CINXE.COM
Search results for: Staphyloccocus aureus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Staphyloccocus aureus</title> <meta name="description" content="Search results for: Staphyloccocus aureus"> <meta name="keywords" content="Staphyloccocus aureus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Staphyloccocus aureus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Staphyloccocus aureus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 465</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Staphyloccocus aureus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Investigation of Enterotoxigenic Staphylococcus aureus in Kitchen of Catering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87i%C4%9Fdem%20Sezer">Çiğdem Sezer</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksem%20Aksoy"> Aksem Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Vatansever"> Leyla Vatansever</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been done for the purpose of evaluation of public health and identifying of enterotoxigenic Staphyloccocus aureus in kitchen of catering. In the kitchen of catering, samples have been taken by swabs from surface of equipments which are in the salad section, meat section and bakery section. Samples have been investigated with classical cultural methods in terms of Staphyloccocus aureus. Therefore, as a 10x10 cm area was identified (salad, cutting and chopping surfaces, knives, meat grinder, meat chopping surface) samples have been taken with sterile swabs with helping FTS from this area. In total, 50 samples were obtained. In aseptic conditions, Baird-Parker agar (with egg yolk tellurite) surface was seeded with swabs. After 24-48 hours of incubation at 37°C, the black colonies with 1-1.5 mm diameter and which are surrounded by a zone indicating lecithinase activity were identified as S. aureus after applying Gram staining, catalase, coagulase, glucose and mannitol fermentation and termonuclease tests. Genotypic characterization (Staphylococcus genus and S.aureus species spesific) of isolates was performed by PCR. The ELISA test was applied to the isolates for the identification of staphylococcal enterotoxins (SET) A, B, C, D, E in bacterial cultures. Measurements were taken at 450 nm in an ELISA reader using an Ridascreen-Total set ELISA test kit (r-biopharm R4105-Enterotoxin A, B, C, D, E). The results were calculated according to the manufacturer’s instructions. A total of 50 samples of 97 S. aureus was isolated. This number has been identified as 60 with PCR analysis. According to ELISA test, only 1 of 60 isolates were found to be enterotoxigenic. Enterotoxigenic strains were identified from the surface of salad chopping and cutting. In the kitchen of catering, S. aureus identification indicates a significant source of contamination. Especially, in raw consumed salad preparation phase of contamination is very important. This food can be a potential source of food-borne poisoning their terms, and they pose a significant risk to consumers have been identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=enterotoxin" title=" enterotoxin"> enterotoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=catering" title=" catering"> catering</a>, <a href="https://publications.waset.org/abstracts/search?q=kitchen" title=" kitchen"> kitchen</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/15962/investigation-of-enterotoxigenic-staphylococcus-aureus-in-kitchen-of-catering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Bacteriological Safety of Sachet Drinking Water Sold in Benin City, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Olusanmi%20Akintayo">Stephen Olusanmi Akintayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to safe drinking water remains a major challenge in Nigeria, and where available, the quality of the water is often in doubt. An alternative to the inadequate clean drinking water is being found in treated drinking water packaged in electrically heated sealed nylon and commonly referred to as “sachet water”. “Sachet water” is a common thing in Nigeria as the selling price is within the reach of members of the low socio- economic class and the setting up of a production unit does not require huge capital input. The bacteriological quality of selected “sachet water” stored at room temperature over a period of 56 days was determined to evaluate the safety of the sachet drinking water. Test for the detection of coliform bacteria was performed, and the result showed no coliform bacteria that indicates the absence of fecal contamination throughout 56 days. Heterotrophic plate count (HPC) was done at an interval 14 days, and the samples showed HPC between 0 cfu/mL and 64 cfu/mL. The highest count was observed on day 1. The count decreased between day 1 and 28, while no growths were observed between day 42 and 56. The decrease in HPC suggested the presence of residual disinfectant in the water. The organisms isolated were identified as Staphylococcus epidermis and S. aureus. The presence of these microorganisms in sachet water is indicative for contamination during processing and handling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coliform" title="coliform">coliform</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20plate%20count" title=" heterotrophic plate count"> heterotrophic plate count</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus" title=" Staphyloccocus aureus"> Staphyloccocus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20epidermidis" title=" Staphyloccocus epidermidis"> Staphyloccocus epidermidis</a> </p> <a href="https://publications.waset.org/abstracts/77952/bacteriological-safety-of-sachet-drinking-water-sold-in-benin-city-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Clinico-Microbiological Study of S. aureus from Various Clinical Samples with Reference to Methicillin Resistant S. aureus (MRSA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Pathrikar">T. G. Pathrikar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Urhekar"> A. D. Urhekar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Bansal"> M. P. Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find out S. aureus from patient samples on the basis of coagulase test. We have evaluated slide coagulase (n=46 positive), tube coagulase (n=48 positive) and DNase test (n=44, positive) , We have isolated and identified MRSA from various clinical samples and specimens by disc diffusion method determined the incidence of MRSA 50% in patients. Found out the in vitro antimicrobial susceptibility pattern of MRSA isolates and also the MIC of MRSA of oxacillin by E-Test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cefoxitin%20disc%20diffusion%20MRSA%20detection" title="cefoxitin disc diffusion MRSA detection">cefoxitin disc diffusion MRSA detection</a>, <a href="https://publications.waset.org/abstracts/search?q=e%20%E2%80%93%20test" title=" e – test"> e – test</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus%20devastating%20pathogen" title=" S. aureus devastating pathogen"> S. aureus devastating pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20coagulase%20confirmation" title=" tube coagulase confirmation"> tube coagulase confirmation</a> </p> <a href="https://publications.waset.org/abstracts/20422/clinico-microbiological-study-of-s-aureus-from-various-clinical-samples-with-reference-to-methicillin-resistant-s-aureus-mrsa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Verma">V. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Riyaz-ul-Hassan"> Syed Riyaz-ul-Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20Pathogens" title="food Pathogens">food Pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR%20technology" title=" PCR technology"> PCR technology</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20and%20specific%20detection" title=" rapid and specific detection"> rapid and specific detection</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/42644/rapid-and-culture-independent-detection-of-staphylococcus-aureus-by-pcr-based-protocols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Techaoei">S. Techaoei</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jarmkom"> K. Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eakwaropas"> P. Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Khobjai"> W. Khobjai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research was focused on investigating <em>in</em> <em>vitro</em> antimicrobial activity of <em>Phellinus linteus</em> fruiting body extracts on <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. <em>Phellinus linteus</em> fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of <em>Phellinus linteus</em> crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of <em>Pseudomonas aeruginosa</em> and Methicillin-resistant <em>Staphylococcus aureus</em> and 0.25 mg/ml. of <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, respectively. TLC chemical profile of extract was represented at R<sub>f</sub> ≈ 0.71-0.76. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Phellinus%20linteus" title=" Phellinus linteus"> Phellinus linteus</a>, <a href="https://publications.waset.org/abstracts/search?q=Methicillin-resistant%20Staphylococcus%20aureus" title=" Methicillin-resistant Staphylococcus aureus"> Methicillin-resistant Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/61558/an-alternative-antimicrobial-approach-to-fight-bacterial-pathogens-from-phellinus-linteus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivankar%20Agrawal">Shivankar Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira%20Sarangthem"> Indira Sarangthem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a> </p> <a href="https://publications.waset.org/abstracts/129275/anti-staphylococcus-aureus-and-methicillin-resistant-staphylococcus-aureus-action-of-thermophilic-fungi-acrophialophora-levis-ibsd19-and-determination-of-its-mode-of-action-using-electron-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Effect of Cuminum Cyminum L. Essential Oil on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Misaghi">Ali Misaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Akhondzadeh%20Basti"> Afshin Akhondzadeh Basti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sadeghi"> Ehsan Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is a pathogen of major concern for clinical infection and food borne illness. Humans and most domesticated animals harbor S. aureus, and so we may expect staphylococci to be present in food products of animal origin or in those handled directly by humans, unless heat processing is applied to destroy them. Cuminum cyminum L. has been allocated the topic of some recent studies in addition to its well-documented traditional usage for treatment of toothache, dyspepsia, diarrhea, epilepsy and jaundice. The air-dried seed of the plant was completely immersed in water and subjected to hydro distillation for 3 h, using a clevenger-type apparatus. In this study, the effect of Cuminum cyminum L. essential oil (EO) on growth of Staphylococcus aureus in white brined cheese was evaluated. The experiment included different levels of EO (0, 7.5, 15 and 30 mL/ 100 mL milk) to assess their effects on S. aureus count during the manufacture, ripening and storage of Iranian white brined cheese for up to 75 days. The significant (P < 0.05) inhibitory effects of EO (even at its lowest concentration) on this organism were observed. The significant (P < 0.05) inhibitory effect of the EO on S. aureus shown in this study may improve the scope of the EO function in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuminum%20cyminum%20L.%20essential%20oil" title="cuminum cyminum L. essential oil">cuminum cyminum L. essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20brined%20cheese" title=" white brined cheese"> white brined cheese</a> </p> <a href="https://publications.waset.org/abstracts/23074/effect-of-cuminum-cyminum-l-essential-oil-on-staphylococcus-aureus-during-the-manufacture-ripening-and-storage-of-white-brined-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natapol%20Pumipuntu">Natapol Pumipuntu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20argenteus" title="Staphylococcus argenteus">Staphylococcus argenteus</a>, <a href="https://publications.waset.org/abstracts/search?q=subclinical%20bovine%20mastitis" title=" subclinical bovine mastitis"> subclinical bovine mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus%20complex" title=" Staphylococcus aureus complex"> Staphylococcus aureus complex</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=MLST" title=" MLST"> MLST</a> </p> <a href="https://publications.waset.org/abstracts/108179/staphylococcus-argenteus-an-emerging-subclinical-bovine-mastitis-pathogen-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> Antimicrobial Activity of the Natural Products Derived from Phyllanthus Emblica and Gracilaria Fisheri Against Staphylococcus Aureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woraprat%20Amnuaychaichana">Woraprat Amnuaychaichana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several medicinal plants are well known to contain active constituents such as flavonoids and phenolic compounds with are plausible candidates for therapeutic purposes. An infectious disease caused by microbial infection is the leading cause of death. Antibiotics are typically used to