CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 60 results for author: <span class="mathjax">Tychoniec, 艁</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tychoniec, 艁"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tychoniec%2C+%C5%81&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tychoniec, 艁"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11095">arXiv:2410.11095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11095">pdf</a>, <a href="https://arxiv.org/format/2410.11095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lew%2C+B+W+P">Ben W. P. Lew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+T+P">Thomas P. Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gusdorf%2C+A">Antoine Gusdorf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">Logan Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeWitt%2C+C">Curtis DeWitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer%2C+M">Michael Meyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">Mary Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hodapp%2C+K+W">Klaus W. Hodapp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robberto%2C+M">Massimo Robberto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11095v1-abstract-short" style="display: inline;"> The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 $渭$m observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11095v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11095v1-abstract-full" style="display: none;"> The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 $渭$m observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.94 $\pm$ 0.15 cm s$^{-2}$. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 $渭$m) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast $C$-type shocks ($\geq$ 30 km s$^{-1}$), with high pre-shock density ($\geq$ $10^7$ cm$^{-3}$), and strong magnetic field (b ~ 3--10, where $B = b\,\times\,\sqrt{\textrm{n}_{\textrm{H}} (\textrm{cm}^{-3})}\,渭\textrm{G}$) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH$^{+}$ ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11095v1-abstract-full').style.display = 'none'; document.getElementById('2410.11095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06697">arXiv:2410.06697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06697">pdf</a>, <a href="https://arxiv.org/format/2410.06697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST-IPA: Chemical Inventory and Spatial Mapping of Ices in the Protostar HOPS370 -- Evidence for an Opacity Hole and Thermal Processing of Ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P.%2C+M">Manoj P.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will Robson M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E">Ewine van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Sam Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">Joel D. Green</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06697v1-abstract-short" style="display: inline;"> The composition of protoplanetary disks, and hence the initial conditions of planet formation, may be strongly influenced by the infall and thermal processing of material during the protostellar phase. Composition of dust and ice in protostellar envelopes, shaped by energetic processes driven by the protostar, serves as the fundamental building material for planets and complex organic molecules. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06697v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06697v1-abstract-full" style="display: none;"> The composition of protoplanetary disks, and hence the initial conditions of planet formation, may be strongly influenced by the infall and thermal processing of material during the protostellar phase. Composition of dust and ice in protostellar envelopes, shaped by energetic processes driven by the protostar, serves as the fundamental building material for planets and complex organic molecules. As part of the JWST GO program, &#34;Investigating Protostellar Accretion&#34; (IPA), we observed an intermediate-mass protostar HOPS 370 (OMC2-FIR3) using NIRSpec/IFU and MIRI/MRS. This study presents the gas and ice phase chemical inventory revealed with the JWST in the spectral range of $\sim$2.9 to 28 $渭$m and explores the spatial variation of volatile ice species in the protostellar envelope. We find evidence for thermal processing of ice species throughout the inner envelope. We present the first high-spatial resolution ($\sim 80$ au) maps of key volatile ice species H$_{2}$O, CO$_{2}$, $^{13}$CO$_2$, CO, and OCN$^-$, which reveal a highly structured and inhomogeneous density distribution of the protostellar envelope, with a deficiency of ice column density that coincides with the jet/outflow shocked knots. Further, we observe high relative crystallinity of H$_{2}$O ice around the shocked knot seen in the H$_2$ and OH wind/outflow, which can be explained by a lack of outer colder material in the envelope along the line of sight due to the irregular structure of the envelope. These observations show clear evidence of thermal processing of the ices in the inner envelope, close to the outflow cavity walls, heated by the luminous protostar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06697v1-abstract-full').style.display = 'none'; document.getElementById('2410.06697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ. Main text:16 pages with 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02860">arXiv:2410.02860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02860">pdf</a>, <a href="https://arxiv.org/format/2410.02860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Ammonium hydrosulfide (NH4SH) as a potentially significant sulfur sink in interstellar ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A">Adwin Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+J+C">Julia C. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">Patrick J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuang%2C+K">Ko-Ju Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02860v3-abstract-short" style="display: inline;"> Sulfur is depleted with respect to its cosmic standard abundance in dense star-forming regions. It has been suggested that this depletion is caused by the freeze-out of sulfur on interstellar dust grains, but the observed abundances and upper limits of sulfur-bearing ices remain too low to account for all of the missing sulfur. Toward the same environments, a strong absorption feature at 6.85 $渭$m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02860v3-abstract-full').style.display = 'inline'; document.getElementById('2410.02860v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02860v3-abstract-full" style="display: none;"> Sulfur is depleted with respect to its cosmic standard abundance in dense star-forming regions. It has been suggested that this depletion is caused by the freeze-out of sulfur on interstellar dust grains, but the observed abundances and upper limits of sulfur-bearing ices remain too low to account for all of the missing sulfur. Toward the same environments, a strong absorption feature at 6.85 $渭$m is observed, but its long-standing assignment to the NH4+ cation remains tentative. We investigate the plausibility of NH4SH salt serving as a sulfur reservoir and a carrier of the 6.85 $渭$m band in interstellar ices by characterizing its IR signatures and apparent band strengths in water-rich laboratory ice mixtures and using this laboratory data to constrain NH4SH abundances in observations of 4 protostars and 2 cold dense clouds. The observed 6.85 $渭$m feature is fit well with the laboratory NH4SH:H2O ice spectra. NH4+ column densities obtained from the 6.85 $渭$m band range from 8-23% with respect to H2O toward the sample of protostars and dense clouds. The redshift of the 6.85 $渭$m feature correlates with higher abundances of NH4+ with respect to H2O in both the laboratory data presented here and observational data of dense clouds and protostars. The apparent band strength of the SH- feature is likely too low for the feature to be detectable in the spectrally busy 3.9 $渭$m region, but the 5.3 $渭$m NH4+ $谓_{4}$ + SH- R combination mode may be an alternative means of detection. Its tentative assignment adds to mounting evidence supporting the presence of NH4+ salts in ices and is the first tentative observation of the SH- anion toward interstellar ices. If the majority ($\gtrsim$80-85%) of the NH4+ cations quantified toward the investigated sources in this work are bound to SH- anions, then NH4SH salts could account for up to 17-18% of their sulfur budgets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02860v3-abstract-full').style.display = 'none'; document.getElementById('2410.02860v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 20 pages, 14 figures, and 7 tables in the main text; 15 pages, 17 figures, and 10 tables in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01636">arXiv:2410.01636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01636">pdf</a>, <a href="https://arxiv.org/format/2410.01636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS). Overview of gaseous molecular emission and absorption in low-mass protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devaraj%2C+R">R. Devaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reyes%2C+S">S. Reyes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+-">P. -O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01636v1-abstract-short" style="display: inline;"> The MIRI-MRS instrument onboard JWST allows for probing the molecular gas composition at mid-IR wavelengths at unprecedented resolution and sensitivity. It is important to study these features in low-mass embedded protostellar systems since the formation of planets is thought to start in this phase. We present JWST/MIRI-MRS data of 18 low-mass protostellar systems in the JOYS program, focusing on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01636v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01636v1-abstract-full" style="display: none;"> The MIRI-MRS instrument onboard JWST allows for probing the molecular gas composition at mid-IR wavelengths at unprecedented resolution and sensitivity. It is important to study these features in low-mass embedded protostellar systems since the formation of planets is thought to start in this phase. We present JWST/MIRI-MRS data of 18 low-mass protostellar systems in the JOYS program, focusing on gas-phase molecular lines in spectra extracted from the central protostellar positions. Besides H2, the most commonly detected molecules are H2O, CO2, CO, and OH. Other molecules such as 13CO2, C2H2, 13CCH, HCN, C4H2, CH4, and SO2 are detected only toward at most three of the sources. The JOYS data also yield the surprising detection of SiO gas toward two sources (BHR71-IRS1, L1448-mm) and for the first time CS and NH3 at mid-IR wavelengths toward a low-mass protostar (B1-c). The temperatures derived for the majority of the molecules are 100-300 K, much lower than what is typically derived toward more evolved Class II sources (&gt;500 K). Toward three sources (e.g., TMC1-W), hot (~1000 K) H2O is detected, indicative of the presence of hot molecular gas in the embedded disks, but such warm emission from other molecules is absent. The agreement in abundance ratios with respect to H2O between ice and gas point toward ice sublimation in a hot core for a few sources (e.g., B1-c) whereas their disagreement and velocity offsets hint at high-temperature (shocked) conditions toward other sources (e.g., L1448-mm, BHR71-IRS1). The typical temperatures of the gas-phase molecules of 100-300 K are consistent with both ice sublimation in hot cores as well as high-temperature gas phase chemistry. Molecular features originating from the inner embedded disks are not commonly detected, likely because they are too extincted even at mid-IR wavelengths by small not-settled dust grains in upper layers of the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01636v1-abstract-full').style.display = 'none'; document.getElementById('2410.01636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17237">arXiv:2409.17237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17237">pdf</a>, <a href="https://arxiv.org/format/2409.17237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451794">10.1051/0004-6361/202451794 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS+ study of solid state $^{12}$C/$^{13}$C isotope ratios in protostellar envelopes: Observations of CO and CO$_2$ ice with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">N. G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+l">V. J. M. le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Navarro%2C+M+G">M. G. Navarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+T">T. Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17237v1-abstract-short" style="display: inline;"> The carbon isotope ratio is a powerful tool for studying the evolution of stellar systems. Recent detections of CO isotopologues in disks and exoplanet atmospheres pointed towards significant fractionation in these systems. In order to understand the evolution of this quantity, it is crucial to trace the isotope abundance from stellar nurseries to planetary systems. During the protostellar stage t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17237v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17237v1-abstract-full" style="display: none;"> The carbon isotope ratio is a powerful tool for studying the evolution of stellar systems. Recent detections of CO isotopologues in disks and exoplanet atmospheres pointed towards significant fractionation in these systems. In order to understand the evolution of this quantity, it is crucial to trace the isotope abundance from stellar nurseries to planetary systems. During the protostellar stage the multiple vibrational modes of CO$_2$ and CO ice provide a unique opportunity to examine the carbon isotope ratio in the solid state. Now with the sensitivity of the \textit{James Webb Space Telescope}, these absorption features have become accessible at high S/N in Solar-mass systems. We quantify the $^{12}$CO$_2$/$^{13}$CO$_2$ and the $^{12}$CO/$^{13}$CO isotope ratios in 17 class 0/I low mass protostars from the $^{12}$CO$_2$ combination modes (2.70 $渭$m and 2.77 $渭$m), the $^{12}$CO$_2$ stretching mode (4.27 $渭$m), the $^{13}$CO$_2$ stretching mode (4.39 $渭$m), the $^{12}$CO$_2$ bending mode (15.2 $渭$m), the $^{12}$CO stretching mode (4.67 $渭$m) and the $^{13}$CO stretching mode (4.78 $渭$m) using JWST observations. We also report a detection of the $^{12}$CO overtone mode at 2.35 $渭$m. The $^{12}$CO$_2$/$^{13}$CO$_2$ ratios are in agreement and we find mean ratios of 85 $\pm$ 23, 76 $\pm$ 12 and 97 $\pm$ 17 for the 2.70 $渭$m, 4.27 $渭$m and the 15.2 $渭$m bands, respectively. The main source of uncertainty stem from the error on the band strengths. The $^{12}$CO/$^{13}$CO ratios derived from the 4.67 $渭$m bands are consistent, albeit elevated with respect to the $^{12}$CO$_2$/$^{13}$CO$_2$ ratios and we find a mean ratio of 165 $\pm$ 52. These findings indicate that ices leave the pre-stellar stage with elevated carbon isotope ratios relative to the interstellar medium and that fractionation becomes significant during the later stages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17237v1-abstract-full').style.display = 'none'; document.getElementById('2409.17237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 692, A163 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16061">arXiv:2409.16061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16061">pdf</a>, <a href="https://arxiv.org/format/2409.16061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451350">10.1051/0004-6361/202451350 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS). HH 211: the textbook case of a protostellar jet and outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCaughrean%2C+M+J">M. J. McCaughrean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+T">T. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">B. Nisini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Navarro%2C+M+G">M. G. Navarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devaraj%2C+R">R. Devaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reyes%2C+S">S. Reyes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazar%2C+P">P. Nazar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waelkens%2C+C">C. Waelkens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16061v1-abstract-short" style="display: inline;"> We use the James Webb Space Telescope (JWST) and its Mid-Infrared Instrument (MIRI) (5-28 um), to study the embedded HH 211 flow. We map a 0.95&#39;x0.22&#39; region, covering the full extent of the blue-shifted lobe, the central protostellar region, and a small portion of the red-shifted lobe. The jet driving source is not detected even at the longest mid-IR wavelengths. The overall morphology of the flo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16061v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16061v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16061v1-abstract-full" style="display: none;"> We use the James Webb Space Telescope (JWST) and its Mid-Infrared Instrument (MIRI) (5-28 um), to study the embedded HH 211 flow. We map a 0.95&#39;x0.22&#39; region, covering the full extent of the blue-shifted lobe, the central protostellar region, and a small portion of the red-shifted lobe. The jet driving source is not detected even at the longest mid-IR wavelengths. The overall morphology of the flow consists of a highly collimated jet, mostly molecular (H2, HD) with an inner atomic ([FeI], [FeII], [SI], [NiII]) structure. The jet shocks the ambient medium, producing several large bow-shocks, rich in forbidden atomic and molecular lines, and is driving an H2 molecular outflow, mostly traced by low-J, v=0 transitions. Moreover, 0-0 S(1) uncollimated emission is also detected down to 2&#34;-3&#34; (~650-1000 au) from the source, tracing a cold (T=200-400 K), less dense and poorly collimated molecular wind. The atomic jet ([FeII] at 26 um) is detected down to ~130 au from source, whereas the lack of H2 emission close to the source is likely due to the large visual extinction. Dust continuum-emission is detected at the terminal bow-shocks, and in the blue- and red-shifted jet, being likely dust lifted from the disk. The jet shows an onion-like structure, with layers of different size, velocity, temperature, and chemical composition. Moreover, moving from the inner jet to the outer bow-shocks, different physical, kinematic and excitation conditions for both molecular and atomic gas are observed. The jet mass-flux rate, momentum, and momentum flux of the warm H2 component are up to one order of magnitude higher than those inferred from the atomic jet component. Our findings indicate that the warm H2 component is the primary mover of the outflow, namely it is the most significant dynamical component of the jet, in contrast to jets from more evolved YSOs, where the atomic component is dominant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16061v1-abstract-full').style.display = 'none'; document.getElementById('2409.16061v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper accepted in A&amp;A for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A134 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03371">arXiv:2409.03371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03371">pdf</a>, <a href="https://arxiv.org/format/2409.03371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Star Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kuruwita%2C+R">Rajika Kuruwita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03371v1-abstract-short" style="display: inline;"> In this chapter, we will cover how stars form from the stellar nurseries that are giant molecular clouds. We will first review the physical processes that compete to regulate star formation. We then review star formation in turbulent, magnetized molecular clouds and the associated statistics giving rise to the star formation rate and the initial mass function of stars. We then present the protoste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03371v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03371v1-abstract-full" style="display: none;"> In this chapter, we will cover how stars form from the stellar nurseries that are giant molecular clouds. We will first review the physical processes that compete to regulate star formation. We then review star formation in turbulent, magnetized molecular clouds and the associated statistics giving rise to the star formation rate and the initial mass function of stars. We then present the protostellar stages in detail from an observational perspective. We will primarily discuss low-mass ($&lt;1.5\msun$) stars. Finally, we examine how multiplicity complicates the single-star formation picture. This chapter will focus on star formation at redshift~0 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03371v1-abstract-full').style.display = 'none'; document.getElementById('2409.03371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a pre-print of a chapter for the Encyclopedia of Astrophysics (edited by I. Mandel, section editor F.R.N. Schneider) to be published by Elsevier as a Reference Module. 