CINXE.COM

Laplace transform - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Laplace transform - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"16fe917d-9d6b-4236-944f-9af73ec6e5d1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Laplace_transform","wgTitle":"Laplace transform","wgCurRevisionId":1259079631,"wgRevisionId":1259079631,"wgArticleId":18610,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","CS1 maint: location missing publisher","CS1 German-language sources (de)","Articles with short description","Short description is different from Wikidata","CS1 Hungarian-language sources (hu)","CS1 Latin-language sources (la)","Commons category link is on Wikidata","Webarchive template wayback links","Laplace transforms","Differential equations","Fourier analysis","Mathematical physics","Integral transforms"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Laplace_transform","wgRelevantArticleId":18610,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q199691", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Laplace transform - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Laplace_transform"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Laplace_transform&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Laplace_transform"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Laplace_transform rootpage-Laplace_transform skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Laplace+transform" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Laplace+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Laplace+transform" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Laplace+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Formal definition</span> </div> </a> <button aria-controls="toc-Formal_definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formal definition subsection</span> </button> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> <li id="toc-Bilateral_Laplace_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bilateral_Laplace_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Bilateral Laplace transform</span> </div> </a> <ul id="toc-Bilateral_Laplace_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_Laplace_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_Laplace_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Inverse Laplace transform</span> </div> </a> <ul id="toc-Inverse_Laplace_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Probability theory</span> </div> </a> <ul id="toc-Probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_construction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Algebraic construction</span> </div> </a> <ul id="toc-Algebraic_construction-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Region_of_convergence" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Region_of_convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Region of convergence</span> </div> </a> <ul id="toc-Region_of_convergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_and_theorems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties_and_theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties and theorems</span> </div> </a> <button aria-controls="toc-Properties_and_theorems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties and theorems subsection</span> </button> <ul id="toc-Properties_and_theorems-sublist" class="vector-toc-list"> <li id="toc-Relation_to_power_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_power_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Relation to power series</span> </div> </a> <ul id="toc-Relation_to_power_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Relation to moments</span> </div> </a> <ul id="toc-Relation_to_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transform_of_a_function&#039;s_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transform_of_a_function&#039;s_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Transform of a function's derivative</span> </div> </a> <ul id="toc-Transform_of_a_function&#039;s_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Evaluating_integrals_over_the_positive_real_axis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Evaluating_integrals_over_the_positive_real_axis"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Evaluating integrals over the positive real axis</span> </div> </a> <ul id="toc-Evaluating_integrals_over_the_positive_real_axis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relationship_to_other_transforms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relationship_to_other_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relationship to other transforms</span> </div> </a> <button aria-controls="toc-Relationship_to_other_transforms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relationship to other transforms subsection</span> </button> <ul id="toc-Relationship_to_other_transforms-sublist" class="vector-toc-list"> <li id="toc-Laplace–Stieltjes_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplace–Stieltjes_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Laplace–Stieltjes transform</span> </div> </a> <ul id="toc-Laplace–Stieltjes_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Fourier transform</span> </div> </a> <ul id="toc-Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mellin_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mellin_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Mellin transform</span> </div> </a> <ul id="toc-Mellin_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Z-transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Z-transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Z-transform</span> </div> </a> <ul id="toc-Z-transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Borel_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Borel_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Borel transform</span> </div> </a> <ul