eradicate these microbes, but recent evidence indicates that they are developing antibiotic-resistant effects. This study focused on antimicrobial activities of Phyllanthus emblica and Gracilaria fisheri using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. The extracts were screened against Staphylococcus aureus. Five concentrations of plant extracts were used to determine the minimum inhibitory concentration (MIC) by 2-fold dilution of plant extract. The results indicated that G. fisheri extract gave the maximum zones of inhibition of 11.7 mm against S. aureus while P. emblica showed no effects. The MIC values of G. fisheri extract against S. aureus was 500 µg/ml. To summarise, G. fisheri extracts demonstrated high efficacy of antibacterial activity against Gram-positive S. aureus, which may pave the way for developing a formulation containing this plant. G. fisheri extract should be subjected to additional investigation in order to determine the mechanism of action of its antimicrobial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=gracilaria%20fishery" title=" gracilaria fishery"> gracilaria fishery</a>, <a href="https://publications.waset.org/abstracts/search?q=Phyllanthus%20emblica" title=" Phyllanthus emblica"> Phyllanthus emblica</a> </p> <a href="https://publications.waset.org/abstracts/141049/antimicrobial-activity-of-the-natural-products-derived-from-phyllanthus-emblica-and-gracilaria-fisheri-against-staphylococcus-aureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Adhesion of Staphylococcus epidermidis and Staphylococcus aureus to Intravascular cannulae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghadah%20Abusalim">Ghadah Abusalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suliman%20Alharbi"> Suliman Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Khalil"> Hesham Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Milton%20Wainwright"> Milton Wainwright</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Khiyami"> Mohammad A. Khiyami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of implantable foreign devices in medicine has recently increased dramatically. Intravascular cannulae and catheters are used to administer fluids, medications, parenteral nutrition, and blood products in order to monitor hemodynamic status and also to provide hemodialysis. The early and late failure of inserted or implanted devices is largely the result of bacterial infection and may lead to the disruption of integration between the device and the tissues which surround it. Staphylococcus aureus and Staphylococcus epidermidis are widely considered to be the most common organisms causing device-related infection. Our study showed that S. aureus and S. epidermidis adhered to intravascular cannulae made up of PTFE, SPTFE and vialon. Adhesion of S. epidermidis and S. aureus to intravascular cannulae varied significantly depending upon the type of material used and the presence of coating materials. Both bacteria adhered less to PTFE followed by Vialon and SPTFE and the adhesion capacity of S. aureus and S. epidermidis increased over time. Coating intravascular cannulae with human serum albumin inhibited the adhesion of S. aureus and S. epidermidis to these cannulae, and pretreatment of cannulae with fibronectin inhibited the adhesion of S. epidermidis but increased the adhesion of S. aureus to all types of cannulae. Pretreatment of cannulae surface with potassium chloride or calcium chloride increased the adhesion of S. aureus and S. epidermidis to cannulae, suggesting a role for electrostatic forces in the mechanism of such adhesion. This study will hopefully clarify the mechanism of adhesion and provide possible means of preventing such adhesion either by the use of better material coatings or by interfering with the process of adhesion by targeting bacterial structures responsible for it. Currently we recommend the use of PTFE cannulae as they exhibit a lower bacterial adhesion capacity compared to the other tested cannulae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20epidermidis" title="Staphylococcus epidermidis">Staphylococcus epidermidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cannulae" title=" cannulae"> cannulae</a>, <a href="https://publications.waset.org/abstracts/search?q=PTFE" title=" PTFE"> PTFE</a>, <a href="https://publications.waset.org/abstracts/search?q=Vialon" title=" Vialon"> Vialon</a> </p> <a href="https://publications.waset.org/abstracts/3444/adhesion-of-staphylococcus-epidermidis-and-staphylococcus-aureus-to-intravascular-cannulae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Sensitivity of Staphylococcus aureus Isolated from Subclinical Bovine Mastitis to Ciprofloxacin in Dairy Herd in Tabriz during 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Jafarzadeh">Alireza Jafarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samad%20Mosaferi"> Samad Mosaferi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Khakpour"> Mansour Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mastitis is an inflammation of the parenchyma of mammary gland regardless of the causes. Mastitis is characterized by a range of physical and chemical changes in the glandular tissue. The most important change in milk includes discoloration, the presence of clots and large number of leucocytes. There is swelling, heat, pain and edema in mammary gland in many clinical cases. Positive coagulase S. aureus is a major pathogen of the bovine mammary gland and a common cause of contagious mastitis in cattle. The aim of this study was to evaluate the outbreaks of Staphylococcus aureus mastitis. This study is conducted in ten dairy herds about one thousand cows. After doing CMT and identifying infected cows, the milk samples obtained from infected teats and transported to microbiological laboratories. After microbial culture of milk samples and isolating S. aureus, antimicrobial, sensitivity test was performed with disk diffusion method by ciprofloxacin, co-amoxiclav, erythromycin, penicillin, oxytetracyclin, sulfonamides, lincomycin and cefquinome. The study defined that the outbreak of subclinical positive coagulase Staphylococcus mastitis in dairy herd was 13.11% (5.6% S. aureus and 7.51% S. intermedicus). The antimicrobial sensitivity test shown that 87.23% of Staphylococcus aureus isolated from bovine mastitis in dairy herd was susceptible to ciprofloxacin, 93.9% to cefquinome, 4.67% to co-amoxiclav, 12.16% to erythromycin 86.11% to sulfonamides (co-trimoxazole), 3.35% lincomycin, 12.7% to oxytetracyclin and 5.98% to penicillin. Results of present defined that ciprofloxacin has a great effect on Staphylococcus aureus isolated from subclinical bovine mastitis dairy