CINXE.COM

Search results for: damaged detection

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: damaged detection</title> <meta name="description" content="Search results for: damaged detection"> <meta name="keywords" content="damaged detection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="damaged detection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="damaged detection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3864</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: damaged detection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3864</span> Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moein%20Izadi">Moein Izadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammadzadeh"> Ali Mohammadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SVM%20classifier" title="SVM classifier">SVM classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20damage%20detection" title=" road damage detection"> road damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=quickBird%20images" title=" quickBird images"> quickBird images</a> </p> <a href="https://publications.waset.org/abstracts/26389/post-earthquake-road-damage-detection-by-svm-classification-from-quickbird-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3863</span> Tank Barrel Surface Damage Detection Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Dyk">Tomáš Dyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Proch%C3%A1zka"> Stanislav Procházka</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Drahansk%C3%BD"> Martin Drahanský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barrel" title="barrel">barrel</a>, <a href="https://publications.waset.org/abstracts/search?q=barrel%20diagnostic" title=" barrel diagnostic"> barrel diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20damage%20detection" title=" surface damage detection"> surface damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=tank" title=" tank"> tank</a> </p> <a href="https://publications.waset.org/abstracts/148441/tank-barrel-surface-damage-detection-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3862</span> Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Providakis">C. P. Providakis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Angeli"> G. M. Angeli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Favvata"> M. J. Favvata</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Papadopoulos"> N. A. Papadopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Chalioris"> C. E. Chalioris</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Karayannis"> C. G. Karayannis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforcement" title="concrete reinforcement">concrete reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20admittance" title=" electromechanical admittance"> electromechanical admittance</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20measurements" title=" experimental measurements"> experimental measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=guided%20waves" title=" guided waves"> guided waves</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT" title=" PZT"> PZT</a> </p> <a href="https://publications.waset.org/abstracts/6658/detection-of-concrete-reinforcement-damage-using-piezoelectric-materials-analytical-and-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3861</span> Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Providakis">C. P. Providakis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Angeli"> G. M. Angeli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Favvata"> M. J. Favvata</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Papadopoulos"> N. A. Papadopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Chalioris"> C. E. Chalioris</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Karayannis"> C. G. Karayannis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforcement" title="concrete reinforcement">concrete reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20admittance" title=" electromechanical admittance"> electromechanical admittance</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20measurements" title=" experimental measurements"> experimental measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=guided%20waves" title=" guided waves"> guided waves</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT" title=" PZT"> PZT</a> </p> <a href="https://publications.waset.org/abstracts/2777/detection-of-concrete-reinforcement-damage-using-piezoelectric-materials-analytical-and-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3860</span> Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al-Farttoosi">M. Al-Farttoosi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Rafiq"> M. Y. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summerscales"> J. Summerscales</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Williams"> C. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damaged" title="damaged">damaged</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=repaired" title=" repaired"> repaired</a> </p> <a href="https://publications.waset.org/abstracts/35978/experimental-investigation-of-damaged-reinforced-concrete-beams-repaired-with-carbon-fibre-reinforced-polymer-cfrp-strip-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3859</span> Analysis of Steel Beam-Column Joints Under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mizam%20Do%C4%9Fan">Mizam Doğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column-beam%20connection" title="column-beam connection">column-beam connection</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/45749/analysis-of-steel-beam-column-joints-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3858</span> Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaturong%20Som-ard">Jaturong Som-ard </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flooding%20extent" title="flooding extent">flooding extent</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-1A%20data" title=" Sentinel-1A data"> Sentinel-1A data</a>, <a href="https://publications.waset.org/abstracts/search?q=JOSM%20desktop" title=" JOSM desktop"> JOSM desktop</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20buildings" title=" damaged buildings"> damaged buildings</a> </p> <a href="https://publications.waset.org/abstracts/72411/assessment-of-the-number-of-damaged-buildings-from-a-flood-event-using-remote-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3857</span> Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionut%20Vintu">Ionut