id="toc-Borel_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fundamental_relationships" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fundamental_relationships"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Fundamental relationships</span> </div> </a> <ul id="toc-Fundamental_relationships-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Table_of_selected_Laplace_transforms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Table_of_selected_Laplace_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Table of selected Laplace transforms</span> </div> </a> <ul id="toc-Table_of_selected_Laplace_transforms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-s-domain_equivalent_circuits_and_impedances" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#s-domain_equivalent_circuits_and_impedances"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span><i>s</i>-domain equivalent circuits and impedances</span> </div> </a> <ul id="toc-s-domain_equivalent_circuits_and_impedances-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_and_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Examples and applications</span> </div> </a> <button aria-controls="toc-Examples_and_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples and applications subsection</span> </button> <ul id="toc-Examples_and_applications-sublist" class="vector-toc-list"> <li id="toc-Evaluating_improper_integrals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Evaluating_improper_integrals"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Evaluating improper integrals</span> </div> </a> <ul id="toc-Evaluating_improper_integrals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_impedance_of_a_capacitor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_impedance_of_a_capacitor"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Complex impedance of a capacitor</span> </div> </a> <ul id="toc-Complex_impedance_of_a_capacitor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Impulse_response" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Impulse_response"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Impulse response</span> </div> </a> <ul id="toc-Impulse_response-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Phase_delay" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Phase_delay"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Phase delay</span> </div> </a> <ul id="toc-Phase_delay-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Statistical_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Statistical_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Statistical mechanics</span> </div> </a> <ul id="toc-Statistical_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spatial_(not_time)_structure_from_astronomical_spectrum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spatial_(not_time)_structure_from_astronomical_spectrum"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Spatial (not time) structure from astronomical spectrum</span> </div> </a> <ul id="toc-Spatial_(not_time)_structure_from_astronomical_spectrum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Birth_and_death_processes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Birth_and_death_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.7</span> <span>Birth and death processes</span> </div> </a> <ul id="toc-Birth_and_death_processes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tauberian_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tauberian_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.8</span> <span>Tauberian theory</span> </div> </a> <ul id="toc-Tauberian_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Modern" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modern"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Modern</span> </div> </a> <ul id="toc-Modern-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Historical" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Historical</span> </div> </a> <ul id="toc-Historical-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Laplace transform</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 61 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-61" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">61 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8B%E1%8D%95%E1%88%8B%E1%88%B5_%E1%88%BD%E1%8C%8D%E1%8C%8D%E1%88%AD" title="ላፕላስ ሽግግር – Amharic" lang="am" hreflang="am" data-title="ላፕላስ ሽግግር" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%88%D9%8A%D9%84_%D9%84%D8%A7%D8%A8%D9%84%D8%A7%D8%B3" title="تحويل لابلاس – Arabic" lang="ar" hreflang="ar" data-title="تحويل لابلاس" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Tresformada_de_Laplace" title="Tresformada de Laplace – Asturian" lang="ast" hreflang="ast" data-title="Tresformada de Laplace" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B2%E0%A6%BE%E0%A6%AA%E0%A7%8D%E0%A6%B2%E0%A6%BE%E0%A6%B8_%E0%A6%B0%E0%A7%82%E0%A6%AA%E0%A6%BE%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0" title="লাপ্লাস রূপান্তর – Bangla" lang="bn" hreflang="bn" data-title="লাপ্লাস রূপান্তর" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Laplace_pi%C3%A0n-o%C4%81%E2%81%BF" title="Laplace piàn-oāⁿ – Minnan" lang="nan" hreflang="nan" data-title="Laplace piàn-oāⁿ" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81" title="Преобразование на Лаплас – Bulgarian" lang="bg" hreflang="bg" data-title="Преобразование на Лаплас" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Laplaceova_transformacija" title="Laplaceova transformacija – Bosnian" lang="bs" hreflang="bs" data-title="Laplaceova transformacija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Transformada_de_Laplace" title="Transformada de Laplace – Catalan" lang="ca" hreflang="ca" data-title="Transformada de Laplace" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Laplaceova_transformace" title="Laplaceova transformace – Czech" lang="cs" hreflang="cs" data-title="Laplaceova