herd. It seems that cefquinome sulfonamides has a great effect on isolated Staphylococcus aureus in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title="ciprofloxacin">ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=mastitis" title=" mastitis"> mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20herd" title=" dairy herd "> dairy herd </a> </p> <a href="https://publications.waset.org/abstracts/6431/sensitivity-of-staphylococcus-aureus-isolated-from-subclinical-bovine-mastitis-to-ciprofloxacin-in-dairy-herd-in-tabriz-during-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Kesli">Recep Kesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Merih%20Simsek"> Merih Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Demir"> Cengiz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Turkyilmaz"> Onur Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=VITEK%202" title=" VITEK 2"> VITEK 2</a> </p> <a href="https://publications.waset.org/abstracts/71749/evaluation-of-antibiotic-resistance-profiles-of-staphlyococci-isolated-from-various-clinical-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Comparison of Antimicrobial Activity of Momordica cochinchinesis and Pinus kesiya Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattaramon%20Pongjetpong">Pattaramon Pongjetpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, infectious diseases have increased considerably, and they are amongst the most common leading causes of death all over the world. Several medicinal plants are well known to contain active constituents such as flavonoids, carotenoids, and phenolic compounds, which are plausible candidates for therapeutic purposes. This study aimed to examine the antimicrobial activities of M. cochinchinensis and P. kesiya extracts using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. In this study, Momordica cochinchinensis and Pinus kesiya extracts are investigated for antibacterial activity against Staphylococcus aureus. The results showed that S. aureus was susceptible to P. kesiya extracts with an MIC value of 62.5 µg/ml, while M. cochinchinensis showed MIC against S. aureus was greater than 2000 µg/ml. In summary, P. kesiya extract showed potent antibacterial activity against S. aureus, which could greatly value developing as adjuvant therapy for infectious diseases. However, further investigation regarding purification of the active constituents as well as a determination of the mechanism of antimicrobial action of P. kesiya active compound should be performed to identify the molecular target of the active compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Momordica%20cochinchinensis" title=" Momordica cochinchinensis"> Momordica cochinchinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20kesiya" title=" Pinus kesiya"> Pinus kesiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/140872/comparison-of-antimicrobial-activity-of-momordica-cochinchinesis-and-pinus-kesiya-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Antibacterial Activity of Northern Algerian Honey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Messaouda%20Belaid">Messaouda Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Kebbouche-Gana"> Salima Kebbouche-Gana</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Benaziza"> Djamila Benaziza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Northern%20Algeria" title=" Northern Algeria"> Northern Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/13175/antibacterial-activity-of-northern-algerian-honey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naheed%20Niaz">Naheed Niaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimra%20Naeem"> Nimra Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Uzair"> Bushra Uzair</a>, <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Tahira"> Riffat Tahira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=combination%20therapy" title=" combination therapy"> combination therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a> </p> <a href="https://publications.waset.org/abstracts/22310/antimicrobial-activity-of-different-essential-oils-in-synergy-with-amoxicillin-against-clinical-isolates-of-methicillin-resistant-staphylococcus-aureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> The Impact of the Cell-Free Solution of Lactic Acid Bacteria on Cadaverine Production by Listeria monocytogenes and Staphylococcus aureus in Lysine-Decarboxylase Broth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul">Fatih Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurten%20Toy"> Nurten Toy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul"> Yesim Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influences of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on cadaverine and other biogenic amine production by Listeria monocytogenes and Staphylococcus aureus were investigated in lysine decarboxylase broth (LDB) using HPLC. Cell-free solutions were prepared from Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidophilus and Streptococcus thermophiles. Two different concentrations that were 50% and 25% CFS and the control without CFSs were prepared. Significant variations on biogenic amine production were observed in the presence of L. monocytogenes and S. aureus (P<0.05). The role of CFS on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine formation in control by L. monocytogenes and S. aureus were 500.9 and 948.1 mg/L, respectively while the CFSs of LAB induced 4-fold lower cadaverine production by L. monocytogenes and 7-fold lower cadaverine production by S. aureus. CFSs resulted in strong decreases in cadaverine and putrescine production by L. monocytogenes and S. aureus, although remarkable increases were observed for histamine, spermidine, spermine, serotonin, dopamine, tyramine, and agmatine, in the presence of LAB in lysine decarboxylase broth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-free%20solution" title="cell-free solution">cell-free solution</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cadaverine" title=" cadaverine"> cadaverine</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne-pathogen" title=" food borne-pathogen"> food borne-pathogen</a> </p> <a href="https://publications.waset.org/abstracts/19420/the-impact-of-the-cell-free-solution-of-lactic-acid-bacteria-on-cadaverine-production-by-listeria-monocytogenes-and-staphylococcus-aureus-in-lysine-decarboxylase-broth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Gharevali">Sina Gharevali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus" title=" staphylococcus"> staphylococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=aureus" title=" aureus"> aureus</a> </p> <a href="https://publications.waset.org/abstracts/158819/antibacterial-activity-of-copper-nanoparticles-on-vancomycin-resistant-staphylococcus-aureus-in-vitro-and-animal-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Antibacterial Activity of Nisin: Comparison the Role of Free and Encapsulated Nisin to Control Staphylococcus Aureus Inoculated in Minced Beef</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Ghasemi">Zh. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nouri%20Saeedlou"> S. Nouri Saeedlou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=SL.%20Nasiri"> SL. Nasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ayremlou"> P. Ayremlou</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mahasti"> P. Mahasti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nisin is successfully used as antibacterial agent in various food products. Although the conclusions of the previous studies were that nisin is not very effective in meat environments. The reduced antimicrobial efficacy of nisin when applied in food has been frequently observed. The aim of this study is to evaluate the potential of free and encapsulated nisin to inhibit the growth of staphylococcus aureus in minced beef. The minimum inhibitory concentration (MIC) of nisin is determined against S. aureus using the agar dilution method. Nisin is encapsulated by spray drying, and encapsulation efficiency, mass yield and total solids content values are 47.79%, 61%, and 96.41 respectively. The study in vitro release kinetics shows highest release of nisin from zein capsules is obtained after 72 hour. This work shows that an appropriate delivery system is necessary to obtain desirable effect of nisin in meat and meat product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nisin" title="nisin">nisin</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=minced%20beef" title=" minced beef"> minced beef</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/39910/antibacterial-activity-of-nisin-comparison-the-role-of-free-and-encapsulated-nisin-to-control-staphylococcus-aureus-inoculated-in-minced-beef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Biochemical and Molecular Analysis of Staphylococcus aureus Various Isolates from Different Places</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Fatima">Kiran Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Ali"> Kashif Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is an opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 70 staphylococci isolates were obtained from soil, water, yogurt, and clinical samples. The likely staphylococci clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species-specific 16S rRNA primer pairs, and finally, 50 isolates were found to be positive as Staphylococcus aureus, sciuri, xylous and cohnii. Screened isolates were further analyzed by several microbiological diagnostics tests, including gram staining, coagulase, capsule, hemolysis, fermentation of glucose, lactose, maltose, and sucrose tests enzymatic reactions. It was found that 78%, 81%, and 51% of isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance patterns ranging from 57 to 96%. Our study also shows 70% of strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes, and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high-level multidrug-resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRSA" title="MRSA">MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=VRSA" title=" VRSA"> VRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=mecA" title=" mecA"> mecA</a>, <a href="https://publications.waset.org/abstracts/search?q=MSSA" title=" MSSA"> MSSA</a> </p> <a href="https://publications.waset.org/abstracts/151772/biochemical-and-molecular-analysis-of-staphylococcus-aureus-various-isolates-from-different-places" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Molecular Detection of Staphylococcus aureus in the Pork Chain Supply and the Potential Anti-Staphylococcal Activity of Natural Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Velasco">Valeria Velasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20M.%20Bonilla"> Ana M. Bonilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20L.%20Vergara"> José L. Vergara</a>, <a href="https://publications.waset.org/abstracts/search?q=Alcides%20Lofa"> Alcides Lofa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Campos"> Jorge Campos</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Rojas-Garc%C3%ADa"> Pedro Rojas-García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is both commensal bacterium and opportunistic pathogen that can cause different diseases in humans and can rapidly develop antimicrobial resistance. Since this bacterium has the ability to colonize the nares and skin of humans and animals, there is a risk of contamination of food in different steps of the food chain supply. Emerging strains have been detected in food-producing animals and meat, such as methicillin-resistant S. aureus (MRSA). The aim of this study was to determine the prevalence and oxacillin susceptibility of S. aureus in the pork chain supply in Chile and to suggest some natural antimicrobials for control. A total of 487 samples were collected from pigs (n=332), carcasses (n=85), and retail pork meat (n=70). Presumptive S. aureus colonies were isolated by selective enrichment and culture media. The confirmation was carried out by biochemical testing (Api® Staph) and molecular technique PCR (detection of nuc and mecA genes, associated with S. aureus and methicillin resistance, respectively). The oxacillin (β-lactam antibiotic that replaced methicillin) susceptibility was assessed by minimum inhibitory concentration (MIC) using the Epsilometer test (Etest). A preliminary assay was carried out to test thymol, carvacrol, oregano essential oil (Origanum vulgare L.), Maqui or Chilean wineberry extract (Aristotelia chilensis (Mol.) Stuntz) as anti-staphylococcal agents using the disc diffusion method at different concentrations. The overall prevalence of S. aureus in the pork chain supply reached 33.9%. A higher prevalence of S. aureus was determined in carcasses (56.5%) than in pigs (28.3%) and pork meat (32.9%) (P ≤ 0.05). The prevalence of S. aureus in pigs sampled at farms (40.6%) was higher than in pigs sampled at slaughterhouses (23.3%) (P ≤ 0.05). The contamination of no packaged meat with S. aureus (43.1%) was higher than in packaged meat (5.3%) (P ≤ 0.05). The mecA gene was not detected in S. aureus strains isolated in this study. Two S. aureus strains exhibited oxacillin resistance (MIC ≥ 4µg/mL). Anti-staphylococcal activity was detected in solutions of thymol, carvacrol, and oregano essential oil at all concentrations tested. No anti-staphylococcal activity was detected in Maqui extract. Finally, S. aureus is present in the pork chain supply in Chile. Although the mecA gene was not detected, oxacillin resistance was found in S. aureus and could be attributed to another resistance mechanism. Thymol, carvacrol, and oregano essential oil could be used as anti-staphylococcal agents at low concentrations. Research project Fondecyt No. 11140379. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=mecA%20gen" title=" mecA gen"> mecA gen</a>, <a href="https://publications.waset.org/abstracts/search?q=nuc%20gen" title=" nuc gen"> nuc gen</a>, <a href="https://publications.waset.org/abstracts/search?q=oxacillin%20susceptibility" title=" oxacillin susceptibility"> oxacillin susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=pork%20meat" title=" pork meat"> pork meat</a> </p> <a href="https://publications.waset.org/abstracts/72478/molecular-detection-of-staphylococcus-aureus-in-the-pork-chain-supply-and-the-potential-anti-staphylococcal-activity-of-natural-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malalage%20Mudara%20Peiris">Malalage Mudara Peiris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20nanotechnology" title="green nanotechnology">green nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/140446/antimicrobial-activity-of-biosynthesized-silver-nanoparticles-using-different-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nichole%20Haag">Nichole Haag</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimberly%20Velk"> Kimberly Velk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tyler%20McCune"> Tyler McCune</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Wu"> Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Methicillin-resistant%20Staphylococcus%20aureus" title="Methicillin-resistant Staphylococcus aureus">Methicillin-resistant Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=dihydroxyacetone%20kinase" title=" dihydroxyacetone kinase"> dihydroxyacetone kinase</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20genes" title=" essential genes"> essential genes</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20target" title=" drug target"> drug target</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoryl%20group%20donor" title=" phosphoryl group donor"> phosphoryl group donor</a> </p> <a href="https://publications.waset.org/abstracts/21705/bioinformatics-and-molecular-biological-characterization-of-a-hypothetical-protein-sav1226-as-a-potential-drug-target-for-methicillinvancomycin-staphylococcus-aureus-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Mohammed%20Saeed">W. Mohammed Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Mcbain"> A. J. Mcbain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Cruickshank"> S. M. Cruickshank</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20O%E2%80%99Neill"> C. A. O’Neill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lysate" title="lysate">lysate</a>, <a href="https://publications.waset.org/abstracts/search?q=fractions" title=" fractions"> fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20rhamnosus%20GG" title=" L. rhamnosus GG"> L. rhamnosus GG</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus%20toxicity" title=" S. aureus toxicity"> S. aureus toxicity</a> </p> <a href="https://publications.waset.org/abstracts/40457/l-rhamnosus-gg-lysate-can-inhibit-cytotoxic-effects-of-s-aureus-on-keratinocytes-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> SPR Immunosensor for the Detection of Staphylococcus aureus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Syed">Muhammad Ali Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Saleem%20Bhatti"> Arshad Saleem Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-zhong%20Li"> Chen-zhong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Ali%20Bokhari"> Habib Ali Bokhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface plasmon resonance (SPR) biosensors have emerged as a promising technique for bioanalysis as well as microbial detection and identification. Real time, sensitive, cost effective, and label free detection of biomolecules from complex samples is required for early and accurate diagnosis of infectious diseases. Like many other types of optical techniques, SPR biosensors may also be successfully utilized for microbial detection for accurate, point of care, and rapid results. In the present study, we have utilized a commercially available automated SPR biosensor of BI company to study the microbial detection form water samples spiked with different concentration of Staphylococcus aureus bacterial cells. The gold thin film sensor surface was functionalized to react with proteins such as protein G, which was used for directed immobilization of monoclonal antibodies against Staphylococcus aureus. The results of our work reveal that this immunosensor can be used to detect very small number of bacterial cells with higher sensitivity and specificity. In our case 10^3 cells/ml of water have been successfully detected. Therefore, it may be concluded that this technique has a strong potential to be used in microbial detection and identification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance%20%28SPR%29" title="surface plasmon resonance (SPR)">surface plasmon resonance (SPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20detection" title=" microbial detection "> microbial detection </a> </p> <a href="https://publications.waset.org/abstracts/12570/spr-immunosensor-for-the-detection-of-staphylococcus-aureus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Screening for Enterotoxigenic Staphylococcus spp. Strains Isolated From Raw Milk and Dairy Products in R. N. Macedonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marija%20Ratkova%20Manovska">Marija Ratkova Manovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Prodanov"> Mirko Prodanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dean%20Jankuloski"> Dean Jankuloski</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Blagoevska"> Katerina Blagoevska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococci, which are widely found in the environment, animals, humans, and food products, include Staphylococcus aureus (S. aureus), the most significant pathogenic species in this genus. The virulence and toxicity of S. aureus are primarily attributed to the presence of specific genes responsible for producing toxins, biofilms, invasive components, and antibiotic resistance. Staphylococcal food poisoning, caused by the production of staphylococcal enterotoxins (SEs) by these strains in food, is a common occurrence. Globally, S. aureus food intoxications are typically ranked as the third