CINXE.COM

Utility of classical insurance risk models for measuring the risks of cyber incidents | Japanese Journal of Statistics and Data Science

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Utility of classical insurance risk models for measuring the risks of cyber incidents | Japanese Journal of Statistics and Data Science </title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Utility of classical insurance risk models for measuring the risks of cyber incidents"/> <meta name="twitter:description" content="Japanese Journal of Statistics and Data Science - We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig1_HTML.png"/> <meta name="journal_id" content="42081"/> <meta name="dc.title" content="Utility of classical insurance risk models for measuring the risks of cyber incidents"/> <meta name="dc.source" content="Japanese Journal of Statistics and Data Science 2024 7:2"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2024-09-24"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s)"/> <meta name="dc.rights" content="2024 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits commendable attributes in terms of both computational efficiency and predictive capabilities. Utilizing several compound point risk models, we derive the conditional Value-at-Risk and Tail Value-at-Risk predictions for the cumulative breach size within specified time intervals. To verify the reliability of our method, we conduct backtesting exercises, comparing our predictions with actual breach sizes."/> <meta name="prism.issn" content="2520-8764"/> <meta name="prism.publicationName" content="Japanese Journal of Statistics and Data Science"/> <meta name="prism.publicationDate" content="2024-09-24"/> <meta name="prism.volume" content="7"/> <meta name="prism.number" content="2"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1059"/> <meta name="prism.endingPage" content="1084"/> <meta name="prism.copyright" content="2024 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s42081-024-00273-y"/> <meta name="prism.doi" content="doi:10.1007/s42081-024-00273-y"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s42081-024-00273-y.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s42081-024-00273-y"/> <meta name="citation_journal_title" content="Japanese Journal of Statistics and Data Science"/> <meta name="citation_journal_abbrev" content="Jpn J Stat Data Sci"/> <meta name="citation_publisher" content="Springer Nature Singapore"/> <meta name="citation_issn" content="2520-8764"/> <meta name="citation_title" content="Utility of classical insurance risk models for measuring the risks of cyber incidents"/> <meta name="citation_volume" content="7"/> <meta name="citation_issue" content="2"/> <meta name="citation_publication_date" content="2024/11"/> <meta name="citation_online_date" content="2024/09/24"/> <meta name="citation_firstpage" content="1059"/> <meta name="citation_lastpage" content="1084"/> <meta name="citation_article_type" content="Original Paper"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s42081-024-00273-y"/> <meta name="DOI" content="10.1007/s42081-024-00273-y"/> <meta name="size" content="651093"/> <meta name="citation_doi" content="10.1007/s42081-024-00273-y"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s42081-024-00273-y&amp;api_key="/> <meta name="description" content="We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits commendable"/> <meta name="dc.creator" content="Shimizu, Yasutaka"/> <meta name="dc.creator" content="Takagami, Yutaro"/> <meta name="dc.subject" content="Statistical Theory and Methods"/> <meta name="dc.subject" content="Statistics and Computing/Statistics Programs"/> <meta name="dc.subject" content="Statistics for Business, Management, Economics, Finance, Insurance"/> <meta name="dc.subject" content="Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences"/> <meta name="dc.subject" content="Statistics for Life Sciences, Medicine, Health Sciences"/> <meta name="dc.subject" content="Statistics for Social Sciences, Humanities, Law"/> <meta name="citation_reference" content="citation_journal_title=European Actuarial Journal; citation_title=Modeling and pricing cyber insurance: Idiosyncratic, systematic, and systemic risks; citation_author=K Awiszus, T Knispel, I Penner, G Svindland, A Vo&#223;, S Weber; citation_volume=13; citation_issue=1; citation_publication_date=2023; citation_pages=1-53; citation_doi=10.1007/s13385-023-00341-9; citation_id=CR1"/> <meta name="citation_reference" content="Bank for International Settlements. (2013). Consultative document: Fundamental review of the trading book: A revised marked risk framework. Retrieved from http://www.bis.org/publ/bcbs265.pdf ."/> <meta name="citation_reference" content="citation_journal_title=Journal of Financial Econometrics; citation_title=Regression-based expected shortfall backtesting; citation_author=S Bayer, T Dimitriadis; citation_volume=20; citation_issue=3; citation_publication_date=2022; citation_pages=437-471; citation_doi=10.1093/jjfinec/nbaa013; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=ASTIN Bulletin; citation_title=Asymptotics for operational risk quantified with expected shortfall; citation_author=F Biagini, S Ulmer; citation_volume=39; citation_publication_date=2009; citation_pages=735-752; citation_doi=10.2143/AST.39.2.2044656; citation_id=CR4"/> <meta name="citation_reference" content="B&#246;cker, K., &amp; Kl&#252;ppelberg, C. (2005) Operational VaR: A closed-form solution. RISK Magazine, December, pp. 90&#8211;93."/> <meta name="citation_reference" content="citation_journal_title=Scandinavian Actuarial Journal; citation_title=Managing cyber risk, a science in the making; citation_author=M Dacorogna, M Kratz; citation_volume=2023; citation_issue=10; citation_publication_date=2023; citation_pages=1000-1021; citation_doi=10.1080/03461238.2023.2191869; citation_id=CR6"/> <meta name="citation_reference" content="citation_title=An introduction to the theory of point processes-volume I: Elementary theory and methods; citation_publication_date=2003; citation_id=CR7; citation_author=DJ Daley; citation_author=D Vere-Jones; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=North American Actuarial Journal; citation_title=The economic impact of extreme cyber risk scenarios; citation_author=M Eling, M Elvedi, G Falco; citation_volume=27; citation_publication_date=2022; citation_pages=1-15; citation_id=CR8"/> <meta name="citation_reference" content="Embrechts, P., Kl&#252;ppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer."/> <meta name="citation_reference" content="citation_journal_title=Insurance: Mathematics and Economics; citation_title=Cyber claim analysis using generalized Pareto regression trees with applications to insurance; citation_author=S Farkas, O Lopez, M Thomas; citation_volume=98; citation_publication_date=2021; citation_pages=92-105; citation_id=CR10"/> <meta name="citation_reference" content="citation_title=Mixed Poisson processes; citation_publication_date=1997; citation_id=CR11; citation_author=J Grandell; citation_publisher=Chapman &amp; Hall"/> <meta name="citation_reference" content="Lesage, L., Deaconu, M., Lejay, A., Meira, A. J., Nichil, G. &amp; State, R. (2020). Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance. Retrieved from https://hal.inria.fr/hal-03040090 "/> <meta name="citation_reference" content="citation_journal_title=The European Physical Journal B; citation_title=Heavy-tailed distribution of cyber risks; citation_author=T Maillart, D Sornette; citation_volume=75; citation_publication_date=2010; citation_pages=357-364; citation_doi=10.1140/epjb/e2010-00120-8; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=The Annals of Applied Statistics; citation_title=Elicitability and backtesting: Perspectives for banking regulation; citation_author=N Nolde, F Ziegel; citation_volume=11; citation_issue=4; citation_publication_date=2017; citation_pages=1833-1874; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Journal of Applied Statistics; citation_title=Modeling and predicting extreme cyber attack rates via marked point processes; citation_author=C Peng, M Xu, S Xu, T Hu; citation_volume=44; citation_issue=14; citation_publication_date=2016; citation_pages=2534-2563; citation_doi=10.1080/02664763.2016.1257590; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=The Geneva Papers on Risk and Insurance-Issues and Practice; citation_title=Cyber loss model risk translates to premium mispricing and risk sensitivity; citation_author=GW Peters, M Malavasi, G Sofronov, PV Shevchenko, S Tr&#252;ck, J Jang; citation_volume=48; citation_issue=2; citation_publication_date=2023; citation_pages=372-433; citation_doi=10.1057/s41288-023-00285-x; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Journal of Governance and Regulation; citation_title=Understanding operational risk capital approximations: First and second orders; citation_author=GW Peters, RS Targino, PV Shevchenko; citation_volume=2; citation_publication_date=2013; citation_pages=58-78; citation_doi=10.22495/jgr_v2_i3_p6; citation_id=CR17"/> <meta name="citation_reference" content="Privacy Rights Clearinghouse. (2023). Retrieved from https://www.privacyrights.org/data-breaches "/> <meta name="citation_reference" content="citation_title=Extreme values, regular variation and point processes; citation_publication_date=2008; citation_id=CR19; citation_author=SI Resnick; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_title=Insurance mathematics with statistical methodologies; citation_publication_date=2018; citation_id=CR20; citation_author=Y Shimizu; citation_publisher=Kyoritsu Shuppan Co., Ltd"/> <meta name="citation_reference" content="citation_journal_title=North American Actuarial Journal; citation_title=Modeling malicious hacking data breach risks; citation_author=H Sun, M Xu, P Zhao; citation_volume=25; citation_issue=4; citation_publication_date=2021; citation_pages=484-502; citation_doi=10.1080/10920277.2020.1752255; citation_id=CR21"/> <meta name="citation_reference" content="Woods, D. W., &amp; B&#246;hme, R. (2021). SoK: Quantifying cyber risk. In 2021 IEEE symposium on security and privacy (pp. 211&#8211;228)."/> <meta name="citation_reference" content="citation_journal_title=IEEE Transactions on Information Forensics and Security; citation_title=Modeling and predicting cyber hacking breaches; citation_author=M Xu, KM Schweitzer, RB Bateman, S Xu; citation_volume=13; citation_publication_date=2018; citation_pages=2856-2871; citation_doi=10.1109/TIFS.2018.2834227; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=IEEE Transactions on Information Forensics and Security; citation_title=Predicting cyber attack rates with extreme values; citation_author=Z Zhan, M Xu, S Xu; citation_volume=10; citation_issue=8; citation_publication_date=2015; citation_pages=1666-1677; citation_doi=10.1109/TIFS.2015.2422261; citation_id=CR24"/> <meta name="citation_author" content="Shimizu, Yasutaka"/> <meta name="citation_author_email" content="shimizu@waseda.jp"/> <meta name="citation_author_institution" content="Department of Applied Mathematics, Waseda University, Shinjuku, Japan"/> <meta name="citation_author" content="Takagami, Yutaro"/> <meta name="citation_author_email" content="ytakagami@fuji.waseda.jp"/> <meta name="citation_author_institution" content="Graduate School of Fundamental Science and Engineering, Waeda University, Shinjuku, Japan"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2024/11/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s42081-024-00273-y"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Utility of classical insurance risk models for measuring the risks of cyber incidents - Japanese Journal of Statistics and Data Science"/> <meta property="og:description" content="We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits commendable attributes in terms of both computational efficiency and predictive capabilities. Utilizing several compound point risk models, we derive the conditional Value-at-Risk and Tail Value-at-Risk predictions for the cumulative breach size within specified time intervals. To verify the reliability of our method, we conduct backtesting exercises, comparing our predictions with actual breach sizes."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-9fe647df8f.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-2a2a17cc99.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '42081.springer.com', siteWithPath: '42081.springer.com' + window.location.pathname, twitterHashtag: '42081', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s42081-024-00273-y","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","Country":"SG","japan":false,"doi":"10.1007-s42081-024-00273-y","Journal Id":42081,"Journal Title":"Japanese Journal of Statistics and Data Science","imprint":"Springer","Keywords":"Information leakage, Cyber risks, Compound risk models, Point process, Value at risk, 62M20, 62P99, 91D20","kwrd":["Information_leakage","Cyber_risks","Compound_risk_models","Point_process","Value_at_risk","62M20","62P99","91D20"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s42081-024-00273-y","Full HTML":"Y","Subject Codes":["SCS","SCS11001","SCS12008","SCS17010","SCS17020","SCS17030","SCS17040"],"pmc":["S","S11001","S12008","S17010","S17020","S17030","S17040"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2520-8764","pissn":"2520-8756"},"type":"Article","category":{"pmc":{"primarySubject":"Statistics","primarySubjectCode":"S","secondarySubjects":{"1":"Statistical Theory and Methods","2":"Statistics and Computing/Statistics Programs","3":"Statistics for Business, Management, Economics, Finance, Insurance","4":"Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences","5":"Statistics for Life Sciences, Medicine, Health Sciences","6":"Statistics for Social Sciences, Humanities, Law"},"secondarySubjectCodes":{"1":"S11001","2":"S12008","3":"S17010","4":"S17020","5":"S17030","6":"S17040"}},"sucode":"SC10","articleType":"Original Paper"},"attributes":{"deliveryPlatform":"oscar"}},"page":{"attributes":{"environment":"live"},"category":{"pageType":"article"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-6e1efc0878.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-7ac2223473.