transformace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Laplacetransformation" title="Laplacetransformation – Danish" lang="da" hreflang="da" data-title="Laplacetransformation" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Laplace-Transformation" title="Laplace-Transformation – German" lang="de" hreflang="de" data-title="Laplace-Transformation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Laplace%27i_teisendus" title="Laplace&#039;i teisendus – Estonian" lang="et" hreflang="et" data-title="Laplace&#039;i teisendus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CF%84%CE%B1%CF%83%CF%87%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CF%83%CE%BC%CF%8C%CF%82_%CE%9B%CE%B1%CF%80%CE%BB%CE%AC%CF%82" title="Μετασχηματισμός Λαπλάς – Greek" lang="el" hreflang="el" data-title="Μετασχηματισμός Λαπλάς" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Transformada_de_Laplace" title="Transformada de Laplace – Spanish" lang="es" hreflang="es" data-title="Transformada de Laplace" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Laplaca_transformo" title="Laplaca transformo – Esperanto" lang="eo" hreflang="eo" data-title="Laplaca transformo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Laplaceren_transformazio" title="Laplaceren transformazio – Basque" lang="eu" hreflang="eu" data-title="Laplaceren transformazio" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A8%D8%AF%DB%8C%D9%84_%D9%84%D8%A7%D9%BE%D9%84%D8%A7%D8%B3" title="تبدیل لاپلاس – Persian" lang="fa" hreflang="fa" data-title="تبدیل لاپلاس" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Transformation_de_Laplace" title="Transformation de Laplace – French" lang="fr" hreflang="fr" data-title="Transformation de Laplace" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Transformada_de_Laplace" title="Transformada de Laplace – Galician" lang="gl" hreflang="gl" data-title="Transformada de Laplace" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://hak.wikipedia.org/wiki/L%C3%A0-ph%C3%BA-l%C3%A0-s%E1%B9%B3%CC%82_pien-von" title="Là-phú-là-sṳ̂ pien-von – Hakka Chinese" lang="hak" hreflang="hak" data-title="Là-phú-là-sṳ̂ pien-von" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="Hakka Chinese" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%9D%BC%ED%94%8C%EB%9D%BC%EC%8A%A4_%EB%B3%80%ED%99%98" title="라플라스 변환 – Korean" lang="ko" hreflang="ko" data-title="라플라스 변환" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BC%D5%A1%D5%BA%D5%AC%D5%A1%D5%BD%D5%AB_%D5%B1%D6%87%D5%A1%D6%83%D5%B8%D5%AD%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Լապլասի ձևափոխություն – Armenian" lang="hy" hreflang="hy" data-title="Լապլասի ձևափոխություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B2%E0%A4%BE%E0%A4%AA%E0%A5%8D%E0%A4%B2%E0%A4%BE%E0%A4%B8_%E0%A4%B0%E0%A5%82%E0%A4%AA%E0%A4%BE%E0%A4%A8%E0%A5%8D%E0%A4%A4%E0%A4%B0" title="लाप्लास रूपान्तर – Hindi" lang="hi" hreflang="hi" data-title="लाप्लास रूपान्तर" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Laplaceova_transformacija" title="Laplaceova transformacija – Croatian" lang="hr" hreflang="hr" data-title="Laplaceova transformacija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Transformasi_Laplace" title="Transformasi Laplace – Indonesian" lang="id" hreflang="id" data-title="Transformasi Laplace" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Transformation_de_Laplace" title="Transformation de Laplace – Interlingua" lang="ia" hreflang="ia" data-title="Transformation de Laplace" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trasformata_di_Laplace" title="Trasformata di Laplace – Italian" lang="it" hreflang="it" data-title="Trasformata di Laplace" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%9E%D7%A8%D7%AA_%D7%9C%D7%A4%D7%9C%D7%A1" title="התמרת לפלס – Hebrew" lang="he" hreflang="he" data-title="התמרת לפלס" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Transformasi_Laplace" title="Transformasi Laplace – Javanese" lang="jv" hreflang="jv" data-title="Transformasi Laplace" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81_%D1%82%D2%AF%D1%80%D0%BB%D0%B5%D0%BD%D0%B4%D1%96%D1%80%D1%83%D1%96" title="Лаплас түрлендіруі – Kazakh" lang="kk" hreflang="kk" data-title="Лаплас түрлендіруі" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Laplaso_transformacija" title="Laplaso transformacija – Lithuanian" lang="lt" hreflang="lt" data-title="Laplaso transformacija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Laplace-transzform%C3%A1ci%C3%B3" title="Laplace-transzformáció – Hungarian" lang="hu" hreflang="hu" data-title="Laplace-transzformáció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B4%BE%E0%B4%AA%E0%B5%8D%E0%B4%B2%E0%B5%87%E0%B4%B8%E0%B5%8D_%E0%B4%AA%E0%B4%B0%E0%B4%BF%E0%B4%B5%E0%B5%BC%E0%B4%A4%E0%B5%8D%E0%B4%A4%E0%B4%A8%E0%B4%82" title="ലാപ്ലേസ് പരിവർത്തനം – Malayalam" lang="ml" hreflang="ml" data-title="ലാപ്ലേസ് പരിവർത്തനം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B2%E0%A5%85%E0%A4%AA%E0%A5%8D%E0%A4%B2%E0%A5%87%E0%A4%B8_%E0%A4%AA%E0%A4%B0%E0%A4%BF%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%A8" title="लॅप्लेस परिवर्तन – Marathi" lang="mr" hreflang="mr" data-title="लॅप्लेस परिवर्तन" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Laplacetransformatie" title="Laplacetransformatie – Dutch" lang="nl" hreflang="nl" data-title="Laplacetransformatie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B" title="ラプラス変換 – Japanese" lang="ja" hreflang="ja" data-title="ラプラス変換" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Laplacetransformasjon" title="Laplacetransformasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Laplacetransformasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Laplace-transformasjon" title="Laplace-transformasjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Laplace-transformasjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%94%E1%9F%86%E1%9E%9B%E1%9F%82%E1%9E%84%E1%9E%A1%E1%9E%B6%E1%9E%94%E1%9F%92%E1%9E%9B%E1%9E%B6%E1%9E%9F" title="បំលែងឡាប្លាស – Khmer" lang="km" hreflang="km" data-title="បំលែងឡាប្លាស" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Trasform%C3%A0_%C3%ABd_Laplace" title="Trasformà ëd Laplace – Piedmontese" lang="pms" hreflang="pms" data-title="Trasformà ëd Laplace" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Transformacja_Laplace%E2%80%99a" title="Transformacja Laplace’a – Polish" lang="pl" hreflang="pl" data-title="Transformacja Laplace’a" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Transformada_de_Laplace" title="Transformada de Laplace – Portuguese" lang="pt" hreflang="pt" data-title="Transformada de Laplace" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Transformat%C4%83_Laplace" title="Transformată Laplace – Romanian" lang="ro" hreflang="ro" data-title="Transformată Laplace" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0" title="Преобразование Лапласа – Russian" lang="ru" hreflang="ru" data-title="Преобразование Лапласа" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Transformimi_i_Laplasit" title="Transformimi i Laplasit – Albanian" lang="sq" hreflang="sq" data-title="Transformimi i Laplasit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Laplace_transform" title="Laplace transform – Simple English" lang="en-simple" hreflang="en-simple" data-title="Laplace transform" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Laplaceova_transformacija" title="Laplaceova transformacija – Slovenian" lang="sl" hreflang="sl" data-title="Laplaceova transformacija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%BE%D0%B2%D0%B0_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Лапласова трансформација – Serbian" lang="sr" hreflang="sr" data-title="Лапласова трансформација" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Laplaceova_transformacija" title="Laplaceova transformacija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Laplaceova transformacija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Transformasi_Laplace" title="Transformasi Laplace – Sundanese" lang="su" hreflang="su" data-title="Transformasi Laplace" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Laplace-muunnos" title="Laplace-muunnos – Finnish" lang="fi" hreflang="fi" data-title="Laplace-muunnos" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Laplacetransform" title="Laplacetransform – Swedish" lang="sv" hreflang="sv" data-title="Laplacetransform" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%87%E0%AE%B2%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AE%BF%E0%AE%B3%E0%AE%BE%E0%AE%9A%E0%AF%81_%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AF%81" title="இலப்பிளாசு மாற்று – Tamil" lang="ta" hreflang="ta" data-title="இலப்பிளாசு மாற்று" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tabeddilt_n_Lapla%E1%B9%A3" title="Tabeddilt n Laplaṣ – Kabyle" lang="kab" hreflang="kab" data-title="Tabeddilt n Laplaṣ" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B8%A5%E0%B8%B2%E0%B8%9B%E0%B8%A5%E0%B8%B1%E0%B8%AA" title="การแปลงลาปลัส – Thai" lang="th" hreflang="th" data-title="การแปลงลาปลัส" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Laplace_d%C3%B6n%C3%BC%C5%9F%C3%BCm%C3%BC" title="Laplace dönüşümü – Turkish" lang="tr" hreflang="tr" data-title="Laplace dönüşümü" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%B5%D0%BD%D0%BD%D1%8F_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0" title="Перетворення Лапласа – Ukrainian" lang="uk" hreflang="uk" data-title="Перетворення Лапласа" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A9p_bi%E1%BA%BFn_%C4%91%E1%BB%95i_Laplace" title="Phép biến đổi Laplace – Vietnamese" lang="vi" hreflang="vi" data-title="Phép biến đổi Laplace" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%8F%98%E6%8D%A2" title="拉普拉斯变换 – Wu" lang="wuu" hreflang="wuu" data-title="拉普拉斯变换" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E8%AE%8A%E6%8F%9B" title="拉普拉斯變換 – Cantonese" lang="yue" hreflang="yue" data-title="拉普拉斯變換" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%8F%98%E6%8D%A2" title="拉普拉斯变换 – Chinese" lang="zh" hreflang="zh" data-title="拉普拉斯变换" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q199691#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Laplace_transform" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Laplace_transform" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Laplace_transform"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Laplace_transform"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Laplace_transform" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Laplace_transform" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;oldid=1259079631" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Laplace_transform&amp;id=1259079631&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaplace_transform"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaplace_transform"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Laplace_transform&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Laplace_transform&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Laplace_transformation" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Laplace_transform" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q199691" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Integral transform useful in probability theory, physics, and engineering</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Laplace transform</b>, named after <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;p&#39; in &#39;pie&#39;">p</span><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/ɑː/: &#39;a&#39; in &#39;father&#39;">ɑː</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span></span>/</a></span></span>), is an <a href="/wiki/Integral_transform" title="Integral transform">integral transform</a> that converts a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of a <a href="/wiki/Real_number" title="Real number">real</a> <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> (usually <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, in