18 pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03016">arXiv:2409.03016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03016">pdf</a>, <a href="https://arxiv.org/format/2409.03016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Resolving Twin Jets and Twin Disks with JWST and ALMA: The Young WL 20 Multiple System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">Mary Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">Michael E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03016v1-abstract-short" style="display: inline;"> We report the discovery of jets emanating from pre-main-sequence objects exclusively at mid-infrared wavelengths, enabled by the superb sensitivity of JWST&#39;s Mid-InfraRed Medium-Resolution Spectrometer (MIRI MRS) instrument. These jets are observed only in lines of [NiII], [FeII], [ArII], and [NeII]. The H$_2$ emission, imaged in eight distinct transitions, has a completely different morphology, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03016v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03016v1-abstract-full" style="display: none;"> We report the discovery of jets emanating from pre-main-sequence objects exclusively at mid-infrared wavelengths, enabled by the superb sensitivity of JWST&#39;s Mid-InfraRed Medium-Resolution Spectrometer (MIRI MRS) instrument. These jets are observed only in lines of [NiII], [FeII], [ArII], and [NeII]. The H$_2$ emission, imaged in eight distinct transitions, has a completely different morphology, exhibiting a wide-angled, biconical shape, symmetrically distributed about the jet axes. Synergistic high-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations resolve a pair of side-by-side edge-on accretion disks lying at the origin of the twin mid-infrared jets. Assuming coevality of the components of the young multiple system under investigation, the system age is at least (2 $-$ 2.5) $\times$ 10$^6$ yr, despite the discrepantly younger age inferred from the spectral energy distribution of the combined edge-on disk sources. The later system evolutionary stage is corroborated by ALMA observations of CO(2$-$1), $^{13}$CO(2$-1$), and C$^{18}$O(2$-$1), which show no traces of molecular outflows or remnant cavity walls. Consequently, the observed H$_2$ structures must have their origins in wide-angled disk winds, in the absence of any ambient, swept-up gas. In the context of recent studies of protostars, we propose an outflow evolutionary scenario in which the molecular gas component dominates in the youngest sources, whereas the fast, ionized jets dominate in the oldest sources, as is the case for the twin jets discovered in the WL 20 system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03016v1-abstract-full').style.display = 'none'; document.getElementById('2409.03016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 19 figures; Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18334">arXiv:2404.18334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18334">pdf</a>, <a href="https://arxiv.org/format/2404.18334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449745">10.1051/0004-6361/202449745 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Asymmetric Bipolar Fe II Jet and H2 Outflow of TMC1A Resolved with JWST&#39;s NIRSpec IFU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Assani%2C+K">Korash Assani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harsono%2C+D">Daniel Harsono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramsey%2C+J">Jon Ramsey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bjerkeli%2C+P">Per Bjerkeli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pontoppidan%2C+K">Klaus Pontoppidan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calcutt%2C+H">Hannah Calcutt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kristensen%2C+L">Lars Kristensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jorgensen%2C+J">Jes Jorgensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Plunkett%2C+A">Adele Plunkett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M">Martijn van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">Logan Francis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18334v1-abstract-short" style="display: inline;"> (abridged) Protostellar outflows exhibit large variations in their structure depending on the observed gas emission. This study analyzes the atomic jet and molecular outflow in the Class I protostar, TMC1A to characterize morphology and identify previously undetected spatial features with JWST&#39;s NIRSpec IFU. In addition to identifying a large number of Fe II and H2 lines, we have detected the bipo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18334v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18334v1-abstract-full" style="display: none;"> (abridged) Protostellar outflows exhibit large variations in their structure depending on the observed gas emission. This study analyzes the atomic jet and molecular outflow in the Class I protostar, TMC1A to characterize morphology and identify previously undetected spatial features with JWST&#39;s NIRSpec IFU. In addition to identifying a large number of Fe II and H2 lines, we have detected the bipolar Fe jet by revealing, for the first time, the presence of a red-shifted atomic jet. Similarly, the red-shifted component of the H2 slower wide-angle outflow is observed. Both Fe II and H2 red-shifted emission exhibit significantly lower flux densities compared to their blue-shifted counterparts. Additionally, we report the detection of a collimated high-velocity (100 km s-1), blue-shifted H2 outflow, suggesting the presence of a molecular jet in addition to the well-known wider angle low-velocity structure. The Fe II and H2 jets show multiple intensity peaks along the jet axis, which may be associated with ongoing or recent outburst events. In addition to the variation in their intensities, the H2 wide-angle outflow exhibits a &#34;ring&#34;-like structure. The blue-shifted H2 outflow also shows a left-right brightness asymmetry likely due to interactions with the surrounding ambient medium and molecular outflows. Using the Fe II line ratios, the extinction along the atomic jet is estimated to be between Av = 10-30 on the blue-shifted side, with a trend of decreasing extinction with distance from the protostar. A similar Av is found for the red-shifted side, supporting the argument for an intrinsic red-blue outflow lobe asymmetry rather than environmental effects such as extinction. This intrinsic difference revealed by the unprecedented sensitivity of JWST, suggests that younger outflows already exhibit the red-blue side asymmetry more commonly observed towards jets associated with Class II disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18334v1-abstract-full').style.display = 'none'; document.getElementById('2404.18334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 688, A26 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15399">arXiv:2404.15399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15399">pdf</a>, <a href="https://arxiv.org/format/2404.15399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449785">10.1051/0004-6361/202449785 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST detections of amorphous and crystalline HDO ice toward massive protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15399v1-abstract-short" style="display: inline;"> This work aims to utilize the increased sensitivity and resolution of the JWST to quantify the HDO/H$_{2}$O ratio in ices toward young stellar objects (YSOs) and to determine if the HDO/H$_{2}$O ratios measured in the gas phase toward massive YSOs (MYSOs) are representative of the ratios in their ice envelopes. Two protostars observed in the Investigating Protostellar Accretion (IPA) program using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15399v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15399v1-abstract-full" style="display: none;"> This work aims to utilize the increased sensitivity and resolution of the JWST to quantify the HDO/H$_{2}$O ratio in ices toward young stellar objects (YSOs) and to determine if the HDO/H$_{2}$O ratios measured in the gas phase toward massive YSOs (MYSOs) are representative of the ratios in their ice envelopes. Two protostars observed in the Investigating Protostellar Accretion (IPA) program using JWST NIRSpec were analyzed: HOPS 370, an intermediate-mass YSO (IMYSO), and IRAS 20126+4104, a MYSO. The HDO ice toward these sources was detected above the 3$蟽$ level and quantified via its 4.1 $渭$m band. The contributions from the CH$_{3}$OH combination modes to the observed optical depth in this spectral region were constrained via the CH$_{3}$OH 3.53 $渭$m band to ensure that the integrated optical depth of the HDO feature was not overestimated. H$_{2}$O ice was quantified via its 3 $渭$m band. From these fits, ice HDO/H$_{2}$O abundance ratios of 4.6$\pm$1.8$\times$10$^{-3}$ and 2.6$\pm$1.2$\times$10$^{-3}$ are obtained for HOPS 370 and IRAS 20126+4104, respectively. The simultaneous detections of both crystalline HDO and crystalline H$_{2}$O corroborate the assignment of the observed feature at 4.1 $渭$m to HDO ice. The ice HDO/H$_{2}$O ratios are similar to the highest reported gas HDO/H$_{2}$O ratios measured toward MYSOs as well as the hot inner regions of isolated low-mass protostars, suggesting that at least some of the gas HDO/H$_{2}$O ratios measured toward massive hot cores are representative of the HDO/H$_{2}$O ratios in ices. The need for an H$_{2}$O-rich CH$_{3}$OH component in the CH$_{3}$OH ice analysis supports recent experimental and observational results that indicate that some CH$_{3}$OH ice may form prior to the CO freeze-out stage in H$_{2}$O-rich ice layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15399v1-abstract-full').style.display = 'none'; document.getElementById('2404.15399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 23 pages, 17 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 688, A29 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07299">arXiv:2404.07299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07299">pdf</a>, <a href="https://arxiv.org/ps/2404.07299">ps</a>, <a href="https://arxiv.org/format/2404.07299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST/MIRI detection of suprathermal OH rotational emissions: probing the dissociation of the water by Lyman alpha photons near the protostar HOPS 370 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Dishoeck%2C+E+F">Ewine F. Van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolk%2C+S">Scott Wolk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07299v1-abstract-short" style="display: inline;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07299v1-abstract-full" style="display: none;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative strengths of the observed OH lines provide a powerful diagnostic of the ultraviolet radiation field in a heavily-extinguished region ($A_V \sim 10 - 20$) where direct UV observations are impossible. To high precision, the OH line strengths are consistent with a picture in which the suprathermal OH states are populated following the photodissociation of water in its $\tilde B - X$ band by ultraviolet radiation produced by fast ($\sim 80\,\rm km\,s^{-1}$) shocks along the jet. The observed dominance of emission from symmetric ($A^\prime$) OH states over that from antisymmetric ($A^{\prime\prime}$) states provides a distinctive signature of this particular population mechanism. Moreover, the variation of intensity with rotational quantum number suggests specifically that Ly$伪$ radiation is responsible for the photodissociation of water, an alternative model with photodissociation by a 10$^4$ K blackbody being disfavored at a high level of significance. Using measurements of the Br$伪$ flux to estimate the Ly$伪$ production rate, we find that $\sim 4\%$ of the Ly$伪$ photons are absorbed by water. Combined with direct measurements of water emissions in the $谓_2 = 1 -0$ band, the OH observations promise to provide key constraints on future models for the diffusion of Ly$伪$ photons in the vicinity of a shock front. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'none'; document.getElementById('2404.07299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures. Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19400">arXiv:2403.19400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19400">pdf</a>, <a href="https://arxiv.org/format/2403.19400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449176">10.1051/0004-6361/202449176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST study of the DG Tau B disk wind candidate: I -- Overview and Nested H$_2$/CO outflows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Delabrosse%2C+V">Valentin Delabrosse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dougados%2C+C">Catherine Dougados</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabrit%2C+S">Sylvie Cabrit</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">Benoit Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T">Tom Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Podio%2C+L">Linda Podio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McClure%2C+M">Melissa McClure</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19400v1-abstract-short" style="display: inline;"> The origin and impact of outflows on proto-planetary disks and planet formation are key open questions. DG Tau B, a Class I protostar with a structured disk and a striking rotating conical CO outflow, recently identified with ALMA as one of the best MHD disk wind candidate, is an ideal target for studying these phenomena. Our aim is to analyse the outflow components intermediate between the fast a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19400v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19400v1-abstract-full" style="display: none;"> The origin and impact of outflows on proto-planetary disks and planet formation are key open questions. DG Tau B, a Class I protostar with a structured disk and a striking rotating conical CO outflow, recently identified with ALMA as one of the best MHD disk wind candidate, is an ideal target for studying these phenomena. Our aim is to analyse the outflow components intermediate between the fast axial jet and the wider molecular CO outflow to discriminate between the different scenarios at their origin (irradiated/shocked disk wind or swept-up material). Using observations from JWST NIRSpec-IFU, NIRCam and SINFONI/VLT, we investigate the morphology, kinematics and excitation conditions of H$_2$ emission lines of the red-shifted outflow lobe. We find an onion-like structure of the outflows with increasing temperature, velocity and collimation towards the flow axis. The red-shifted H$_2$ emission reveals a narrow conical cavity nested inside the CO outflow and originating from the inner disk regions (&lt; 6 au). The H$_2$ shell exhibits a constant vertical velocity ($\simeq$22 km/s), twice faster that of the CO flow and an average mass flux of $\dot{M}$(H$_2$) = 3e-11 M$_\odot$/yr significantly lower than the jet and CO values, suggesting low H$_2$ abundance. The global layered structure of the H$_2$/CO outflows is consistent with an MHD disk wind scenario, with the hot H$_2$ possibly tracing an inner dense photodissociation layer of the wind coming from a launching radius in the disk of 0.2-0.4 au. Further analysis, including MIRI observations will provide additional insights into the H$_2$ excitation mechanisms and the origin of the layered outflows observed in DG Tau B. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19400v1-abstract-full').style.display = 'none'; document.getElementById('2403.19400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 21 figures, 2 tables, submitted and reviewed to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 688, A173 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18631">arXiv:2402.18631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18631">pdf</a>, <a href="https://arxiv.org/format/2402.18631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348676">10.1051/0004-6361/202348676 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMA view of the L1448-mm protostellar system on disk scales: CH$_3$OH and H$^{13}$CN as new disk wind tracers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmadi%2C+A">A. Ahmadi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabrit%2C+S">S. Cabrit</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Codella%2C+C">C. Codella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferreira%2C+J">J. Ferreira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Podio%2C+L">L. Podio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18631v1-abstract-short" style="display: inline;"> Protostellar disks are known to accrete, however, the exact mechanism that extracts the angular momentum and drives accretion in the low-ionization &#34;dead&#34; region of the disk is under debate. In recent years, magneto-hydrodynamic (MHD) disk winds have become a popular solution. Yet, observations of these winds require both high spatial resolution (${\sim}10$s au) and high sensitivity, which has res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18631v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18631v1-abstract-full" style="display: none;"> Protostellar disks are known to accrete, however, the exact mechanism that extracts the angular momentum and drives accretion in the low-ionization &#34;dead&#34; region of the disk is under debate. In recent years, magneto-hydrodynamic (MHD) disk winds have become a popular solution. Yet, observations of these winds require both high spatial resolution (${\sim}10$s au) and high sensitivity, which has resulted in only a handful of MHD disk wind candidates so far. In this work we present high angular resolution (${\sim}30$ au) ALMA observations of the emblematic L1448-mm protostellar system and find suggestive evidence for an MHD disk wind. The disk seen in dust continuum (${\sim}0.9$ mm) has a radius of ${\sim}23$ au. Rotating infall signatures in H$^{13}$CO$^+$ indicate a central mass of $0.4\pm 0.1$ M$_\odot$ and a centrifugal radius similar to the dust disk radius. Above the disk, we unveil rotation signatures in the outflow traced by H$^{13}$CN, CH$_3$OH, and SO lines and find a kinematical structure consistent with theoretical predictions for MHD disk winds. This is the first detection of an MHD disk wind candidate in H$^{13}$CN and CH$_3$OH. The wind launching region estimated from cold MHD wind theory extends out to the disk edge. The magnetic lever arm parameter would be $位_蠁 \simeq 1.7$, in line with recent non-ideal MHD disk models. The estimated mass-loss rate is ${\sim}4$ times the protostellar accretion rate ($\dot{M}_{\rm acc} \simeq 2 \times 10^{-6} M_{\odot}/yr$) and suggests that the rotating wind could carry enough angular momentum to drive disk accretion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18631v1-abstract-full').style.display = 'none'; document.getElementById('2402.18631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04343">arXiv:2402.04343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04343">pdf</a>, <a href="https://arxiv.org/format/2402.04343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348889">10.1051/0004-6361/202348889 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS): Linked accretion and ejection in a Class I protobinary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">Logan Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">Caroline Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">Kay Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">Giulia Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devaraj%2C+R">R. Devaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">Beno卯t Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">Thomas P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">Patrick J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">Manuel G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">Goran 脰stlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04343v2-abstract-short" style="display: inline;"> Accretion and ejection sets the outcome of the star and planet formation process. The mid-infrared wavelength range offers key tracers of those processes that were difficult to detect and spatially resolve in protostars until now. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04343v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04343v2-abstract-full" style="display: none;"> Accretion and ejection sets the outcome of the star and planet formation process. The mid-infrared wavelength range offers key tracers of those processes that were difficult to detect and spatially resolve in protostars until now. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC1-E with 85 au separation. With the {\it James Webb} Space Telescope (JWST) - Mid-Infrared Instrument (MIRI) observations in 5 - 28 $渭$m range, we measure intensities of emission lines of H$_2$, atoms and ions, e.g., [Fe II] and [Ne II], and HI recombination lines. We detect H$_2$ outflow coming from TMC1-E, with no significant H$_2$ emission from TMC1-W. The H$_2$ emission from TMC1-E outflow appears narrow and extends to wider opening angles with decreasing E$_{up}$ from S(8) to S(1) rotational transitions, indicating a disk wind origin. The outflow from TMC1-E protostar shows spatially extended emission lines of [Ne II], [Ne III], [Ar II], and [Ar III], with their line ratios consistent with UV radiation as a source of ionization. With ALMA, we detect accretion streamer infalling from $&gt;$ 1000 au scales onto the TMC1-E component. TMC1-W protostar powers a collimated jet, detected with [Fe II] and [Ni II] consistent with energetic flow. A much weaker ionized jet is observed from TMC1-E. TMC1-W is associated with strong emission from hydrogen recombination lines, tracing the accretion onto the young star. Observations of a binary Class I protostellar system show that the two processes are clearly intertwined, with accretion from the envelope onto the disk influencing a wide-angle wind ejected on disk scales, while accretion from the protostellar disk onto the protostar is associated with the source launching a collimated high-velocity jet within the innermost regions of the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04343v2-abstract-full').style.display = 'none'; document.getElementById('2402.04343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 687, A36 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04314">arXiv:2402.04314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04314">pdf</a>, <a href="https://arxiv.org/format/2402.04314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348718">10.1051/0004-6361/202348718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST observations of $^{13}$CO$_{2}$ ice: Tracing the chemical environment and thermal history of ices in protostellar envelopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C+A">Charles A. Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04314v2-abstract-short" style="display: inline;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04314v2-abstract-full" style="display: none;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viable alternative tracer is the weaker $^{13}$CO$_2$ isotopologue band at 4.39 $渭$m which has now become accessible at high S/N with the $\textit{James Webb}$ Space Telescope (JWST). We present JWST NIRSpec observations of $^{13}$CO$_2$ ice in five deeply embedded Class 0 sources spanning a wide range in luminosities (0.2 - 10$^4$ L$_{\odot}$ ) taken as part of the Investigating Protostellar Accretion Across the Mass Spectrum (IPA) program. The band profiles vary significantly, with the most luminous sources showing a distinct narrow peak at 4.38 $渭$m. We first apply a phenomenological approach and show that a minimum of 3-4 Gaussian profiles are needed to fit the $^{13}$CO$_2$ absorption feature. We then combine these findings with laboratory data and show that a 15.2 $渭$m $^{12}$CO$_2$ band inspired five-component decomposition can be applied for the isotopologue band where each component is representative of CO$_2$ ice in a specific molecular environment. The final solution consists of cold mixtures of CO$_2$ with CH$_3$OH, H$_2$O and CO as well as segregated heated pure CO$_2$ ice. Our results are in agreement with previous studies of the $^{12}$CO$_2$ ice band, further confirming that $^{13}$CO$_{2}$ is a useful alternative tracer of protostellar heating events. We also propose an alternative solution consisting only of heated CO$_2$:CH$_3$OH and CO$_2$:H$_2$O ices and warm pure CO$_2$ ice for decomposing the ice profiles of the two most luminous sources in our sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'none'; document.getElementById('2402.04314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A27 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06880">arXiv:2401.06880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06880">pdf</a>, <a href="https://arxiv.org/format/2401.06880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T">T. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06880v1-abstract-short" style="display: inline;"> Space-based mid-IR spectroscopy provides tracers of warm gas in star-forming regions that are inaccessible from the ground. Past mid-IR spectra of bright high-mass protostars in the hot-core phase typically showed strong absorption features from molecules such as CO$_2$, C$_2$H$_2$, and HCN. However, little is known about their fainter counterparts at earlier stages. We thus aim to characterize th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06880v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06880v1-abstract-full" style="display: none;"> Space-based mid-IR spectroscopy provides tracers of warm gas in star-forming regions that are inaccessible from the ground. Past mid-IR spectra of bright high-mass protostars in the hot-core phase typically showed strong absorption features from molecules such as CO$_2$, C$_2$H$_2$, and HCN. However, little is known about their fainter counterparts at earlier stages. We thus aim to characterize the gas-phase molecular features in JWST MIRI/MRS observations of the young high-mass star-forming region IRAS 23385+6053. Spectra were extracted from two mid-IR sources and three H$_2$ bright outflow knots in the MIRI/MRS field of view. Rich molecular spectra with emission from CO, H$_2$, HD, H$_2$O, C$_2$H$_2$, HCN, CO$_2$, and OH are detected towards the two mid-IR sources. However, only CO and OH are seen towards the brightest H$_2$ knots, suggesting that the majority of the observed species are associated with disks or hot core regions rather than outflows. Simple Local thermodynamic equilibrium (LTE) slab models were used to fit the observed molecular features. The LTE model fits to $^{12}$CO$_{2}$, C$_{2}$H$_{2}$, and HCN emission suggest warm $120-200$ K emission arising from a disk surface around one or both protostars. Weak $\sim500$ K H$_2$O emission at $\sim$ 6-7 $渭$m is detected towards one mid-IR source, whereas $250-1050$ K H$_2$O absorption is found in the other. The H$_2$O absorption may occur in the disk atmosphere due to strong accretion-heating of the midplane, or in a disk wind viewed at an ideal angle for absorption. CO emission may originate in the hot inner disk or outflow shocks. OH emission is likely excited in a non-LTE manner through water photodissociation or chemical formation. The observations are consistent with disks having already formed in the young IRAS 23385+6053 system, but further observations are needed to disentangle the effects of geometry and evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06880v1-abstract-full').style.display = 'none'; document.getElementById('2401.06880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 Pages, 16 Figures. Accepted for publication in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06834">arXiv:2312.06834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06834">pdf</a>, <a href="https://arxiv.org/format/2312.06834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST Observations of Young protoStars (JOYS+): Detection of icy complex organic molecules and ions. I. CH$_4$, SO$_2$, HCOO$^-$, OCN$^-$, H$_2$CO, HCOOH, CH$_3$CH$_2$OH, CH$_3$CHO, CH$_3$OCHO, CH$_3$COOH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">N. G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geers%2C+V">V. Geers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justannont%2C+K">K. Justannont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">M. Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+l">V. J. M. le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chu%2C+L+E+U">L. E. U. Chu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lew%2C+B+W+P">B. W. P. Lew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06834v1-abstract-short" style="display: inline;"> Complex organic molecules (COMs) detected in the gas phase are thought to be mostly formed on icy grains, but no unambiguous detection of icy COMs larger than CH3OH has been reported so far. Exploring this matter in more detail has become possible with the JWST the critical 5-10 $渭$m range. In the JOYS+ program, more than 30 protostars are being observed with the MIRI/MRS. This study explores the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06834v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06834v1-abstract-full" style="display: none;"> Complex organic molecules (COMs) detected in the gas phase are thought to be mostly formed on icy grains, but no unambiguous detection of icy COMs larger than CH3OH has been reported so far. Exploring this matter in more detail has become possible with the JWST the critical 5-10 $渭$m range. In the JOYS+ program, more than 30 protostars are being observed with the MIRI/MRS. This study explores the COMs ice signatures in the low and high-mass protostar, IRAS 2A and IRAS 23385, respectively. We fit continuum and silicate subtracted observational data with IR laboratory ice spectra. We use the ENIIGMA fitting tool to find the best fit between the lab data and the observations and to performs statistical analysis of the solutions. We report the best fits for the spectral ranges between 6.8 and 8.6 $渭$m in IRAS 2A and IRAS 23385, originating from simple molecules, COMs, and negative ions. The strongest feature in this range (7.7 $渭$m) is dominated by CH4 and has contributions of SO2 and OCN-. Our results indicate that the 7.2 and 7.4 $渭$m bands are mostly dominated by HCOO-. We find statistically robust detections of COMs based on multiple bands, most notably CH3CHO, CH3CH2OH, and CH3OCHO. The likely detection of CH3COOH is also reported. The ice column density ratios between CH3CH2OH and CH3CHO of IRAS 2A and IRAS 23385, suggests that these COMs are formed on icy grains. Finally, the derived ice abundances for IRAS 2A correlate well with those in comet 67P/GC within a factor of 5. Based on the MIRI/MRS data, we conclude that COMs are present in interstellar ices, thus providing additional proof for a solid-state origin of these species in star-forming regions. The good correlation between the ice abundances in comet 67P and IRAS 2A is in line with the idea that cometary COMs can be inherited from the early protostellar phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06834v1-abstract-full').style.display = 'none'; document.getElementById('2312.06834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17161">arXiv:2311.17161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17161">pdf</a>, <a href="https://arxiv.org/format/2311.17161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JOYS+: mid-infrared detection of gas-phase SO$_2$ emission in a low-mass protostar. The case of NGC 1333 IRAS2A: hot core or accretion shock? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ressler%2C+M+E">M. E. Ressler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Black%2C+J+H">J. H. Black</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsony%2C+M">M. Barsony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+l">V. J. M. le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lew%2C+B+W+P">B. W. P. Lew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majumdar%2C+L">L. Majumdar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17161v1-abstract-short" style="display: inline;"> JWST/MIRI has sharpened our infrared eyes toward the star formation process. This paper presents the first mid-infrared detection of gaseous SO$_2$ emission in an embedded low-mass protostellar system. MIRI-MRS observations of the low-mass protostellar binary NGC 1333 IRAS2A are presented from the JWST Observations of Young protoStars (JOYS+) program, revealing emission from the SO$_2~谓_3$ asymmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17161v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17161v1-abstract-full" style="display: none;"> JWST/MIRI has sharpened our infrared eyes toward the star formation process. This paper presents the first mid-infrared detection of gaseous SO$_2$ emission in an embedded low-mass protostellar system. MIRI-MRS observations of the low-mass protostellar binary NGC 1333 IRAS2A are presented from the JWST Observations of Young protoStars (JOYS+) program, revealing emission from the SO$_2~谓_3$ asymmetric stretching mode at 7.35 micron. The results are compared to those derived from high-angular resolution SO$_2$ data obtained with ALMA. The SO$_2$ emission from the $谓_3$ band is predominantly located on $\sim50-100$ au scales around the main component of the binary, IRAS2A1. A rotational temperature of $92\pm8$ K is derived from the $谓_3$ lines. This is in good agreement with the rotational temperature derived from pure rotational lines in the vibrational ground state (i.e., $谓=0$) with ALMA ($104\pm5$ K). However, the emission of the $谓_3$ lines is not in LTE given that the total number of molecules predicted by a LTE model is found to be a factor $2\times10^4$ higher than what is derived for the $谓=0$ state. This difference can be explained by a vibrational temperature that is $\sim100$ K higher than the derived rotational temperature of the $谓=0$ state. The brightness temperature derived from the continuum around the $谓_3$ band of SO$_2$ is $\sim180$ K, which confirms that the $谓_3=1$ level is not collisionally populated but rather infrared pumped by scattered radiation. This is also consistent with the non-detection of the $谓_2$ bending mode at 18-20 micron. Given the rotational temperature, the extent of the emission ($\sim100$ au in radius), and the narrow line widths in the ALMA data (3.5 km/s), the SO$_2$ in IRAS2A likely originates from ice sublimation in the central hot core around the protostar rather than from an accretion shock at the disk-envelope boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17161v1-abstract-full').style.display = 'none'; document.getElementById('2311.17161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, accepted for publication in A&amp;A, abstract abbreviated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10657">arXiv:2311.10657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10657">pdf</a>, <a href="https://arxiv.org/format/2311.10657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A BRAIN study to tackle image analysis with artificial intelligence in the ALMA 2030 era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guglielmetti%2C+F">Fabrizia Guglielmetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veneri%2C+M+D">Michele Delli Veneri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baronchelli%2C+I">Ivano Baronchelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanco%2C+C">Carmen Blanco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dosi%2C+A">Andrea Dosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=En%C3%9Flin%2C+T">Torsten En脽lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+V">Vishal Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+G">Giuseppe Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roth%2C+J">Jakob Roth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stoehr%2C+F">Felix Stoehr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villard%2C+E">Eric Villard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10657v1-abstract-short" style="display: inline;"> An ESO internal ALMA development study, BRAIN, is addressing the ill-posed inverse problem of synthesis image analysis employing astrostatistics and astroinformatics. These emerging fields of research offer interdisciplinary approaches at the intersection of observational astronomy, statistics, algorithm development, and data science. In this study, we provide evidence of the benefits of employing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10657v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10657v1-abstract-full" style="display: none;"> An ESO internal ALMA development study, BRAIN, is addressing the ill-posed inverse problem of synthesis image analysis employing astrostatistics and astroinformatics. These emerging fields of research offer interdisciplinary approaches at the intersection of observational astronomy, statistics, algorithm development, and data science. In this study, we provide evidence of the benefits of employing these approaches to ALMA imaging for operational and scientific purposes. We show the potential of two techniques, RESOLVE and DeepFocus, applied to ALMA calibrated science data. Significant advantages are provided with the prospect to improve the quality and completeness of the data products stored in the science archive and overall processing time for operations. Both approaches evidence the logical pathway to address the incoming revolution in data rates dictated by the planned electronic upgrades. Moreover, we bring to the community additional products through a new package, ALMASim, to promote advancements in these fields, providing a refined ALMA simulator usable by a large community for training and/or testing new algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10657v1-abstract-full').style.display = 'none'; document.getElementById('2311.10657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, MaxEnt2023 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14061">arXiv:2310.14061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14061">pdf</a>, <a href="https://arxiv.org/format/2310.14061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a collimated jet from the low luminosity protostar IRAS 16253$-$2429 in a quiescent accretion phase with the JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P.%2C+M">Manoj P.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Dishoeck%2C+E+F">Ewine F. Van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muzerolle%2C+J">James Muzerolle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14061v5-abstract-short" style="display: inline;"> Investigating Protostellar Accretion (IPA) is a JWST Cycle~1 GO program that uses NIRSpec IFU and MIRI MRS to obtain 2.9--28~$渭$m spectral cubes of young, deeply embedded protostars with luminosities of 0.2 to 10,000~L$_{\odot}$ and central masses of 0.15 to 12~M$_{\odot}$. In this Letter, we report the discovery of a highly collimated atomic jet from the Class~0 protostar IRAS~16253$-$2429, the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14061v5-abstract-full').style.display = 'inline'; document.getElementById('2310.14061v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14061v5-abstract-full" style="display: none;"> Investigating Protostellar Accretion (IPA) is a JWST Cycle~1 GO program that uses NIRSpec IFU and MIRI MRS to obtain 2.9--28~$渭$m spectral cubes of young, deeply embedded protostars with luminosities of 0.2 to 10,000~L$_{\odot}$ and central masses of 0.15 to 12~M$_{\odot}$. In this Letter, we report the discovery of a highly collimated atomic jet from the Class~0 protostar IRAS~16253$-$2429, the lowest luminosity source ($L_\mathrm{bol}$ = 0.2 $L_\odot$) in the IPA program. The collimated jet is detected in multiple [Fe~II] lines, [Ne~II], [Ni~II], and H~I lines, but not in molecular emission. The atomic jet has a velocity of about 169~$\pm$~15~km\,s$^{-1}$, after correcting for inclination. The width of the jet increases with distance from the central protostar from 23 to~60 au, corresponding to an opening angle of 2.6~$\pm$~0.5\arcdeg. By comparing the measured flux ratios of various fine structure lines to those predicted by simple shock models, we derive a shock {speed} of 54~km\,s$^{-1}$ and a preshock density of 2.0$\times10^{3}$~cm$^{-3}$ at the base of the jet. {From these quantities and using a suite of jet models and extinction laws we compute a mass loss rate between $0.4 -1.1\times10^{-10}~M_{\odot}$~yr~$^{-1}$.