or fourth most prevalent foodborne intoxications. For this study, a total of 333 milk samples and 1160 dairy product samples were analyzed between 2016 and 2020. The strains were isolated and confirmed using the ISO 6888-1:1999 "Horizontal method for enumeration of coagulase-positive staphylococci." Molecular analysis of the isolates, conducted using conventional PCR, involved detecting the 23s gene of S. aureus, the nuc gene, the mecA gene, and 11 genes responsible for producing enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, ser, sej, and sep). The 23s gene was found in 93 (75.6%) out of 123 isolates of Staphylococcus spp. obtained from milk. Among the 76 isolates from dairy products, either S. aureus or the 23s gene was detected in 49 (64.5%) of them. The mecA gene was identified in three isolates from raw milk and five isolates from cheese samples. The nuc gene was present in 98.9% of S. aureus strains from milk and 97.9% from dairy products. Other Staphylococcus strains carried the nuc gene in 26.7% of milk strains and 14.8% of dairy product strains. Genes associated with SEs production were detected in 85 (69.1%) strains from milk and 38 (50%) strains from dairy products. In this study, 10 out of the 11 SEs genes were found, with no isolates carrying the see gene. The most prevalent genes detected were seg and sei, with some isolates containing up to five different SEs genes. These findings indicate the presence of enterotoxigenic staphylococci strains in the tested samples, emphasizing the importance of implementing proper sanitation and hygienic practices, utilizing safe raw materials, and ensuring adequate handling of finished products. Continued monitoring for the presence of SEs is necessary to ensure food safety and prevent intoxication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title="dairy products">dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococci" title=" Staphylococci"> Staphylococci</a>, <a href="https://publications.waset.org/abstracts/search?q=enterotoxins" title=" enterotoxins"> enterotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=SE%20genes" title=" SE genes"> SE genes</a> </p> <a href="https://publications.waset.org/abstracts/167760/screening-for-enterotoxigenic-staphylococcus-spp-strains-isolated-from-raw-milk-and-dairy-products-in-r-n-macedonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Dynamics of Bacterial Contamination and Oral Health Risks Associated with Currency Notes and Coins Circulating in Kampala City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Walusansa">Abdul Walusansa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, paper notes and coins were collected from general public in Kampala City where ready-to-eat food can be served, in order to survey for bacterial contamination. The total bacterial number and potentially pathogenic organisms loading on currency were tested. All isolated potential pathogens were also tested for antibiotic resistance against four most commonly prescribed antibiotics. 1. The bacterial counts on one hundred paper notes sample were ranging between 6~10918/cm cm-2,the median was 141/ cm-2, according to the data it was much higher than credit cards and Australian notes which were made of polymer. The bacterial counts on sixty coin samples were ranging between 2~380/cm-2, much less than paper notes. 2. Coliform (65.6%), E. coli (45.9%), S. aureus (41.7%), B. cereus (67.7%), Salmonella (19.8%) were isolated on one hundred paper notes. Coliform (22.4%), E. coli (5.2%), S. aureus (24.1%), B. cereus (34.5%), Salmonella (10.3%) were isolated from sixty coin samples. These results suggested a high rate of potential pathogens contamination of paper notes than coins. 3. Antibiotic resistances are commonly in most of the pathogens isolated on currency. Ampicillin resistance was found in 60%of Staphylococcus aureus isolated on currency, as well as 76.6% of E. coil and 40% of Salmonella. Erythromycin resistance was detected in 56.6% of S. aureus and in 80.0% of E. coli. All the pathogens isolated were sensitive to Norfloxacin, Salmonella and S. aureus also sensitive to Cefaclor. In this paper, we also studied the antimicrobial capability of metal coins, coins collected from different countries were tested for the ability to inhibit the growth of E. sakazakii, S. aureus, E. coli, L. monocytogenes and S. typhimurium. 1) E. sakazakii appeared very sensitive to metal coins, the second is S. aureus, but E. coli, L. monocytogenes and S. typhimurium are more resistant to these metal coin samples. 2) Coins made of Nickel-brass alloy and Copper-nickel alloy showed a better effect in anti-microbe than other metal coins, especially the ability to inhibited the growth of E. sakazakii and S. aureus, all the inhibition zones produced on nutrient agar are more than 20.6 mm. Aluminium-bronze alloy revealed weak anti-microbe activity to S. aureus and no effect to kill other pathogens. Coins made of stainless steel also can’t resist bacteria growth. 3) Surprisingly, one cent coins of USA which were made of 97.5% Zinc and 2.5% Cu showed a significant antimicrobial capability, the average inhibition zone of these five pathogens is 45.5 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20sensitivity" title="antibiotic sensitivity">antibiotic sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=currency" title=" currency"> currency</a>, <a href="https://publications.waset.org/abstracts/search?q=coins" title=" coins"> coins</a>, <a href="https://publications.waset.org/abstracts/search?q=parasites" title=" parasites"> parasites</a> </p> <a href="https://publications.waset.org/abstracts/46820/dynamics-of-bacterial-contamination-and-oral-health-risks-associated-with-currency-notes-and-coins-circulating-in-kampala-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Microbial Quality of Raw Camel Milk Produced in South of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alaoui%20Ismaili">Maha Alaoui Ismaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchta%20Saidi"> Bouchta Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zahar"> Mohamed Zahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Hamama"> Abed Hamama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thirty one samples of raw camel milk obtained from the region of Laâyoune (South of Morocco) were examined for their microbial quality and presence of some pathogenic bacteria (Staphylococcus aureus and Salmonella sp.). pH of the samples ranged from 6.31 to 6.64 and their titratable acidity had a mean value of 18.56 °Dornic. Data obtained showed a strong microbial contamination with an average total aerobic flora of 1.76 108 ufc ml-1 and a very high fecal counts: 1.82 