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s42081-024-00273-y"/> <script type="application/ld+json">{"mainEntity":{"headline":"Utility of classical insurance risk models for measuring the risks of cyber incidents","description":"We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits commendable attributes in terms of both computational efficiency and predictive capabilities. Utilizing several compound point risk models, we derive the conditional Value-at-Risk and Tail Value-at-Risk predictions for the cumulative breach size within specified time intervals. To verify the reliability of our method, we conduct backtesting exercises, comparing our predictions with actual breach sizes.","datePublished":"2024-09-24T00:00:00Z","dateModified":"2024-09-24T00:00:00Z","pageStart":"1059","pageEnd":"1084","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s42081-024-00273-y","keywords":["Information leakage","Cyber risks","Compound risk models","Point process","Value at risk","62M20","62P99","91D20","Statistical Theory and Methods","Statistics and Computing/Statistics Programs","Statistics for Business","Management","Economics","Finance","Insurance","Statistics for Engineering","Physics","Computer Science","Chemistry and Earth Sciences","Statistics for Life Sciences","Medicine","Health Sciences","Statistics for Social Sciences","Humanities","Law"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig11_HTML.png"],"isPartOf":{"name":"Japanese Journal of Statistics and Data Science","issn":["2520-8764","2520-8756"],"volumeNumber":"7","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Nature Singapore","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Yasutaka Shimizu","url":"http://orcid.org/0000-0003-3479-1149","affiliation":[{"name":"Waseda University","address":{"name":"Department of Applied Mathematics, Waseda University, Shinjuku, Japan","@type":"PostalAddress"},"@type":"Organization"}],"email":"shimizu@waseda.jp","@type":"Person"},{"name":"Yutaro Takagami","affiliation":[{"name":"Waeda University","address":{"name":"Graduate School of Fundamental Science and Engineering, Waeda University, Shinjuku, Japan","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-copy-link" viewBox="0 0 24 24"><path fill-rule="evenodd" clip-rule="evenodd" d="M19.4594 8.57015C19.0689 8.17963 19.0689 7.54646 19.4594 7.15594L20.2927 6.32261C20.2927 6.32261 20.2927 6.32261 20.2927 6.32261C21.0528 5.56252 21.0528 4.33019 20.2928 3.57014C19.5327 2.81007 18.3004 2.81007 17.5404 3.57014L16.7071 4.40347C16.3165 4.794 15.6834 4.794 15.2928 4.40348C14.9023 4.01296 14.9023 3.3798 15.2928 2.98927L16.1262 2.15594C17.6673 0.614803 20.1659 0.614803 21.707 2.15593C23.2481 3.69705 23.248 6.19569 21.707 7.7368L20.8737 8.57014C20.4831 8.96067 19.85 8.96067 19.4594 8.57015Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M18.0944 5.90592C18.4849 6.29643 18.4849 6.9296 18.0944 7.32013L16.4278 8.9868C16.0373 9.37733 15.4041 9.37734 15.0136 8.98682C14.6231 8.59631 14.6231 7.96314 15.0136 7.57261L16.6802 5.90594C17.0707 5.51541 17.7039 5.5154 18.0944 5.90592Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M13.5113 6.32243C13.9018 6.71295 13.9018 7.34611 13.5113 7.73664L12.678 8.56997C12.678 8.56997 12.678 8.56997 12.678 8.56997C11.9179 9.33006 11.9179 10.5624 12.6779 11.3224C13.438 12.0825 14.6703 12.0825 15.4303 11.3224L16.2636 10.4891C16.6542 10.0986 17.2873 10.0986 17.6779 10.4891C18.0684 10.8796 18.0684 11.5128 17.6779 11.9033L16.8445 12.7366C15.3034 14.2778 12.8048 14.2778 11.2637 12.7366C9.72262 11.1955 9.72266 8.69689 11.2637 7.15578L12.097 6.32244C12.4876 5.93191 13.1207 5.93191 13.5113 6.32243Z"/><path d="M8 20V22H19.4619C20.136 22 20.7822 21.7311 21.2582 21.2529C21.7333 20.7757 22 20.1289 22 19.4549V15C22 14.4477 21.5523 14 21 14C20.4477 14 20 14.4477 20 15V19.4549C20 19.6004 19.9426 19.7397 19.8408 19.842C19.7399 19.9433 19.6037 20 19.4619 20H8Z"/><path d="M4 13H2V19.4619C2 20.136 2.26889 20.7822 2.74705 21.2582C3.22434 21.7333 3.87105 22 4.5451 22H9C9.55228 22 10 21.5523 10 21C10 20.4477 9.55228 20 9 20H4.5451C4.39957 20 4.26028 19.9426 4.15804 19.8408C4.05668 19.7399 4 19.6037 4 19.4619V13Z"/><path d="M4 13H2V4.53808C2 3.86398 2.26889 3.21777 2.74705 2.74178C3.22434 2.26666 3.87105 2 4.5451 2H9C9.55228 2 10 2.44772 10 3C10 3.55228 9.55228 4 9 4H4.5451C4.39957 4 4.26028 4.05743 4.15804 4.15921C4.05668 4.26011 4 4.39633 4 4.53808V13Z"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-institution-medium" viewBox="0 0 24 24"><g><path fill-rule="evenodd" clip-rule="evenodd" d="M11.9967 1C11.6364 1 11.279 1.0898 10.961 1.2646C10.9318 1.28061 10.9035 1.29806 10.8761 1.31689L2.79765 6.87C2.46776 7.08001 2.20618 7.38466 2.07836 7.76668C1.94823 8.15561 1.98027 8.55648 2.12665 8.90067C2.42086 9.59246 3.12798 10 3.90107 10H4.99994V16H4.49994C3.11923 16 1.99994 17.1193 1.99994 18.5V19.5C1.99994 20.8807 3.11923 22 4.49994 22H19.4999C20.8807 22 21.9999 20.8807 21.9999 19.5V18.5C21.9999 17.1193 20.8807 16 19.4999 16H18.9999V10H20.0922C20.8653 10 21.5725 9.59252 21.8667 8.90065C22.0131 8.55642 22.0451 8.15553 21.9149 7.7666C21.7871 7.38459 21.5255 7.07997 21.1956 6.86998L13.1172 1.31689C13.0898 1.29806 13.0615 1.28061 13.0324 1.2646C12.7143 1.0898 12.357 1 11.9967 1ZM4.6844 8L11.9472 3.00755C11.9616 3.00295 11.9783 3 11.9967 3C12.015 3 12.0318 3.00295 12.0461 3.00755L19.3089 8H4.6844ZM16.9999 16V10H14.9999V16H16.9999ZM12.9999 16V10H10.9999V16H12.9999ZM8.99994 16V10H6.99994V16H8.99994ZM3.99994 18.5C3.99994 18.2239 4.2238 18 4.49994 18H19.4999C19.7761 18 19.9999 18.2239 19.9999 18.5V19.5C19.9999 19.7761 19.7761 20 19.4999 20H4.49994C4.2238 20 3.99994 19.7761 3.99994 19.5V18.5Z"/></g></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-rss" viewBox="0 0 22 22"><path d="M1.96094 1C1.96094 0.447715 2.40865 0 2.96094 0C5.46109 0 7.93678 0.492038 10.2467 1.44806C12.5565 2.40407 14.6554 3.80534 16.4234 5.57189C18.1913 7.33843 19.5939 9.4357 20.5508 11.744C21.5077 14.0522 22.0001 16.5263 22.0001 19.0247C22.0001 19.577 21.5524 20.0247 21.0001 20.0247C20.4478 20.0247 20.0001 19.577 20.0001 19.0247C20.0001 16.7891 19.5595 14.5753 18.7033 12.5098C17.8471 10.4444 16.5919 8.56762 15.0097 6.98666C13.4275 5.40575 11.5492 4.15167 9.48182 3.29604C7.41447 2.4404 5.19868 2 2.96094 2C2.40865 2 1.96094 1.55228 1.96094 1Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M0 18.649C0 16.7974 1.50196 15.298 3.35294 15.298C5.20392 15.298 6.70588 16.7974 6.70588 18.649C6.70588 20.5003 5.20397 22 3.35294 22C1.50191 22 0 20.5003 0 18.649ZM3.35294 17.298C2.60493 17.298 2 17.9036 2 18.649C2 19.3943 2.60498 20 3.35294 20C4.1009 20 4.70588 19.3943 4.70588 18.649C4.70588 17.9036 4.10095 17.298 3.35294 17.298Z"/><path d="M3.3374 7.46115C2.78512 7.46115 2.3374 7.90887 2.3374 8.46115C2.3374 9.01344 2.78512 9.46115 3.3374 9.46115C4.54515 9.46115 5.74107 9.69885 6.85684 10.1606C7.97262 10.6224 8.98639 11.2993 9.84028 12.1525C10.6942 13.0057 11.3715 14.0185 11.8336 15.1332C12.2956 16.2478 12.5335 17.4424 12.5335 18.649C12.5335 19.2013 12.9812 19.649 13.5335 19.649C14.0858 19.649 14.5335 19.2013 14.5335 18.649C14.5335 17.1796 14.2438 15.7247 13.6811 14.3673C13.1184 13.0099 12.2936 11.7765 11.2539 10.7377C10.2142 9.69885 8.97999 8.87484 7.62168 8.31266C6.26337 7.75049 4.80757 7.46115 3.3374 7.46115Z"/></symbol><symbol id="icon-eds-i-search-category-medium" viewBox="0 0 32 32"><path fill-rule="evenodd" d="M2 5.306A3.306 3.306 0 0 1 5.306 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833a3.306 3.306 0 0 1-3.306 3.305H5.306A3.306 3.306 0 0 1 2 11.14V5.306Zm3.306-.584a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.583.583 0 0 0 .583-.583V5.306a.583.583 0 0 0-.583-.584H5.306Zm15.555 8.945a7.194 7.194 0 1 0 4.034 13.153l2.781 2.781a1.361 1.361 0 1 0 1.925-1.925l-2.781-2.781a7.194 7.194 0 0 0-5.958-11.228Zm3.173 10.346a4.472 4.472 0 1 0-.021.021l.01-.01.011-.011Zm-5.117-19.29a.583.583 0 0 0-.584.583v5.833a1.361 1.361 0 0 1-2.722 0V5.306A3.306 3.306 0 0 1 18.917 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833c0 .6-.161 1.166-.443 1.654a1.361 1.361 0 1 1-2.357-1.363.575.575 0 0 0 .078-.291V5.306a.583.583 0 0 0-.584-.584h-5.833ZM2 18.916a3.306 3.306 0 0 1 3.306-3.306h5.833a1.361 1.361 0 1 1 0 2.722H5.306a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.574.574 0 0 0 .29-.077 1.361 1.361 0 1 1 1.364 2.356 3.296 3.296 0 0 1-1.654.444H5.306A3.306 3.306 0 0 1 2 24.75v-5.833Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s42081-024-00273-y?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-5"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/42081" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Japanese Journal of Statistics and Data Science</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Utility of classical insurance risk models for measuring the risks of cyber incidents</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Original Paper</li> <li class="c-article-identifiers__item" data-test="article-sub-category">Risk and Statistics in Actuarial Science</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2024-09-24">24 September 2024</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 7</span>, pages 1059–1084, (<span data-test="article-publication-year">2024</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s42081-024-00273-y.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/42081" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/42081?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/42081?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/42081?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/42081?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Japanese Journal of Statistics and Data Science</span> </a> <a href="https://link.springer.com/journal/42081/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/jjsd" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Utility of classical insurance risk models for measuring the risks of cyber incidents </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s42081-024-00273-y.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yasutaka-Shimizu-Aff1" data-author-popup="auth-Yasutaka-Shimizu-Aff1" data-author-search="Shimizu, Yasutaka" data-corresp-id="c1">Yasutaka Shimizu<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0003-3479-1149"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0003-3479-1149</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup> &amp; </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Yutaro-Takagami-Aff2" data-author-popup="auth-Yutaro-Takagami-Aff2" data-author-search="Takagami, Yutaro">Yutaro Takagami</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>461 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s42081-024-00273-y/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>We demonstrate that the classical insurance risk models yield significant advantages in the context of cyber risk analysis. This model exhibits commendable attributes in terms of both computational efficiency and predictive capabilities. Utilizing several compound point risk models, we derive the conditional Value-at-Risk and Tail Value-at-Risk predictions for the cumulative breach size within specified time intervals. To verify the reliability of our method, we conduct backtesting exercises, comparing our predictions with actual breach sizes.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-031-69561-2?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-031-69561-2_7?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-031-69561-2_7">Cyber Risk and Cyber Insurance </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2025</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-030-99638-3?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-030-99638-3_23?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/978-3-030-99638-3_23">Cyber Risk: Estimates for Malicious and Negligent Breaches Distributions </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2022</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-031-64273-9?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-031-64273-9_43?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-3-031-64273-9_43">Challenges in Cyber Risk Insurance </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2024</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1743399493, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=42081" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In recent decades, the escalation of cyber incidents has paralleled the rapid advancement of Information Technology. Consequently, certain non-life insurance companies have introduced cyber-risk insurance, underscoring the importance of accurately assessing the risks associated with cyber incidents. Cyber risk analysis is a globally prominent and dynamically evolving field, with numerous researchers contributing to its discourse.</p><p>Some recent and notable studies include the works of Farkas et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Farkas, S., Lopez, O., &amp; Thomas, M. (2021). Cyber claim analysis using generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics, 98, 92–105." href="/article/10.1007/s42081-024-00273-y#ref-CR10" id="ref-link-section-d432018368e383">2021</a>), Woods and Böhme (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Woods, D. W., &amp; Böhme, R. (2021). SoK: Quantifying cyber risk. In 2021 IEEE symposium on security and privacy (pp. 211–228)." href="/article/10.1007/s42081-024-00273-y#ref-CR22" id="ref-link-section-d432018368e386">2021</a>), Eling et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Eling, M., Elvedi, M., &amp; Falco, G. (2022). The economic impact of extreme cyber risk scenarios. North American Actuarial Journal, 27, 1–15." href="/article/10.1007/s42081-024-00273-y#ref-CR8" id="ref-link-section-d432018368e389">2022</a>), Peters et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Peters, G. W., Malavasi, M., Sofronov, G., Shevchenko, P. V., Trück, S., &amp; Jang, J. (2023). Cyber loss model risk translates to premium mispricing and risk sensitivity. The Geneva Papers on Risk and Insurance-Issues and Practice, 48(2), 372–433." href="/article/10.1007/s42081-024-00273-y#ref-CR16" id="ref-link-section-d432018368e392">2023</a>), and many more as referenced in these papers provide valuable insights and references for further exploration of the topic. Research focusing on the mathematical and technical aspects of cyber risk quantification and predictive distribution has been conducted relatively long. For example, Maillart and Sornette (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2010" title="Maillart, T., &amp; Sornette, D. (2010). Heavy-tailed distribution of cyber risks. The European Physical Journal B, 75, 357–364." href="/article/10.1007/s42081-024-00273-y#ref-CR13" id="ref-link-section-d432018368e395">2010</a>) claim that the breach size distribution of cyber incidents seems heavy-tailed. Peng et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2016" title="Peng, C., Xu, M., Xu, S., &amp; Hu, T. (2016). Modeling and predicting extreme cyber attack rates via marked point processes. Journal of Applied Statistics, 44(14), 2534–2563." href="/article/10.1007/s42081-024-00273-y#ref-CR15" id="ref-link-section-d432018368e399">2016</a>) discussed predicting cyber attack rates using marked point processes. Xu et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Xu, M., Schweitzer, K. M., Bateman, R. B., &amp; Xu, S. (2018). Modeling and predicting cyber hacking breaches. IEEE Transactions on Information Forensics and Security, 13, 2856–2871." href="/article/10.1007/s42081-024-00273-y#ref-CR23" id="ref-link-section-d432018368e402">2018</a>) employed ACD (Autoregressive Conditional Duration) and ARMA-GARCH models to characterize the frequency and magnitude of cyber incidents, respectively. Sun et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Sun, H., Xu, M., &amp; Zhao, P. (2021). Modeling malicious hacking data breach risks. North American Actuarial Journal, 25(4), 484–502." href="/article/10.1007/s42081-024-00273-y#ref-CR21" id="ref-link-section-d432018368e405">2021</a>) categorized cyber incident data into business sectors and leveraged copulas to forecast cyber risks at the organizational level. These papers delve into complex modeling, statistical methods, and risk assessment techniques to better understand cyber risk. In recent years, increasing tools such as machine learning and AI has attracted further attention to computational demands. For example, Zhan et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015" title="Zhan, Z., Xu, M., &amp; Xu, S. (2015). Predicting cyber attack rates with extreme values. IEEE Transactions on Information Forensics and Security, 10(8), 1666–1677." href="/article/10.1007/s42081-024-00273-y#ref-CR24" id="ref-link-section-d432018368e408">2015</a>) harnessed machine learning techniques for forecasting incident frequency, integrating extremal theory and time-series analysis to enhance predictive accuracy.</p><p>On the other hand, these approaches may incur substantial computational costs, and the opacity of these AI models can introduce challenges in their interpretability. One of these challenges is the “black box” nature of many machine learning algorithms, making it difficult to interpret and understand the inner workings of these models. Furthermore, in the field of cyber risk analysis, there is a growing interest in combining machine learning methods with statistical (theoretical) methods. These hybrid methods are often referred to as “gray methods.” The need to strike a balance between methods’ transparency and effectiveness is an ongoing concern in this area of research.