} The low mass loss rate is consistent with simultaneous measurements of low mass accretion rate ($2.4~\pm~0.8~\times~10^{-9}~M_{\odot}$~yr$^{-1}$) for IRAS~16253$-$2429 from JWST observations (Watson et al. in prep), indicating that the protostar is in a quiescent accretion phase. Our results demonstrate that very low-mass protostars can drive highly collimated, atomic jets, even during the quiescent phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14061v5-abstract-full').style.display = 'none'; document.getElementById('2310.14061v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJL. Comments and feedback welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03803">arXiv:2310.03803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03803">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad2fa0">10.3847/1538-4357/ad2fa0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating Protostellar Accretion-Driven Outflows Across the Mass Spectrum: JWST NIRSpec IFU 3-5~$渭$m Spectral Mapping of Five Young Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N">Nolan Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+J+M">James Muzerolle Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03803v2-abstract-short" style="display: inline;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03803v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03803v2-abstract-full" style="display: none;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum emission; deep ice absorption; emission from H$_{2}$, H~I, and [Fe~II]; and the CO fundamental series in emission and absorption. Maps of the continuum emission show scattered light cavities for all five protostars. In the cavities, collimated jets are detected in [Fe~II] for the four $&lt; 320$~L$_{\odot}$ protostars, two of which are additionally traced in Br-$伪$. Knots of [Fe~II] emission are detected toward the most luminous protostar, and knots of [FeII] emission with dynamical times of $&lt; 30$~yrs are found in the jets of the others. While only one jet is traced in H$_2$, knots of H$_2$ and CO are detected in the jets of four protostars. H$_2$ is seen extending through the cavities, showing that they are filled by warm molecular gas. Bright H$_2$ emission is seen along the walls of a single cavity, while in three cavities narrow shells of H$_2$ emission are found, one of which has an [Fe~II] knot at its apex. These data show cavities containing collimated jets traced in atomic/ionic gas surrounded by warm molecular gas in a wide-angle wind and/or gas accelerated by bow shocks in the jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'none'; document.getElementById('2310.03803v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 966 41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10591">arXiv:2309.10591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10591">pdf</a>, <a href="https://arxiv.org/format/2309.10591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347051">10.1051/0004-6361/202347051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PENELLOPE V. The magnetospheric structure and the accretion variability of the classical T Tauri star HM Lup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Armeni%2C+A">A. Armeni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stelzer%2C+B">B. Stelzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claes%2C+R+A+B">R. A. B. Claes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">C. F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frasca%2C+A">A. Frasca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcal%C3%A1%2C+J+M">J. M. Alcal谩</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Walter%2C+F+M">F. M. Walter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B3sp%C3%A1l%2C+%C3%81">脕. K贸sp谩l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campbell-White%2C+J">J. Campbell-White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangi%2C+M">M. Gangi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauco%2C+K">K. Mauco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10591v1-abstract-short" style="display: inline;"> HM Lup is a young M-type star that accretes material from a circumstellar disk through a magnetosphere. Our aim is to study the inner disk structure of HM Lup and to characterize its variability. We used spectroscopic data from HST/STIS, X-Shooter, and ESPRESSO taken in the framework of the ULLYSES and PENELLOPE programs, together with photometric data from TESS and AAVSO. The 2021 TESS light curv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10591v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10591v1-abstract-full" style="display: none;"> HM Lup is a young M-type star that accretes material from a circumstellar disk through a magnetosphere. Our aim is to study the inner disk structure of HM Lup and to characterize its variability. We used spectroscopic data from HST/STIS, X-Shooter, and ESPRESSO taken in the framework of the ULLYSES and PENELLOPE programs, together with photometric data from TESS and AAVSO. The 2021 TESS light curve shows variability typical for young stellar objects of the &#34;accretion burster&#34; type. The spectra cover the temporal evolution of the main burst in the 2021 TESS light curve. We compared the strength and morphology of emission lines from different species and ionization stages. We determined the mass accretion rate from selected emission lines and from the UV continuum excess emission at different epochs, and we examined its relation to the photometric light curves. The emission lines in the optical spectrum of HM Lup delineate a temperature stratification along the accretion flow. While the wings of the H I and He I lines originate near the star, the lines of species such as Na I, Mg I, Ca I, Ca II, Fe I, and Fe II are formed in an outer and colder region. The shape and periodicity of the 2019 and 2021 TESS light curves, when qualitatively compared to predictions from magnetohydrodynamic models, suggest that HM Lup was in a regime of unstable ordered accretion during the 2021 TESS observation due to an increase in the accretion rate. Although HM Lup is not an extreme accretor, it shows enhanced emission in the metallic species during this high accretion state that is produced by a density enhancement in the outer part of the accretion flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10591v1-abstract-full').style.display = 'none'; document.getElementById('2309.10591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A14 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10410">arXiv:2309.10410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10410">pdf</a>, <a href="https://arxiv.org/format/2309.10410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347060">10.1051/0004-6361/202347060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T+P">T. P. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colina%2C+L">L. Colina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCdel%2C+M">M. G眉del</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+-">P. -O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%96stlin%2C+G">G. 脰stlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waelkens%2C+C">C. Waelkens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10410v1-abstract-short" style="display: inline;"> (abridged) We study and compare the warm (&gt;100 K) and cold (&lt;100 K) material toward the high-mass star-forming region IRAS 23385+6053 (IRAS 23385 hereafter) combining high angular resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOEMA at mm wavelengths at angular resolutions of 0.2&#34;-1&#34;. The spatial morphology of atomic a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10410v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10410v1-abstract-full" style="display: none;"> (abridged) We study and compare the warm (&gt;100 K) and cold (&lt;100 K) material toward the high-mass star-forming region IRAS 23385+6053 (IRAS 23385 hereafter) combining high angular resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOEMA at mm wavelengths at angular resolutions of 0.2&#34;-1&#34;. The spatial morphology of atomic and molecular species is investigated by line integrated intensity maps. The temperature and column density of different gas components is estimated using H2 transitions (warm and hot component) and a series of CH3CN transitions as well as 3 mm continuum emission (cold component). Toward the central dense core in IRAS 23385 the material consists of relatively cold gas and dust (~50 K), while multiple outflows create heated and/or shocked H2 and show enhanced temperatures (~400 K) along the outflow structures. An energetic outflow with enhanced emission knots of [Fe II] and [Ni II] hints at J-type shocks, while two other outflows have enhanced emission of only H2 and [S I] caused by C-type shocks. The latter two outflows are also more prominent in molecular line emission at mm wavelengths (e.g., SiO, SO, H2CO, and CH3OH). Even higher angular resolution data are needed to unambiguously identify the outflow driving sources given the clustered nature of IRAS 23385. While most of the forbidden fine structure transitions are blueshifted, [Ne II] and [Ne III] peak at the source velocity toward the MIR source A/mmA2 suggesting that the emission is originating from closer to the protostar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10410v1-abstract-full').style.display = 'none'; document.getElementById('2309.10410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A108 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11817">arXiv:2307.11817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11817">pdf</a>, <a href="https://arxiv.org/format/2307.11817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d3fd00010a">10.1039/d3fd00010a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The diverse chemistry of protoplanetary disks as revealed by JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grant%2C+S">S. Grant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M">M. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bettoni%2C+G">G. Bettoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabhavi%2C+A+M">A. M. Arabhavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gasman%2C+D">D. Gasman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vlasblom%2C+M">M. Vlasblom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P">P. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christiaens%2C+V">V. Christiaens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Th. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamp%2C+I">I. Kamp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11817v1-abstract-short" style="display: inline;"> Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11817v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11817v1-abstract-full" style="display: none;"> Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around low-mass stars and one around a very young high-mass star. The mid-infrared spectra show some similarities but also significant diversity: some sources are rich in CO2, others in H2O or C2H2. In one disk around a very low-mass star, booming C2H2 emission provides evidence for a ``soot&#39;&#39; line at which carbon grains are eroded and sublimated, leading to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene (C6H6) are detected (Tabone et al. 2023). Together, the data point to an active inner disk gas-phase chemistry that is closely linked to the physical structure (temperature, snowlines, presence of cavities and dust traps) of the entire disk and which may result in varying CO2/H2O abundances and high C/O ratios &gt;1 in some cases. Ultimately, this diversity in disk chemistry will also be reflected in the diversity of the chemical composition of exoplanets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11817v1-abstract-full').style.display = 'none'; document.getElementById('2307.11817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures. Author&#39;s version of paper submitted to Faraday Discussions January 18 2023, Accepted March 16 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discussion &#34;Astrochemistry at high resolution&#34;, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02852">arXiv:2306.02852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02852">pdf</a>, <a href="https://arxiv.org/format/2306.02852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346204">10.1051/0004-6361/202346204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FAUST IX. Multi-band, multi-scale dust study of L1527 IRS. Evidence for dust properties variations within the envelope of a Class 0/I YSO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cacciapuoti%2C+L">L. Cacciapuoti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macias%2C+E">E. Macias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maury%2C+A+J">A. J. Maury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandler%2C+C+J">C. J. Chandler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakai%2C+N">N. Sakai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viti%2C+S">S. Viti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Natta%2C+A">A. Natta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Simone%2C+M">M. De Simone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miotello%2C+A">A. Miotello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Codella%2C+C">C. Codella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ceccarelli%2C+C">C. Ceccarelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Podio%2C+L">L. Podio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedele%2C+D">D. Fedele</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">D. Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shirley%2C+Y">Y. Shirley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+B+J">B. J. Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchi%2C+E">E. Bianchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Z+E">Z. E. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pineda%2C+J">J. Pineda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Loinard%2C+L">L. Loinard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%A9nard%2C+F">F. M茅nard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lebreuilly%2C+U">U. Lebreuilly</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klessen%2C+R+S">R. S. Klessen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hennebelle%2C+P">P. Hennebelle</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02852v2-abstract-short" style="display: inline;"> Early dust grain growth in protostellar envelopes infalling on young discs has been suggested in recent studies, supporting the hypothesis that dust particles start to agglomerate already during the Class 0/I phase of young stellar objects (YSOs). If this early evolution were confirmed, it would impact the usually assumed initial conditions of planet formation, where only particles with sizes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02852v2-abstract-full').style.display = 'inline'; document.getElementById('2306.02852v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02852v2-abstract-full" style="display: none;"> Early dust grain growth in protostellar envelopes infalling on young discs has been suggested in recent studies, supporting the hypothesis that dust particles start to agglomerate already during the Class 0/I phase of young stellar objects (YSOs). If this early evolution were confirmed, it would impact the usually assumed initial conditions of planet formation, where only particles with sizes $\lesssim 0.25 渭$m are usually considered for protostellar envelopes. We aim to determine the maximum grain size of the dust population in the envelope of the Class 0/I protostar L1527 IRS, located in the Taurus star-forming region (140 pc). We use Atacama Large millimetre/sub-millimetre Array (ALMA) and Atacama Compact Array (ACA) archival data and present new observations, in an effort to both enhance the signal-to-noise ratio of the faint extended continuum emission and properly account for the compact emission from the inner disc. Using observations performed in four wavelength bands and extending the spatial range of previous studies, we aim to place tight constraints on the spectral ($伪$) and dust emissivity ($尾$) indices in the envelope of L1527 IRS. We find a rather flat $伪\sim$ 3.0 profile in the range 50-2000 au. Accounting for the envelope temperature profile, we derive values for the dust emissivity index, 0.9 &lt; $尾$ &lt; 1.6, and reveal a tentative, positive outward gradient. This could be interpreted as a distribution of mainly ISM-like grains at 2000 au, gradually progressing to (sub-)millimetre-sized dust grains in the inner envelope, where at R=300 au, $尾$ = 1.1 +/- 0.1. Our study supports a variation of the dust properties in the envelope of L1527 IRS. We discuss how this can be the result of in-situ grain growth, dust differential collapse from the parent core, or upward transport of disc large grains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02852v2-abstract-full').style.display = 'none'; document.getElementById('2306.02852v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. Contains 18 pages, 21 figures, 5 tables Replacement on Nov 22 to change title number of FAUST series from &#34;X&#34; to &#34;IX.&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 676, A4 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13172">arXiv:2303.13172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13172">pdf</a>, <a href="https://arxiv.org/format/2303.13172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346167">10.1051/0004-6361/202346167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JOYS: JWST Observations of Young protoStars: Outflows and accretion in the high-mass star-forming region IRAS23385+605 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieser%2C+C">C. Gieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perotti%2C+G">G. Perotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francis%2C+L">L. Francis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ray%2C+T">T. Ray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justtanont%2C+K">K. Justtanont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weakens%2C+C">C. Weakens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colina%2C+L">L. Colina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T">T. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guedel%2C+M">M. Guedel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagage%2C+P+O">P. O. Lagage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oestlin%2C+G">G. Oestlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wright%2C+G">G. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13172v1-abstract-short" style="display: inline;"> Aims: The JWST program JOYS (JWST Observations of Young protoStars) aims at characterizing the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS23385+6053. Methods: The JOYS program uses the MIRI MRS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13172v1-abstract-full" style="display: none;"> Aims: The JWST program JOYS (JWST Observations of Young protoStars) aims at characterizing the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS23385+6053. Methods: The JOYS program uses the MIRI MRS with its IFU to investigate a sample of high- and low-mass star-forming protostellar systems. Results: The 5 to 28mum MIRI spectrum of IRAS23385+6053 shows a plethora of features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers like the H2, [FeII] and [NeII] lines as well as the potential accretion tracer Humphreys alpha HI(7--6). The short-wavelength MIRI data resolve two continuum sources A and B, where mid-infrared source A is associated with the main mm continuum peak. The combination of mid-infrared and mm data reveals a young cluster in its making. Combining the mid-infrared outflow tracer H2, [FeII] and [NeII] with mm SiO data shows a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys alpha line is detected at a 3-4sigma level towards the mid-infrared sources A and B. Following Rigliaco et al. (2015), one can roughly estimate accretion luminosities and corresponding accretion rates between ~2.6x10^-6 and ~0.9x10^-4 M_sun/yr. This is discussed in the context of the observed outflow rates. Conclusions: The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13172v1-abstract-full').style.display = 'none'; document.getElementById('2303.13172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, accepted for Astronomy &amp; Astrophysics, the paper is also available at https://www2.mpia-hd.mpg.de/homes/beuther/papers.