CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 111 results for author: <span class="mathjax">Cavanna, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cavanna, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cavanna%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cavanna, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05053">arXiv:2411.05053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05053">pdf</a>, <a href="https://arxiv.org/format/2411.05053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165081">10.1016/j.nima.2021.165081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of the LUNA neutron detector array for the measurement of the 13C(a,n)16O reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Csedreki%2C+L">L. Csedreki</a>, <a href="/search/physics?searchtype=author&amp;query=Ciani%2C+G+F">G. F. Ciani</a>, <a href="/search/physics?searchtype=author&amp;query=Balibrea-Correa%2C+J">J. Balibrea-Correa</a>, <a href="/search/physics?searchtype=author&amp;query=Best%2C+A">A. Best</a>, <a href="/search/physics?searchtype=author&amp;query=Aliotta%2C+M">M. Aliotta</a>, <a href="/search/physics?searchtype=author&amp;query=Barile%2C+F">F. Barile</a>, <a href="/search/physics?searchtype=author&amp;query=Bemmerer%2C+D">D. Bemmerer</a>, <a href="/search/physics?searchtype=author&amp;query=Boeltzig%2C+A">A. Boeltzig</a>, <a href="/search/physics?searchtype=author&amp;query=Broggini%2C+C">C. Broggini</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+C+G">C. G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Caciolli%2C+A">A. Caciolli</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chillery%2C+T">T. Chillery</a>, <a href="/search/physics?searchtype=author&amp;query=Colombetti%2C+P">P. Colombetti</a>, <a href="/search/physics?searchtype=author&amp;query=Corvisiero%2C+P">P. Corvisiero</a>, <a href="/search/physics?searchtype=author&amp;query=Davinson%2C+T">T. Davinson</a>, <a href="/search/physics?searchtype=author&amp;query=Depalo%2C+R">R. Depalo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Leva%2C+A">A. Di Leva</a>, <a href="/search/physics?searchtype=author&amp;query=Elekes%2C+Z">Z. Elekes</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraro%2C+F">F. Ferraro</a>, <a href="/search/physics?searchtype=author&amp;query=Fiore%2C+E+M">E. M. Fiore</a>, <a href="/search/physics?searchtype=author&amp;query=Formicola%2C+A">A. Formicola</a>, <a href="/search/physics?searchtype=author&amp;query=Fulop%2C+Z">Zs. Fulop</a>, <a href="/search/physics?searchtype=author&amp;query=Gervino%2C+G">G. Gervino</a>, <a href="/search/physics?searchtype=author&amp;query=Guglielmetti%2C+A">A. Guglielmetti</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05053v1-abstract-short" style="display: inline;"> We introduce the LUNA neutron detector array developed for the investigation of the 13C(a,n)16O reaction towards its astrophysical s-process Gamow peak in the low-background environment of the Laboratori Nazionali del Gran Sasso (LNGS). Eighteen 3He counters are arranged in two different configurations (in a vertical and a horizontal orientation) to optimize neutron detection effciency, target han&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05053v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05053v1-abstract-full" style="display: none;"> We introduce the LUNA neutron detector array developed for the investigation of the 13C(a,n)16O reaction towards its astrophysical s-process Gamow peak in the low-background environment of the Laboratori Nazionali del Gran Sasso (LNGS). Eighteen 3He counters are arranged in two different configurations (in a vertical and a horizontal orientation) to optimize neutron detection effciency, target handling and target cooling over the investigated energy range Ea;lab = 300 - 400 keV (En = 2.2 - 2.6 MeV in emitted neutron energy). As a result of the deep underground location, the passive shielding of the setup and active background suppression using pulse shape discrimination, we reached a total background rate of 1.23 +- 0.12 counts/hour. This resulted in an improvement of two orders of magnitude over the state of the art allowing a direct measurement of the 13C(a,n)16O cross-section down to Ea;lab = 300 keV. The absolute neutron detection efficiency of the setup was determined using the 51V(p,n)51Cr reaction and an AmBe radioactive source, and completed with a Geant4 simulation. We determined a (34+-3) % and (38+-3) % detection efficiency for the vertical and horizontal configurations, respectively, for En = 2.4 MeV neutrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05053v1-abstract-full').style.display = 'none'; document.getElementById('2411.05053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, to be published in NIMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 994 (2021) 165081 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10123">arXiv:2406.10123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10123">pdf</a>, <a href="https://arxiv.org/format/2406.10123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnard%2C+A">A. Barnard</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bateman%2C+J">J. Bateman</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10123v1-abstract-short" style="display: inline;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10123v1-abstract-full" style="display: none;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'none'; document.getElementById('2406.10123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07514">arXiv:2406.07514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07514">pdf</a>, <a href="https://arxiv.org/format/2406.07514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13306-3">10.1140/epjc/s10052-024-13306-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scintillation Light in SBND: Simulation, Reconstruction, and Expected Performance of the Photon Detection System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=SBND+Collaboration"> SBND Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Aliaga-Soplin%2C+L">L. Aliaga-Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez-Garrote%2C+R">R. Alvarez-Garrote</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Antonakis%2C+A">A. Antonakis</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Badgett%2C+W">W. Badgett</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Beever%2C+A">A. Beever</a>, <a href="/search/physics?searchtype=author&amp;query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&amp;query=Belchior%2C+E">E. Belchior</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bogenschuetz%2C+J">J. Bogenschuetz</a>, <a href="/search/physics?searchtype=author&amp;query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&amp;query=Brandt%2C+A">A. Brandt</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07514v1-abstract-short" style="display: inline;"> SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07514v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07514v1-abstract-full" style="display: none;"> SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07514v1-abstract-full').style.display = 'none'; document.getElementById('2406.07514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0303-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 1046 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16816">arXiv:2405.16816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16816">pdf</a>, <a href="https://arxiv.org/format/2405.16816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterization and Novel Application of Power Over Fiber for Electronics in a Harsh Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Feld%2C+A">A. Feld</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+F">F. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Heindel%2C+A">A. Heindel</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+C+K">C. K. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Koch%2C+K">K. Koch</a>, <a href="/search/physics?searchtype=author&amp;query=Silverio%2C+D+L">D. Leon Silverio</a>, <a href="/search/physics?searchtype=author&amp;query=Caicedo%2C+D+A+M">D. A. Martinez Caicedo</a>, <a href="/search/physics?searchtype=author&amp;query=McGrew%2C+C">C. McGrew</a>, <a href="/search/physics?searchtype=author&amp;query=Paudel%2C+A">A. Paudel</a>, <a href="/search/physics?searchtype=author&amp;query=Pellico%2C+W">W. Pellico</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera%2C+R">R. Rivera</a>, <a href="/search/physics?searchtype=author&amp;query=Rondon%2C+J+R">J. Rodr铆guez Rondon</a>, <a href="/search/physics?searchtype=author&amp;query=Sacerdoti%2C+S">S. Sacerdoti</a>, <a href="/search/physics?searchtype=author&amp;query=Shanahan%2C+P">P. Shanahan</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W">W. Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Mu%C3%B1oz%2C+D+T">D. Torres Mu帽oz</a>, <a href="/search/physics?searchtype=author&amp;query=Totani%2C+D">D. Totani</a>, <a href="/search/physics?searchtype=author&amp;query=Uy%2C+C">C. Uy</a>, <a href="/search/physics?searchtype=author&amp;query=Vermeulen%2C+C">C. Vermeulen</a>, <a href="/search/physics?searchtype=author&amp;query=de+Souza%2C+H+V">H. Vieira de Souza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16816v1-abstract-short" style="display: inline;"> Power-over-Fiber (PoF) technology has been used extensively in settings where high voltages require isolation from ground. In a novel application of PoF, power is provided to photon detector modules located on a surface at $\sim$ 300 kV with respect to ground in the planned DUNE experiment. In cryogenic environments, PoF offers a reliable means of power transmission, leveraging optical fibers to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16816v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16816v1-abstract-full" style="display: none;"> Power-over-Fiber (PoF) technology has been used extensively in settings where high voltages require isolation from ground. In a novel application of PoF, power is provided to photon detector modules located on a surface at $\sim$ 300 kV with respect to ground in the planned DUNE experiment. In cryogenic environments, PoF offers a reliable means of power transmission, leveraging optical fibers to transfer power with minimal system degradation. PoF technology excels in maintaining low noise levels when delivering power to sensitive electronic systems operating in extreme temperatures and high voltage environments. This paper presents the R$\&amp;$D effort of PoF in extreme conditions and underscores its capacity to revolutionize power delivery and management in critical applications, offering a dependable solution with low noise, optimal efficiency, and superior isolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16816v1-abstract-full').style.display = 'none'; document.getElementById('2405.16816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 32 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0265-AD-ETD-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09949">arXiv:2404.09949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09949">pdf</a>, <a href="https://arxiv.org/format/2404.09949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the differential cross section for neutral pion production in charged-current muon neutrino interactions on argon with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+M+B">M. B. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09949v3-abstract-short" style="display: inline;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab&#39;s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09949v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09949v3-abstract-full" style="display: none;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab&#39;s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to $6.86 \times 10^{20}$ protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, $200-400$ MeV for muons and $100-200$ MeV for pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'none'; document.getElementById('2404.09949v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0142-CSAID-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01568">arXiv:2402.01568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.01568">pdf</a>, <a href="https://arxiv.org/format/2402.01568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Es-sghir%2C+H+A">H. Amar Es-sghir</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01568v3-abstract-short" style="display: inline;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01568v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01568v3-abstract-full" style="display: none;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'none'; document.getElementById('2402.01568v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-024; FERMILAB-PUB-23-0819-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03130">arXiv:2312.03130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.03130">pdf</a>, <a href="https://arxiv.org/format/2312.03130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Vertical Drift Technology, Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1304 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03130v1-abstract-short" style="display: inline;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precisi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03130v1-abstract-full" style="display: none;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat&#39;s side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'none'; document.getElementById('2312.03130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">425 pages; 281 figures Central editing team: A. Heavey, S. Kettell, A. Marchionni, S. Palestini, S. Rajogopalan, R. J. Wilson</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab Report no: TM-2813-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02989">arXiv:2312.02989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02989">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Morphological Control of Bundled Actin Networks Subject to Fixed-Mass Depletion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">James Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Melcher%2C+L">Lauren Melcher</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+A+D">Anne D. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">Francis Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Houser%2C+J+R">Justin R. Houser</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+K">Kristin Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+A">Allison Green</a>, <a href="/search/physics?searchtype=author&amp;query=Stachowiak%2C+J+C">Jeanne C. Stachowiak</a>, <a href="/search/physics?searchtype=author&amp;query=Truskett%2C+T+M">Thomas M. Truskett</a>, <a href="/search/physics?searchtype=author&amp;query=Milliron%2C+D+J">Delia J. Milliron</a>, <a href="/search/physics?searchtype=author&amp;query=Rosales%2C+A+M">Adrianne M. Rosales</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+M">Moumita Das</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarado%2C+J">Jos茅 Alvarado</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02989v1-abstract-short" style="display: inline;"> Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters like the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02989v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02989v1-abstract-full" style="display: none;"> Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters like the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin $\textit{in silico}$ and $\textit{in vitro}$. We examine the maximum strength of the depletion interaction potential $U^*$ as a function of $q$, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation $U^* \sim q^{-味}$ for two cases: fixed volume fraction $蠁$ and fixed mass density $蟻$. For fixed volume fraction, we report $味&lt; 0$. For the fixed mass density case, we report $味&gt; 0$, which suggests the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes leads to weakly bundled or strongly bundled morphologies...[more in main text]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02989v1-abstract-full').style.display = 'none'; document.getElementById('2312.02989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:2205.01864</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07660">arXiv:2310.07660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07660">pdf</a>, <a href="https://arxiv.org/format/2310.07660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+M+B">M. B. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07660v2-abstract-short" style="display: inline;"> We present the first search for heavy neutral leptons (HNL) decaying into $谓e^+e^-$ or $谓蟺^0$ final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab&#39;s Main Injector corresponding to a total exposure of $7.01 \times 10^{20}$ protons on target. We set upper limits at the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07660v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07660v2-abstract-full" style="display: none;"> We present the first search for heavy neutral leptons (HNL) decaying into $谓e^+e^-$ or $谓蟺^0$ final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab&#39;s Main Injector corresponding to a total exposure of $7.01 \times 10^{20}$ protons on target. We set upper limits at the $90\%$ confidence level on the mixing parameter $\lvert U_{渭4}\rvert^2$ in the mass ranges $10\le m_{\rm HNL}\le 150$ MeV for the $谓e^+e^-$ channel and $150\le m_{\rm HNL}\le 245$ MeV for the $谓蟺^0$ channel, assuming $\lvert U_{e 4}\rvert^2 = \lvert U_{蟿4}\rvert^2 = 0$. These limits represent the most stringent constraints in the mass range $35&lt;m_{\rm HNL}&lt;175$ MeV and the first constraints from a direct search for $谓蟺^0$ decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07660v2-abstract-full').style.display = 'none'; document.getElementById('2310.07660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version as accepted by Physical Review Letters, some presentational changes and updated references, no changes to results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-574-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06413">arXiv:2307.06413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06413">pdf</a>, <a href="https://arxiv.org/format/2307.06413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of three-dimensional inclusive muon-neutrino charged-current cross sections on argon with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+Collaboration"> MicroBooNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06413v4-abstract-short" style="display: inline;"> We report the measurement of the differential cross section $d^{2}蟽(E_谓)/ d\cos(胃_渭) dP_渭$ for inclusive muon-neutrino charged-current scattering on argon. This measurement utilizes data from 6.4$\times10^{20}$ protons on target of exposure collected