</p><p>In this paper, we dare to shed light on the classical model again to recognize the usefulness of a simple model. The model we employed adheres to classical actuarial practices. It offers simplicity, ease of comprehension, and computational efficiency, which are advantageous in practical applications. It is also powerful enough to predict risk quantification in the future. We shall demonstrate the efficacy of classically employed risk models, particularly those involving composite point processes, in achieving substantial risk reduction without incurring substantial computational expenses. Even when Monte Carlo simulations are necessary, the model’s straightforward nature and explicitly computable structure make it a valuable tool for efficiently assessing and managing cyber risks. This aligns with the actuarial principle of using well-understood and computationally manageable risk analysis and management models.</p><p>In our cyber risk analysis, we will adopt a quite simple compound risk model, a classic paradigm in insurance risk assessment: Let <i>N</i> be a random variable representing the frequency of cyber incidents occurring within a defined period, and <span class="mathjax-tex">\(U_{i}\)</span> be the breach size of the <i>i</i>th incident involving information leakage, with the common distribution <span class="mathjax-tex">\(F_{U}\)</span>. Then the total amount of breaches, say <i>S</i>, is given by</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} S=\sum _{i=1}^{N}U_{i};\qquad U_{i}\overset{i.i.d.}{\sim }F_{U}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (1.1) </div></div><p>While it may be considered a straightforward model, it boasts a reasonable degree of expressiveness and is supported by various distribution approximations, making it possible for easy statistical inference. As in Awiszus et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Awiszus, K., Knispel, T., Penner, I., Svindland, G., Voß, A., &amp; Weber, S. (2023). Modeling and pricing cyber insurance: Idiosyncratic, systematic, and systemic risks. European Actuarial Journal, 13(1), 1–53." href="/article/10.1007/s42081-024-00273-y#ref-CR1" id="ref-link-section-d432018368e576">2023</a>) and Dacorogna and Kratz (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Dacorogna, M., &amp; Kratz, M. (2023). Managing cyber risk, a science in the making. Scandinavian Actuarial Journal, 2023(10), 1000–1021." href="/article/10.1007/s42081-024-00273-y#ref-CR6" id="ref-link-section-d432018368e579">2023</a>), the classification of cyber risks is complex, and such a classical <i>frequency-severity approach</i> may have limitations. However, we usually employ this model within a single period but adapt it to encompass multi-period risks, which is the novelty of our paper, and still propose statistical inference for point processes; see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec3">3</a>. We revisit this classic risk model, highlighting its potential and demonstrating that it can effectively predict cyber risks with ingenuity even within its classical framework.</p><p>Nonetheless, constructing a more detailed model needs an elaborate examination of actual data. Thus, before introducing a specific model, we shall look at the dataset employed in this paper. We use an open dataset given by Privacy Rights Clearinghouse (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Privacy Rights Clearinghouse. (2023). Retrieved from &#xA; https://www.privacyrights.org/data-breaches&#xA; &#xA; " href="/article/10.1007/s42081-024-00273-y#ref-CR18" id="ref-link-section-d432018368e591">2023</a>). It includes information about cyber incidents in the United States, with a public date, breach size, type of breach, and business field, among others. To get the model insight, let us review the data. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig1">1</a> presents a distribution of breach sizes for each incident recorded between 2005 and 2020, exhibiting a pronounced long (heavy) right tail. In this paper, as in Maillart and Sornette (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2010" title="Maillart, T., &amp; Sornette, D. (2010). Heavy-tailed distribution of cyber risks. The European Physical Journal B, 75, 357–364." href="/article/10.1007/s42081-024-00273-y#ref-CR13" id="ref-link-section-d432018368e597">2010</a>), we assume that the tail function <span class="mathjax-tex">\(\overline{F}_U(x):=1-F_U(x)\)</span> conforms to the concept of being ‘regularly varying’ with the index <span class="mathjax-tex">\(-\kappa \)</span>, where <span class="mathjax-tex">\(\kappa \ge 0\)</span> is a key parameter:</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \lim _{x\rightarrow \infty }\dfrac{\overline{F}_U(tx)}{\overline{F}_U(x)}=t^{-\kappa }\quad \hbox { for all}\ t&gt;0, \end{aligned}$$</span></div></div><p>which is denoted as</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \overline{F}_U \in {\mathscr {R}}_{-\kappa }. \end{aligned}$$</span></div></div><p>Furthermore, we should note that this breach data encompasses numerous instances of zero values (i.e., 0-inflated), signifying the occurrence of cyberattacks without resulting in any information leakage. Since our primary interest lies in evaluating the actual damage risk stemming from cyberattacks, our focus is on assessing tail risk, involving the calculation of ’Value-at-Risk’ (VaR) and ’Tail Value-at-Risk’ (TVaR), both of which are commonly established tail risk metrics. Given that these metrics are reliant on the tail properties of the distribution, we employ the ’Peaks-Over-Threshold’ method from extreme value theory and model the tail distribution using the ’generalized Pareto distribution (GPD),’ as outlined in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar6">A.1</a>. This approach serves as the standard procedure for dealing with data characterized by heavy tails; see, e.g., Embrechts et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR9" id="ref-link-section-d432018368e915">2003</a>) or Resnick (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2008" title="Resnick, S. I. (2008). Extreme values, regular variation and point processes. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR19" id="ref-link-section-d432018368e918">2008</a>), among others.</p><p>Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig2">2</a> illustrates the time series of frequencies spanning the years 2005–2020, suggesting that the frequency of cyber incidents should be addressed through the modeling of a stochastic (point) process, as opposed to being represented by a single random variable <i>N</i> as previously discussed. We assert that modeling this dynamic time series of frequencies is pivotal to our analysis. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec3">3</a>, we will introduce and elaborate upon several stochastic processes to address this modeling challenge.</p><p>Based on the observations presented in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig3">3</a>, it is evident that breach sizes have exhibited a significant increase since 2016. While the precise cause of this trend remains uncertain, it is likely influenced by a legislative amendment in 2015, which mandated the reporting of cyber attack data in the United States. Consequently, some of the leakage data recorded before 2016 may have been consolidated and reported in 2016, thus affecting the accuracy and continuity of the breach size time-series data. Furthermore, it’s important to note that the data available for 2005 and beyond 2019 is notably limited, as numerous breaches during these periods have yet to be formally recorded. As a result, we have chosen to focus our data analysis on the period from 2006 to 2018.</p><p>Considering these factors, we have divided the data into two distinct cases: Case 1, our primary dataset, excludes data recorded after 2016 due to the observed shift in frequency tendencies, as previously discussed. Case 2 encompasses all available data and serves as a reference, as summarized in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab1">1</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Usage of data</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Considering this dataset’s distinctive attributes, we introduce specific models in the subsequent section. The outcomes of our data analysis employing these dedicated models are presented in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec8">4</a>, culminating with the paper’s conclusions in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec13">5</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/1" rel="nofollow"><picture><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="417"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Breach size of single incident</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/2" rel="nofollow"><picture><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="570"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Frequency (monthly)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/3" rel="nofollow"><picture><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="622"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Breach size (monthly)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Multi-period compound risk models"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Multi-period compound risk models</h2><div class="c-article-section__content" id="Sec2-content"><p>As described in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec1">1</a>, we expand upon the single-period model (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ1">1.1</a>) to formulate a multi-period framework. In this multi-period analysis, we partition the observation period into distinct segments, presupposing that the cumulative breach count within each period has a potentially different compound risk model. On the other hand, when examining the breach size distribution, as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig1">1</a>, we presume a common heavy-tailed distribution spanning all the observation periods:</p><ul class="u-list-style-bullet"> <li> <p>Let <span class="mathjax-tex">\(N_{k}\)</span> be a random variable describing the frequency of breaches in <i>k</i>th period, satisfying that there exists some <span class="mathjax-tex">\({\epsilon }&gt;0\)</span> such that </p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{r=0}^{\infty }(1+{\epsilon })^r {{\mathbb {P}}}(N_k=r)&lt;\infty , \end{aligned}$$</span></div></div><p> which corresponds to the condition (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ11">A.1</a>) in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a>.</p> </li> <li> <p>Let <span class="mathjax-tex">\(U^{(k)}:=\{U_{1}^{(k)}, U_{2}^{(k)},..., U_{N_{k}}^{(k)}\}\)</span> be the sets of breach sizes of each incident occurring in <i>k</i>th period with <span class="mathjax-tex">\(U_{i}^{(k)}\overset{i.i.d}{\sim }F_{U}\)</span>, and assume that there exists a constant <span class="mathjax-tex">\(\kappa &gt;1\)</span> such that </p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \overline{F}_U \in {\mathscr {R}}_{-\kappa }. \end{aligned}$$</span></div><div class="c-article-equation__number"> (2.1) </div></div> </li> <li> <p>For <span class="mathjax-tex">\(t\in {\mathbb {N}}\)</span>, let <span class="mathjax-tex">\({\mathscr {F}}_{0}\)</span> and <span class="mathjax-tex">\({\mathscr {F}}_{t}\)</span> be a <span class="mathjax-tex">\(\sigma \)</span>-field such that <span class="mathjax-tex">\({\mathscr {F}}_{0}:=\{\emptyset ,\Omega \}\)</span> and, by induction, </p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathscr {F}}_{t}:={\mathscr {F}}_{t-1}\vee \sigma (N_{t};U^{(t)}),\quad t=1,2,\dots . \end{aligned}$$</span></div></div> </li> </ul><p>Then, the total amount of breaches in the <i>k</i>th period is given by</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} S_k = \sum _{i=1}^{N_k} U_i^{(k)}, \quad k = 1,2,\dots , \end{aligned}$$</span></div></div><p>and we are interested in the following <i>conditional (Tail-) Value-at-Risk</i>:</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\left\{ \begin{array}{ll} &amp; VaR_{\alpha }^{(t)}(S_{k}):=\inf \{x\ge 0\ |\ {{\mathbb {P}}}(S_{k}\le x|{\mathscr {F}}_{t})\ge \alpha \}\\ &amp; TVaR_{\alpha }^{(t)}(S_{k}):=\dfrac{1}{1-\alpha }\displaystyle \int _{\alpha }^{1}VaR_{u}^{(t)}(S_{k})\,du \end{array}\right. },\quad k&gt;t. \end{aligned}$$</span></div><div class="c-article-equation__number"> (2.2) </div></div><p>To approximate these risk measures in heavy-tailed situations, the following result by, e.g., Biagini and Ulmer (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2009" title="Biagini, F., &amp; Ulmer, S. (2009). Asymptotics for operational risk quantified with expected shortfall. ASTIN Bulletin, 39, 735–752." href="/article/10.1007/s42081-024-00273-y#ref-CR4" id="ref-link-section-d432018368e2230">2009</a>), Theorem 2.5 is useful. More detailed asymptotic estimates are given in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a> in Appendix. See also Böcker and Klüppelberg (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2005" title="Böcker, K., &amp; Klüppelberg, C. (2005) Operational VaR: A closed-form solution. RISK Magazine, December, pp. 90–93." href="/article/10.1007/s42081-024-00273-y#ref-CR5" id="ref-link-section-d432018368e2236">2005</a>), Peters et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2013" title="Peters, G. W., Targino, R. S., &amp; Shevchenko, P. V. (2013). Understanding operational risk capital approximations: First and second orders. Journal of Governance and Regulation, 2, 58–78." href="/article/10.1007/s42081-024-00273-y#ref-CR17" id="ref-link-section-d432018368e2240">2013</a>) and references therein.</p> <h3 class="c-article__sub-heading" id="FPar1">Theorem 2.1</h3> <p>(Biagini and Ulmer <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2009" title="Biagini, F., &amp; Ulmer, S. (2009). Asymptotics for operational risk quantified with expected shortfall. ASTIN Bulletin, 39, 735–752." href="/article/10.1007/s42081-024-00273-y#ref-CR4" id="ref-link-section-d432018368e2250">2009</a>) Suppose that the index in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ2">2.1</a>) satisfies <span class="mathjax-tex">\(\kappa &gt;1\)</span>. Then, as <span class="mathjax-tex">\(\alpha \rightarrow 1\)</span>, it holds that</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} VaR^{(t)}_{\alpha }(S_k)&amp;\sim VaR_{\beta ^{(t)}_k}(U); \\ TVaR^{(t)}_{\alpha }(S_k)&amp;\sim \frac{\kappa }{\kappa -1}VaR_{\beta ^{(t)}_k}(U) \end{aligned}$$</span></div></div><p>where</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \beta ^{(t)}_k:=1-\frac{(1-\alpha )}{{\mathbb {E}}[N_k|{\mathscr {F}}_t]}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (2.3) </div></div> <p>Let us explore an further approximation for <span class="mathjax-tex">\(VaR_{\beta ^{(t)}_k}(U)\)</span>, which facilitates the explicit computation of <span class="mathjax-tex">\(VaR^{(t)}_{\alpha }(S_k)\)</span> and <span class="mathjax-tex">\(TVaR^{(t)}_{\alpha }(S_k)\)</span>. Given that <span class="mathjax-tex">\(\beta ^{(t)}_k \rightarrow 1\ a.s.