Vintu</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Laible"> Stefan Laible</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Schulz"> Ruth Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20LiDAR" title="3D LiDAR">3D LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20robots" title=" agricultural robots"> agricultural robots</a>, <a href="https://publications.waset.org/abstracts/search?q=graph-based%20localization" title=" graph-based localization"> graph-based localization</a>, <a href="https://publications.waset.org/abstracts/search?q=row%20detection" title=" row detection"> row detection</a> </p> <a href="https://publications.waset.org/abstracts/98467/row-detection-and-graph-based-localization-in-tree-nurseries-using-a-3d-lidar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3856</span> Damage Detection in Beams Using Wavelet Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutham%20Kumar%20Dogiparti">Goutham Kumar Dogiparti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Seshu"> D. R. Seshu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/42920/damage-detection-in-beams-using-wavelet-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3855</span> A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosab%20Alrashed">Mosab Alrashed</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu"> Wei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Abineri"> Stephen Abineri</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Zhao"> Yifan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rn%20Mehnen"> Jörn Mehnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDT" title="NDT">NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20analysis" title=" correlation analysis"> correlation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection" title=" inspection"> inspection</a> </p> <a href="https://publications.waset.org/abstracts/30959/a-comparative-assessment-of-industrial-composites-using-thermography-and-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3854</span> Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Mi%20Ryu">Eun Mi Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ah%20Young%20An"> Ah Young An</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Yeon%20Kang"> Ji Yeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire" title="fire">fire</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/26175/investigation-of-rehabilitation-effects-on-fire-damaged-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3853</span> The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Gaber%20Abdel%20Raheem">Ahmed Gaber Abdel Raheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20Ahmed%20Mohamed"> Nashwa Ahmed Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amikacin" title="amikacin">amikacin</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20cells" title=" hair cells"> hair cells</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorineural%20hearing%20loss" title=" sensorineural hearing loss"> sensorineural hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a> </p> <a href="https://publications.waset.org/abstracts/30808/the-role-of-bone-marrow-stem-cells-transplantation-in-the-repair-of-damaged-inner-ear-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3852</span> Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Hsiu%20Chiang">Pei-Hsiu Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Hong%20Huang"> Ling Hong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-I%20Chang"> Hsin-I Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscope" title="atomic force microscope">atomic force microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=UVA%20radiation" title=" UVA radiation"> UVA radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=dermal%20fibroblasts" title=" dermal fibroblasts "> dermal fibroblasts </a> </p> <a href="https://publications.waset.org/abstracts/3430/using-atomic-force-microscope-to-investigate-the-influence-of-uva-radiation-and-ha-on-cell-behaviour-and-elasticity-of-dermal-fibroblasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3851</span> Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Kyeong%20Lee">Yeo Kyeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Won%20Min"> Hae Won Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Yeon%20Kang"> Ji Yeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire" title="fire">fire</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20strength%20concrete" title=" normal strength concrete"> normal strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/26174/deformation-characteristics-of-fire-damaged-and-rehabilitated-normal-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3850</span> Damage Localization of Deterministic-Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Po%20Wang">Yen-Po Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chih%20Huang"> Ming-Chih Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Lian%20Chang"> Ming-Lian Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20locating%20vectors" title="damage locating vectors">damage locating vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic-stochastic%20subspace%20system" title=" deterministic-stochastic subspace system"> deterministic-stochastic subspace system</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20tests" title=" shaking table tests"> shaking table tests</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/5097/damage-localization-of-deterministic-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3849</span> Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Jeong%20Kim">Jae-Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Ro%20Kim"> Ki-Ro Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title="MIMO-OFDM">MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=QRD-M" title=" QRD-M"> QRD-M</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20condition" title=" channel condition"> channel condition</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a> </p> <a href="https://publications.waset.org/abstracts/3518/efficient-signal-detection-using-qrd-m-based-on-channel-condition-in-mimo-ofdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3848</span> Numerical and Comparative Analysis between Two Composite Plates Notched in Different Shapes and Repaired by Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amari%20Khaoula">Amari Khaoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrahou%20Mohamed"> Berrahou Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of our article revolves around a numerical and comparative analysis between two notched Boron/epoxy plates that are U-shaped and the other V-shaped, cracked, and repaired by a rectangular patch of the same composite material; the finite element method was used for the analytical study and comparison of the results obtained for determining the optimal shape of notch which will give a longer life to the repair. In this context, we studied the variation of the stress intensity factor, the evolution of the damaged area, and the calculation of the ratio of the damaged area according to the crack length and the concentration of the Von Mises stresses as a function of the lengths of the paths. According to the results obtained, we conclude that the notch plate U is the optimal one than notch plate V because it has lower values either for the stress intensity factor (SIF), damaged area ratio (Dᵣ), or the Von Mises stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20notch%20U" title="the notch U">the notch U</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20notch%20V" title=" the notch V"> the notch V</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20finite%20element%20method%20FEM" title=" the finite element method FEM"> the finite element method FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20patch" title=" rectangular patch"> rectangular patch</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20area%20ratio" title=" damaged area ratio"> damaged area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Mises%20stresses" title=" Von Mises stresses"> Von Mises stresses</a> </p> <a href="https://publications.waset.org/abstracts/158158/numerical-and-comparative-analysis-between-two-composite-plates-notched-in-different-shapes-and-repaired-by-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3847</span> Reduced Complexity of ML Detection Combined with DFE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyun%20Ro">Jae-Hyun Ro</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha"> Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DFE" title=" DFE"> DFE</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title=" MIMO-OFDM"> MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=ML" title=" ML"> ML</a> </p> <a href="https://publications.waset.org/abstracts/42215/reduced-complexity-of-ml-detection-combined-with-dfe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3846</span> Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Pei%20Hsiao">Fu-Pei Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Chung%20Tu"> Fung-Chung Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu"> Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title="seismic assessment">seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reduction%20factor" title=" seismic reduction factor"> seismic reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20seismic%20ratio" title=" residual seismic ratio"> residual seismic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/43183/study-on-seismic-assessment-of-earthquake-damaged-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3845</span> Erythrophagocytic Role of Mast Cells in vitro and in vivo during Oxidative Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Sharma">Priyanka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Niti%20Puri"> Niti Puri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anemia develops when blood lacks enough healthy erythrocytes. Past studies indicated that anemia, inflammatory process, and oxidative stress are interconnected. Erythrocytes are continuously exposed to reactive oxygen species (ROS) during circulation, due to normal aerobic cellular metabolism and also pathology of inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells have been shown to affect anaemia. In the present study, we attempted to reveal whether mast cells have a direct role in clearance or erythrophagocytosis of normal or oxidatively damaged erythrocytes. Murine erythrocytes were treated with tert-butyl hydroperoxidase (t-BHP), an agent that induces oxidative damage and mimics in vivo oxidative stress. Normal and oxidatively damaged erythrocytes were labeled with carboxyfluorescein succinimidyl ester (CFSE) to track erythrophagocytosis. We show, for the first time, direct erythrophagocytosis of oxidatively damaged erythrocytes in vitro by RBL-2H3 mast cells as well as in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significant increase in the uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Hence, our study provides important evidence for involvement of mast cells in severe anemia due to inflammation and oxidative stress and might be helpful to circumvent the adverse anemic disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mast%20cells" title="mast cells">mast cells</a>, <a href="https://publications.waset.org/abstracts/search?q=anemia" title=" anemia"> anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=erythrophagocytosis" title=" erythrophagocytosis"> erythrophagocytosis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidatively%20damaged%20erythrocytes" title=" oxidatively damaged erythrocytes"> oxidatively damaged erythrocytes</a> </p> <a href="https://publications.waset.org/abstracts/78116/erythrophagocytic-role-of-mast-cells-in-vitro-and-in-vivo-during-oxidative-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3844</span> Cigarette Smoke Detection Based on YOLOV3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li">Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuo%20Yang"> Tuo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20detection" title=" cigarette smoke detection"> cigarette smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOV3" title=" YOLOV3"> YOLOV3</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20feature%20extraction" title=" color feature extraction"> color feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/159151/cigarette-smoke-detection-based-on-yolov3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3843</span> Urban Search, Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20I.%20Abu-Tair">Abid I. Abu-Tair</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20M.%20Wilde"> Gavin M. Wilde</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20M.