107 ; 3.25 106 and 3.75 106 ufc.ml-1 in average for total coliforms, fecal coliforms and enterococci respectively. Yeasts and moulds were also found at average respective levels of 3.13 106 and 1.60 105 ufc.ml-1. Salmonella sp. and S. aureus was detected respectively in 13% and 30% of the milk samples. These results indicate clearly the lack of hygienic conditions of camel milk production and storage in this region. Lactic acid bacteria were found at the following average numbers: 4.25 107 ; 4.45 107 and 3.55 107 ufc.ml-1 for Lactococci, Leuconostocs and Lactobacilli respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title="camel milk">camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20quality" title=" microbial quality"> microbial quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus "> Staphylococcus aureus </a> </p> <a href="https://publications.waset.org/abstracts/31064/microbial-quality-of-raw-camel-milk-produced-in-south-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Antibacterial Activity of Green Synthesis Silver Nanoparticles from Moringa Oleifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fadhel%20Ahmed">Ali Fadhel Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuqa%20Abdulkareem%20Hameed"> Tuqa Abdulkareem Hameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa oleifera (leaves and seeds) ethanolic and aqueous extracts were tested for antibacterial activity. The effect of plant extracts on three types of bacterial species: Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, was investigated. Using the agar well diffusion method, ethanolic extracts of Moringa oleifera demonstrated a significant antibacterial effect on the forty tested bacterial strains. Seed-induced inhibition zones (ethanolic extracts)were ranged from16 to 24 mm in diameter against S. aureus, respectively, whileE. coli and K. pneumonia had no effect. Gram-positive and Gram-negative bacteria were not affected by alcoholic and aqueous plant leaf extracts. The purpose of this present study was to look at the cytotoxic effects of M.Oleifera plant (alcoholic extracts). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moringa%20oleifera" title="moringa oleifera">moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella%20pneumoniae" title=" klebsiella pneumoniae"> klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/142190/antibacterial-activity-of-green-synthesis-silver-nanoparticles-from-moringa-oleifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> The Investigation of the Antimicrobial Activities of Piper betle L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Disaya%20Jaroensattayatham">Disaya Jaroensattayatham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, infectious diseases are prevalent and severe health problems as they render the increment of casualty, illness, and global economic recession. Along with the emergence of antimicrobial resistance, the potency of typically used antibiotics can be affected to a considerable degree. As a result, unorthodox antibiotics have become an urgent issue in the pharmaceutical field. Piper betle L., known as betle leaf, has been used for many purposes, such as a traditional home remedy, and has shown its ability in inhibiting bacteria as well as fungus. Thus, in this study, the investigation of antimicrobial activities of the Piper betle L. extracts was carried out using the Agar disk-diffusion method and Broth microdilution, aiming to evaluate and determine its efficacy to inhibit bacterial and fungal growth of Staphylococcus aureus, Salmonella typhi, and Candida albicans. In the agar disk-diffusion test, the extracts of Piper betle L. gave the maximum zone of inhibition of 15.1 mm (S. aureus), 7.7 mm (S. typhi), and 11.7 mm (C. albicans), while its MIC values were 1000 µg/ml in S. aureus and greater than 2000 µg/ml in S. typhi and C. albicans. According to the results, the Piper betle L. obtains an antimicrobial activity and shows a higher effect towards gram-positive bacteria than gram-negative bacteria. To determine the mechanism behind its ability, more research is needed to be performed in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20albicans" title=" Candida albicans"> Candida albicans</a>, <a href="https://publications.waset.org/abstracts/search?q=Piper%20betle%20L." title=" Piper betle L."> Piper betle L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20typhi" title=" Salmonella typhi"> Salmonella typhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/140896/the-investigation-of-the-antimicrobial-activities-of-piper-betle-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Emergence of Fluoroquinolone Resistance in Pigs, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igbakura%20I.%20Luga">Igbakura I. Luga</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Adikwu"> Alex A. Adikwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing <em>Escherichia coli</em>O157:H7 from cattle and <em>mecA</em> and <em>nuc</em> genes harbouring <em>Staphylococcus aureus</em> from pigs. The isolates were separately tested in the first and current decades of the 21<sup>st</sup> century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the <em>E. coli </em>O157:H7 and 9 of <em>mecA</em> and <em>nuc</em> genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex <em>E. coli </em>O157:H7 test. Shiga toxin-production screening in the <em>E. coli </em>O157:H7 using the verotoxin <em>E. coli</em> reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the <em>mecA</em> and <em>nuc</em> genes in <em>S. aureus</em>. Detection of the <em>mecA</em> and <em>nuc</em> genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers <em>mecA</em>-1:5'-GGGATCATAGCGTCATTATTC-3', <em>mecA</em>-2: 5'-AACGATTGTGACACGATAGCC-3', <em>nuc</em>-1: 5'-TCAGCAAATGCATCACAAACAG-3', <em>nuc</em>-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the <em>mecA</em> and <em>nuc</em> genes, respectively. The <em>nuc</em> genes confirm the <em>S. aureus</em> isolates and the <em>mecA</em> genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the <em>E. coli </em>O157:H7 isolates and ciprofloxacin (5 µg) in the <em>S. aureus </em>isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of <em>E. coli </em>O157:H7 from cattle. However, 44% (4/9) of the <em>S. aureus</em> were resistant to ciprofloxacin. Resistance of up to 44% in isolates of <em>mecA</em> and <em>nuc</em> genes harbouring <em>S. aureus</em> is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fluoroquinolone" title="Fluoroquinolone">Fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/80778/emergence-of-fluoroquinolone-resistance-in-pigs-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>