\)</span> as <span class="mathjax-tex">\(\alpha \rightarrow 1\)</span> for any values of <i>k</i> and <i>t</i>, we can approximate<span class="mathjax-tex">\(VaR_{\beta ^{(t)}_k}(U)\)</span> as <span class="mathjax-tex">\(\beta ^{(t)}_k\rightarrow 1\)</span> through the conventional arguments inherent to extreme value theory, as outlined below: it follows for any <span class="mathjax-tex">\(u\in {\mathbb {R}}\)</span> that</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_{U}(x)&amp;= \overline{F}_{U}(u)F_{U}(x-u|u)+F_{U}(u), \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(F_{U}(x-u|u):= [F_{U}(x)-F_{U}(u)]/\overline{F}_{U}(u)\)</span>. When <span class="mathjax-tex">\(x = VaR_{\beta _k^{(t)}}(U)\)</span> and <span class="mathjax-tex">\(u&gt;0\)</span> is “large enough”, Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar6">A.1</a> gives the following approximation of <span class="mathjax-tex">\(VaR_{\beta _k^{(t)}}(U)\)</span> by replacing <span class="mathjax-tex">\(F_{U}(x-u|u)\)</span> with a generalized Pareto distribution (GPD) <span class="mathjax-tex">\(G_{\xi ,\sigma }(x-u)\)</span>:</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} VaR_{\beta _k^{(t)}}(U)&amp;= F_U^{-1}(\beta ^{(t)}_k) \nonumber \\&amp;\sim u+G_{\xi ,\sigma }^{-1}\left(1-\frac{1-\beta _k^{(t)}}{\overline{F}_{U}(u)}\right) =u+\frac{\sigma }{\xi }\left\{ \left( \frac{\overline{F}_{U}(u)}{1-\beta _k^{(t)}}\right) ^{\xi }-1\right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (2.4) </div></div><p>See Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a> for details of the validation of this formula. The value for <i>u</i> is determined using the Peaks-Over-Threshold method, a standard approach within this context. The estimation of the parameters <span class="mathjax-tex">\(\xi \)</span> and <span class="mathjax-tex">\(\sigma \)</span> from the data is elaborated upon in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec8">4</a>.</p> <h3 class="c-article__sub-heading" id="FPar2">Remark 2.2</h3> <p>Thus, the fact that the conditional (Tail) VaR can be written explicitly is a major advantage in numerical calculations. Since the risk measures we need to compute are <span class="mathjax-tex">\({\mathscr {F}}_t\)</span>-conditional random quantities, their prediction requires Monte Carlo calculations based on their distribution. With complex models, even a single computation of a risk measure requires a Monte Carlo calculation, which must be repeated many times to examine its distribution. Our method eliminates the initial Monte Carlo calculation; see also Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar3">3.1</a>.</p> </div></div></section><section data-title="Specific models for frequencies"><div class="c-article-section" id="Sec3-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec3"><span class="c-article-section__title-number">3 </span>Specific models for frequencies</h2><div class="c-article-section__content" id="Sec3-content"><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">3.1 </span>Negative binomial model</h3><p>We assume that the distribution of <span class="mathjax-tex">\(N_k\ (k=1,2,\dots )\)</span> will change according to the period. However, assuming a single distribution for each time period typically provides only a limited amount of data for estimating that distribution. To address this limitation, we further divide each period into several sub-periods, such that for a given integer <span class="mathjax-tex">\(m\in {\mathbb {N}}\)</span>, we express the frequency <span class="mathjax-tex">\(N_k\)</span> as a sum of individual sub-period frequencies:</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} N_k := N_{k,1} + N_{k,2} + \dots + N_{k,m}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (3.1) </div></div><p>where <i>m</i> is the number of the sub-period and <span class="mathjax-tex">\(N_{k,j}\ (j=1,\dots ,m)\)</span> is the number of breaches in the sub-period <span class="mathjax-tex">\(k_j\)</span>. We make the following assumptions to guide our analysis: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">[NB1]</span> <p><span class="mathjax-tex">\(N_{k,j}(j=1,...,m)\)</span> are i.i.d. random variables, each of which follows a geometric distribution <span class="mathjax-tex">\(N_{k,j}\overset{i.i.d}{\sim }Ge(p_k)\)</span>, where the parameter <span class="mathjax-tex">\(p_k\)</span> is constant during the <i>k</i>th period: for <span class="mathjax-tex">\(p_k\in (0,1)\)</span>, </p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\mathbb {P}}}(N_{k,j} = r) = (1-p_k)p_k^r,\quad r=1,2,.... \end{aligned}$$</span></div></div> </li> </ol><p>Then the distribution of <span class="mathjax-tex">\(N_k\)</span>, which is the i.i.d. sum of geometric variables becomes the negative binomial distribution <span class="mathjax-tex">\(N_{k}\sim NBin(m, p_k)\)</span>:</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\mathbb {P}}}(N_k = r) = {m + r - 1 \atopwithdelims ()r}(1 - p_k)^m p_k^r,\quad r=1,2,\dots . \end{aligned}$$</span></div></div><p>Note that</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[N_k] = \frac{mp_k}{1-p_k}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (3.2) </div></div><p>Moreover, under this assumption, the condition (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ11">A.1</a>) in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a> is obvious since <span class="mathjax-tex">\(p_k&lt;1\)</span>.</p><p>We further assume a time series model for <span class="mathjax-tex">\(\{p_k\}_{k=1,2,\dots }\)</span>: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">[NB2]</span> <p>The value of the parameter <span class="mathjax-tex">\(p_{k}\)</span> changes stochastically according to <i>k</i>, and the logit transformation of <span class="mathjax-tex">\(p_{k}\)</span>, say <span class="mathjax-tex">\(\text{ logit }p_k:=\log p_k/(1-p_k)\)</span> follows an ARIMA(<i>p</i>, <i>d</i>, <i>q</i>) process: </p><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \text{ logit }\,p_{k}-\text{ logit }\,p_{k-d}=c+{\epsilon }_{k}+\sum _{i=1}^{p}\,\phi _{i}\text{ logit }\,p_{k-i}+\sum _{i=1}^{q}\theta _{i}{\epsilon }_{k-i}, \end{aligned}$$</span></div></div><p> where <span class="mathjax-tex">\({\epsilon }_{k}\overset{i.i.d}{\sim }{\mathscr {N}}(0,\sigma ^{2})\)</span>, <span class="mathjax-tex">\(c\in {\mathbb {R}}\)</span>, and <span class="mathjax-tex">\(\sigma &gt;0\)</span>. <span class="mathjax-tex">\(\theta _{i}\)</span> and <span class="mathjax-tex">\(\phi _{i}\)</span> are the regression coefficients.</p> </li> </ol><p>To compute the approximated (T)VaR, we require the prediction of the conditional expectation</p><div id="Equ26" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[N_k|{\mathscr {F}}_t],\quad k &gt; t \end{aligned}$$</span></div></div><p>based on observations <span class="mathjax-tex">\((N_{k,1},N_{k,2},\dots , N_{k,m})_{k=1,2,\dots ,t}\)</span>. Given that <i>m</i> observations <span class="mathjax-tex">\(N_{k,j}\,(j=1,\dots ,m)\)</span> are independently and identically distributed samples from a geometric distribution with parameter <span class="mathjax-tex">\(p_k\)</span>, the log-likelihood is expressed as</p><div id="Equ27" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} L_n(p_k):= \sum _{j=1}^m \log (1-p_k)p_k^{N_{k,j}}, \end{aligned}$$</span></div></div><p>and the MLE of <span class="mathjax-tex">\(p_k\)</span> up to time <i>t</i> is computed as</p><div id="Equ28" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{p}_k:= 1 - \frac{1}{1 + N_k/m},\quad k=1,\dots ,t. \end{aligned}$$</span></div></div><p>If <span class="mathjax-tex">\(\widehat{p}_k\,(k=1,\dots t)\)</span> provides a reliable estimate of <span class="mathjax-tex">\(p_k\)</span>, we can assume that these estimated values approximately satisfy the ARIMA process described in [NB2]. Consequently, we can proceed to estimate the parameters <span class="mathjax-tex">\((p,d,q; c,\phi _i,\vartheta _i,\sigma )\)</span> based on the sequence <span class="mathjax-tex">\(\{\widehat{p}_k\}{k=1,\dots t}\)</span>, resulting in <span class="mathjax-tex">\((\widehat{p},\widehat{d},\widehat{q}; \widehat{c},\widehat{\phi }_i,\widehat{\vartheta }_i,\widehat{\sigma })\)</span>.</p><p>Subsequently, the logit of <span class="mathjax-tex">\(p_k^{(t)}:=p_k|_{{\mathscr {F}}_t}\)</span>, representing the ’future’ parameter conditional on <span class="mathjax-tex">\({\mathscr {F}}_t\)</span>, can be predicted through the estimated ARIMA<span class="mathjax-tex">\((\widehat{p},\widehat{d},\widehat{q})\)</span> model, as follows:</p><div id="Equ29" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \text{ logit }\,p_k^{(t)}= \widehat{c} + \text{ logit }\,p^{(t)}_{k-\widehat{d}} + {\epsilon }_{k}+\sum _{i=1}^{\widehat{p}}\widehat{\phi }_{i}\text{ logit }\,p_{k-i}^{(t)}+\sum _{i=1}^{\widehat{q}}\widehat{\theta }_{i}{\epsilon }_{k-i},\quad {\epsilon }_k \sim {\mathscr {N}}(0,\widehat{\sigma }^{2}). \end{aligned}$$</span></div></div><p>Generating a sample of <span class="mathjax-tex">\(p^{(t)}_k\)</span> as well as the expression (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ7">3.2</a>), we have the predictor</p><div id="Equ30" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[N_k|{\mathscr {F}}_t]\approx \frac{m p^{(t)}_k}{1-p^{(t)}_k},\quad k&gt;t, \end{aligned}$$</span></div></div><p>and the predictor of <span class="mathjax-tex">\(\beta ^{(t)}_k\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ4">2.3</a>) is given by</p><div id="Equ31" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{\beta }^{(t)}_k:=1-\frac{(1-\alpha )(1-p^{(t)}_k)}{mp_k^{(t)}}. \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar3">Remark 3.1</h3> <p>Since <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_k }(U)\)</span> is a random variable via <span class="mathjax-tex">\(p_k^{(t)}\)</span> that follows ARIMA model, we must estimate its distribution to predict <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_k }(U)\)</span>. This involves generating random samples of <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_k }(U)\)</span>. By repeating the aforementioned procedure, for example, <i>B</i> times, and obtaining predictor values <span class="mathjax-tex">\(\widehat{\beta }^{(t)}_{k,1},\widehat{\beta }^{(t)}_{k,2}, \dots ,\widehat{\beta }^{(t)}_{k,B}\)</span>, we accumulate a set of <i>B</i> samples of <span class="mathjax-tex">\(VaR_\beta (U)\)</span>:</p><div id="Equ32" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{{\varvec{V}}}:=\left\rbrace VaR_{\widehat{\beta }^{(t)}_{k,1} }(U), VaR_{\widehat{\beta }^{(t)}_{k,2} }(U), \dots , VaR_{\widehat{\beta }^{(t)}_{k,B} }(U) \right\lbrace . \end{aligned}$$</span></div></div><p>Consequently, a predictor for <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_k }(U)\)</span> can be approximated as</p><div id="Equ33" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} VaR_{\widehat{\beta }^{(t)}_k }(U) \approx \textrm{mean}(\widehat{{\varvec{V}}}) = \frac{1}{B}\sum _{j=1}^B VaR_{\widehat{\beta }^{(t)}_{k,j}}(U), \end{aligned}$$</span></div></div><p>and each <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_{k,j}}(U)\)</span> is calculated according to the formula in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ5">2.4</a>); see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec8">4</a> for the practical procedure. Moreover, the <span class="mathjax-tex">\(\alpha \)</span>-confidence interval is given by</p><div id="Equ34" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} [\widehat{{\mathbb {V}}}_{(1-\alpha )/2}, \widehat{{\mathbb {V}}}^{(1-\alpha )/2}],\quad \alpha \in (0,1), \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\({\mathbb {V}}_{(1-\alpha )/2}\)</span> and <span class="mathjax-tex">\({\mathbb {V}}^{(1-\alpha )/2}\)</span> are the lower and upper <span class="mathjax-tex">\((1-\alpha )/2\)</span>-empirical quantile for <span class="mathjax-tex">\(\widehat{{\varvec{V}}}\)</span>, respectively.</p> <p>In this procedure, if <span class="mathjax-tex">\(VaR_{\widehat{\beta }^{(t)}_{k,j}}(U)\)</span> had to be calculated again by Monte Carlo, it would be a significant computational cost. However, in our simple model approach, this can be written in explicit form, which significantly reduces the amount of computation.</p> <h3 class="c-article__sub-heading" id="Sec5"><span class="c-article-section__title-number">3.2 </span>Compound Poisson model</h3><p>The second candidate for <i>N</i> is the compound Poisson process with stochastic intensity. We maintain the structure of Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ6">3.1</a>) for <span class="mathjax-tex">\(N_k\)</span> but alter the distribution of <span class="mathjax-tex">\(N_{k,j}\)</span> to follow the Poisson distribution. We make the following assumptions: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">[CP1]</span> <p><span class="mathjax-tex">\(N_{k,j} (j=1,...,m)\)</span> are independent and identically distributed random variables, each of which conforms to a Poisson distribution, denoted as <span class="mathjax-tex">\(N_{k,j}\overset{i.i.d}{\sim }Po(\Lambda _k/m)\)</span>. Here, the parameter <span class="mathjax-tex">\(\Lambda _k\)</span> remains constant throughout the <span class="mathjax-tex">\(k^{th}\)</span> period, with <span class="mathjax-tex">\(\Lambda _k &gt; 0\)</span>: for <span class="mathjax-tex">\(\Lambda _k &gt; 0\)</span>, </p><div id="Equ35" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\mathbb {P}}}(N_{k,j} = r) = e^{-\Lambda _k/m}\frac{(\Lambda _k/m)^\ell }{\ell !},\quad \ell =0,1,2,\dots . \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">[CP2]</span> <p>The value of the parameter <span class="mathjax-tex">\(\Lambda _{k}\)</span> changes depending on <i>k</i>. In particular, log transfomation of <span class="mathjax-tex">\(\Lambda _{k}(:=\displaystyle \log \Lambda _{k})\)</span> follows ARIMA(<i>p</i>, <i>d</i>, <i>q</i>) process, i.e. </p><div id="Equ36" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \log \Lambda _{k}-\log \Lambda _{k-d}=c+{\epsilon }_{k}+\sum _{i=1}^{p}\phi _{i}\log \Lambda _{k-i}+\sum _{i=1}^{q}\theta _{i}{\epsilon }_{k-i}, \end{aligned}$$</span></div></div><p> where <span class="mathjax-tex">\({\epsilon }_{k}\overset{i.i.d}{\sim }{\mathscr {N}}(0,\sigma ^{2})\)</span>.</p> </li> </ol><p>Under the condition [CP1], it is evident that the condition in Eq. (<a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar8">A.2</a>) from Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a> holds, given that <span class="mathjax-tex">\(N_k\sim Po(\Lambda _k)\)</span>.</p><p>We follow the same procedure as the previous section to predict <span class="mathjax-tex">\({\mathbb {E}}[N_k|{\mathscr {F}}_t]\ (k&gt;t)\)</span>. To commence, we estimate each <span class="mathjax-tex">\(\Lambda _k/m\ (k=1,2,\dots ,t)\)</span> based on observations <span class="mathjax-tex">\((N_{k,1},N_{k,2},\dots , N_{k,m})_{k=1,2,\dots ,t}\)</span> through the MLE:</p><div id="Equ37" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{\widehat{\Lambda }_k}{m} = \frac{N_{k,1} + \dots + N_{k,m}}{m} = \frac{N_k}{m}\quad \Leftrightarrow \quad \widehat{\Lambda }_k = N_k. \end{aligned}$$</span></div></div><p>Next, if the <span class="mathjax-tex">\(\widehat{\Lambda }_k\)</span> estimates the true <span class="mathjax-tex">\(\Lambda _k\)</span> well, then we can regards that <span class="mathjax-tex">\(\{\log \widehat{\Lambda }_k\}_{k\in {\mathbb {N}}}\)</span> follows the ARIMA(<i>p</i>, <i>d</i>, <i>q</i>), and that <span class="mathjax-tex">\(\Lambda _k^{(t)} = \Lambda _k|_{{\mathscr {F}}_t}\)</span> is predicted by</p><div id="Equ38" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \log \Lambda _{k}^{(t)}-\log \Lambda _{k-\widehat{d}}^{(t)} =\widehat{c}+{\epsilon }_{k}+\sum _{i=1}^{\widehat{p}}\widehat{\phi }_{i}\log \Lambda _{k-i}^{(t)}+\sum _{i=1}^{\widehat{q}}\widehat{\theta }_{i}{\epsilon }_{k-i},\quad {\epsilon }_k\sim {\sim }{\mathscr {N}}(0,\widehat{\sigma }^{2}), \end{aligned}$$</span></div></div><p>where all the unknown parameters are estimated from <span class="mathjax-tex">\(\{\log \widehat{\Lambda }_k\}_{k=1,2,\dots t}\)</span>.</p><p>Since <span class="mathjax-tex">\({\mathbb {E}}[N_k]=\Lambda _k\)</span>, we approximate <span class="mathjax-tex">\({\mathbb {E}}[N_k|{\mathscr {F}}_t]\)</span> as follows:</p><div id="Equ39" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[N_k|{\mathscr {F}}_t] \approx \Lambda _k^{(t)},\quad k&gt;t, \end{aligned}$$</span></div></div><p>and the predictor of <span class="mathjax-tex">\(\beta _k^{(t)}\)</span> is given by</p><div id="Equ40" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{\beta }_k^{(t)} = 1 - \frac{1-\alpha }{\Lambda _k^{(t)}}. \end{aligned}$$</span></div></div><p>Then the <span class="mathjax-tex">\(VaR_{\widehat{\beta }_k^{(t)}}\)</span> is predicted by the same procedure as in Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar3">3.1</a>.