using the MicroBooNE liquid argon time projection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06413v4-abstract-full').style.display = 'inline'; document.getElementById('2307.06413v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06413v4-abstract-full" style="display: none;"> We report the measurement of the differential cross section $d^{2}蟽(E_谓)/ d\cos(胃_渭) dP_渭$ for inclusive muon-neutrino charged-current scattering on argon. This measurement utilizes data from 6.4$\times10^{20}$ protons on target of exposure collected using the MicroBooNE liquid argon time projection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping from reconstructed kinematics to truth quantities, particularly from reconstructed to true neutrino energy, is validated within uncertainties by comparing the distribution of reconstructed hadronic energy in data to that of the model prediction in different muon scattering angle bins after applying a conditional constraint from the muon momentum distribution in data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled within uncertainties in simulation, enabling the unfolding to a three-dimensional measurement over muon momentum, muon scattering angle, and neutrino energy. The unfolded measurement covers an extensive phase space, providing a wealth of information useful for future liquid argon time projection chamber experiments measuring neutrino oscillations. Comparisons against a number of commonly used model predictions are included and their performance in different parts of the available phase-space is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06413v4-abstract-full').style.display = 'none'; document.getElementById('2307.06413v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-368-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03102">arXiv:2307.03102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03102">pdf</a>, <a href="https://arxiv.org/format/2307.03102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.052007">10.1103/PhysRevD.109.052007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of ambient radon progeny decay rates and energy spectra in liquid argon using the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a> , et al. (166 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03102v3-abstract-short" style="display: inline;"> We report measurements of radon progeny in liquid argon within the MicroBooNE time projection chamber (LArTPC). The presence of specific radon daughters in MicroBooNE&#39;s 85 metric tons of active liquid argon bulk is probed with newly developed charge-based low-energy reconstruction tools and analysis techniques to detect correlated $^{214}$Bi-$^{214}$Po radioactive decays. Special datasets taken du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03102v3-abstract-full').style.display = 'inline'; document.getElementById('2307.03102v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03102v3-abstract-full" style="display: none;"> We report measurements of radon progeny in liquid argon within the MicroBooNE time projection chamber (LArTPC). The presence of specific radon daughters in MicroBooNE&#39;s 85 metric tons of active liquid argon bulk is probed with newly developed charge-based low-energy reconstruction tools and analysis techniques to detect correlated $^{214}$Bi-$^{214}$Po radioactive decays. Special datasets taken during periods of active radon doping enable new demonstrations of the calorimetric capabilities of single-phase neutrino LArTPCs for $尾$ and $伪$ particles with electron-equivalent energies ranging from 0.1 to 3.0 MeV. By applying $^{214}$Bi-$^{214}$Po detection algorithms to data recorded over a 46-day period, no statistically significant presence of radioactive $^{214}$Bi is detected, and a limit on the activity is placed at $&lt;0.35$ mBq/kg at the 95% confidence level. This bulk $^{214}$Bi radiopurity limit -- the first ever reported for a liquid argon detector incorporating liquid-phase purification -- is then further discussed in relation to the targeted upper limit of 1 mBq/kg on bulk $^{222}$Rn activity for the DUNE neutrino detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03102v3-abstract-full').style.display = 'none'; document.getElementById('2307.03102v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-352-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 052007 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16249">arXiv:2305.16249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16249">pdf</a>, <a href="https://arxiv.org/format/2305.16249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.151801">10.1103/PhysRevLett.132.151801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurement of $畏$ production in neutrino interactions on argon with MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16249v3-abstract-short" style="display: inline;"> We present a measurement of $畏$ production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. $畏$ production in neutrino interactions provides a powerful new probe of resonant interactions, comple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16249v3-abstract-full').style.display = 'inline'; document.getElementById('2305.16249v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16249v3-abstract-full" style="display: none;"> We present a measurement of $畏$ production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. $畏$ production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the $螖(1232)$. We measure a flux-integrated cross section for neutrino-induced $畏$ production on argon of $3.22 \pm 0.84 \; \textrm{(stat.)} \pm 0.86 \; \textrm{(syst.)}$ $10^{-41}{\textrm{cm}}^{2}$/nucleon. By demonstrating the successful reconstruction of the two photons resulting from $畏$ production, this analysis enables a novel calibration technique for electromagnetic showers in GeV accelerator neutrino experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16249v3-abstract-full').style.display = 'none'; document.getElementById('2305.16249v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-249-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 151801 Published 10 April 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02076">arXiv:2304.02076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02076">pdf</a>, <a href="https://arxiv.org/format/2304.02076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First demonstration of $\mathcal{O}(1\,\text{ns})$ timing resolution in the MicroBooNE liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&amp;query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02076v3-abstract-short" style="display: inline;"> MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE&#39;s liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02076v3-abstract-full').style.display = 'inline'; document.getElementById('2304.02076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02076v3-abstract-full" style="display: none;"> MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE&#39;s liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of $\mathcal{O}(1\,\text{ns})$. The result obtained allows MicroBooNE to access the ns neutrino pulse structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02076v3-abstract-full').style.display = 'none'; document.getElementById('2304.02076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09807">arXiv:2212.09807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09807">pdf</a>, <a href="https://arxiv.org/format/2212.09807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Highly-parallelized simulation of a pixelated LArTPC on a GPU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1282 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09807v3-abstract-short" style="display: inline;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'inline'; document.getElementById('2212.09807v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09807v3-abstract-full" style="display: none;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on $10^3$ pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'none'; document.getElementById('2212.09807v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-926-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01166">arXiv:2211.01166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01166">pdf</a>, <a href="https://arxiv.org/format/2211.01166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1235 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01166v4-abstract-short" style="display: inline;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'inline'; document.getElementById('2211.01166v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01166v4-abstract-full" style="display: none;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'none'; document.getElementById('2211.01166v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-784, CERN-EP-DRAFT-MISC-2022-008 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 092012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14521">arXiv:2206.14521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14521">pdf</a>, <a href="https://arxiv.org/format/2206.14521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11733-2">10.1140/epjc/s10052-023-11733-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a> , et al. (1203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14521v2-abstract-short" style="display: inline;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14521v2-abstract-full" style="display: none;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'none'; document.getElementById('2206.14521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD, CERN-EP-DRAFT-MISC-2022-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 618 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01864">arXiv:2205.01864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01864">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Depletion-Driven Morphological Control of Bundled Actin Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">James Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">Francis Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Crowell%2C+A+D">Anne D. Crowell</a>, <a href="/search/physics?searchtype=author&amp;query=Melcher%2C+L">Lauren Melcher</a>, <a href="/search/physics?searchtype=author&amp;query=Houser%2C+J+R">Justin R. Houser</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+K">Kristin Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+A">Allison Green</a>, <a href="/search/physics?searchtype=author&amp;query=Stachowiak%2C+J+C">Jeanne C. Stachowiak</a>, <a href="/search/physics?searchtype=author&amp;query=Truskett%2C+T+M">Thomas M. Truskett</a>, <a href="/search/physics?searchtype=author&amp;query=Milliron%2C+D+J">Delia J. Milliron</a>, <a href="/search/physics?searchtype=author&amp;query=Rosales%2C+A+M">Adrianne M. Rosales</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+M">Moumita Das</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarado%2C+J">Jos茅 Alvarado</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01864v2-abstract-short" style="display: inline;"> The actin cytoskeleton is a semiflexible biopolymer network whose morphology is controlled by a wide range of biochemical and physical factors. Actin is known to undergo a phase transition from a single-filament state to a bundled state by the addition of polyethylene glycol (PEG) molecules in sufficient concentration. While the depletion interaction experienced by these biopolymers is well-known,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01864v2-abstract-full').style.display = 'inline'; document.getElementById('2205.01864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01864v2-abstract-full" style="display: none;"> The actin cytoskeleton is a semiflexible biopolymer network whose morphology is controlled by a wide range of biochemical and physical factors. Actin is known to undergo a phase transition from a single-filament state to a bundled state by the addition of polyethylene glycol (PEG) molecules in sufficient concentration. While the depletion interaction experienced by these biopolymers is well-known, the effect of changing the molecular weight of the depletant is less well understood. Here, we experimentally identify a phase transition in solutions of actin from networks of filaments to networks of bundles by varying the molecular weight of PEG polymers, while holding the concentration of these PEG polymers constant. We examine the states straddling the phase transition in terms of micro and macroscale properties. We find that the mesh size, bundle diameter, persistence length, and intra-bundle spacing between filaments across the line of criticality do not show significant differences, while the relaxation time, storage modulus, and degree of bundling change between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size, a property which could be exploited to develop actin-based materials with switchable rigidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01864v2-abstract-full').style.display = 'none'; document.getElementById('2205.01864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures. Authors James Clarke and Francis Cavanna contributed equally; Changes: Added modeling work, extended dynamic light scattering analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17053">arXiv:2203.17053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17053">pdf</a>, <a href="https://arxiv.org/format/2203.17053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10791-2">10.1140/epjc/s10052-022-10791-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1204 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17053v2-abstract-short" style="display: inline;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the det&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17053v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17053v2-abstract-full" style="display: none;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'none'; document.getElementById('2203.17053v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD, CERN-EP-2022-077 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 82 (2022) 10, 903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16134">arXiv:2203.16134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16134">pdf</a>, <a href="https://arxiv.org/format/2203.16134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16134v4-abstract-short" style="display: inline;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'inline'; document.getElementById('2203.16134v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16134v4-abstract-full" style="display: none;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'none'; document.getElementById('2203.16134v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10147">arXiv:2203.10147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10147">pdf</a>, <a href="https://arxiv.org/format/2203.10147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/11/P11022">10.1088/1748-0221/17/11/P11022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Radon Mitigation in MicroBooNE by a Liquid Argon Filtration System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a> , et al. (168 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10147v2-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10147v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10147v2-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid argon filtration system&#39;s efficacy at removing radon. This is studied by placing a 500 kBq $^{222}$Rn source upstream of the filters and searching for a time-dependent increase in the number of radiological decays in the LArTPC. In the context of two models for radon mitigation via a liquid argon filtration system, a slowing mechanism and a trapping mechanism, MicroBooNE data supports a radon reduction factor of greater than 99.999% or 97%, respectively. Furthermore, a radiological survey of the filters found that the copper-based filter material was the primary medium that removed the $^{222}$Rn. This is the first observation of radon mitigation in liquid argon with a large-scale copper-based filter and could offer a radon mitigation solution for future large LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10147v2-abstract-full').style.display = 'none'; document.getElementById('2203.10147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, accepted by the Journal of Instrumentation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-203-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P11022 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00740">arXiv:2203.00740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Physics in Neutrino LArTPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Foreman%2C+W">W. Foreman</a>, <a href="/search/physics?searchtype=author&amp;query=Friedland%2C+A">A. Friedland</a>, <a href="/search/physics?searchtype=author&amp;query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/physics?searchtype=author&amp;query=Gil-Botella%2C+I">I. Gil-Botella</a>, <a href="/search/physics?searchtype=author&amp;query=Karagiorgi%2C+G">G. Karagiorgi</a>, <a href="/search/physics?searchtype=author&amp;query=Kirby%2C+M">M. Kirby</a>, <a href="/search/physics?searchtype=author&amp;query=Miotto%2C+G+L">G. Lehmann Miotto</a>, <a href="/search/physics?searchtype=author&amp;query=Littlejohn%2C+B+R">B. R. Littlejohn</a>, <a href="/search/physics?searchtype=author&amp;query=Mooney%2C+M">M. Mooney</a>, <a href="/search/physics?searchtype=author&amp;query=Reichenbacher%2C+J">J. Reichenbacher</a>, <a href="/search/physics?searchtype=author&amp;query=Sousa%2C+A">A. Sousa</a>, <a href="/search/physics?searchtype=author&amp;query=Scholberg%2C+K">K. Scholberg</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">J. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&amp;query=Capozzi%2C+F">F. Capozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&amp;query=Himmel%2C+A">A. Himmel</a>, <a href="/search/physics?searchtype=author&amp;query=Junk%2C+T">T. Junk</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+J">J. Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Lepetic%2C+I">I. Lepetic</a> , et al. (264 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00740v1-abstract-short" style="display: inline;"> In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00740v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00740v1-abstract-full" style="display: none;"> In this white paper, we outline some of the scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) detectors. Key takeaways are summarized as follows. 1) LArTPCs have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. 2) Low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. 3) BSM signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of BSM scenarios accessible in LArTPC-based searches. 