electron laser. We visualize the exponential decay of the probability density of the tunneling particle over distance for over two orders of magnitude up to an internuclear distance of 250 脜. By fitting the slope of the density in the tunneling regime we obtain a binding energy of 151.9 $\pm$ 13.3 neV, which is in agreement with most recent calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03247v2-abstract-full').style.display = 'none'; document.getElementById('1601.03247v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 2016 December, 113 (51) 14651-14655 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.02036">arXiv:1512.02036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.02036">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaa5601">10.1126/science.aaa5601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Efimov state of the helium trimer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">Stefan Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J枚rg Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">Anton Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Czasch%2C+A">Achim Czasch</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6llkopf%2C+W">Wieland Sch枚llkopf</a>, <a href="/search/physics?searchtype=author&amp;query=Grisenti%2C+R+E">Robert E. Grisenti</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Blume%2C+D">D枚rte Blume</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.02036v1-abstract-short" style="display: inline;"> Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02036v1-abstract-full').style.display = 'inline'; document.getElementById('1512.02036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.02036v1-abstract-full" style="display: none;"> Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between particles by an external field. Here we report experimental observation of this long predicted but experimentally elusive Efimov state of $^{4}$He$_{3}$ by means of Coulomb explosion imaging. We show spatial images of an Efimov state, confirming the predicted size and a typical structure where two atoms are close to each other while the third is far away. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02036v1-abstract-full').style.display = 'none'; document.getElementById('1512.02036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 348 (2015) 551-555 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00230">arXiv:1510.00230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00230">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.052701">10.1103/PhysRevA.94.052701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi-molecular electron promotion beyond the 1s$蟽$ and 2p$蟺$ channels in slow collisions of He$^{2+}$ and He </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Goihl%2C+C">C. Goihl</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%C3%B6cking%2C+H">H. Schmidt-B枚cking</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00230v2-abstract-short" style="display: inline;"> The electron emission pattern of transfer-ionization in collisions of He$^{2+}$ with He was investigated for impact velocities between 0.53 a.u. and 0.77 a.u. (7 keV/u - 15 keV/u) employing recoil-ion momentum spectroscopy. This process is known to be dominated by the promotion of the 2p$蟺$ molecular orbital into the continuum which results in &#34;banana&#34; shaped areas of high electron momentum densit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00230v2-abstract-full').style.display = 'inline'; document.getElementById('1510.00230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00230v2-abstract-full" style="display: none;"> The electron emission pattern of transfer-ionization in collisions of He$^{2+}$ with He was investigated for impact velocities between 0.53 a.u. and 0.77 a.u. (7 keV/u - 15 keV/u) employing recoil-ion momentum spectroscopy. This process is known to be dominated by the promotion of the 2p$蟺$ molecular orbital into the continuum which results in &#34;banana&#34; shaped areas of high electron momentum densities extending from the target to the projectile in velocity space in the collision plain. Asymmetries are explained by a coherent superposition of the 2p$蟺$ channel of the quasi molecular promotion with the 1s$蟽$ channel. Here we report on an additional contribution of higher angular momentum molecular states for close collisions which emerge at smaller impact velocities. They show up as highly structured electron emission patterns in the plane perpendicular to the direction of impact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00230v2-abstract-full').style.display = 'none'; document.getElementById('1510.00230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 052701 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02349">arXiv:1509.02349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.02349">pdf</a>, <a href="https://arxiv.org/format/1509.02349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.073201">10.1103/PhysRevLett.116.073201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Agreement at last: an experimental and theoretical study on the single ionization of helium by fast proton impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gassert%2C+H">H. Gassert</a>, <a href="/search/physics?searchtype=author&amp;query=Chuluunbaatar%2C+O">O. Chuluunbaatar</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+-">H. -K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+T">T. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Laucke%2C+A">A. Laucke</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%BCller%2C+C">Ch. M眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Rist%2C+J">J. Rist</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Zeller%2C+S">S. Zeller</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Zaytsev%2C+S+A">S. A. Zaytsev</a>, <a href="/search/physics?searchtype=author&amp;query=Bulychev%2C+A+A">A. A. Bulychev</a>, <a href="/search/physics?searchtype=author&amp;query=Kouzakov%2C+K+A">K. A. Kouzakov</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%C3%B6cking%2C+H">H. Schmidt-B枚cking</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+Y+V">Yu. V. Popov</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02349v1-abstract-short" style="display: inline;"> Even though ion/atom-collision is a mature field of atomic physics great discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with highest momentum resolution on single ionization of helium induced by 1\,MeV protons and compare these to different theoretical calculations. The overall agreement is strikingly good and already the first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02349v1-abstract-full').style.display = 'inline'; document.getElementById('1509.02349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02349v1-abstract-full" style="display: none;"> Even though ion/atom-collision is a mature field of atomic physics great discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with highest momentum resolution on single ionization of helium induced by 1\,MeV protons and compare these to different theoretical calculations. The overall agreement is strikingly good and already the first Born approximation yields good agreement between theory and experiment. This has been expected since several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is shortly discussed in line with an ongoing dispute on the existence of nodal structures in the electron angular emission distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02349v1-abstract-full').style.display = 'none'; document.getElementById('1509.02349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 073201 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02658">arXiv:1503.02658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.02658">pdf</a>, <a href="https://arxiv.org/format/1503.02658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.143001">10.1103/PhysRevLett.114.143001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Streaking temporal double slit interference by an orthogonal two-color laser field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Richter%2C+M">Martin Richter</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">Markus Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">Lothar P. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yunquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">Reinhard D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02658v1-abstract-short" style="display: inline;"> We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color cont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02658v1-abstract-full').style.display = 'inline'; document.getElementById('1503.02658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02658v1-abstract-full" style="display: none;"> We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme these features become the dominant contribution to the electron momentum distribution. Furthermore the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02658v1-abstract-full').style.display = 'none'; document.getElementById('1503.02658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.2701">arXiv:1409.2701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.2701">pdf</a>, <a href="https://arxiv.org/ps/1409.2701">ps</a>, <a href="https://arxiv.org/format/1409.2701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.022515">10.1103/PhysRevA.90.022515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interatomic-Coulombic-decay-induced recapture of photoelectrons in helium dimers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Burzynski%2C+P">P. Burzynski</a>, <a href="/search/physics?searchtype=author&amp;query=Trinter%2C+F">F. Trinter</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Weller%2C+M">M. Weller</a>, <a href="/search/physics?searchtype=author&amp;query=Waitz%2C+M">M. Waitz</a>, <a href="/search/physics?searchtype=author&amp;query=Pitzer%2C+M">M. Pitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtsberger%2C+J">J. Voigtsberger</a>, <a href="/search/physics?searchtype=author&amp;query=Schober%2C+C">C. Schober</a>, <a href="/search/physics?searchtype=author&amp;query=Kastirke%2C+G">G. Kastirke</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%BCller%2C+C">C. M眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Goihl%2C+C">C. Goihl</a>, <a href="/search/physics?searchtype=author&amp;query=Wiegandt%2C+F">F. Wiegandt</a>, <a href="/search/physics?searchtype=author&amp;query=Wallauer%2C+R">R. Wallauer</a>, <a href="/search/physics?searchtype=author&amp;query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Schiwietz%2C+G">G. Schiwietz</a>, <a href="/search/physics?searchtype=author&amp;query=Sisourat%2C+N">N. Sisourat</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.2701v1-abstract-short" style="display: inline;"> We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2701v1-abstract-full').style.display = 'inline'; document.getElementById('1409.2701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.2701v1-abstract-full" style="display: none;"> We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2701v1-abstract-full').style.display = 'none'; document.getElementById('1409.2701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 2 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 90, 022515 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.3021">arXiv:1404.3021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.3021">pdf</a>, <a href="https://arxiv.org/ps/1404.3021">ps</a>, <a href="https://arxiv.org/format/1404.3021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/47/11/115602">10.1088/0953-4075/47/11/115602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absolute cross sections for photoionization of Xe$^{q+}$ ions (1 $\le$ q $\le$ 5) at the 3d ionization threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schippers%2C+S">S. Schippers</a>, <a href="/search/physics?searchtype=author&amp;query=Ricz%2C+S">S. Ricz</a>, <a href="/search/physics?searchtype=author&amp;query=Buhr%2C+T">T. Buhr</a>, <a href="/search/physics?searchtype=author&amp;query=Borovik%2C+A">A. Borovik Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Hellhund%2C+J">J. Hellhund</a>, <a href="/search/physics?searchtype=author&amp;query=Holste%2C+K">K. Holste</a>, <a href="/search/physics?searchtype=author&amp;query=Huber%2C+K">K. Huber</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4fer%2C+H+-">H. -J. Sch盲fer</a>, <a href="/search/physics?searchtype=author&amp;query=Schury%2C+D">D. Schury</a>, <a href="/search/physics?searchtype=author&amp;query=Klumpp%2C+S">S. Klumpp</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+K">K. Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+M">M. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Flesch%2C+R">R. Flesch</a>, <a href="/search/physics?searchtype=author&amp;query=Ulrich%2C+G">G. Ulrich</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%BChl%2C+E">E. R眉hl</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Lower%2C+J">J. Lower</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. P. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M">M. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J+B">J. B. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Glaser%2C+L">L. Glaser</a>, <a href="/search/physics?searchtype=author&amp;query=Scholz%2C+F">F. Scholz</a>, <a href="/search/physics?searchtype=author&amp;query=Seltmann%2C+J">J. Seltmann</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.3021v1-abstract-short" style="display: inline;"> The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe$^{q+}$ (q=1-5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type h谓+ Xe$^{q+}$ $\to$ Xe$^{r+}$ + (q-r) e$^-$ with product charge states q+2 $\le$ r $\le$ q+5. Promine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3021v1-abstract-full').style.display = 'inline'; document.getElementById('1404.3021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.3021v1-abstract-full" style="display: none;"> The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe$^{q+}$ (q=1-5) ions. Total ionization cross sections have been obtained on an absolute scale for the dominant ionization reactions of the type h谓+ Xe$^{q+}$ $\to$ Xe$^{r+}$ + (q-r) e$^-$ with product charge states q+2 $\le$ r $\le$ q+5. Prominent ionization features are observed in the photon-energy range 650-750 eV, which are associated with excitation or ionization of an inner-shell 3d electron. Single-configuration Dirac-Fock calculations agree quantitatively with the experimental cross sections for non-resonant photoabsorption, but fail to reproduce all details of the measured ionization resonance structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3021v1-abstract-full').style.display = 'none'; document.getElementById('1404.3021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, submitted for publication to J. Phys. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B. 47 (2014) 115602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6853">arXiv:1402.6853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.083201">10.1103/PhysRevLett.112.083201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vortices associated with the wave function of a single electron emitted in slow ion-atom collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Goihl%2C+C">C. Goihl</a>, <a href="/search/physics?searchtype=author&amp;query=Metz%2C+D">D. Metz</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%C3%B6cking%2C+H">H. Schmidt-B枚cking</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+R">R. D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Ovchinnikov%2C+S+Y">S. Yu. Ovchinnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Macek%2C+J+H">J. H. Macek</a>, <a href="/search/physics?searchtype=author&amp;query=Schultz%2C+D+R">D. R. Schultz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6853v1-abstract-short" style="display: inline;"> We present measurements and calculations of the momentum distribution of electrons emitted during the ion-atom collision 10 keV/u $He^{2+}+He \rightarrow He^{+} + He^{2+} + e^{-}$, which show rich structures for ion scattering angles above 2 mrad arising dominantly from two-electron states. Our calculations reveal that minima in the measured distributions are zeros in the electronic probability de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6853v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6853v1-abstract-full" style="display: none;"> We present measurements and calculations of the momentum distribution of electrons emitted during the ion-atom collision 10 keV/u $He^{2+}+He \rightarrow He^{+} + He^{2+} + e^{-}$, which show rich structures for ion scattering angles above 2 mrad arising dominantly from two-electron states. Our calculations reveal that minima in the measured distributions are zeros in the electronic probability density resulting from vortices in the electronic current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6853v1-abstract-full').style.display = 'none'; document.getElementById('1402.6853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 112, 083201 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.5660">arXiv:1311.5660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.5660">pdf</a>, <a href="https://arxiv.org/ps/1311.5660">ps</a>, <a href="https://arxiv.org/format/1311.5660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.89.032707">10.1103/PhysRevA.89.032707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transfer excitation reactions in fast proton-helium collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6ffler%2C+M+S">M. S. Sch枚ffler</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+-">H. -K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Chuluunbaatar%2C+O">O. Chuluunbaatar</a>, <a href="/search/physics?searchtype=author&amp;query=Houamer%2C+S">S. Houamer</a>, <a href="/search/physics?searchtype=author&amp;query=Galstyan%2C+A+G">A. G. Galstyan</a>, <a href="/search/physics?searchtype=author&amp;query=Titze%2C+J+N">J. N. Titze</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">T. Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+L+P+H">L. Ph. H. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-B%22ocking%2C+H">H. Schmidt-B&#34;ocking</a>, <a href="/search/physics?searchtype=author&amp;query=D%22orner%2C+R">R. D&#34;orner</a>, <a href="/search/physics?searchtype=author&amp;query=Popov%2C+Y+V">Yu. V. Popov</a>, <a href="/search/physics?searchtype=author&amp;query=Bulychev%2C+A+A">A. A. Bulychev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.5660v2-abstract-short" style="display: inline;"> Continuing previous work, we have measured the projectile scattering-angle dependency for transfer excitation of fast protons (300-1200 keV/u) colliding with helium (p+He $\rightarrow$ H + He$^{+ *}$). Our high-resolution fully differential data are accompanied by calculations, performed in the plane wave first Born approximation and the eikonal wave Born approximation. Experimentally we find a de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5660v2-abstract-full').style.display = 'inline'; document.getElementById('1311.5660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.5660v2-abstract-full" style="display: none;"> Continuing previous work, we have measured the projectile scattering-angle dependency for transfer excitation of fast protons (300-1200 keV/u) colliding with helium (p+He $\rightarrow$ H + He$^{+ *}$). Our high-resolution fully differential data are accompanied by calculations, performed in the plane wave first Born approximation and the eikonal wave Born approximation. Experimentally we find a deep minimum in the differential cross section around 0.5 $mrad$. The comparison with our calculations shows that describing the scattering angle dependence of transfer exitation in fast collisions requires to go beyond the first Born approximation and in addition to use initial state wave function, which contains some degree of angular correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5660v2-abstract-full').style.display = 'none'; document.getElementById('1311.5660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in Phys. Rev. A (2014)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 89, 032707 (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+L+P+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10