</p><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">3.3 </span>Hawkes processes</h3><p>The third candidate for <i>N</i> is represented by a <i>Hawkes process</i> <span class="mathjax-tex">\(\widetilde{N}=(\widetilde{N}t){t\ge 0}\)</span>, which is a point process characterized by stochastic intensity: for given <span class="mathjax-tex">\({\mathscr {F}}_t\)</span>,</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \lambda _t=\mu +\sum _{t_{i}&lt;t}g(t-t_{i}), \end{aligned}$$</span></div><div class="c-article-equation__number"> (3.3) </div></div><p>where <span class="mathjax-tex">\(\mu \ge 0\)</span>, <i>g</i> is a <i>kernel function</i>, and <span class="mathjax-tex">\(t_{i}\)</span> is the <span class="mathjax-tex">\(i_{th}\)</span> incident time.</p><p>We suppose that <span class="mathjax-tex">\(\widetilde{N}_k\)</span> is the number of incidents up to time <i>k</i>. Then our <span class="mathjax-tex">\(N_k\)</span>, which is the number of incident in the <span class="mathjax-tex">\(k^{th}\)</span> period, is given by</p><div id="Equ41" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} N_k = \widetilde{N}_{k} - \widetilde{N}_{k-1}. \end{aligned}$$</span></div></div><p>Given that obtaining the expectation <span class="mathjax-tex">\({\mathbb {E}}[\widetilde{N}_k]\)</span> is typically challenging, we make an additional assumption concerning the kernel function <i>g</i>, which assumes the form</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} g_\vartheta (x)=\alpha \beta \exp (-\beta x),\quad x\in {\mathbb {R}}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (3.4) </div></div><p>with a parameter <span class="mathjax-tex">\(\vartheta =(\alpha ,\beta ) \in {\mathbb {R}}_{+}^2\)</span>. Importantly, we assume that the parameter <span class="mathjax-tex">\(\vartheta \)</span> remains constant across periods (<i>k</i>), whereas in Sects. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec4">3.1</a> and <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec5">3.2</a>, we had assumed period-dependent <span class="mathjax-tex">\(\vartheta \)</span> values.</p><p>According to Lesage et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Lesage, L., Deaconu, M., Lejay, A., Meira, A. J., Nichil, G. &amp; State, R. (2020). Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance. Retrieved from &#xA; https://hal.inria.fr/hal-03040090&#xA; &#xA; " href="/article/10.1007/s42081-024-00273-y#ref-CR12" id="ref-link-section-d432018368e10995">2020</a>), the expectation of the Hawkes process with the kernel (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ9">3.4</a>) is written as</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[\widetilde{N}_{t}]=\frac{\mu }{1-\alpha }t-\frac{\mu \alpha }{\beta (1-\alpha )^{2}}\left[1-\exp \{-(1-\alpha )\beta t\}\right], \end{aligned}$$</span></div><div class="c-article-equation__number"> (3.5) </div></div><p>although it is generally hard to find the explicit expression of the expectation of a Hawkes process.</p><p>Next, we check the condition (<a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar8">A.2</a>) in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar12">A.4</a>. According to Daley and Vere-Jones (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Daley, D. J., &amp; Vere-Jones, D. (2003). An introduction to the theory of point processes-volume I: Elementary theory and methods (2nd ed.). Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR7" id="ref-link-section-d432018368e11160">2003</a>),</p><div id="Equ42" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\mathbb {P}}}(\widetilde{N}_k - \widetilde{N}_{k-1}=r)={\mathbb {E}}\Biggl [\exp \left( -\int _{k-1}^{k}\lambda _{s}\,ds\right) \frac{(\int _{k-1}^{k}\lambda _{s}\,ds)^{r}}{r!}\Biggr ]. \end{aligned}$$</span></div></div><p>Hence it follows for any <span class="mathjax-tex">\({\epsilon }&gt;0\)</span> that</p><div id="Equ43" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{r=0}^\infty (1+{\epsilon })^r {{\mathbb {P}}}(N_k=r)&amp;= \sum _{r=0}^\infty (1+{\epsilon })^r {{\mathbb {P}}}(\widetilde{N}_k - \widetilde{N}_{k-1}=r)\\&amp;= \sum _{r=0}^{\infty }(1+{\epsilon })^{r}\cdot {\mathbb {E}}\Biggl [\exp \left( -\int _{k-1}^{k}\lambda _{s}ds\right) \dfrac{(\int _{k-1}^{k}\lambda _{s}ds)^{r}}{r!}\Biggr ]\\&amp;= {\mathbb {E}}\Biggl [\sum _{r=0}^{\infty }\exp \left( -\int _{k-1}^k \lambda _{s}ds\right) \dfrac{\{(1+{\epsilon })\int _{k-1}^{k}\lambda _{s}ds\}^{r}}{r!}\Biggr ]\\&amp;= {\mathbb {E}}\Biggl [\exp \left( {\epsilon }\int _{k-1}^{t}\lambda _{s}ds\right) \sum _{r=0}^{\infty }\exp \left\{ -(1+{\epsilon })\int _{k-1}^{k}\lambda _{s}ds\right\} \\&amp;\quad \times \dfrac{\{(1+{\epsilon })\int _{k-1}^{k}\lambda _{s}ds\}^{r}}{r!}\Biggr ]\\&amp;= {\mathbb {E}}\Biggl [\exp \left( {\epsilon }\int _{k-1}^{k}\lambda _{s}ds\right) \Biggr ] &lt; \infty . \end{aligned}$$</span></div></div><p>To estimate the parameters <span class="mathjax-tex">\(\vartheta = (\mu ,\alpha ,\beta )\)</span>, we require knowledge of the incident times <span class="mathjax-tex">\(t_i\)</span>, which are not available in the PRC dataset [18]. Only the date of each incident is provided. Consequently, we resort to a hypothetical stochastic generation of incident times and substitute these with random numbers to construct an estimator for the parameters. This process is iterated multiple times, and the estimated values of <span class="mathjax-tex">\(\widehat{\vartheta }\)</span> are computed by averaging these estimators.</p><p>Given that numerous incident times occur within a single day, an approximation in which the times are assumed to be uniformly distributed throughout a day is generally acceptable. The averaging process will help mitigate any errors. In practical terms, we follow these steps: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>Generate the quasi-occurrence times <span class="mathjax-tex">\(t_i &lt; t\)</span> uniformly within a daily scale, denoted as <span class="mathjax-tex">\(\tau _1,\dots , \tau _{N_k}\)</span>.</p> </li> <li> <span class="u-custom-list-number">2.</span> <p>Estimate the <span class="mathjax-tex">\(\vartheta =(\mu ,\alpha ,\beta )\)</span> by the maximum likelihood method, where the likelihood function is given by </p><div id="Equ44" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} L(\mu ,\alpha ,\beta ):= \sum _{j=1}^{N_k} \log \lambda _{\tau _j} - \int _0^t \lambda _s\,ds \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">3.</span> <p>Iterate this procedure <i>B</i> times, and compute the MLE <span class="mathjax-tex">\(\widehat{\vartheta }^{t,j} = (\widehat{\mu }^{(t,j)}, \widehat{\alpha }^{(t,j)}, \widehat{\beta }^{(t,j)})\)</span> in the <span class="mathjax-tex">\(j^{th}\)</span> step <span class="mathjax-tex">\((j=1,2,\dots ,B)\)</span>. Then, aggregate these individual estimates as follows: </p><div id="Equ45" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{\vartheta }^{(t)} = \frac{1}{B}\sum _{j=1}^B \widehat{\vartheta }^{(t,j)}. \end{aligned}$$</span></div></div><p> This approach allows us to estimate the parameters <span class="mathjax-tex">\(\vartheta \)</span> with repeated sampling and averaging for enhanced accuracy.</p> </li> </ol><p>From the expression (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ10">3.5</a>), we have the approximation</p><div id="Equ46" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathbb {E}}[\widetilde{N}_k|{\mathscr {F}}_t] \approx \frac{\widehat{\mu }^{(t)}}{1-\widehat{\alpha }^{(t)}}k-\frac{\widehat{\mu }^{(t)}\widehat{\alpha }^{(t)}}{\widehat{\beta }^{(t)}(1-\widehat{\alpha }^{(t)})^{2}}\left\rbrace 1-\exp \left[-(1-\widehat{\alpha }^{(t)})\widehat{\beta }^{(t)}k\right]\right\lbrace =: \Pi _k^{(t)},\quad k&gt;t. \end{aligned}$$</span></div></div><p>Since <span class="mathjax-tex">\(N_k = \widetilde{N}_k - \widetilde{N}_{k-1}\)</span>, the predictor of <span class="mathjax-tex">\(\beta _k^{(t)}\)</span> is given by</p><div id="Equ47" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \widehat{\beta }_k^{(t)} = 1 - \frac{1-\alpha }{\Pi _k^{(t)} - \Pi _{k-1}^{(t)}}. \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar4">Remark 3.2</h3> <p>It’s important to note that in this particular model, the predictor for <span class="mathjax-tex">\(\widehat{\beta }_k^{(t)}\)</span> in the future is not subject to randomness. This is because the model assumes that the parameter values remain constant. As a result, there is no need to follow the procedure outlined in Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar3">3.1</a>. The value of <span class="mathjax-tex">\(VaR_{\widehat{\beta }_k^{(t)}}\)</span> is solely determined by the estimated value of <span class="mathjax-tex">\(\widehat{\beta }_k^{(t)}\)</span>.</p> <h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">3.4 </span>Approximation and estimation of <span class="mathjax-tex">\(F_U\)</span> </h3><p>Across all the models described above, we maintain the assumption:</p><div id="Equ48" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \overline{F}_U \in {\mathscr {R}}_{-\kappa },\quad \kappa &gt;1. \end{aligned}$$</span></div></div><p>which enables us to apply Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar6">A.1</a>, and for ‘large <span class="mathjax-tex">\(u&gt;0\)</span>’, we can approximate</p><div id="Equ49" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_U(x|u) \approx G_{\xi ,\sigma }(x), \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\xi \ge 0\)</span> and <span class="mathjax-tex">\(\sigma &gt;0\)</span> represent the parameters. Determining a ‘suitable’ value for <span class="mathjax-tex">\(u&gt;0\)</span> is crucial. The <i>Peaks-Over-Threshold (POD) method</i> is a widely recognized approach for selecting a threshold <span class="mathjax-tex">\(u&gt;0\)</span>. We make this determination visually by utilizing the <i>mean excess (ME)-plot</i>. Further details can be found in Embrechts et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR9" id="ref-link-section-d432018368e13877">2003</a>), Section 6.5.</p><p>As an example, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig4">4</a> displays the ME-plot for Case 2 (2006–2016); refer to Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab1">1</a>. We can opt for a threshold such as <span class="mathjax-tex">\(u=6.6\times 10^6\ (\mathrm {6.6e+06})\)</span>. Subsequently, we estimate the parameters <span class="mathjax-tex">\(\xi \)</span> and <span class="mathjax-tex">\(\sigma \)</span> using data that exceeds this threshold <i>u</i>, employing the maximum likelihood method as outlined in Embrechts et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR9" id="ref-link-section-d432018368e13984">2003</a>), Section 6.5.1. These estimated values are denoted as <span class="mathjax-tex">\(\widehat{\xi }{u}^{(t)}\)</span> and <span class="mathjax-tex">\(\widehat{\sigma }{u}^{(t)}\)</span>. It’s important to note that <span class="mathjax-tex">\(t=2013\)</span> in Case 1 and <span class="mathjax-tex">\(t=2016\)</span> in Case 2. The estimated values are presented in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab2">2</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/4" rel="nofollow"><picture><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="372"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Mean excess plot (Case 2: 2006–2016)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Estimated values of <span class="mathjax-tex">\(\xi \)</span> and <span class="mathjax-tex">\(\sigma \)</span> (MLE) with the threshold <i>u</i></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Furthermore, based on these estimated values, we conducted the <i>Kolmogorov–Smirnov (KS) goodness-of-fit test</i> for the estimated probability density function: <span class="mathjax-tex">\(G_{\widehat{\xi }{u}^{(t)}, \widehat{\sigma }{u}^{(t)}}\)</span>. The KS test statistics are provided in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab3">3</a>, and we found that the hypothesis stating the distribution of <span class="mathjax-tex">\(U_i&gt;u\)</span> follows a Generalized Pareto Distribution (GPD) was not rejected at the 5% significance level in both Cases 1 and 2. For your reference, these density functions are depicted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig5">5</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 KS-test</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/5" rel="nofollow"><picture><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="257"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>Estimated density of GPD with data; Case 1 (left) and Case 2 (right)</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Data analysis: prediction of tail risks"><div class="c-article-section" id="Sec8-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec8"><span class="c-article-section__title-number">4 </span>Data analysis: prediction of tail risks</h2><div class="c-article-section__content" id="Sec8-content"><p>Utilizing each of the models previously outlined, namely NB (negative binomial), CP (compound Poisson), and HK (Hawkes process), we estimate the conditional (Tail) Value-at-Risk as described in Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar3">3.1</a>.</p><p>In the NB and CP models, we set <span class="mathjax-tex">\(m=7\)</span> to represent a week, where <span class="mathjax-tex">\(N_{kj}\)</span> signifies the number of incidents on the <i>j</i>th day of the <i>k</i>th week. Under each model, we generate 1000 samples of <span class="mathjax-tex">\(VaR_{\beta _k^{(t)}}(U)\)</span> and <span class="mathjax-tex">\(TVaR_{\beta _k^{(t)}}(U)\)</span>, calculate the mean, and determine the 95% confidence interval. Subsequently, we compare these results with the test data in Cases 1 and 2, respectively.</p><h3 class="c-article__sub-heading" id="Sec9"><span class="c-article-section__title-number">4.1 </span>Negative Binomial model</h3><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab4">4</a> provides the results of estimating the ARIMA process for <span class="mathjax-tex">\(p_k\)</span> as assumed in [NB2]. We select the values of (<i>p</i>, <i>d</i>, <i>q</i>) using Akaike’s Information Criteria (AIC) through maximum likelihood estimation (MLE).</p><p>We estimate the 99% and 99.9% (Tail) VaR and present the results in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig6">6</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig7">7</a> alongside the testing data for backtesting.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Estimation of ARIMA process for <span class="mathjax-tex">\(p_k\)</span> in [NB2]</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="423"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>NB model, Case 1: 99% and 99.9% (T)VaR with breaches in 2014–2015</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="440"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>NB model, Case 2: 99% and 99.9% (T)VaR with breaches in 2017–2018</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec10"><span class="c-article-section__title-number">4.2 </span>Compound Poisson model</h3><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab5">5</a> is estimating the result of the ARIMA process for <span class="mathjax-tex">\(\Lambda _k\)</span> assumed in [CP2]. AIC also selects the parameter (<i>p</i>, <i>d</i>, <i>q</i>). We show 99% and 99.9% (Tail) VaR in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig8">8</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig9">9</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Estimation of ARIMA process for <span class="mathjax-tex">\(\Lambda _k\)</span> in [CP2]</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="423"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>CP model, Case 1: 99% and 99.9% (T)VaR with breaches in 2014–2015</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig9_HTML.png?