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 673, A121 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03843">arXiv:2303.03843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03843">pdf</a>, <a href="https://arxiv.org/format/2303.03843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245696">10.1051/0004-6361/202245696 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Empirical Determination of the Lithium 6707.856 脜 Wavelength in Young Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Campbell-White%2C+J">Justyn Campbell-White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sicilia-Aguilar%2C+A">Aurora Sicilia-Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frasca%2C+A">Antonio Frasca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nielsen%2C+L+D">Louise D. Nielsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+P+C">P. Christian Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">Brunella Nisini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bayo%2C+A">Amelia Bayo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ercolano%2C+B">Barbara Ercolano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81brah%C3%A1m%2C+P">P茅ter 脕brah谩m</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claes%2C+R">Rik Claes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+M">Min Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedele%2C+D">Davide Fedele</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gameiro%2C+J+F">Jorge Filipe Gameiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangi%2C+M">Manuele Gangi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B3sp%C3%A1l%2C+%C3%81">脕gnes K贸sp谩l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauc%C3%B3%2C+K">Karina Mauc贸</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petr-Gotzens%2C+M+G">Monika G. Petr-Gotzens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigliaco%2C+E">Elisabetta Rigliaco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robinson%2C+C">Connor Robinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siwak%2C+M">Michal Siwak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venuti%2C+L">Laura Venuti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03843v1-abstract-short" style="display: inline;"> Absorption features in stellar atmospheres are often used to calibrate photocentric velocities for kinematic analysis of further spectral lines. The Li feature at $\sim$ 6708 脜 is commonly used, especially in the case of young stellar objects for which it is one of the strongest absorption lines. However, this is a complex line comprising two isotope fine-structure doublets. We empirically measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03843v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03843v1-abstract-full" style="display: none;"> Absorption features in stellar atmospheres are often used to calibrate photocentric velocities for kinematic analysis of further spectral lines. The Li feature at $\sim$ 6708 脜 is commonly used, especially in the case of young stellar objects for which it is one of the strongest absorption lines. However, this is a complex line comprising two isotope fine-structure doublets. We empirically measure the wavelength of this Li feature in a sample of young stars from the PENELLOPE/VLT programme (using X-Shooter, UVES and ESPRESSO data) as well as HARPS data. For 51 targets, we fit 314 individual spectra using the STAR-MELT package, resulting in 241 accurately fitted Li features, given the automated goodness-of-fit threshold. We find the mean air wavelength to be 6707.856 脜, with a standard error of 0.002 脜 (0.09 km/s) and a weighted standard deviation of 0.026 脜 (1.16 km/s). The observed spread in measured positions spans 0.145 脜, or 6.5 km/s, which is up to a factor of six higher than typically reported velocity errors for high-resolution studies. We also find a correlation between the effective temperature of the star and the wavelength of the central absorption. We discuss how exclusively using this Li feature as a reference for photocentric velocity in young stars could potentially be introducing a systematic positive offset in wavelength to measurements of further spectral lines. If outflow tracing forbidden lines, such as [O i] 6300 脜, are actually more blueshifted than previously thought, this then favours a disk wind as the origin for such emission in young stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03843v1-abstract-full').style.display = 'none'; document.getElementById('2303.03843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 673, A80 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09452">arXiv:2302.09452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09452">pdf</a>, <a href="https://arxiv.org/ps/2302.09452">ps</a>, <a href="https://arxiv.org/format/2302.09452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245097">10.1051/0004-6361/202245097 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMA ACA study of the H$_2$S/OCS ratio in low-mass protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kushwahaa%2C+T">Tanya Kushwahaa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drozdovskaya%2C+M+N">Maria N. Drozdovskaya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">Beno卯t Tabone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09452v1-abstract-short" style="display: inline;"> The identification of the main sulfur reservoir on its way from the diffuse interstellar medium to the cold dense star-forming cores and eventually to protostars is a long-standing problem. Despite sulfur&#39;s astrochemical relevance, the abundance of S-bearing molecules in dense cores and regions around protostars is still insufficiently constrained. The goal of this investigation is to derive the g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09452v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09452v1-abstract-full" style="display: none;"> The identification of the main sulfur reservoir on its way from the diffuse interstellar medium to the cold dense star-forming cores and eventually to protostars is a long-standing problem. Despite sulfur&#39;s astrochemical relevance, the abundance of S-bearing molecules in dense cores and regions around protostars is still insufficiently constrained. The goal of this investigation is to derive the gas-phase H$_2$S/OCS ratio for several low-mass protostars, which could provide crucial information about the physical and chemical conditions in the birth cloud of Sun-like stars. Using ALMA ACA Band 6 observations, H$_2$S, OCS, and their isotopologs are searched for in 10 Class 0/I protostars with different source properties such as age, mass, and environmental conditions. An LTE model is used to fit synthetic spectra to the detected lines and to derive the column densities based solely on optically thin lines. The H$_2$S and OCS column densities span four orders of magnitude across the sample. The H$_2$S/OCS ratio is found to be in the range from 0.2 to above 9.7. IRAS 16293-2422 A and Ser-SMM3 have the lowest ratio, while BHR71-IRS1 has the highest. Only the H$_2$S/OCS ratio of BHR71-IRS1 agress within uncertainties with the ratio in comet 67P/C$-$G. The determined gas-phase H$_2$S/OCS ratios can be below the upper limits on the solid-state ratios by as much as an order of magnitude. The H$_2$S/OCS ratio depends significantly on the environment of the birth cloud, such as UV-irradiation and heating received prior to the formation of a protostar. The highly isolated birth environment of BHR71-IRS1 is hypothesized to be the reason for its high gaseous H$_2$S/OCS ratio due to lower rates of photoreactions and more efficient hydrogenation reactions under such dark, cold conditions. The gaseous inventory of S-bearing molecules in BHR71-IRS1 appears to be most similar to that of interstellar ices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09452v1-abstract-full').style.display = 'none'; document.getElementById('2302.09452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A; 32 pages, 24 figures, 18 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 672, A122 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02994">arXiv:2301.02994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02994">pdf</a>, <a href="https://arxiv.org/format/2301.02994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245254">10.1051/0004-6361/202245254 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reflections on nebulae around young stars: A systematic search for late-stage infall of material onto Class II disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+A">Aashish Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miotello%2C+A">Anna Miotello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+J+P">Jonathan P. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Facchini%2C+S">Stefano Facchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beccari%2C+G">Giacomo Beccari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Birnstiel%2C+T">Til Birnstiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ginski%2C+C">Christian Ginski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%BCffmeier%2C+M">Michael K眉ffmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Testi%2C+L">Leonardo Testi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yen%2C+H">Hsi-Wei Yen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02994v1-abstract-short" style="display: inline;"> Context. While it is generally assumed that Class II sources evolve largely in isolation from their environment, many still lie close to molecular clouds and may continue to interact with them. This may result in late accretion of material onto the disk that can significantly influence disk processes and planet formation. Aims. In order to systematically study late infall of gas onto disks, we i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02994v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02994v1-abstract-full" style="display: none;"> Context. While it is generally assumed that Class II sources evolve largely in isolation from their environment, many still lie close to molecular clouds and may continue to interact with them. This may result in late accretion of material onto the disk that can significantly influence disk processes and planet formation. Aims. In order to systematically study late infall of gas onto disks, we identify candidate Class II sources in close vicinity to a reflection nebula (RN) that may be undergoing this process. Methods. First we targeted Class II sources with known kilo-au scale gas structures - possibly due to late infall of material - and we searched for RNe in their vicinity in optical and near-infrared images. Second, we compiled a catalogue of Class II sources associated with RNe and looked for the large-scale CO structures in archival ALMA data. Using the catalogues of protostars and RNe, we also estimated the probability of Class II sources interacting with surrounding material. Results. All of the sources with large-scale gas structures also exhibit some reflection nebulosity in their vicinity. Similarly, at least five Class II objects associated with a prominent RNe, and for which adequate ALMA observations are available, were found to have spirals or stream-like structures which may be due to late infall. We report the first detection of these structures around S CrA. Conclusions. Our results suggest that a non-negligible fraction of Class II disks in nearby star-forming regions may be associated with RNe and could therefore be undergoing late accretion of gas. Surveys of RNe and kilo-au scale gas structures around Class II sources will allow us to better understand the frequency and impact of late-infall phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02994v1-abstract-full').style.display = 'none'; document.getElementById('2301.02994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 670, L8 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11462">arXiv:2211.11462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.11462">pdf</a>, <a href="https://arxiv.org/format/2211.11462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3314">10.1093/mnras/stac3314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D Detection and Characterisation of ALMA Sources through Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Veneri%2C+M+D">Michele Delli Veneri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guglielmetti%2C+F">Fabrizia Guglielmetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+G">Giuseppe Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villard%2C+E">Eric Villard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11462v1-abstract-short" style="display: inline;"> We present a Deep-Learning (DL) pipeline developed for the detection and characterization of astronomical sources within simulated Atacama Large Millimeter/submillimeter Array (ALMA) data cubes. The pipeline is composed of six DL models: a Convolutional Autoencoder for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2211.11462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11462v1-abstract-full" style="display: none;"> We present a Deep-Learning (DL) pipeline developed for the detection and characterization of astronomical sources within simulated Atacama Large Millimeter/submillimeter Array (ALMA) data cubes. The pipeline is composed of six DL models: a Convolutional Autoencoder for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak detection within the frequency domain, and four Residual Neural Networks (ResNets) for source characterization. The combination of spatial and frequency information improves completeness while decreasing spurious signal detection. To train and test the pipeline, we developed a simulation algorithm able to generate realistic ALMA observations, i.e. both sky model and dirty cubes. The algorithm simulates always a central source surrounded by fainter ones scattered within the cube. Some sources were spatially superimposed in order to test the pipeline deblending capabilities. The detection performances of the pipeline were compared to those of other methods and significant improvements in performances were achieved. Source morphologies are detected with subpixel accuracies obtaining mean residual errors of $10^{-3}$ pixel ($0.1$ mas) and $10^{-1}$ mJy/beam on positions and flux estimations, respectively. Projection angles and flux densities are also recovered within $10\%$ of the true values for $80\%$ and $73\%$ of all sources in the test set, respectively. While our pipeline is fine-tuned for ALMA data, the technique is applicable to other interferometric observatories, as SKA, LOFAR, VLBI, and VLTI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11462v1-abstract-full').style.display = 'none'; document.getElementById('2211.11462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07653">arXiv:2211.07653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07653">pdf</a>, <a href="https://arxiv.org/format/2211.07653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aca320">10.3847/1538-4357/aca320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Mass Accretion Rate and Stellar Properties in Class I Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fiorellino%2C+E">Eleonora Fiorellino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Miera%2C+F+C">Fernando Cruz-Saenz de Miera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniucci%2C+S">Simone Antoniucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kospal%2C+A">Agnes Kospal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">Brunella Nisini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosotti%2C+G">Giovanni Rosotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07653v1-abstract-short" style="display: inline;"> Stars collect most of their mass during the protostellar stage, yet the accretion luminosity and stellar parameters, which are needed to compute the mass accretion rate, are poorly constrained for the youngest sources. The aim of this work is to fill this gap, computing the stellar properties and the accretion rates for a large sample of Class I protostars located in nearby (&lt; 500 pc) star-forming&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07653v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07653v1-abstract-full" style="display: none;"> Stars collect most of their mass during the protostellar stage, yet the accretion luminosity and stellar parameters, which are needed to compute the mass accretion rate, are poorly constrained for the youngest sources. The aim of this work is to fill this gap, computing the stellar properties and the accretion rates for a large sample of Class I protostars located in nearby (&lt; 500 pc) star-forming regions and analysing their interplay. We used a self-consistent method to provide accretion and stellar parameters using SED modeling and veiling information from near-IR observations, when possible. We calculated accretion and stellar properties for the first time for 50 young stars. We focused our analysis on the 39 confirmed protostars, finding that their mass accretion rate varies between about 10^(-8) and about 10^(-4) Msun/yr in a stellar mass range between about 0.1 and 3 Msun. We find systematically larger mass accretion rates for our Class I sample than in Class II objects. Although the mass accretion rate we found is high, it still suggests that either stars collect most of its mass before Class I stage, or eruptive accretion is needed during the overall protostellar phase. Indeed, our results suggest that for a large number of protostars the disk can be unstable, which can result in accretion bursts and disk fragmentation in the past or in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07653v1-abstract-full').style.display = 'none'; document.getElementById('2211.07653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02408">arXiv:2210.02408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02408">pdf</a>, <a href="https://arxiv.org/format/2210.02408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Bayesian statistics approach to imaging of aperture synthesis data: RESOLVE meets ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guglielmetti%2C+F">Fabrizia Guglielmetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arras%2C+P">Philipp Arras</a>, <a href="/search/astro-ph?searchtype=author&amp;query=En%C3%9Flin%2C+T">Torsten En脽lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villard%2C+E">Eric Villard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02408v1-abstract-short" style="display: inline;"> The Atacama Large Millimeter/submillimeter Array (ALMA) is currently revolutionizing observational astrophysics. The aperture synthesis technique provides angular resolution otherwise unachievable with the conventional single-aperture telescope. However, recovering the image from the inherently undersampled data is a challenging task. The CLEAN algorithm has proven successful and reliable and is c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02408v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02408v1-abstract-full" style="display: none;"> The Atacama Large Millimeter/submillimeter Array (ALMA) is currently revolutionizing observational astrophysics. The aperture synthesis technique provides angular resolution otherwise unachievable with the conventional single-aperture telescope. However, recovering the image from the inherently undersampled data is a challenging task. The CLEAN algorithm has proven successful and reliable and is commonly used in imaging the interferometric observations. It is not, however, free of limitations. Point-source assumption, central