4) Neutrino interaction cross sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood. Improved theory and experimental measurements are needed. Pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for experimentally improving this understanding. 5) There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. 6) Novel ideas for future LArTPC technology that enhance low-energy capabilities should be explored. These include novel charge enhancement and readout systems, enhanced photon detection, low radioactivity argon, and xenon doping. 7) Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00740v1-abstract-full').style.display = 'none'; document.getElementById('2203.00740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08905">arXiv:2202.08905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08905">pdf</a>, <a href="https://arxiv.org/format/2202.08905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/07/C07009">10.1088/1748-0221/17/07/C07009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LArQL: A phenomenological model for treating light and charge generation in liquid argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marinho%2C+F">F. Marinho</a>, <a href="/search/physics?searchtype=author&amp;query=Paulucci%2C+L">L. Paulucci</a>, <a href="/search/physics?searchtype=author&amp;query=Totani%2C+D">D. Totani</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08905v2-abstract-short" style="display: inline;"> Experimental data shows that both ionization charge and scintillation light in LAr depend on the deposited energy density ($dE/dx$) and electric field ($\mathcal{E}$). Moreover, free ionization charge and scintillation light are anticorrelated, complementary at a given ($dE/dx$, $\mathcal{E}$) pair. We present LArQL, a phenomenological model that provides the anticorrelation between light and char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08905v2-abstract-full').style.display = 'inline'; document.getElementById('2202.08905v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08905v2-abstract-full" style="display: none;"> Experimental data shows that both ionization charge and scintillation light in LAr depend on the deposited energy density ($dE/dx$) and electric field ($\mathcal{E}$). Moreover, free ionization charge and scintillation light are anticorrelated, complementary at a given ($dE/dx$, $\mathcal{E}$) pair. We present LArQL, a phenomenological model that provides the anticorrelation between light and charge and its dependence on the deposited energy as well as on the electric field applied. It modifies the Birks&#39; charge model considering the contribution from the escape electrons at null and low electric fields, and reconciles with Birks&#39; model prediction at higher fields. Deviations from current Birks&#39; model are observed for LArTPCs operating at low $\mathcal{E}$ and for heavily ionizing particles. The LArQL model presents a satisfactory description at $dE/dx$ and field ranges for interacting particles in LArTPCs and fits well the available data. Improvements via data sets compilation and global fits are also interesting features of the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08905v2-abstract-full').style.display = 'none'; document.getElementById('2202.08905v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures. Presented at LIDINE 2021 conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 C07009 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03556">arXiv:2111.03556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03556">pdf</a>, <a href="https://arxiv.org/format/2111.03556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10270-8">10.1140/epjc/s10052-022-10270-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel Approach for Evaluating Detector-Related Uncertainties in a LArTPC Using MicroBooNE Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03556v2-abstract-short" style="display: inline;"> Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03556v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03556v2-abstract-full" style="display: none;"> Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03556v2-abstract-full').style.display = 'none'; document.getElementById('2111.03556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, version accepted by EPJ C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-501-ND-SCD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82, 454 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13961">arXiv:2110.13961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.13961">pdf</a>, <a href="https://arxiv.org/format/2110.13961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01037">10.1088/1748-0221/17/01/P01037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wire-Cell 3D Pattern Recognition Techniques for Neutrino Event Reconstruction in Large LArTPCs: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13961v3-abstract-short" style="display: inline;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'inline'; document.getElementById('2110.13961v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13961v3-abstract-full" style="display: none;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30\% for charged-current $谓_e$ interactions. This pattern recognition achieves 80-90\% reconstruction efficiencies for primary leptons, after a 65.8\% (72.9\%) vertex efficiency for charged-current $谓_e$ ($谓_渭$) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20\% energy reconstruction resolutions for charged-current neutrino interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'none'; document.getElementById('2110.13961v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-509-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06832">arXiv:2109.06832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06832">pdf</a>, <a href="https://arxiv.org/format/2109.06832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051102">10.1103/PhysRevD.105.L051102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of Inclusive Electron-Neutrino and Antineutrino Charged Current Differential Cross Sections in Charged Lepton Energy on Argon in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06832v2-abstract-short" style="display: inline;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06832v2-abstract-full" style="display: none;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of $2.0\times10^{20}$ protons on target. The signal definition includes a 60 MeV threshold on the $谓_e$ or $\bar谓_e$ energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'none'; document.getElementById('2109.06832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 2 figures. Supplemental materials include cross section values, efficiencies, purity, flux, fractional uncertainties, additional smearing matrices, and unfolded covariance matrices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-443-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, L051102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02460">arXiv:2109.02460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02460">pdf</a>, <a href="https://arxiv.org/format/2109.02460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2021)153">10.1007/JHEP12(2021)153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02460v3-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by lever&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'inline'; document.getElementById('2109.02460v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02460v3-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 94% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in $谓_渭 CC$ interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'none'; document.getElementById('2109.02460v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures The updated version contains a clearer fig 1, some better quantification of physics reach in section 6.3, while several typos have been fixed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-356-E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Physics volume 2021, Article number: 153 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01304">arXiv:2109.01304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01304">pdf</a>, <a href="https://arxiv.org/format/2109.01304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01304v1-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE&#39;s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01304v1-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE&#39;s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3$蟽$ (5$蟽$) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3$蟽$ level with a 100 kt-MW-yr exposure for the maximally CP-violating values $未_{\rm CP}} = \pm蟺/2$. Additionally, the dependence of DUNE&#39;s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'none'; document.getElementById('2109.01304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-391-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01902">arXiv:2108.01902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01902">pdf</a>, <a href="https://arxiv.org/format/2108.01902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a> , et al. (1158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01902v3-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'inline'; document.getElementById('2108.01902v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01902v3-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of $7\times 6\times 7.2$~m$^3$. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP&#39;s successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'none'; document.getElementById('2108.01902v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10505">arXiv:2106.10505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.10505">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Studio di un urto anelastico: una proposta per le Scuole Secondarie di II grado nell&#39;ambito del progetto &#34;Lab2Go&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Astone%2C+P">Pia Astone</a>, <a href="/search/physics?searchtype=author&amp;query=Balaudo%2C+R">Roberto Balaudo</a>, <a href="/search/physics?searchtype=author&amp;query=Casaburo%2C+F">Fausto Casaburo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">Francesca Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=De+Bonis%2C+G">Giulia De Bonis</a>, <a href="/search/physics?searchtype=author&amp;query=Faccini%2C+R">Riccardo Faccini</a>, <a href="/search/physics?searchtype=author&amp;query=Fallara%2C+D">Davide Fallara</a>, <a href="/search/physics?searchtype=author&amp;query=Grigoruta%2C+A">Andrei Grigoruta</a>, <a href="/search/physics?searchtype=author&amp;query=Organtini%2C+G">Giovanni Organtini</a>, <a href="/search/physics?searchtype=author&amp;query=Piacentini%2C+F">Francesco Piacentini</a>, <a href="/search/physics?searchtype=author&amp;query=Pennazio%2C+F">Francesco Pennazio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10505v3-abstract-short" style="display: inline;"> When a free falling ping-pong ball collides on a horizontal surface, it loses kinetic energy. The ratio between the height reached by the ball after the collision and the initial height is called restitution coefficient. A method to measure it by using a home-made cathetometer was proposed during the Olimpiadi di Fisica 2018. In this paper we show how to measure it also by using the PhyPhox app an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10505v3-abstract-full').style.display = 'inline'; document.getElementById('2106.10505v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10505v3-abstract-full" style="display: none;"> When a free falling ping-pong ball collides on a horizontal surface, it loses kinetic energy. The ratio between the height reached by the ball after the collision and the initial height is called restitution coefficient. A method to measure it by using a home-made cathetometer was proposed during the Olimpiadi di Fisica 2018. In this paper we show how to measure it also by using the PhyPhox app and Arduino board. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10505v3-abstract-full').style.display = 'none'; document.getElementById('2106.10505v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Italian</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08308">arXiv:2106.08308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08308">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Il progetto Lab2Go per la diffusione della pratica laboratoriale nelle Scuole Secondarie di II grado </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">Mirco Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Astone%2C+P">Pia Astone</a>, <a href="/search/physics?searchtype=author&amp;query=Campana%2C+D">Donatella Campana</a>, <a href="/search/physics?searchtype=author&amp;query=Cartoni%2C+A">Antonella Cartoni</a>, <a href="/search/physics?searchtype=author&amp;query=Casaburo%2C+F">Fausto Casaburo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">Francesca Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cibinetto%2C+G">Gianluigi Cibinetto</a>, <a href="/search/physics?searchtype=author&amp;query=Cort%2C+A+D">Antonella Dalla Cort</a>, <a href="/search/physics?searchtype=author&amp;query=De+Bonis%2C+G">Giulia De Bonis</a>, <a href="/search/physics?searchtype=author&amp;query=Della+Seta%2C+M">Marta Della Seta</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Mauro%2C+F">Francesca Di Mauro</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Sciascio%2C+G">Giuseppe Di Sciascio</a>, <a href="/search/physics?searchtype=author&amp;query=Faccini%2C+R">Riccardo Faccini</a>, <a href="/search/physics?searchtype=author&amp;query=Favino%2C+F">Federica Favino</a>, <a href="/search/physics?searchtype=author&amp;query=Iocchi%2C+L">Luca Iocchi</a>, <a href="/search/physics?searchtype=author&amp;query=Lissia%2C+M">Marcello Lissia</a>, <a href="/search/physics?searchtype=author&amp;query=Morganti%2C+G">Giulia Morganti</a>, <a href="/search/physics?searchtype=author&amp;query=Mancini%2C+M">Mauro Mancini</a>, <a href="/search/physics?searchtype=author&amp;query=Organtini%2C+G">Giovanni Organtini</a>, <a href="/search/physics?searchtype=author&amp;query=Pennazio%2C+F">Francesco Pennazio</a>, <a href="/search/physics?searchtype=author&amp;query=Piacentini%2C+F">Francesco Piacentini</a>, <a href="/search/physics?searchtype=author&amp;query=Piras%2C+A">Alina Piras</a>, <a href="/search/physics?searchtype=author&amp;query=Ragosta%2C+M">Maria Ragosta</a>, <a href="/search/physics?searchtype=author&amp;query=Roberti%2C+L">Lorenzo Roberti</a>, <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+A+R">Anna Rita Rossi</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08308v3-abstract-short" style="display: inline;"> Even if laboratory practice is essential for all scientific branches of knowledge, it is often neglected at High School, due to lack of time and/or resources. To establish a closer contact between school and experimental sciences, the University Sapienza of Roma and the Istituto Nazionale di Fisica Nucleare (INFN) launched the Lab2Go project, with the goal of spreading laboratory practice among st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08308v3-abstract-full').style.display = 'inline'; document.getElementById('2106.08308v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08308v3-abstract-full" style="display: none;"> Even if laboratory practice is essential for all scientific branches of knowledge, it is often neglected at High School, due to lack of time and/or resources. To establish a closer contact between school and experimental sciences, the University Sapienza of Roma and the Istituto Nazionale di Fisica Nucleare (INFN) launched the Lab2Go project, with the goal of spreading laboratory practice among students and teachers in high schools. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08308v3-abstract-full').style.display = 'none'; document.getElementById('2106.08308v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Italian</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06551">arXiv:2104.06551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06551">pdf</a>, <a href="https://arxiv.org/format/2104.06551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/09/P09025">10.1088/1748-0221/16/09/P09025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Longitudinal Diffusion of Ionization Electrons in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06551v2-abstract-short" style="display: inline;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'inline'; document.getElementById('2104.06551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06551v2-abstract-full" style="display: none;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, $D_L$, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of $\sim$70,000 through-going cosmic ray muon tracks tagged with MicroBooNE&#39;s cosmic ray tagger system, we measure $D_L = 3.74^{+0.28}_{-0.29}$ cm$^2$/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'none'; document.getElementById('2104.06551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Changes following feedback from journal referee. Some wording changes, clarifications. Merged several figures to save on space</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13910">arXiv:2103.13910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13910">pdf</a>, <a href="https://arxiv.org/format/2103.13910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a> , et al. (1041 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13910v1-abstract-short" style="display: inline;"> This report describes the conceptual design of the DUNE near detector </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13910v1-abstract-full" style="display: none;"> This report describes the conceptual design of the DUNE near detector <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13910v1-abstract-full').style.display = 'none'; document.getElementById('2103.13910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">314 pages, 185 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-067-E-LBNF-PPD-SCD-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06391">arXiv:2103.06391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06391">pdf</a>, <a href="https://arxiv.org/format/2103.06391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01018">10.1088/1748-0221/17/01/P01018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A deep-learning based raw waveform region-of-interest finder for the liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=ArgoNeuT+Collaboration"> ArgoNeuT Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bromberg%2C+C">C. Bromberg</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Edmunds%2C+D">D. Edmunds</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzpatrick%2C+R+S">R. S. Fitzpatrick</a>, <a href="/search/physics?searchtype=author&amp;query=Fleming%2C+B">B. Fleming</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+P">P. Green</a>, <a href="/search/physics?searchtype=author&amp;query=James%2C+C">C. James</a>, <a href="/search/physics?searchtype=author&amp;query=Lepetic%2C+I">I. Lepetic</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">X. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Palamara%2C+O">O. Palamara</a>, <a href="/search/physics?searchtype=author&amp;query=Scanavini%2C+G">G. Scanavini</a>, <a href="/search/physics?searchtype=author&amp;query=Soderberg%2C+M">M. Soderberg</a>, <a href="/search/physics?searchtype=author&amp;query=Spitz%2C+J">J. Spitz</a>, <a href="/search/physics?searchtype=author&amp;query=Szelc%2C+A+M">A. M. Szelc</a>, <a href="/search/physics?searchtype=author&amp;query=Uboldi%2C+L">L. Uboldi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M+H+L+S">M. H. L. S. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">W. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">T. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06391v3-abstract-short" style="display: inline;"> The liquid argon time projection chamber (LArTPC) detector technology has an excellent capability to measure properties of low-energy neutrinos produced by the sun and supernovae and to look for exotic physics at very low energies. In order to achieve those physics goals, it is crucial to identify and reconstruct signals in the waveforms recorded on each TPC wire. In this paper, we report on a nov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06391v3-abstract-full').style.display = 'inline'; document.getElementById('2103.06391v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06391v3-abstract-full" style="display: none;"> The liquid argon time projection chamber (LArTPC) detector technology has an excellent capability to measure properties of low-energy neutrinos produced by the sun and supernovae and to look for exotic physics at very low energies. In order to achieve those physics goals, it is crucial to identify and reconstruct signals in the waveforms recorded on each TPC wire. In this paper, we report on a novel algorithm based on a one-dimensional convolutional neural network (CNN) to look for the region-of-interest (ROI) in raw waveforms. We test this algorithm using data from the ArgoNeuT experiment in conjunction with an improved noise mitigation procedure and a more realistic data-driven noise model for simulated events. This deep-learning ROI finder shows promising performance in extracting small signals and gives an efficiency approximately twice that of the traditional algorithm in the low energy region of $\sim$0.03-0.1 MeV. This method offers great potential to explore low-energy physics using LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06391v3-abstract-full').style.display = 'none'; document.getElementById('2103.06391v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-079-ND-SCD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 (2022) P01018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05076">arXiv:2101.05076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05076">pdf</a>, <a href="https://arxiv.org/format/2101.05076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05076v3-abstract-short" style="display: inline;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'inline'; document.getElementById('2101.05076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05076v3-abstract-full" style="display: none;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9\% (9.7\%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4\% and 87.6\% for inclusive $谓_渭$ charged-current and $谓_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'none'; document.getElementById('2101.05076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14324">arXiv:2012.14324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14324">pdf</a>, <a href="https://arxiv.org/format/2012.14324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/P04004">10.1088/1748-0221/16/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14324v2-abstract-short" style="display: inline;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14324v2-abstract-full" style="display: none;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'none'; document.getElementById('2012.14324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-626-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MicroBooNE et al 2021 JINST 16 P04004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08513">arXiv:2012.08513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08513">pdf</a>, <a href="https://arxiv.org/format/2012.08513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.052012">10.1103/PhysRevD.103.052012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08513v2-abstract-short" style="display: inline;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08513v2-abstract-full" style="display: none;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNE&#39;s $谓_e$-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are re-classified into two classes more relevant to the current analysis. The output of SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is $\geq 99\%$. For full neutrino interaction simulations, the time for processing one image is $\approx$ 0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'none'; document.getElementById('2012.08513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 052012 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07928">arXiv:2012.07928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07928">pdf</a>, <a href="https://arxiv.org/format/2012.07928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-performance Generic Neutrino Detection in a LArTPC near the Earth&#39;s Surface with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07928v3-abstract-short" style="display: inline;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'inline'; document.getElementById('2012.07928v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07928v3-abstract-full" style="display: none;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the large flux of cosmic-ray muons and the slow drift of ionization electrons. We present a novel Wire-Cell-based high-performance generic neutrino-detection technique implemented in MicroBooNE. The cosmic-ray background is reduced by a factor of 1.4$\times10^{5}$ resulting in a 9.7\% cosmic contamination in the selected neutrino candidate events, for visible energies greater than 200~MeV, while the neutrino signal efficiency is retained at 88.4\% for $谓_渭$ charged-current interactions in the fiducial volume in the same energy region. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'none'; document.getElementById('2012.07928v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Expanded into a long paper and published in Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01375">arXiv:2011.01375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01375">pdf</a>, <a href="https://arxiv.org/format/2011.01375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/06/P06043">10.1088/1748-0221/16/06/P06043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Event Selection in the MicroBooNE Liquid Argon Time Projection Chamber using Wire-Cell 3-D Imaging, Clustering, and Charge-Light Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01375v4-abstract-short" style="display: inline;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'inline'; document.getElementById('2011.01375v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01375v4-abstract-full" style="display: none;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell 3D imaging approach capitalizes on charge, sparsity, time, and geometry information to reconstruct a topology-agnostic 3D image of the ionization electrons prior to pattern recognition. A second novel method, the many-to-many charge-light matching, then pairs the TPC charge activity to the detected scintillation light signal, thus enabling a powerful rejection of cosmic-ray muons in the MicroBooNE detector. A robust processing of the scintillation light signal and an appropriate clustering of the reconstructed 3D image are fundamental to this technique. In this paper, we describe the principles and algorithms of these techniques and their successful application in the MicroBooNE experiment. A quantitative evaluation of the performance of these techniques is presented. Using these techniques, a 95% efficient pre-selection of neutrino charged-current events is achieved with a 30-fold reduction of non-beam-coincident cosmic-ray muons, and about 80\% of the selected neutrino charged-current events are reconstructed with at least 70% completeness and 80% purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'none'; document.getElementById('2011.01375v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-578-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P06043 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02390">arXiv:2010.02390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02390">pdf</a>, <a href="https://arxiv.org/format/2010.02390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112013">10.1103/PhysRevD.102.112013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Differential Cross Sections for $谓_渭$-Ar Charged-Current Interactions with Protons and no Pions in the Final State with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02390v1-abstract-short" style="display: inline;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02390v1-abstract-full" style="display: none;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately $1.6 \times 10^{20}$ protons-on-target, we measure the muon neutrino cross section for the CC0$蟺$Np interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29\% and purity of 76\% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to &#34;forward-fold&#34; theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever data set on argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'none'; document.getElementById('2010.02390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 43 figures, 1 table and supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-505-AD-ND-SCD-TD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13761">arXiv:2008.13761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.13761">pdf</a>, <a href="https://arxiv.org/format/2008.13761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02008">10.1088/1748-0221/16/02/P02008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13761v2-abstract-short" style="display: inline;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Ins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'inline'; document.getElementById('2008.13761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13761v2-abstract-full" style="display: none;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Instead, MicroBooNE relies on a delayed trigger generated by SNEWS (the Supernova Early Warning System) for detecting supernova neutrinos. The continuous readout of the LArTPC generates large data volumes, and requires the use of real-time compression algorithms (zero suppression and Huffman compression) implemented in an FPGA (field-programmable gate array) in the readout electronics. We present the results of the optimization of the data reduction algorithms, and their operational performance. To demonstrate the capability of the continuous stream to detect low-energy electrons, a sample of Michel electrons from stopping cosmic-ray muons is reconstructed and compared to a similar sample from the lossless triggered readout stream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'none'; document.getElementById('2008.13761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-446-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P02008 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09765">arXiv:2008.09765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09765">pdf</a>, <a href="https://arxiv.org/format/2008.09765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12037">10.1088/1748-0221/15/12/P12037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Space Charge Effects in the MicroBooNE LArTPC Using Cosmic Muons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (162 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09765v2-abstract-short" style="display: inline;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09765v2-abstract-full" style="display: none;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors (&#34;spatial distortions&#34;), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'none'; document.getElementById('2008.09765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06647">arXiv:2008.06647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06647">pdf</a>, <a href="https://arxiv.org/format/2008.06647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09166-w">10.1140/epjc/s10052-021-09166-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+collaboration"> DUNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (949 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06647v3-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'inline'; document.getElementById('2008.06647v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06647v3-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE&#39;s ability to constrain the $谓_e$ spectral parameters of the neutrino burst will be considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'none'; document.getElementById('2008.06647v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures; paper based on DUNE Technical Design Report. arXiv admin note: substantial text overlap with arXiv:2002.03005</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-380-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05371">arXiv:2008.05371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05371">pdf</a>, <a href="https://arxiv.org/format/2008.05371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/06/T06003">10.1088/1748-0221/15/06/T06003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A measurement of absolute efficiency of the ARAPUCA photon detector in Liquid Argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Totani%2C+D">Dante Totani</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelo%2C+G">Gustavo Cancelo</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">Flavio Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Escobar%2C+C+O">Carlos O. Escobar</a>, <a href="/search/physics?searchtype=author&amp;query=Kemp%2C+E">Ernesto Kemp</a>, <a href="/search/physics?searchtype=author&amp;query=Marinho%2C+F">Franciole Marinho</a>, <a href="/search/physics?searchtype=author&amp;query=Paulucci%2C+L">Laura Paulucci</a>, <a href="/search/physics?searchtype=author&amp;query=Phan%2C+D+D">Dung D. Phan</a>, <a href="/search/physics?searchtype=author&amp;query=Mufson%2C+S">Stuart Mufson</a>, <a href="/search/physics?searchtype=author&amp;query=Macias%2C+C">Chris Macias</a>, <a href="/search/physics?searchtype=author&amp;query=Warner%2C+D">David Warner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05371v1-abstract-short" style="display: inline;"> In the Fall of 2017, two photon detector designs for the Deep Underground Neutrino Experiment (DUNE) Far Detector were installed and tested in the TallBo liquid argon (LAr) cryostat at the Proton Assembly (PAB) facility, Fermilab. The designs include two light bars developed at Indiana University and a photon detector based on the ARAPUCA light trap engineered by Colorado State University and Ferm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05371v1-abstract-full').style.display = 'inline'; document.getElementById('2008.05371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05371v1-abstract-full" style="display: none;"> In the Fall of 2017, two photon detector designs for the Deep Underground Neutrino Experiment (DUNE) Far Detector were installed and tested in the TallBo liquid argon (LAr) cryostat at the Proton Assembly (PAB) facility, Fermilab. The designs include two light bars developed at Indiana University and a photon detector based on the ARAPUCA light trap engineered by Colorado State University and Fermilab. The performance of these devices is determined by analyzing 8 weeks of cosmic ray data. The current paper focuses solely on the ARAPUCA device as the performance of the light bars will be reported separately. The paper briefly describes the ARAPUCA concept, the TallBo setup, and focuses on data analysis and results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05371v1-abstract-full').style.display = 'none'; document.getElementById('2008.05371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15 T06003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06722">arXiv:2007.06722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.06722">pdf</a>, <a href="https://arxiv.org/format/2007.06722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12004">10.1088/1748-0221/15/12/P12004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adrien%2C+P">P. Adrien</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a> , et al. (970 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06722v4-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'inline'; document.getElementById('2007.06722v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06722v4-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP&#39;s performance, including noise and gain measurements, $dE/dx$ calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP&#39;s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'none'; document.getElementById('2007.06722v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">93 pages, 70 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-059-AD-ESH-LBNF-ND-SCD, CERN-EP-2020-125 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15 (2020) P12004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15052">arXiv:2006.15052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15052">pdf</a>, <a href="https://arxiv.org/format/2006.15052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.092003">10.1103/PhysRevD.102.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino interaction classification with a convolutional neural network in the DUNE far detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (951 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15052v2-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'inline'; document.getElementById('2006.15052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15052v2-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to $CP$-violating effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'none'; document.getElementById('2006.15052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 092003 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cavanna%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10