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="440"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>CP model, Case 2: 99% and 99.9% (T)VaR with breaches in 2017–2018</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec11"><span class="c-article-section__title-number">4.3 </span>Hawkes Process</h3><p>We present the backtesting results for the HK models in Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig10">10</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig11">11</a>. As mentioned at the end of Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s42081-024-00273-y#Sec6">3.3</a>, the values of <span class="mathjax-tex">\(VaR_{\widehat{\beta }_k^{(t)}}(U)\)</span> <span class="mathjax-tex">\((k=1,2,\dots )\)</span> are computed deterministically based on the estimated values of <span class="mathjax-tex">\(\widehat{\beta }_k^{(t)}\)</span>. Consequently, we cannot provide confidence intervals for the VaR as in the other models; see also Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar4">3.2</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig10_HTML.png?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="423"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>HK model, Case 2: 99% and 99.9% (T)VaR with breaches in 2014–2015</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42081-024-00273-y/MediaObjects/42081_2024_273_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="423"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>HK model, Case 2: 99% and 99.9% (T)VaR with breaches in 2017–2018</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s42081-024-00273-y/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><h3 class="c-article__sub-heading" id="Sec12"><span class="c-article-section__title-number">4.4 </span>Back testing the models</h3><p>We provide the backtesting results in Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab6">6</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab7">7</a>, <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab8">8</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab9">9</a>, where:</p><ul class="u-list-style-bullet"> <li> <p>‘95%-lower’ represents the rate at which the actual breaches are less than the 95%-lower bound of the confidence interval.</p> </li> <li> <p>‘95%-upper’ indicates the rate at which the actual breaches are less than the 95%-upper bound of the confidence interval.</p> </li> <li> <p>‘Mean’ represents the rate at which the actual breaches are less than the mean of the Monte Carlo samples of (T)VaR. This can be considered as the risk reserve for the insurer of the cyber risks.</p> </li> </ul><p>From a theoretical perspective, these rates (especially ‘Mean’) are expected to be close to 99% in VaR and even higher in TVaR because TVaR is a more conservative risk measure than VaR.</p><p>The results show that the 99%-VaR behaves as the theory suggests, and TVaR is more conservative, which appears to be sufficient for risk management. In Case 1, each rate is around 99% for VaR, while in Case 2, they are slightly underestimated but not far from 99%. This outcome is reasonable considering the trend changes since 2016, as discussed in the Introduction.</p><p>Figures <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig6">6</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig7">7</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig8">8</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig9">9</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig10">10</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s42081-024-00273-y#Fig11">11</a> illustrate that the results with NB and CP are similar, making it challenging to determine which is superior. The HK model yields slightly inferior results compared to the other two, even though it is often used to analyze cyber risks. Hence, the NB and CP models are sufficiently suitable for practical risk management, and there may be no compelling reason to opt for the HK model, which involves more complex estimation and modeling processes.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Empirical test for <span class="mathjax-tex">\(VaR_{0.99}\)</span></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-7"><figure><figcaption class="c-article-table__figcaption"><b id="Tab7" data-test="table-caption">Table 7 Empirical test for <span class="mathjax-tex">\(VaR_{0.999}\)</span></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/7" aria-label="Full size table 7"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-8"><figure><figcaption class="c-article-table__figcaption"><b id="Tab8" data-test="table-caption">Table 8 Empirical test for <span class="mathjax-tex">\(TVaR_{0.99}\)</span></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/8" aria-label="Full size table 8"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-9"><figure><figcaption class="c-article-table__figcaption"><b id="Tab9" data-test="table-caption">Table 9 Empirical test for <span class="mathjax-tex">\(TVaR_{0.999}\)</span></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/9" aria-label="Full size table 9"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-10"><figure><figcaption class="c-article-table__figcaption"><b id="Tab10" data-test="table-caption">Table 10 <i>p</i>-values for binomial backtesting of <span class="mathjax-tex">\(VaR_{0.99}\)</span>. Bold letters are the results where <span class="mathjax-tex">\(H_0\)</span> is rejected at a significance level of 10%</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/10" aria-label="Full size table 10"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-11"><figure><figcaption class="c-article-table__figcaption"><b id="Tab11" data-test="table-caption">Table 11 <i>p</i>-values for binomial backtesting of <span class="mathjax-tex">\(VaR_{0.999}\)</span>. Bold letters are the results where <span class="mathjax-tex">\(H_0\)</span> is rejected at a significance level of 10%</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s42081-024-00273-y/tables/11" aria-label="Full size table 11"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The above empirical backtesting may need to be revised: backtesting of VaR and TVaR is described in detail in Bayer and Dimitriadis (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Bayer, S., &amp; Dimitriadis, T. (2022). Regression-based expected shortfall backtesting. Journal of Financial Econometrics, 20(3), 437–471." href="/article/10.1007/s42081-024-00273-y#ref-CR3" id="ref-link-section-d432018368e17740">2022</a>) and Nolde and Ziegel (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Nolde, N., &amp; Ziegel, F. (2017). Elicitability and backtesting: Perspectives for banking regulation. The Annals of Applied Statistics, 11(4), 1833–1874." href="/article/10.1007/s42081-024-00273-y#ref-CR14" id="ref-link-section-d432018368e17743">2017</a>), and R packages are available. However, they did not work well on our dataset. The exact reasons are unclear, but in particular, during the computational process, irregular matrices appeared and the errors could not be removed until the end. This may be due to the peculiarities of our data. As mentioned in the Introduction, our data are not partly recorded as correct time stamps. This is a drawback of this open data, and hence, the distribution of the data is rather biased.</p><p>Therefore, as a standard backtest for VaR, we conducted a backtest using the binomial distribution mentioned in the Basel documents (Bank for International Settlements <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2013" title="Bank for International Settlements. (2013). Consultative document: Fundamental review of the trading book: A revised marked risk framework. Retrieved from &#xA; http://www.bis.org/publ/bcbs265.pdf&#xA; &#xA; ." href="/article/10.1007/s42081-024-00273-y#ref-CR2" id="ref-link-section-d432018368e17750">2013</a>) (Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab10">10</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab11">11</a>). This method serves our purpose here, as it is a method that can be described in the framework of the Nolde and Ziegel (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Nolde, N., &amp; Ziegel, F. (2017). Elicitability and backtesting: Perspectives for banking regulation. The Annals of Applied Statistics, 11(4), 1833–1874." href="/article/10.1007/s42081-024-00273-y#ref-CR14" id="ref-link-section-d432018368e17759">2017</a>) backtest and can be used without any distributional assumptions on the loss data (see Nolde and Ziegel <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Nolde, N., &amp; Ziegel, F. (2017). Elicitability and backtesting: Perspectives for banking regulation. The Annals of Applied Statistics, 11(4), 1833–1874." href="/article/10.1007/s42081-024-00273-y#ref-CR14" id="ref-link-section-d432018368e17762">2017</a>, Example 1). The null hypothesis in our test is the following:</p><blockquote class="c-blockquote"><div class="c-blockquote__body"> <p><span class="mathjax-tex">\(H_0\)</span>: The sequence of our predicted <span class="mathjax-tex">\(\{VaR_{\alpha }^{(t)}\}_{t\in {\mathbb {N}}}\)</span> is <i>conditionally calibrated</i> (certainly the value-at-risk with level <span class="mathjax-tex">\(\alpha \)</span>).</p> </div></blockquote><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab10">10</a> shows that the <i>p</i>-value for the HK model is relatively small, e.g., <span class="mathjax-tex">\(H_0\)</span> is rejected at a significance level of 5% for the HK-Mean, Case 2, but is at a level of stable acceptance for both NB and CP (in the Mean). Also, from Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s42081-024-00273-y#Tab11">11</a>, the performance of HK is somewhat inferior to the other two models, as is also the case at the 99.9% level. It is safe to say that very classical models such as NB and CP are also adequate in practical terms, at least in our dataset.</p> <h3 class="c-article__sub-heading" id="FPar5">Remark 4.1</h3> <p>All existing methods for backtesting against TVaR rely on the distribution of the loss data and/or the asymptotic variance of the test statistic. In particular, it was difficult to find a suitable method for TVaR backtesting, as the loss data in this case was heavy-tailed, and even the existence of variance was doubtful. Due to those limitations, only the above-mentioned empirical results are identified here.</p> </div></div></section><section data-title="Conclusion and future works"><div class="c-article-section" id="Sec13-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec13"><span class="c-article-section__title-number">5 </span>Conclusion and future works</h2><div class="c-article-section__content" id="Sec13-content"><p>We extend the classical (single-period) insurance risk model to a multi-period framework for more effective cyber risk assessment. By evaluating the performance of different models, including the negative binomial model, Poisson process, and Hawkes process, you provide valuable insights into their ability to predict VaR and TVaR in future periods.</p><p>Our data analysis revealed that both the negative binomial and Poisson models effectively predict VaR and TVaR for cyber risks. However, there was no significant difference in their performance, suggesting that either of these models can be used effectively for risk assessment. Surprisingly, the Hawkes model, which is commonly used for predicting cyber risks, did not exhibit superior performance in this specific dataset.</p><p>Our study demonstrates that a classical and simple model can effectively manage cyber risks. The explicit calculations and low computational costs make this approach practical and accessible. Moreover, the straightforward statistical procedures involved in this model make it a valuable tool for cyber risk assessment. This research emphasizes the importance of using models that are not only effective but also easy to implement in practice.</p><p>On the other hand, recent survey studies related to cyber risk and insurance, such as Awiszus et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Awiszus, K., Knispel, T., Penner, I., Svindland, G., Voß, A., &amp; Weber, S. (2023). Modeling and pricing cyber insurance: Idiosyncratic, systematic, and systemic risks. European Actuarial Journal, 13(1), 1–53." href="/article/10.1007/s42081-024-00273-y#ref-CR1" id="ref-link-section-d432018368e17932">2023</a>) and Dacorogna and Kratz (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Dacorogna, M., &amp; Kratz, M. (2023). Managing cyber risk, a science in the making. Scandinavian Actuarial Journal, 2023(10), 1000–1021." href="/article/10.1007/s42081-024-00273-y#ref-CR6" id="ref-link-section-d432018368e17935">2023</a>), have pointed out that while emphasizing the importance and utility of the classical actuarial approach, it is difficult to address the complexity of cyber risk data using only the classical frequency-severity approach. This suggests that there is still room for development in the direct application of our classical model. However, it should not be forgotten that the explicit expressiveness of the simple classical model has computational advantages, which cannot be ignored in practice. Furthermore, in the above studies, the use of a single-period model is assumed for frequency modeling. Our novelty lies in extending this to a multi-period model and addressing its statistical inference. Awiszus et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Awiszus, K., Knispel, T., Penner, I., Svindland, G., Voß, A., &amp; Weber, S. (2023). Modeling and pricing cyber insurance: Idiosyncratic, systematic, and systemic risks. European Actuarial Journal, 13(1), 1–53." href="/article/10.1007/s42081-024-00273-y#ref-CR1" id="ref-link-section-d432018368e17938">2023</a>) mention using a Cox process for frequency modeling, but this approach does not yield explicit expressions for VaR or TVaR. Our approach emphasizes explicitness. Making our multi-period model the standard benchmark model and incorporating the characteristics of cyber risk may serve as a trigger for more complex modeling.</p><p>Despite using the PRC data [18], the largest dataset available to our knowledge, several issues still need to be solved. First, many cyber incidents have likely yet to be disclosed. Open databases for cyber attacks may help address this. Secondly, inaccuracies in the incident dates are a concern. The reported dates in PRC are not necessarily when the breaches occurred but when they were made public. As a result, some incidents may be reported long after they occurred, akin to the Incurred But Not Reported (IBNR) concept in insurance. This issue needs further attention in future research.</p><p>While we used all data without categorization in our data analysis, the trends may differ depending on the type of breaches. For instance, some incidents, such as hacking or insider breaches, may be malicious, while others could result from negligence, like administrative errors. Additionally, the trends may vary based on business sectors such as companies, educational institutions, and medical facilities. Consequently, future analyses should ideally be based on more finely categorized and detailed data. Unfortunately, such data are not readily available as open-source, and developing a comprehensive database is still an ongoing challenge. The cyber risk analysis field would greatly benefit from establishing more extensive and categorized datasets for improved insights and risk management. </p></div></div></section> </div> <section data-title="Data Availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data Availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>All the data we used in this paper are available on Privacy Rights Clearinghouse (2023) website.