to the CLEAN is not optimal for the extended structures of molecular gas recovered by ALMA. Additionally, negative fluxes recovered with CLEAN are not physical. This begs to search for alternatives that would be better suited for specific science cases. We present the recent developments in imaging ALMA data using Bayesian inference techniques, namely the RESOLVE algorithm This algorithm, based on information field theory \cite{Ensslin2013}, has been already successfully applied to image the Very Large Array data. We compare the capability of both CLEAN and RESOLVE to recover known sky signal, convoluted with the simulator of ALMA observation data and we investigate the problem with a set of actual ALMA observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02408v1-abstract-full').style.display = 'none'; document.getElementById('2210.02408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, IHP, Paris, July 18-22, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01444">arXiv:2210.01444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01444">pdf</a>, <a href="https://arxiv.org/format/2210.01444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Bayesian and Machine Learning Methods in the Big Data era for astronomical imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guglielmetti%2C+F">Fabrizia Guglielmetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arras%2C+P">Philipp Arras</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veneri%2C+M+D">Michele Delli Veneri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=En%C3%9Flin%2C+T">Torsten En脽lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+G">Giuseppe Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villard%2C+E">Eric Villard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01444v1-abstract-short" style="display: inline;"> The Atacama Large Millimeter/submillimeter Array with the planned electronic upgrades will deliver an unprecedented amount of deep and high resolution observations. Wider fields of view are possible with the consequential cost of image reconstruction. Alternatives to commonly used applications in image processing have to be sought and tested. Advanced image reconstruction methods are critical to m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01444v1-abstract-full').style.display = 'inline'; document.getElementById('2210.01444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01444v1-abstract-full" style="display: none;"> The Atacama Large Millimeter/submillimeter Array with the planned electronic upgrades will deliver an unprecedented amount of deep and high resolution observations. Wider fields of view are possible with the consequential cost of image reconstruction. Alternatives to commonly used applications in image processing have to be sought and tested. Advanced image reconstruction methods are critical to meet the data requirements needed for operational purposes. Astrostatistics and astroinformatics techniques are employed. Evidence is given that these interdisciplinary fields of study applied to synthesis imaging meet the Big Data challenges and have the potentials to enable new scientific discoveries in radio astronomy and astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01444v1-abstract-full').style.display = 'none'; document.getElementById('2210.01444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, proceedings International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, IHP, Paris, July 18-22, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04343">arXiv:2209.04343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04343">pdf</a>, <a href="https://arxiv.org/format/2209.04343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac8fee">10.3847/2041-8213/ac8fee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The relation between the Mass Accretion Rate and the Disk Mass in Class I Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fiorellino%2C+E">Eleonora Fiorellino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosotti%2C+G">Giovanni Rosotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniucci%2C+S">Simone Antoniucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Miera%2C+F+C">Fernando Cruz-Saenz de Miera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kospal%2C+A">Agnes Kospal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">Brunella Nisini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04343v1-abstract-short" style="display: inline;"> The evidence of a relation between the mass accretion rate and the disk mass is established for young, Class II pre-main sequence stars. This observational result opened an avenue to test theoretical models and constrain the initial conditions of the disk formation, fundamental in the understanding of the emergence of planetary systems. However, it is becoming clear that the planet formation start&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04343v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04343v1-abstract-full" style="display: none;"> The evidence of a relation between the mass accretion rate and the disk mass is established for young, Class II pre-main sequence stars. This observational result opened an avenue to test theoretical models and constrain the initial conditions of the disk formation, fundamental in the understanding of the emergence of planetary systems. However, it is becoming clear that the planet formation starts even before the Class II stage, in disks around Class 0 and I protostars. We show for the first time evidence for a correlation between the mass accretion rate and the disk mass for a large sample of Class I young stars located in nearby (&lt; 500 pc) star-forming regions. We fit our sample, finding that the Class I objects relation has a slope flatter than Class II stars, and have higher mass accretion rates and disk masses. The results are put in context of the disk evolution models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04343v1-abstract-full').style.display = 'none'; document.getElementById('2209.04343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08827">arXiv:2207.08827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08827">pdf</a>, <a href="https://arxiv.org/format/2207.08827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142693">10.1051/0004-6361/202142693 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertically extended and asymmetric CN emission in the Elias 2-27 protoplanetary disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Paneque-Carre%C3%B1o%2C+T">T. Paneque-Carre帽o</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miotello%2C+A">A. Miotello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez%2C+L+M">L. M. P茅rez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Facchini%2C+S">S. Facchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izquierdo%2C+A">A. Izquierdo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Testi%2C+L">L. Testi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08827v1-abstract-short" style="display: inline;"> Elias 2-27 is a young star that hosts an extended, bright and inclined disk of dust and gas. The inclination and extreme flaring of the disk make Elias 2-27 an ideal target to study the vertical distribution of molecules, particularly CN. We directly trace the emission of CN in Elias 2-27 and compare it to previously published CO isotopologue data. CN $N = 3-2$ emission is analyzed in two differen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08827v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08827v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08827v1-abstract-full" style="display: none;"> Elias 2-27 is a young star that hosts an extended, bright and inclined disk of dust and gas. The inclination and extreme flaring of the disk make Elias 2-27 an ideal target to study the vertical distribution of molecules, particularly CN. We directly trace the emission of CN in Elias 2-27 and compare it to previously published CO isotopologue data. CN $N = 3-2$ emission is analyzed in two different transitions $J = 7/2 - 5/2$ and $J = 5/2 - 3/2$, for which we detect two hyperfine group transitions. The vertical location of CN emission is traced directly from the channel maps, following geometrical methods that have been previously used to analyze the CO emission of Elias 2-27. Analytical models are used to parametrize the vertical profile of each molecule and study the extent of each tracer, additionally we compute radial profiles of column density and optical depth. We show that the vertical location of CN and CO isotopologues in Elias 2-27 is layered and consistent with predictions from thermochemical models. A north/south asymmetry in the radial extent of CN is detected and we find that the CN emission is mostly optically thin and constrained vertically to a thin slab at $z/r \sim$0.5. A column density of 10$^{14}$\,cm$^{-2}$ is measured in the inner disk which for the north side decreases to 10$^{12}$\,cm$^{-2}$ and for the south side to 10$^{13}$\,cm$^{-2}$ in the outer regions. In Elias 2-27, CN traces a vertically elevated region above the midplane, very similar to that traced by $^{12}$CO. The inferred CN properties are consistent with thermo-chemical disk models, in which CN formation is initiated by the reaction of N with UV-pumped H$_2$. The observed north/south asymmetry may be caused by either ongoing infall or by a warped inner disk. This study highlights the importance of tracing the vertical location of various molecules to constrain the disk physical conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08827v1-abstract-full').style.display = 'none'; document.getElementById('2207.08827v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A, 19 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 666, A168 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15108">arXiv:2205.15108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15108">pdf</a>, <a href="https://arxiv.org/format/2205.15108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7464">10.3847/1538-4357/ac7464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disks and Outflows in the Intermediate-mass Star Forming Region NGC 2071 IR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cheng%2C+Y">Yu Cheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+L+R+v">Merel L. R. van&#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S+I">Sarah I. Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%ADaz-Rodr%C3%ADguez%2C+A+K">Ana Karla D铆az-Rodr铆guez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P+D">Patrick D. Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+N">Nickalas Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murillo%2C+N+M">Nadia M. Murillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15108v1-abstract-short" style="display: inline;"> We present ALMA band 6/7 (1.3 mm/0.87 mm) and VLA Ka band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star forming region. We characterize the continuum and associated molecular line emission towards the most luminous protostars, i.e., IRS1 and IRS3, on ~100 au (0. 2&#34;) scales. IRS1 is partly resolved in millimeter and centimeter continuum, which shows a potential disk. IRS3 has a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15108v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15108v1-abstract-full" style="display: none;"> We present ALMA band 6/7 (1.3 mm/0.87 mm) and VLA Ka band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star forming region. We characterize the continuum and associated molecular line emission towards the most luminous protostars, i.e., IRS1 and IRS3, on ~100 au (0. 2&#34;) scales. IRS1 is partly resolved in millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well resolved disk appearance in millimeter continuum and is further resolved into a close binary system separated by ~40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH, 13CH3OH and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks, and give constraints on physical parameters with a MCMC routine. The IRS3 binary system is estimated to have a total mass of 1.4-1.5$M_\odot$. IRS1 has a central mass of 3-5$M_\odot$ based on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2 emission, are not always consistent, and for IRS1, these can be misaligned by ~50$^{\circ}$. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15108v1-abstract-full').style.display = 'none'; document.getElementById('2205.15108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 21 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16598">arXiv:2203.16598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16598">pdf</a>, <a href="https://arxiv.org/format/2203.16598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Taurine in Taurus. An Over-Caffeinated Search for Coffee in Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Eistrup%2C+C">Christian Eistrup</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81+A">艁ukasz A. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nijman%2C+I">Iris Nijman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+M+P">Marta Paula Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bekkering%2C+S">Siroon Bekkering</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaca%2C+A">Anna Gaca</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16598v1-abstract-short" style="display: inline;"> Caffeination can open tired eyes and enhance focus. Over-caffeination, furthermore, can lead to errors but also to unexpected discoveries that might not have happened without 30 hours of sleep deprivation and 500mg of caffeine in our bodies. This paper presents exactly such a discovery. Upon much staring into our coffee cups, empty anew, the thought struck us: coffee in space. Caffeine may not be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16598v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16598v1-abstract-full" style="display: none;"> Caffeination can open tired eyes and enhance focus. Over-caffeination, furthermore, can lead to errors but also to unexpected discoveries that might not have happened without 30 hours of sleep deprivation and 500mg of caffeine in our bodies. This paper presents exactly such a discovery. Upon much staring into our coffee cups, empty anew, the thought struck us: coffee in space. Caffeine may not be the only key. HL Tau, Taurus, bull... Taurine! We grinded some red bourbon for a new pour-over, and developed the new, coffee-groundsbreaking Large Astrocomical Taurine Tester Experiment (LATTE) in just 1/4 of a day. We felt bull-ish about our chances of making a great discovery! We installed LATTE, aimed it at the well-known young star HL Tau, and there it was: an abundance of taurine gas beautifully outlining a cup of cosmic flat white, with the ring structure of HL Tau turning out to be latte art performed by a skillful cosmic barista. The first Robusta discovery of coffee in space. Speaking of coffee, we hope you have a nice hot cup with you, and we encourage you to pun-tinue all the way to the end of this bean-grinding paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16598v1-abstract-full').style.display = 'none'; document.getElementById('2203.16598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, submitted to Acta Prima Aprilia</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09640">arXiv:2202.09640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09640">pdf</a>, <a href="https://arxiv.org/format/2202.09640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The prebiotic molecular inventory of Serpens SMM1: II. The building blocks of peptide chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ligterink%2C+N+F+W">Niels F. W. Ligterink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmadi%2C+A">Aida Ahmadi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luitel%2C+B">Bijaya. Luitel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coutens%2C+A">Audrey Coutens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calcutt%2C+H">Hannah Calcutt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J%C3%B8rgensen%2C+J+K">Jes K. J酶rgensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garrod%2C+R+T">Robin T. Garrod</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouwman%2C+J">Jordy Bouwman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09640v1-abstract-short" style="display: inline;"> This work aims to constrain the abundances of interstellar amides, by searching for this group of prebiotic molecules in the intermediate-mass protostar Serpens SMM1-a. ALMA observations are conducted toward Serpens SMM1. A spectrum is extracted toward the SMM1-a position and analyzed with the CASSIS line analysis software for the presence of characteristic rotational lines of a number of amides a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09640v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09640v1-abstract-full" style="display: none;"> This work aims to constrain the abundances of interstellar amides, by searching for this group of prebiotic molecules in the intermediate-mass protostar Serpens SMM1-a. ALMA observations are conducted toward Serpens SMM1. A spectrum is extracted toward the SMM1-a position and analyzed with the CASSIS line analysis software for the presence of characteristic rotational lines of a number of amides and other molecules. NH$_{2}$CHO, NH$_{2}$CHO $谓_{12}$=1, NH$_{2}^{13}$CHO, CH$_{3}$C(O)NH$_{2}$ $谓$=0,1, CH$_{2}$DOH, CH$_{3}$CHO, and CH$_{3}$C(O)CH$_{3}$ are securely detected, while trans-NHDCHO, NH$_{2}$CDO, CH$_{3}$NHCHO $谓$=0,1, CH$_{3}$COOH, and HOCH$_{2}$CHO are tentatively identified. The results of this work are compared with detections presented in the literature. A uniform CH$_{3}$C(O)NH$_{2}$/NH$_{2}$CHO ratio is found for a group of interstellar sources with vast physical differences. A similar ratio is seen for CH$_{3}$NHCHO, based on a smaller data sample. The D/H ratio of NH$_{2}$CHO is about 1--3\% and is close to values found in the low-mass source IRAS~16293--2422B. The formation of CH$_{3}$C(O)NH$_{2}$ and NH$_{2}$CHO is likely linked. Formation of these molecules on grain surfaces during the dark cloud stage is a likely scenario. The high D/H ratio of NH$_{2}$CHO is also seen as an indication that these molecules are formed on icy dust grains. As a direct consequence, amides are expected to be present in the most pristine material from which planetary systems form, thus providing a reservoir of prebiotic material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09640v1-abstract-full').style.display = 'none'; document.getElementById('2202.09640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ACS Earth and Space Chemistry; 59 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06734">arXiv:2112.06734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06734">pdf</a>, <a href="https://arxiv.org/format/2112.06734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142207">10.1051/0004-6361/202142207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early planet formation in embedded protostellar disks: Setting the stage for the first generation of planetesimals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cridland%2C+A+J">A. J. Cridland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosotti%2C+G+P">G. P. Rosotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">L. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McClure%2C+M">M. McClure</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06734v1-abstract-short" style="display: inline;"> (Abridged) Recent surveys of young star formation regions have shown that the average Class II object does not have enough dust mass to make the cores of giant planets. Younger Class 0/I objects have enough dust in their embedded disk, which begs the questions: can the first steps of planet formation occur in these younger systems? The first step is building the first planetesimals, generally beli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06734v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06734v1-abstract-full" style="display: none;"> (Abridged) Recent surveys of young star formation regions have shown that the average Class II object does not have enough dust mass to make the cores of giant planets. Younger Class 0/I objects have enough dust in their embedded disk, which begs the questions: can the first steps of planet formation occur in these younger systems? The first step is building the first planetesimals, generally believed to be the product of the streaming instability. Hence the question can be restated: are the physical conditions of embedded disks conducive to the growth of the streaming instability? Here we model the collapse of a `dusty&#39; proto-stellar cloud to show that if there is sufficient drift between the falling gas and dust, regions of the embedded disk can become sufficiently enhanced in dust to drive the streaming instability. We include four models, three with different dust grain sizes and one with a different initial cloud angular momentum to test a variety of collapse trajectories. We find a `sweet spot&#39; for planetesimal formation for grain sizes of a few 10s of micron since they fall sufficiently fast relative to the gas to build a high dust-to-gas ratio along the disk midplane, but have slow enough radial drift speeds in the embedded disk to maintain the high dust-to-gas ratio. Unlike the gas, which is held in hydrostatic equilibrium for a time due to gas pressure, the dust can begin collapsing from all radii at a much earlier time. The streaming instability can produce at least between 7-35 M$_\oplus$ of planetesimals in the Class 0/I phase of our smooth embedded disks, depending on the size of the falling dust grains. This first generation of planetesimals could represent the first step in planet formation, and occurs earlier in the lifetime of the young star than is traditionally thought. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06734v1-abstract-full').style.display = 'none'; document.getElementById('2112.06734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A, 22 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 662, A90 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05801">arXiv:2111.05801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05801">pdf</a>, <a href="https://arxiv.org/format/2111.05801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac36d2">10.3847/1538-4357/ac36d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars V. A Characterization of Protostellar Multiplicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Offner%2C+S+S+R">Stella S. R. Offner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kratter%2C+K+M">Kaitlin M. Kratter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P+D">Patrick D. Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diaz-Rodriguez%2C+A+K">Ana Karla Diaz-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S+I">Sarah I. Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Segura-Cox%2C+D">Dominique Segura-Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+L+R+v+%27">Merel L. R. van &#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+R">Rajeeb Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05801v1-abstract-short" style="display: inline;"> We characterize protostellar multiplicity in the Orion molecular clouds using ALMA 0.87~mm and VLA 9~mm continuum surveys toward 328 protostars. These observations are sensitive to projected spatial separations as small as $\sim$20~au, and we consider source separations up to 10$^4$~au as potential companions. The overall multiplicity fraction (MF) and companion fraction (CF) for the Orion protost&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05801v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05801v1-abstract-full" style="display: none;"> We characterize protostellar multiplicity in the Orion molecular clouds using ALMA 0.87~mm and VLA 9~mm continuum surveys toward 328 protostars. These observations are sensitive to projected spatial separations as small as $\sim$20~au, and we consider source separations up to 10$^4$~au as potential companions. The overall multiplicity fraction (MF) and companion fraction (CF) for the Orion protostars are 0.30$\pm$0.03 and 0.44$\pm$0.03, respectively, considering separations from 20 to 10$^4$~au. The MFs and CFs are corrected for potential contamination by unassociated young stars using a probabilistic scheme based on the surface density of young stars around each protostar. The companion separation distribution as a whole is double peaked and inconsistent with the separation distribution of solar-type field stars, while the separation distribution of Flat Spectrum protostars is consistent solar-type field stars. The multiplicity statistics and companion separation distributions of the Perseus star-forming region are consistent with those of Orion. Based on the observed peaks in the Class 0 separations at $\sim$100~au and $\sim$10$^3$~au, we argue that multiples with separations $&lt;$500~au are likely produced by both disk fragmentation and turbulent fragmentation with migration, and those at $\ga$10$^3$~au result primarily from turbulent fragmentation. We also find that MFs/CFs may rise from Class 0 to Flat Spectrum protostars between 100 and 10$^3$~au in regions of high YSO density. This finding may be evidence for migration of companions from $&gt;$10$^3$~au to $&lt;$10$^3$~au, and that some companions between 10$^3$ and 10$^4$~au must be (or become) unbound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05801v1-abstract-full').style.display = 'none'; document.getElementById('2111.05801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">76 pages, 20 Figures, 10 Tables, accepted by the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06793">arXiv:2109.06793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06793">pdf</a>, <a href="https://arxiv.org/format/2109.06793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140833">10.1051/0004-6361/202140833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of UV radiation in low-mass protostars I. Origin of HCN and CN emission in the Serpens Main region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mirocha%2C+A">A. Mirocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karska%2C+A">A. Karska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronowski%2C+M">M. Gronowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kristensen%2C+L+E">L. E. Kristensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harsono%2C+D">D. Harsono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Figueira%2C+M">M. Figueira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C5%82adkowski%2C+M">M. G艂adkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C5%BB%C3%B3%C5%82towski%2C+M">M. 呕贸艂towski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06793v1-abstract-short" style="display: inline;"> Context: Ultraviolet radiation (UV) influences the physics and chemistry of star-forming regions, but its properties and significance in the immediate surroundings of low-mass protostars are still poorly understood. Aims: We aim to extend the use of the CN/HCN ratio, already established for high-mass protostars, to the low-mass regime to trace and characterize the UV field around low-mass protosta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06793v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06793v1-abstract-full" style="display: none;"> Context: Ultraviolet radiation (UV) influences the physics and chemistry of star-forming regions, but its properties and significance in the immediate surroundings of low-mass protostars are still poorly understood. Aims: We aim to extend the use of the CN/HCN ratio, already established for high-mass protostars, to the low-mass regime to trace and characterize the UV field around low-mass protostars on $\sim 0.6\times0.6$ pc scales. Methods: We present $5&#39;\times5&#39;$ maps of the Serpens Main Cloud encompassing 10 protostars observed with the EMIR receiver at the IRAM 30 m telescope in CN 1-0, HCN 1-0, CS 3-2, and some of their isotopologues. The radiative-transfer code RADEX and the chemical model Nahoon are used to determine column densities of molecules, gas temperature and density, and the UV field strength, $G_\mathrm{0}$. Results: The spatial distribution of HCN and CS are well-correlated with CO 6-5 emission that traces outflows. The CN emission is extended from the central protostars to their immediate surroundings also tracing outflows, likely as a product of HCN photodissociation. The ratio of CN to HCN total column densities ranges from $\sim$1 to 12 corresponding to G$_0$ $\approx$ $10^{1}-10^{3}$ for gas densities and temperatures typical for outflows of low-mass protostars. Conclusions: UV radiation associated with protostars and their outflows is indirectly identified in a significant part of the Serpens Main low-mass star-forming region. Its strength is consistent with the values obtained from the OH and H$_2$O ratios observed with Herschel and compared with models of UV-illuminated shocks. From a chemical viewpoint, the CN to HCN ratio is an excellent tracer of UV fields around low- and intermediate-mass star-forming regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06793v1-abstract-full').style.display = 'none'; document.getElementById('2109.06793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 25 figures, accepted by A\&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 656, A146 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00463">arXiv:2109.00463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00463">pdf</a>, <a href="https://arxiv.org/ps/2109.00463">ps</a>, <a href="https://arxiv.org/format/2109.00463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140991">10.1051/0004-6361/202140991 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Marciniak%2C+A">A. Marciniak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C4%8Eurech%2C+J">J. 膸urech</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Al%C3%AD-Lagoa%2C+V">V. Al铆-Lagoa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Og%C5%82oza%2C+W">W. Og艂oza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szak%C3%A1ts%2C+R">R. Szak谩ts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%BCller%2C+T+G">T. G. M眉ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moln%C3%A1r%2C+L">L. Moln谩r</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A1l%2C+A">A. P谩l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Monteiro%2C+F">F. Monteiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcoverde%2C+P">P. Arcoverde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Behrend%2C+R">R. Behrend</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernasconi%2C+L">L. Bernasconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bosch%2C+J">J. Bosch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brincat%2C+S">S. Brincat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunetto%2C+L">L. Brunetto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=B%C4%85k%2C+M+B+-">M. Butkiewicz - B膮k</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Del+Freo%2C+F">F. Del Freo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duffard%2C+R">R. Duffard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evangelista-Santana%2C+M">M. Evangelista-Santana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farroni%2C+G">G. Farroni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fauvaud%2C+S">S. Fauvaud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fauvaud%2C+M">M. Fauvaud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrais%2C+M">M. Ferrais</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geier%2C+S">S. Geier</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00463v1-abstract-short" style="display: inline;"> Results from the TESS mission showed that previous studies strngly underestimated the number of slow rotators, revealing the importance of studying those asteroids. For most slowly rotating asteroids (P &gt; 12), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. We continue our campaign in minimi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00463v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00463v1-abstract-full" style="display: none;"> Results from the TESS mission showed that previous studies strngly underestimated the number of slow rotators, revealing the importance of studying those asteroids. For most slowly rotating asteroids (P &gt; 12), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. The goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS. In addition to data in the visible range, we also use thermal data from infrared space observatories (IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model (CITPM). This novel method has so far been applied to only a few targets, and in this work we further validate the method. We present the models of 16 slow rotators. All provide good fits to both thermal and visible data. The obtained sizes are on average accurate at the 5% precision, with diameters in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 hours, and the thermal inertia covers a wide range of values, from 2 to &lt;400 SI units, not showing any correlation with the period. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which might be due to their small skin depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00463v1-abstract-full').style.display = 'none'; document.getElementById('2109.00463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Astronomy &amp; Astrophysics. 10 pages + appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 654, A87 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03696">arXiv:2107.03696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03696">pdf</a>, <a href="https://arxiv.org/format/2107.03696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140692">10.1051/0004-6361/202140692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Which molecule traces what: chemical diagnostics of protostellar sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+L+R+v+%27">Merel L. R. van &#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">Martijn L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">Beno卯t Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harsono%2C+D">Daniel Harsono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hull%2C+C+L+H">Charles L. H. Hull</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hogerheijde%2C+M+R">Michiel R. Hogerheijde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murillo%2C+N+M">Nadia M. Murillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03696v2-abstract-short" style="display: inline;"> The physical and chemical conditions in Class 0/I protostars are fundamental in unlocking the protostellar accretion process and its impact on planet formation. The aim is to determine which physical components are traced by different molecules at sub-arcsecond scales (100 - 400 au). We use a suite of Atacama Large Millimeter/submillimeter Array (ALMA) datasets in Band 6 (1 mm), Band 5 (1.8 mm) an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03696v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03696v2-abstract-full" style="display: none;"> The physical and chemical conditions in Class 0/I protostars are fundamental in unlocking the protostellar accretion process and its impact on planet formation. The aim is to determine which physical components are traced by different molecules at sub-arcsecond scales (100 - 400 au). We use a suite of Atacama Large Millimeter/submillimeter Array (ALMA) datasets in Band 6 (1 mm), Band 5 (1.8 mm) and Band 3 (3 mm) at spatial resolutions 0.5 - 3&#34; for 16 protostellar sources. The protostellar envelope is well traced by C$^{18}$O, DCO$^+$ and N$_2$D$^+$, with the freeze-out of CO governing the chemistry at envelope scales. Molecular outflows are seen in classical shock tracers like SiO and SO, but ice-mantle products such as CH$_3$OH and HNCO released with the shock are also observed. The molecular jet is prominent not only in SiO and SO but also occasionally in H$_2$CO. The cavity walls show tracers of UV-irradiation such as C$_2$H c-C$_3$H$_2$ and CN. The hot inner envelope, apart from showing emission from complex organic molecules (COMs), also presents compact emission from small molecules like H$_2$S, SO, OCS and H$^{13}$CN, most likely related to ice sublimation and high-temperature chemistry. Sub-arcsecond millimeter-wave observations allow to identify those (simple) molecules that best trace each of the physical components of a protostellar system. COMs are found both in the hot inner envelope (high excitation lines) and in the outflows (lower-excitation lines) with comparable abundances. COMs can coexist with hydrocarbons in the same protostellar sources, but they trace different components. In the near future, mid-IR observations with JWST-MIRI will provide complementary information about the hottest gas and the ice mantle content, at unprecedented sensitivity and at resolutions comparable to ALMA for the same sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03696v2-abstract-full').style.display = 'none'; document.getElementById('2107.03696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 33 figures, accepted for publication to A\&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 655, A65 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03326">arXiv:2104.03326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.03326">pdf</a>, <a href="https://arxiv.org/format/2104.03326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039996">10.1051/0004-6361/202039996 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+L+R+v+%27">M. L. R. van &#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ligterink%2C+N+F+W">N. F. W. Ligterink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taquet%2C+V">V. Taquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03326v1-abstract-short" style="display: inline;"> The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03326v1-abstract-full').style.display = 'inline'; document.getElementById('2104.03326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03326v1-abstract-full" style="display: none;"> The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 ($\sim$ 1 mm) and Band 5 ($\sim$ 2 mm) are studied at $\sim$ 0.5&#34; resolution, complemented by Band 3 ($\sim$ 3 mm) data in a $\sim$ 2.5&#34; beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species ($\sim$ 100 $\sim$ 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03326v1-abstract-full').style.display = 'none'; document.getElementById('2104.03326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A, 41 pages, 37 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 650, A150 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12446">arXiv:2103.12446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12446">pdf</a>, <a href="https://arxiv.org/format/2103.12446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140639">10.1051/0004-6361/202140639 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PENELLOPE: the ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES) I. Survey presentation and accretion properties of Orion OB1 and $蟽$-Orionis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">C. F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frasca%2C+A">A. Frasca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venuti%2C+L">L. Venuti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siwak%2C+M">M. Siwak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herczeg%2C+G+J">G. J. Herczeg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calvet%2C+N">N. Calvet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hernandez%2C+J">J. Hernandez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangi%2C+M">M. Gangi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcal%C3%A1%2C+J+M">J. M. Alcal谩</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boffin%2C+H+M+J">H. M. J. Boffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nisini%2C+B">B. Nisini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robberto%2C+M">M. Robberto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Briceno%2C+C">C. Briceno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campbell-White%2C+J">J. Campbell-White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sicilia-Aguilar%2C+A">A. Sicilia-Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McGinnis%2C+P">P. McGinnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedele%2C+D">D. Fedele</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B3sp%C3%A1l%2C+%C3%81">脕. K贸sp谩l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81brah%C3%A1m%2C+P">P. 