%20Kinuthia"> John M. Kinuthia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result, there is always a risk that they could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of the structural damage that may be countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to judge better and quantify the risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk so that they do not become victims. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damaged%20and%20collapsed%20building%20structures" title="damaged and collapsed building structures">damaged and collapsed building structures</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20safety" title=" life safety"> life safety</a>, <a href="https://publications.waset.org/abstracts/search?q=quantifying%20risk" title=" quantifying risk"> quantifying risk</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20and%20rescue%20personnel" title=" search and rescue personnel"> search and rescue personnel</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20assessments%20in%20the%20field" title=" structural assessments in the field"> structural assessments in the field</a> </p> <a href="https://publications.waset.org/abstracts/21334/urban-search-rescue-and-rapid-field-assessment-of-damaged-and-collapsed-building-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3842</span> Structural Health Monitoring and Damage Structural Identification Using Dynamic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behboodian">Reza Behboodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20energy" title=" strain energy"> strain energy</a> </p> <a href="https://publications.waset.org/abstracts/136456/structural-health-monitoring-and-damage-structural-identification-using-dynamic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3841</span> Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Bikram%20Thapa">Ram Bikram Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Lama"> Ganesh Lama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro" title="micro hydro">micro hydro</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20failure" title=" structural failure"> structural failure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/48351/sustainability-effect-of-earthquake-in-micro-hydro-sector-a-case-study-of-micro-hydro-projects-in-northern-part-of-kavre-district-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3840</span> An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmoussa">H. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El%20Kalam"> A. A. El Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ait%20Ouahman"> A. Ait Ouahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intrusion%20Detection%20System%20%28IDS%29" title="Intrusion Detection System (IDS)">Intrusion Detection System (IDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20detection" title=" preventive detection"> preventive detection</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20architecture" title=" distributed architecture"> distributed architecture</a> </p> <a href="https://publications.waset.org/abstracts/18239/an-architecture-for-new-generation-of-distributed-intrusion-detection-system-based-on-preventive-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3839</span> Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omair%20Ghori">Omair Ghori</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Stadler"> Anton Stadler</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wilk"> Stefan Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Effelsberg"> Wolfgang Effelsberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20analysis" title="contrast analysis">contrast analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20fire%20detection" title=" early fire detection"> early fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20smoke%20detection" title=" video smoke detection"> video smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/52006/video-based-ambient-smoke-detection-by-detecting-directional-contrast-decrease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3838</span> Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fawad">Muhammad Fawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/166864/design-of-structural-health-monitoring-system-for-a-damaged-reinforced-concrete-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3837</span> Vibro-Acoustic Modulation for Crack Detection in Windmill Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alnutayfat">Abdullah Alnutayfat</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Sutin"> Alexander Sutin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title="wind turbine blades">wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20detection" title=" damaged detection"> damaged detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic%20structural%20health%20monitoring" title=" vibro-acoustic structural health monitoring"> vibro-acoustic structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic%20modulation" title=" vibro-acoustic modulation"> vibro-acoustic modulation</a> </p> <a href="https://publications.waset.org/abstracts/161089/vibro-acoustic-modulation-for-crack-detection-in-windmill-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3836</span> Intrusion Detection Techniques in NaaS in the Cloud: A Review </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mahmood">Rashid Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDS" title="IDS">IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=naas" title=" naas"> naas</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/36475/intrusion-detection-techniques-in-naas-in-the-cloud-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3835</span> Securing Web Servers by the Intrusion Detection System (IDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Farhaoui">Yousef Farhaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title="intrusion detection">intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=architectures" title=" architectures"> architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic" title=" characteristic"> characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20server" title=" web server"> web server</a> </p> <a href="https://publications.waset.org/abstracts/13346/securing-web-servers-by-the-intrusion-detection-system-ids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=129">129</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damaged%20detection&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10