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ul class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR1">Awiszus, K., Knispel, T., Penner, I., Svindland, G., Voß, A., &amp; Weber, S. (2023). Modeling and pricing cyber insurance: Idiosyncratic, systematic, and systemic risks. <i>European Actuarial Journal,</i> <i>13</i>(1), 1–53.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13385-023-00341-9" data-track-item_id="10.1007/s13385-023-00341-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13385-023-00341-9" aria-label="Article reference 1" data-doi="10.1007/s13385-023-00341-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4585073" aria-label="MathSciNet reference 1">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=Modeling%20and%20pricing%20cyber%20insurance%3A%20Idiosyncratic%2C%20systematic%2C%20and%20systemic%20risks&amp;journal=European%20Actuarial%20Journal&amp;doi=10.1007%2Fs13385-023-00341-9&amp;volume=13&amp;issue=1&amp;pages=1-53&amp;publication_year=2023&amp;author=Awiszus%2CK&amp;author=Knispel%2CT&amp;author=Penner%2CI&amp;author=Svindland%2CG&amp;author=Vo%C3%9F%2CA&amp;author=Weber%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR2">Bank for International Settlements. (2013). Consultative document: Fundamental review of the trading book: A revised marked risk framework. Retrieved from <a href="http://www.bis.org/publ/bcbs265.pdf" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://www.bis.org/publ/bcbs265.pdf">http://www.bis.org/publ/bcbs265.pdf</a>.</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR3">Bayer, S., &amp; Dimitriadis, T. (2022). Regression-based expected shortfall backtesting. <i>Journal of Financial Econometrics,</i> <i>20</i>(3), 437–471.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jjfinec/nbaa013" data-track-item_id="10.1093/jjfinec/nbaa013" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjjfinec%2Fnbaa013" aria-label="Article reference 3" data-doi="10.1093/jjfinec/nbaa013">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=Regression-based%20expected%20shortfall%20backtesting&amp;journal=Journal%20of%20Financial%20Econometrics&amp;doi=10.1093%2Fjjfinec%2Fnbaa013&amp;volume=20&amp;issue=3&amp;pages=437-471&amp;publication_year=2022&amp;author=Bayer%2CS&amp;author=Dimitriadis%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR4">Biagini, F., &amp; Ulmer, S. (2009). Asymptotics for operational risk quantified with expected shortfall. <i>ASTIN Bulletin,</i> <i>39</i>, 735–752.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2143/AST.39.2.2044656" data-track-item_id="10.2143/AST.39.2.2044656" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2143%2FAST.39.2.2044656" aria-label="Article reference 4" data-doi="10.2143/AST.39.2.2044656">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2751848" aria-label="MathSciNet reference 4">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotics%20for%20operational%20risk%20quantified%20with%20expected%20shortfall&amp;journal=ASTIN%20Bulletin&amp;doi=10.2143%2FAST.39.2.2044656&amp;volume=39&amp;pages=735-752&amp;publication_year=2009&amp;author=Biagini%2CF&amp;author=Ulmer%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR5">Böcker, K., &amp; Klüppelberg, C. (2005) Operational VaR: A closed-form solution. <i>RISK Magazine</i>, December, pp. 90–93.</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR6">Dacorogna, M., &amp; Kratz, M. (2023). Managing cyber risk, a science in the making. <i>Scandinavian Actuarial Journal,</i> <i>2023</i>(10), 1000–1021.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/03461238.2023.2191869" data-track-item_id="10.1080/03461238.2023.2191869" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F03461238.2023.2191869" aria-label="Article reference 6" data-doi="10.1080/03461238.2023.2191869">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4647684" aria-label="MathSciNet reference 6">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=Managing%20cyber%20risk%2C%20a%20science%20in%20the%20making&amp;journal=Scandinavian%20Actuarial%20Journal&amp;doi=10.1080%2F03461238.2023.2191869&amp;volume=2023&amp;issue=10&amp;pages=1000-1021&amp;publication_year=2023&amp;author=Dacorogna%2CM&amp;author=Kratz%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR7">Daley, D. J., &amp; Vere-Jones, D. (2003). <i>An introduction to the theory of point processes-volume I: Elementary theory and methods</i> (2nd ed.). Springer.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20introduction%20to%20the%20theory%20of%20point%20processes-volume%20I%3A%20Elementary%20theory%20and%20methods&amp;publication_year=2003&amp;author=Daley%2CDJ&amp;author=Vere-Jones%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR8">Eling, M., Elvedi, M., &amp; Falco, G. (2022). The economic impact of extreme cyber risk scenarios. <i>North American Actuarial Journal,</i> <i>27</i>, 1–15.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20economic%20impact%20of%20extreme%20cyber%20risk%20scenarios&amp;journal=North%20American%20Actuarial%20Journal&amp;volume=27&amp;pages=1-15&amp;publication_year=2022&amp;author=Eling%2CM&amp;author=Elvedi%2CM&amp;author=Falco%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR9">Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). <i>Modeling extremal events for insurance and finance</i>. Springer.</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR10">Farkas, S., Lopez, O., &amp; Thomas, M. (2021). Cyber claim analysis using generalized Pareto regression trees with applications to insurance. <i>Insurance: Mathematics and Economics,</i> <i>98</i>, 92–105.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4236431" aria-label="MathSciNet reference 10">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Cyber%20claim%20analysis%20using%20generalized%20Pareto%20regression%20trees%20with%20applications%20to%20insurance&amp;journal=Insurance%3A%20Mathematics%20and%20Economics&amp;volume=98&amp;pages=92-105&amp;publication_year=2021&amp;author=Farkas%2CS&amp;author=Lopez%2CO&amp;author=Thomas%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR11">Grandell, J. (1997). <i>Mixed Poisson processes</i>. Chapman &amp; Hall.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-1-4899-3117-7" data-track-item_id="10.1007/978-1-4899-3117-7" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-1-4899-3117-7" aria-label="Book reference 11" data-doi="10.1007/978-1-4899-3117-7">Book</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=Mixed%20Poisson%20processes&amp;doi=10.1007%2F978-1-4899-3117-7&amp;publication_year=1997&amp;author=Grandell%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR12">Lesage, L., Deaconu, M., Lejay, A., Meira, A. J., Nichil, G. &amp; State, R. (2020). Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance. Retrieved from <a href="https://hal.inria.fr/hal-03040090" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://hal.inria.fr/hal-03040090">https://hal.inria.fr/hal-03040090</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR13">Maillart, T., &amp; Sornette, D. (2010). Heavy-tailed distribution of cyber risks. <i>The European Physical Journal B,</i> <i>75</i>, 357–364.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1140/epjb/e2010-00120-8" data-track-item_id="10.1140/epjb/e2010-00120-8" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1140%2Fepjb%2Fe2010-00120-8" aria-label="Article reference 13" data-doi="10.1140/epjb/e2010-00120-8">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Heavy-tailed%20distribution%20of%20cyber%20risks&amp;journal=The%20European%20Physical%20Journal%20B&amp;doi=10.1140%2Fepjb%2Fe2010-00120-8&amp;volume=75&amp;pages=357-364&amp;publication_year=2010&amp;author=Maillart%2CT&amp;author=Sornette%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR14">Nolde, N., &amp; Ziegel, F. (2017). Elicitability and backtesting: Perspectives for banking regulation. <i>The Annals of Applied Statistics,</i> <i>11</i>(4), 1833–1874.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3743276" aria-label="MathSciNet reference 14">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Elicitability%20and%20backtesting%3A%20Perspectives%20for%20banking%20regulation&amp;journal=The%20Annals%20of%20Applied%20Statistics&amp;volume=11&amp;issue=4&amp;pages=1833-1874&amp;publication_year=2017&amp;author=Nolde%2CN&amp;author=Ziegel%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR15">Peng, C., Xu, M., Xu, S., &amp; Hu, T. (2016). Modeling and predicting extreme cyber attack rates via marked point processes. <i>Journal of Applied Statistics,</i> <i>44</i>(14), 2534–2563.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/02664763.2016.1257590" data-track-item_id="10.1080/02664763.2016.1257590" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F02664763.2016.1257590" aria-label="Article reference 15" data-doi="10.1080/02664763.2016.1257590">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3698462" aria-label="MathSciNet reference 15">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Modeling%20and%20predicting%20extreme%20cyber%20attack%20rates%20via%20marked%20point%20processes&amp;journal=Journal%20of%20Applied%20Statistics&amp;doi=10.1080%2F02664763.2016.1257590&amp;volume=44&amp;issue=14&amp;pages=2534-2563&amp;publication_year=2016&amp;author=Peng%2CC&amp;author=Xu%2CM&amp;author=Xu%2CS&amp;author=Hu%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR16">Peters, G. W., Malavasi, M., Sofronov, G., Shevchenko, P. V., Trück, S., &amp; Jang, J. (2023). Cyber loss model risk translates to premium mispricing and risk sensitivity. <i>The Geneva Papers on Risk and Insurance-Issues and Practice,</i> <i>48</i>(2), 372–433.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1057/s41288-023-00285-x" data-track-item_id="10.1057/s41288-023-00285-x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1057%2Fs41288-023-00285-x" aria-label="Article reference 16" data-doi="10.1057/s41288-023-00285-x">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Cyber%20loss%20model%20risk%20translates%20to%20premium%20mispricing%20and%20risk%20sensitivity&amp;journal=The%20Geneva%20Papers%20on%20Risk%20and%20Insurance-Issues%20and%20Practice&amp;doi=10.1057%2Fs41288-023-00285-x&amp;volume=48&amp;issue=2&amp;pages=372-433&amp;publication_year=2023&amp;author=Peters%2CGW&amp;author=Malavasi%2CM&amp;author=Sofronov%2CG&amp;author=Shevchenko%2CPV&amp;author=Tr%C3%BCck%2CS&amp;author=Jang%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR17">Peters, G. W., Targino, R. S., &amp; Shevchenko, P. V. (2013). Understanding operational risk capital approximations: First and second orders. <i>Journal of Governance and Regulation,</i> <i>2</i>, 58–78.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.22495/jgr_v2_i3_p6" data-track-item_id="10.22495/jgr_v2_i3_p6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.22495%2Fjgr_v2_i3_p6" aria-label="Article reference 17" data-doi="10.22495/jgr_v2_i3_p6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Understanding%20operational%20risk%20capital%20approximations%3A%20First%20and%20second%20orders&amp;journal=Journal%20of%20Governance%20and%20Regulation&amp;doi=10.22495%2Fjgr_v2_i3_p6&amp;volume=2&amp;pages=58-78&amp;publication_year=2013&amp;author=Peters%2CGW&amp;author=Targino%2CRS&amp;author=Shevchenko%2CPV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR18">Privacy Rights Clearinghouse. (2023). Retrieved from <a href="https://www.privacyrights.org/data-breaches" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="https://www.privacyrights.org/data-breaches">https://www.privacyrights.org/data-breaches</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR19">Resnick, S. I. (2008). <i>Extreme values, regular variation and point processes</i>. Springer.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=Extreme%20values%2C%20regular%20variation%20and%20point%20processes&amp;publication_year=2008&amp;author=Resnick%2CSI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR20">Shimizu, Y. (2018). <i>Insurance mathematics with statistical methodologies</i>. Kyoritsu Shuppan Co., Ltd.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=Insurance%20mathematics%20with%20statistical%20methodologies&amp;publication_year=2018&amp;author=Shimizu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR21">Sun, H., Xu, M., &amp; Zhao, P. (2021). Modeling malicious hacking data breach risks. <i>North American Actuarial Journal,</i> <i>25</i>(4), 484–502.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/10920277.2020.1752255" data-track-item_id="10.1080/10920277.2020.1752255" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F10920277.2020.1752255" aria-label="Article reference 21" data-doi="10.1080/10920277.2020.1752255">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=Modeling%20malicious%20hacking%20data%20breach%20risks&amp;journal=North%20American%20Actuarial%20Journal&amp;doi=10.1080%2F10920277.2020.1752255&amp;volume=25&amp;issue=4&amp;pages=484-502&amp;publication_year=2021&amp;author=Sun%2CH&amp;author=Xu%2CM&amp;author=Zhao%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR22">Woods, D. W., &amp; Böhme, R. (2021). SoK: Quantifying cyber risk. In <i>2021 IEEE symposium on security and privacy</i> (pp. 211–228).</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR23">Xu, M., Schweitzer, K. M., Bateman, R. B., &amp; Xu, S. (2018). Modeling and predicting cyber hacking breaches. <i>IEEE Transactions on Information Forensics and Security,</i> <i>13</i>, 2856–2871.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TIFS.2018.2834227" data-track-item_id="10.1109/TIFS.2018.2834227" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTIFS.2018.2834227" aria-label="Article reference 23" data-doi="10.1109/TIFS.2018.2834227">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=Modeling%20and%20predicting%20cyber%20hacking%20breaches&amp;journal=IEEE%20Transactions%20on%20Information%20Forensics%20and%20Security&amp;doi=10.1109%2FTIFS.2018.2834227&amp;volume=13&amp;pages=2856-2871&amp;publication_year=2018&amp;author=Xu%2CM&amp;author=Schweitzer%2CKM&amp;author=Bateman%2CRB&amp;author=Xu%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR24">Zhan, Z., Xu, M., &amp; Xu, S. (2015). Predicting cyber attack rates with extreme values. <i>IEEE Transactions on Information Forensics and Security,</i> <i>10</i>(8), 1666–1677.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TIFS.2015.2422261" data-track-item_id="10.1109/TIFS.2015.2422261" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTIFS.2015.2422261" aria-label="Article reference 24" data-doi="10.1109/TIFS.2015.2422261">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=Predicting%20cyber%20attack%20rates%20with%20extreme%20values&amp;journal=IEEE%20Transactions%20on%20Information%20Forensics%20and%20Security&amp;doi=10.1109%2FTIFS.2015.2422261&amp;volume=10&amp;issue=8&amp;pages=1666-1677&amp;publication_year=2015&amp;author=Zhan%2CZ&amp;author=Xu%2CM&amp;author=Xu%2CS"> Google Scholar</a>  </p></li></ul><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s42081-024-00273-y?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>This work is partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) #21K03358. Also, the authors extend their sincere appreciation to the anonymous reviewers for their insightful comments that have contributed to enhancing the quality of this paper.