脕brah谩m</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso-Santiago%2C+J">J. Alonso-Santiago</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniucci%2C+S">S. Antoniucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arulanantham%2C+N">N. Arulanantham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacciotti%2C+F">F. Bacciotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banzatti%2C+A">A. Banzatti</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12446v2-abstract-short" style="display: inline;"> The evolution of young stars and disks is driven by the interplay of several processes, notably accretion and ejection of material. Critical to correctly describe the conditions of planet formation, these processes are best probed spectroscopically. About five-hundred orbits of the Hubble Space Telescope (HST) are being devoted in 2020-2022 to the ULLYSES public survey of about 70 low-mass (M&lt;2Msu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12446v2-abstract-full').style.display = 'inline'; document.getElementById('2103.12446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12446v2-abstract-full" style="display: none;"> The evolution of young stars and disks is driven by the interplay of several processes, notably accretion and ejection of material. Critical to correctly describe the conditions of planet formation, these processes are best probed spectroscopically. About five-hundred orbits of the Hubble Space Telescope (HST) are being devoted in 2020-2022 to the ULLYSES public survey of about 70 low-mass (M&lt;2Msun) young (age&lt;10 Myr) stars at UV wavelengths. Here we present the PENELLOPE Large Program that is being carried out at the ESO Very Large Telescope (VLT) to acquire, contemporaneous to HST, optical ESPRESSO/UVES high-resolution spectra to investigate the kinematics of the emitting gas, and UV-to-NIR X-Shooter medium-resolution flux-calibrated spectra to provide the fundamental parameters that HST data alone cannot provide, such as extinction and stellar properties. The data obtained by PENELLOPE have no proprietary time, and the fully reduced spectra are made available to the whole community. Here, we describe the data and the first scientific analysis of the accretion properties for the sample of thirteen targets located in the Orion OB1 association and in the sigma-Orionis cluster, observed in Nov-Dec 2020. We find that the accretion rates are in line with those observed previously in similarly young star-forming regions, with a variability on a timescale of days of &lt;3. The comparison of the fits to the continuum excess emission obtained with a slab model on the X-Shooter spectra and the HST/STIS spectra shows a shortcoming in the X-Shooter estimates of &lt;10%, well within the assumed uncertainty. Its origin can be either a wrong UV extinction curve or due to the simplicity of this modelling, and will be investigated in the course of the PENELLOPE program. The combined ULLYSES and PENELLOPE data will be key for a better understanding of the accretion/ejection mechanisms in young stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12446v2-abstract-full').style.display = 'none'; document.getElementById('2103.12446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on Astronomy &amp; Astrophysics. 15 pages + appendix, language edited version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 650, A196 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02812">arXiv:2006.02812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.02812">pdf</a>, <a href="https://arxiv.org/format/2006.02812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037851">10.1051/0004-6361/202037851 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dust masses of young disks: constraining the initial solid reservoir for planet formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">Carlo F. Manara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosotti%2C+G+P">Giovanni P. Rosotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cridland%2C+A+J">Alexander J. Cridland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hsieh%2C+T">Tien-Hao Hsieh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murillo%2C+N+M">Nadia M. Murillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Segura-Cox%2C+D">Dominique Segura-Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Terwisga%2C+S+E">Sierk E. van Terwisga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02812v2-abstract-short" style="display: inline;"> In recent years evidence has been building that planet formation starts early, in the first $\sim$ 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. We aim to determine if disks in the embedded stage&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02812v2-abstract-full').style.display = 'inline'; document.getElementById('2006.02812v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02812v2-abstract-full" style="display: none;"> In recent years evidence has been building that planet formation starts early, in the first $\sim$ 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka-band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities. Using the DIANA opacity model including large grains, with a dust opacity value of $魏_{\rm 9\ mm}$ = 0.28 cm$^{2}$ g$^{-1}$, the median dust masses of the embedded disks in Perseus are 158 M$_\oplus$ for Class 0 and 52 M$_\oplus$ for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M$_\oplus$ and 12 M$_\oplus$ for Class 0 and Class I, respectively, obtained using the maximum dust opacity value $魏_{\rm 1.3mm}$ = 2.3 cm$^{2}$ g$^{-1}$. The dust masses of young Class 0 and I disks are larger by at least a factor of 10 and 3, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of $\sim$ 15%. Higher efficiency of $\sim$ 30% is necessary if the planet formation is set to start in Class I disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02812v2-abstract-full').style.display = 'none'; document.getElementById('2006.02812v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 640, A19 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06784">arXiv:2005.06784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06784">pdf</a>, <a href="https://arxiv.org/format/2005.06784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037758">10.1051/0004-6361/202037758 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex organic molecules in low-mass protostars on solar system scales -- I. Oxygen-bearing species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Gelder%2C+M+L">M. L. van Gelder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tabone%2C+B">B. Tabone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁. Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">P. D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%BCller%2C+H+S+P">H. S. P. M眉ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taquet%2C+V">V. Taquet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06784v1-abstract-short" style="display: inline;"> Complex organic molecules (COMs) are thought to form on icy dust grains in the earliest phase of star formation. The evolution of these COMs from the youngest Class 0/I protostellar phases toward the more evolved Class II phase is still not fully understood. Since planet formation seems to start early, and mature disks are too cold for characteristic COM emission lines, studying the inventory of C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06784v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06784v1-abstract-full" style="display: none;"> Complex organic molecules (COMs) are thought to form on icy dust grains in the earliest phase of star formation. The evolution of these COMs from the youngest Class 0/I protostellar phases toward the more evolved Class II phase is still not fully understood. Since planet formation seems to start early, and mature disks are too cold for characteristic COM emission lines, studying the inventory of COMs on solar system scales in the Class 0/I stage is relevant. ALMA Band 3 (3 mm) and Band 6 (1 mm) observations are obtained of seven Class 0 protostars in the Perseus and Serpens star-forming regions. By modeling the inner protostellar region using &#39;LTE&#39; models, the excitation temperature and column densities are determined for several O-bearing COMs. B1-c, B1-bS, and Serpens S68N show COM emission, i.e, three out of the seven sources. No clear correlation seems to exist between the occurrence of COMs and source luminosity. The abundances of several COMs with respect to CH3OH are remarkably similar for the three COM-rich sources, and to IRAS 16293-2422B and HH 212. For other COMs the abundances differ by up to an order of magnitude, indicating that local source conditions are case determining. B1-c hosts a cold ($T_{ex}\approx60$ K), more extended component of COM emission with a column density of typically a few % of the warm/hot ($T_{ex}\sim 200$ K), central component. A D/H ratio of 1-3 % is derived based on the CH2DOH/CH3OH ratio suggesting a temperature of $\sim$15~K during the formation of methanol. This ratio is consistent with other low-mass protostars. Future mid-infrared facilities such as JWST/MIRI will be essential to directly observe COM ices. Combining this with a larger sample of COM-rich sources with ALMA will allow for directly linking ice and gas-phase abundances in order to constrain the routes that produce and maintain chemical complexity during the star formation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06784v1-abstract-full').style.display = 'none'; document.getElementById('2005.06784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A, 44 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 639, A87 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04468">arXiv:2001.04468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04468">pdf</a>, <a href="https://arxiv.org/format/2001.04468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab6f64">10.3847/1538-4357/ab6f64 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. A Statistical Characterization of Class 0 and I Protostellar Disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P">Patrick Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diaz-Rodriguez%2C+A+K">Ana Karla Diaz-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Offner%2C+S+S+R">Stella S. R. Offner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murillo%2C+N+M">Nadia M. Murillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+v+%27">Merel van &#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+N">Nickalas Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Persson%2C+M">Magnus Persson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I">Ian Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandler%2C+C+J">Claire J. Chandler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E">Erin Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunham%2C+M+M">Michael M. Dunham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kama%2C+M">Mihkel Kama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kratter%2C+K">Kaitlin Kratter</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04468v1-abstract-short" style="display: inline;"> We have conducted a survey of 328 protostars in the Orion molecular clouds with ALMA at 0.87 mm at a resolution of $\sim$0.1&#34; (40 au), including observations with the VLA at 9 mm toward 148 protostars at a resolution of $\sim$0.08&#34; (32 au). This is the largest multi-wavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 mm and 9 mm t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04468v1-abstract-full').style.display = 'inline'; document.getElementById('2001.04468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04468v1-abstract-full" style="display: none;"> We have conducted a survey of 328 protostars in the Orion molecular clouds with ALMA at 0.87 mm at a resolution of $\sim$0.1&#34; (40 au), including observations with the VLA at 9 mm toward 148 protostars at a resolution of $\sim$0.08&#34; (32 au). This is the largest multi-wavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 mm and 9 mm to measure the dust disk radii and masses toward the Class 0, Class I, and Flat Spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and Flat Spectrum protostars are 44.9$^{+5.8}_{-3.4}$, 37.0$^{+4.9}_{-3.0}$, and 28.5$^{+3.7}_{-2.3}$ au, respectively, and the mean protostellar dust disk masses are 25.9$^{+7.7}_{-4.0}$, 14.9$^{+3.8}_{-2.2}$, 11.6$^{+3.5}_{-1.9}$ Earth masses, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% out of 379 detected 0.87 mm continuum sources plus 42 non-detections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than that of Class II disks by a factor of $&gt;$4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04468v1-abstract-full').style.display = 'none'; document.getElementById('2001.04468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">107 pages, 21 Figures, 11 Tables, accepted to ApJ. Version with all source figures: https://www.cv.nrao.edu/~jtobin/Orion-disks-fullfigs.pdf Reduced data available from https://dataverse.harvard.edu/dataverse/VANDAMOrion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07857">arXiv:1910.07857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07857">pdf</a>, <a href="https://arxiv.org/format/1910.07857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935409">10.1051/0004-6361/201935409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical and kinematic structure of extremely high-velocity molecular jets in the Serpens Main star-forming region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hull%2C+C+L+H">Charles L. H. Hull</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kristensen%2C+L+E">Lars E. Kristensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07857v1-abstract-short" style="display: inline;"> The fastest molecular component to the protostellar outflows -- extremely high-velocity (EHV) molecular jets -- are still puzzling since they are seen only rarely. The first aim is to analyze the interaction between the EHV jet and the slow outflow by comparing their outflow force content. The second aim is to analyze the chemical composition of the different outflow velocity components and to rev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07857v1-abstract-full').style.display = 'inline'; document.getElementById('1910.07857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07857v1-abstract-full" style="display: none;"> The fastest molecular component to the protostellar outflows -- extremely high-velocity (EHV) molecular jets -- are still puzzling since they are seen only rarely. The first aim is to analyze the interaction between the EHV jet and the slow outflow by comparing their outflow force content. The second aim is to analyze the chemical composition of the different outflow velocity components and to reveal the spatial location of molecules. ALMA 3 mm and 1.3 mm observations of five outflow sources at 130 -- 260 au resolution in the Serpens Main cloud are presented. Observations of CO, SiO, H$_2$CO and HCN reveal the kinematic and chemical structure of those flows. Three velocity components are distinguished: the slow and the fast wing, and the EHV jet. Out of five sources, three have the EHV component. Comparison of outflow forces reveals that only the EHV jet in the youngest source Ser-emb 8 (N) has enough momentum to power the slow outflow. The SiO abundance is generally enhanced with velocity, while HCN is present in the slow and the fast wing, but disappears in the EHV jet. For Ser-emb 8 (N), HCN and SiO show a bow-shock shaped structure surrounding one of the EHV peaks suggesting sideways ejection creating secondary shocks upon interaction with the surroundings. Also, the SiO abundance in the EHV gas decreases with distance from this protostar, whereas that in the fast wing increases. H$_2$CO is mostly associated with low-velocity gas but also appears surprisingly in one of the bullets in the Ser-emb~8~(N) EHV jet. The high detection rate suggests that the presence of the EHV jet may be more common than previously expected. The origin and temporal evolution of the abundances of SiO, HCN and H$_2$CO through high-temperature chemistry are discussed. The data are consistent with a low C/O ratio in the EHV gas versus high C/O ratio in the fast and slow wings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07857v1-abstract-full').style.display = 'none'; document.getElementById('1910.07857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures, Accepted for publication in the Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 632, A101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.00605">arXiv:1910.00605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.00605">pdf</a>, <a href="https://arxiv.org/format/1910.00605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab498f">10.3847/1538-4357/ab498f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars I. Identifying and Characterizing the Protostellar Content of the OMC2-FIR4 and OMC2-FIR3 Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoff%2C+M+v+%27">Merel van &#39;t Hoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diaz-Rodriguez%2C+A+K">Ana Karla Diaz-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+N">Nickalas Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Offner%2C+S+S+R">Stella S. R. Offner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P">Patrick Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S+I">Sarah I. Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kama%2C+M">Mihkel Kama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Persson%2C+M">Magnus Persson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I">Ian Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandler%2C+C+J">Claire J. Chandler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E">Erin Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunham%2C+M+M">Michael M. Dunham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kratter%2C+K">Kaitlin Kratter</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.00605v1-abstract-short" style="display: inline;"> We present ALMA (0.87~mm) and VLA (9~mm) observations toward OMC2-FIR4 and OMC2-FIR3 within the Orion integral-shaped filament that are thought to be the nearest regions of intermediate mass star formation. We characterize the continuum sources within these regions on $\sim$40~AU (0\farcs1) scales and associated molecular line emission at a factor of $\sim$30 better resolution than previous observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00605v1-abstract-full').style.display = 'inline'; document.getElementById('1910.00605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.00605v1-abstract-full" style="display: none;"> We present ALMA (0.87~mm) and VLA (9~mm) observations toward OMC2-FIR4 and OMC2-FIR3 within the Orion integral-shaped filament that are thought to be the nearest regions of intermediate mass star formation. We characterize the continuum sources within these regions on $\sim$40~AU (0\farcs1) scales and associated molecular line emission at a factor of $\sim$30 better resolution than previous observations at similar wavelengths. We identify six compact continuum sources within OMC2-FIR4, four in OMC2-FIR3, and one additional source just outside OMC2-FIR4. This continuum emission is tracing the inner envelope and/or disk emission on less than 100~AU scales. HOPS-108 is the only protostar in OMC2-FIR4 that exhibits emission from high-excitation transitions of complex organic molecules (e.g., methanol and other lines) coincident with the continuum emission. HOPS-370 in OMC2-FIR3 with L~$\sim$~360~\lsun, also exhibits emission from high-excitation methanol and other lines. The methanol emission toward these two protostars is indicative of temperatures high enough to thermally evaporate methanol from icy dust grains; overall these protostars have characteristics similar to hot corinos. We do not identify a clear outflow from HOPS-108 in \twco, but find evidence of interaction between the outflow/jet from HOPS-370 and the OMC2-FIR4 region. The multitude of observational constraints indicate that HOPS-108 is likely a low to intermediate-mass protostar in its main mass accretion phase and it is the most luminous protostar in OMC2-FIR4. The high resolution data presented here are essential for disentangling the embedded protostars from their surrounding dusty environments and characterizing them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00605v1-abstract-full').style.display = 'none'; document.getElementById('1910.00605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 Pages, 10 Figures, 5 Tables, accepted to ApJ</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tychoniec%2C+%C5%81&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10