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Applied Mathematics, Waseda University, Shinjuku, Japan</p><p class="c-article-author-affiliation__authors-list">Yasutaka Shimizu</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Graduate School of Fundamental Science and Engineering, Waeda University, Shinjuku, Japan</p><p class="c-article-author-affiliation__authors-list">Yutaro Takagami</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Yasutaka-Shimizu-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Yasutaka Shimizu</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Yasutaka%20Shimizu" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yasutaka%20Shimizu" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yasutaka%20Shimizu%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Yutaro-Takagami-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Yutaro Takagami</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&amp;dc.creator=Yutaro%20Takagami" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Yutaro%20Takagami" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Yutaro%20Takagami%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:shimizu@waseda.jp">Yasutaka Shimizu</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar6">Conflict of interest</h3> <p>On behalf of all authors, the corresponding author states there is no conflict of interest.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section aria-labelledby="appendices"><div class="c-article-section" id="appendices-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="appendices">Appendix</h2><div class="c-article-section__content" id="appendices-content"><h3 class="c-article__sub-heading u-visually-hidden" id="App1">Appendix</h3> <h3 class="c-article__sub-heading" id="FPar7">Theorem A.1</h3> <p>Let <i>F</i> be a (proper) distribution function with <span class="mathjax-tex">\(F(x) &lt;1\)</span> for any <span class="mathjax-tex">\(x\in {\mathbb {R}}\)</span>. There exists <span class="mathjax-tex">\(\kappa &gt;0\)</span> such that <span class="mathjax-tex">\(\overline{F}\in {\mathscr {R}}_{-\kappa }\)</span> if and only if there exists a positive function <span class="mathjax-tex">\(b(u)\rightarrow \infty \)</span> as <span class="mathjax-tex">\(u\rightarrow \infty \)</span> such that</p><div id="Equ50" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \lim _{u\rightarrow \infty }\sup _{0&lt;x&lt;\infty }|F(x|u)-G_{\xi ,b(u)}(x)|=0, \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(F(x|u):={{\mathbb {P}}}(X-u\le x|X&gt;u)\)</span> and <span class="mathjax-tex">\(\xi =1/\kappa \)</span>, and <span class="mathjax-tex">\(G_{\xi ,\sigma }\)</span> is the <i>generalized Pareto distribution (GPD)</i> with the distribution function given by</p><div id="Equ51" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} G_{\xi ,\sigma }(x)= {\left\{ \begin{array}{ll} 1-\left( 1+\dfrac{\xi }{\sigma }x\right) ^{-1/\xi } &amp; (\xi \ne 0)\\ 1-e^{-x/\sigma } &amp; (\xi =0) \end{array}\right. }. \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar8">Proof</h3> <p>See Embrechts et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR9" id="ref-link-section-d432018368e18642">2003</a>), Theorem 3.4.13. <span class="mathjax-tex">\(\square \)</span></p> <h3 class="c-article__sub-heading" id="FPar9">Lemma A.2</h3> <p>Let <i>S</i> is a compound risk model given in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ1">1.1</a>), and suppose that <i>N</i> satisfies</p><div id="Equ52" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{r=0}^{\infty }(1+{\epsilon })^{r}\cdot {{\mathbb {P}}}(N=r)&lt;\infty \end{aligned}$$</span></div></div><p>for some <span class="mathjax-tex">\({\epsilon }&gt;0\)</span>. Then, it holds that</p><div id="Equ53" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \overline{F}_{S}(x)\sim {\mathbb {E}}[N]\cdot \overline{F}_{U}(x),\quad x\rightarrow \infty . \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar10">Proof</h3> <p>See Embrechts et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2003" title="Embrechts, P., Klüppelberg, C., &amp; Mikosch, T. (2003). Modeling extremal events for insurance and finance. Springer." href="/article/10.1007/s42081-024-00273-y#ref-CR9" id="ref-link-section-d432018368e18911">2003</a>), Theorem 1.3.9. <span class="mathjax-tex">\(\square \)</span></p> <h3 class="c-article__sub-heading" id="FPar11">Lemma A.3</h3> <p>For <span class="mathjax-tex">\(\kappa &gt;1\)</span> and <span class="mathjax-tex">\(\overline{F}_U \in {\mathscr {R}}_{-\kappa }\)</span>, there exists a function <span class="mathjax-tex">\(L(x) \in {\mathscr {R}}_0\)</span> such that</p><div id="Equ54" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \int _x^\infty \overline{F}_U(y)\,dy \sim L(x) \frac{x^{1-\kappa }}{\kappa - 1},\quad x\rightarrow \infty . \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar12">Proof</h3> <p>See Grandell (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1997" title="Grandell, J. (1997). Mixed Poisson processes. Chapman &amp; Hall." href="/article/10.1007/s42081-024-00273-y#ref-CR11" id="ref-link-section-d432018368e19181">1997</a>), p.181. <span class="mathjax-tex">\(\square \)</span></p> <h3 class="c-article__sub-heading" id="FPar13">Theorem A.4</h3> <p>Let <i>S</i> is a compound risk model given in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ1">1.1</a>), and suppose that <span class="mathjax-tex">\(F_U\)</span> is a (proper) distribution function with <span class="mathjax-tex">\(F_U(x) &lt;1\)</span> for any <span class="mathjax-tex">\(x\in {\mathbb {R}}\)</span>, and that <span class="mathjax-tex">\(\overline{F}_{U}\in {\mathscr {R}}_{-\kappa }\)</span> where <span class="mathjax-tex">\(\kappa &gt;1\)</span>. Moreover, suppose that there exists some <span class="mathjax-tex">\({\epsilon }&gt;0\)</span> such that</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{r=0}^{\infty }(1+{\epsilon })^{r}\cdot {{\mathbb {P}}}(N=r)&lt;\infty . \end{aligned}$$</span></div><div class="c-article-equation__number"> (A.1) </div></div><p>Then it follows for <span class="mathjax-tex">\(\beta :=1-\dfrac{1-\alpha }{{\mathbb {E}}[N]}\)</span> that</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\left\{ \begin{array}{ll} VaR_{\alpha }(S)\sim VaR_{\beta }(U)\\ TVaR_{\alpha }(S)\sim \dfrac{\kappa }{\kappa -1}VaR_{\beta }(U) \end{array}\right. },\ \alpha \rightarrow 1. \end{aligned}$$</span></div><div class="c-article-equation__number"> (A.2) </div></div><p>Furthermore, taking a sequence <span class="mathjax-tex">\(u=u(\alpha ) \uparrow \infty \)</span> such that</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \lim _{\alpha \uparrow 1}\frac{1-\alpha }{1-F_U(u(\alpha ))} \in (0,{\mathbb {E}}[N]), \end{aligned}$$</span></div><div class="c-article-equation__number"> (A.3) </div></div><p>it holds that</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} VaR_{\beta }(U)\sim u(\alpha )+\dfrac{\sigma }{\xi }\left\{ \left( \dfrac{\overline{F}_{U}(u(\alpha ))}{1-\beta }\right) ^{\xi }-1\right\} , \quad \alpha \rightarrow 1, \end{aligned}$$</span></div><div class="c-article-equation__number"> (A.4) </div></div><p>where <span class="mathjax-tex">\(\xi = 1/\kappa \)</span> and <span class="mathjax-tex">\(\sigma \)</span> is a function of <span class="mathjax-tex">\(u=u(\alpha )\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar14">Remark A.5</h3> <p>As an example, taking <span class="mathjax-tex">\(u=u(\alpha )\)</span> such that, for a constant <span class="mathjax-tex">\(\gamma \in (0,1)\)</span>,</p><div id="Equ55" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} u(\alpha ) = F_U^{-1}\left(1 - \gamma ^{-1}\frac{1 - \alpha }{{\mathbb {E}}[N]}\right), \end{aligned}$$</span></div></div><p>then we have <span class="mathjax-tex">\(u(\alpha )\rightarrow \infty \)</span> as <span class="mathjax-tex">\(\alpha \uparrow 1\)</span>, and that</p><div id="Equ56" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \lim _{\alpha \uparrow 1} \frac{1-\alpha }{1-F_U(u(\alpha ))} = \gamma {\mathbb {E}}[N] \in (0,{\mathbb {E}}[N]), \end{aligned}$$</span></div></div><p>which satisfies (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ13">A.3</a>).</p> <h3 class="c-article__sub-heading" id="FPar15">Proof</h3> <p>The asymptotic equivalency (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ12">A.2</a>) is shown in Biagini and Ulmer (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2009" title="Biagini, F., &amp; Ulmer, S. (2009). Asymptotics for operational risk quantified with expected shortfall. ASTIN Bulletin, 39, 735–752." href="/article/10.1007/s42081-024-00273-y#ref-CR4" id="ref-link-section-d432018368e20549">2009</a>), Theorem 2.5, so we omit the details. See also Shimizu (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Shimizu, Y. (2018). Insurance mathematics with statistical methodologies. Kyoritsu Shuppan Co., Ltd." href="/article/10.1007/s42081-024-00273-y#ref-CR20" id="ref-link-section-d432018368e20552">2018</a>).</p> <p>As for the statement (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ14">A.4</a>), we note the following decomposition of <span class="mathjax-tex">\(F_U\)</span>: for any <span class="mathjax-tex">\(u&lt;x\)</span>,</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_U(x)&amp;= \overline{F}_U(u) \frac{ \overline{F}_U(x) - \overline{F}_U(u) }{\overline{F}_U(u) } + F_U(u) \nonumber \\&amp;= \overline{F}_U(u) \frac{{{\mathbb {P}}}(U\le x) - {{\mathbb {P}}}(U\le u)}{{{\mathbb {P}}}(U&gt;u) } + F_U(u) \nonumber \\&amp;= \overline{F}_U(u) F_U(x-u|u)+ F_U(u). \end{aligned}$$</span></div><div class="c-article-equation__number"> (A.5) </div></div><p>We see from Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s42081-024-00273-y#FPar6">A.1</a> that there exists a function <span class="mathjax-tex">\(\sigma =b(u)\uparrow \infty \)</span> such that</p><div id="Equ57" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} r_u(x):= F_U(x-u|u) - G_{\xi ,\sigma }(x-u) \rightarrow 0,\quad u\rightarrow \infty \end{aligned}$$</span></div></div><p>uniformly in <span class="mathjax-tex">\(x&gt;u\)</span> and that, for <span class="mathjax-tex">\(x= VaR_\beta (U)\)</span>, we have</p><div id="Equ58" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{G_{\xi ,\sigma }(VaR_\beta (U)-u)}{F_U(VaR_\beta (U)-u|u)} = 1 - \frac{1 - F_U(u)}{\beta - F_U(u)} r_u(VaR_\beta (U)), \end{aligned}$$</span></div></div><p>and</p><div id="Equ59" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} r_u(VaR_\beta (U)) \rightarrow 0, \end{aligned}$$</span></div></div><p>as <span class="mathjax-tex">\(u\rightarrow \infty \)</span> and <span class="mathjax-tex">\(\beta \rightarrow 1\)</span>. Here we note that, under (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ13">A.3</a>) with <span class="mathjax-tex">\(u=u(\alpha )\)</span>,</p><div id="Equ60" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} 0&lt; \frac{1 - F_U(u)}{\beta - F_U(u)} =\frac{1}{ 1 - \frac{1-\alpha }{1 - F_U(u)}\frac{1}{{\mathbb {E}}[N]} } = O(1)\quad (\alpha \rightarrow 1), \end{aligned}$$</span></div></div><p>which implies that</p><div id="Equ61" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \frac{G_{\xi ,\sigma }(VaR_\beta (U)-u)}{F_U(VaR_\beta (U)-u|u)} = 1 -O(1)\cdot r_u(VaR_\beta (U)) \rightarrow 1 \end{aligned}$$</span></div></div><p>as <span class="mathjax-tex">\(u=u(\alpha )\)</span> and <span class="mathjax-tex">\(\alpha \rightarrow 1\)</span>. Therefore, we see that</p><div id="Equ62" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F_U(VaR_\beta (U)-u|u) \sim G_{\xi ,\sigma }(VaR_\beta (U)-u) \end{aligned}$$</span></div></div><p>under (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ13">A.3</a>). Substituting <i>x</i> with <span class="mathjax-tex">\(VaR_\beta (U)\)</span> in both sides of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ15">A.5</a>), we have that</p><div id="Equ63" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \beta \sim \overline{F}_U(u) G_{\xi ,\sigma }\left(VaR_\beta (U) - u\right)+ F_U(u), \quad \alpha \rightarrow 1, \end{aligned}$$</span></div></div><p>which concludes that</p><div id="Equ64" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} VaR_\beta (U) \sim u(\alpha ) + G^{-1}_{\xi ,\sigma }\left(1 - \frac{1-\beta }{\overline{F}_U(u)}\right) \sim u + \frac{\sigma }{\xi } \left\{ \left( \frac{\overline{F}_U(u)}{1-\beta } \right) ^\xi - 1\right\} ,\quad \alpha \rightarrow 1, \end{aligned}$$</span></div></div><p>with <span class="mathjax-tex">\(u= u(\alpha )\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s42081-024-00273-y#Equ13">A.3</a>). <span class="mathjax-tex">\(\square \)</span></p> </div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Utility%20of%20classical%20insurance%20risk%20models%20for%20measuring%20the%20risks%20of%20cyber%20incidents&amp;author=Yasutaka%20Shimizu%20et%20al&amp;contentID=10.1007%2Fs42081-024-00273-y&amp;copyright=The%20Author%28s%29&amp;publication=2520-8756&amp;publicationDate=2024-09-24&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s42081-024-00273-y" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s42081-024-00273-y" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Shimizu, Y., Takagami, Y. Utility of classical insurance risk models for measuring the risks of cyber incidents. <i>Jpn J Stat Data Sci</i> <b>7</b>, 1059–1084 (2024). https://doi.org/10.1007/s42081-024-00273-y</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s42081-024-00273-y?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-11-06">06 November 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Revised<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-08-28">28 August 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-08-31">31 August 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-09-24">24 September 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-11">November 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s42081-024-00273-y</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Information%20leakage&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Information leakage</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Cyber%20risks&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Cyber risks</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Compound%20risk%20models&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Compound risk models</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Point%20process&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Point process</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Value%20at%20risk&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Value at risk</a></span></li></ul><h3 class="c-article__sub-heading">Mathematics Subject Classification</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=62M20&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">62M20</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=62P99&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">62P99</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=91D20&amp;facet-discipline=&#34;Statistics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">91D20</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside aria-label="reading companion"> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=42081" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/42081/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s42081-024-00273-y;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <nav aria-label="expander navigation"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> </nav> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our brands</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/brands/discover" data-track="nav_imprint_Discover" data-track-action="Discover" data-track-context="unified footer" data-track-label="link">Discover</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/legal-notice" data-track="nav_legal_notice" data-track-action="legal notice" data-track-context="unified footer" data-track-label="link">Legal notice</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2025 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10