the <i><a href="/wiki/Time_domain" title="Time domain">time domain</a></i>) to a function of a <a href="/wiki/Complex_number" title="Complex number">complex</a> variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> (in the complex-valued <a href="/wiki/Frequency_domain" title="Frequency domain">frequency domain</a>, also known as <b><i>s</i>-domain</b>, or <b><i>s</i>-plane</b>). </p><p>The transform is useful for converting <a href="/wiki/Derivative" title="Derivative">differentiation</a> and <a href="/wiki/Integral" title="Integral">integration</a> in the time domain into much easier <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> and <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> in the Laplace domain (analogous to how <a href="/wiki/Logarithm" title="Logarithm">logarithms</a> are useful for simplifying multiplication and division into addition and subtraction). This gives the transform many applications in <a href="/wiki/Science" title="Science">science</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a>, mostly as a tool for solving linear <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a><sup id="cite_ref-Lynn_1986_pp._225–272_1-0" class="reference"><a href="#cite_note-Lynn_1986_pp._225–272-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a> by simplifying <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a> and <a href="/wiki/Integral_equation" title="Integral equation">integral equations</a> into <a href="/wiki/Algebraic_equation" title="Algebraic equation">algebraic polynomial equations</a>, and by simplifying <a href="/wiki/Convolution" title="Convolution">convolution</a> into <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_3-0" class="reference"><a href="#cite_note-:1-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Once solved, the inverse Laplace transform reverts to the original domain. </p><p>The Laplace transform is defined (for suitable functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>) by the <a href="/wiki/Integral" title="Integral">integral</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e651bc0a5afce60c04b04c75ae63d7586da33eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.908ex; height:5.843ex;" alt="{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}"></span> where <i>s</i> is a <a href="/wiki/Complex_number" title="Complex number">complex number</a>. It is related to many other transforms, most notably the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> and the <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a>. <a href="/wiki/Formal_calculation" title="Formal calculation">Formally</a>, the Laplace transform is converted into a Fourier transform by the substitution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=i\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=i\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d22a51fb4400f3d4c9977ab83dce57351807af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.437ex; height:2.176ex;" alt="{\displaystyle s=i\omega }"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is real. However, unlike the Fourier transform, which gives the decomposition of a function into its components in each frequency, the Laplace transform of a function with suitable decay is an <a href="/wiki/Analytic_function" title="Analytic function">analytic function</a>, and so has a convergent <a href="/wiki/Power_series" title="Power series">power series</a>, the coefficients of which give the decomposition of a function into its <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a>. Also unlike the Fourier transform, when regarded in this way as an analytic function, the techniques of <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, and especially <a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">contour integrals</a>, can be used for calculations. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Laplace,_Pierre-Simon,_marquis_de.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/Laplace%2C_Pierre-Simon%2C_marquis_de.jpg/220px-Laplace%2C_Pierre-Simon%2C_marquis_de.jpg" decoding="async" width="220" height="258" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/3/39/Laplace%2C_Pierre-Simon%2C_marquis_de.jpg 1.5x" data-file-width="256" data-file-height="300" /></a><figcaption>Pierre-Simon, marquis de Laplace</figcaption></figure> <p>The Laplace transform is named after <a href="/wiki/Mathematician" title="Mathematician">mathematician</a> and <a href="/wiki/Astronomer" title="Astronomer">astronomer</a> <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon, Marquis de Laplace</a>, who used a similar transform in his work on <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Laplace wrote extensively about the use of <a href="/wiki/Generating_function" title="Generating function">generating functions</a> (1814), and the integral form of the Laplace transform evolved naturally as a result.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Laplace's use of generating functions was similar to what is now known as the <a href="/wiki/Z-transform" title="Z-transform">z-transform</a>, and he gave little attention to the <a href="/wiki/Continuous_variable" class="mw-redirect" title="Continuous variable">continuous variable</a> case which was discussed by <a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Niels Henrik Abel</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>From 1744, <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> investigated integrals of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=\int X(x)e^{ax}\,dx\quad {\text{ and }}\quad z=\int X(x)x^{A}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>z</mi> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=\int X(x)e^{ax}\,dx\quad {\text{ and }}\quad z=\int X(x)x^{A}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68755e9371711ae4c72dcba6afb4168c837e675c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:45.112ex; height:5.676ex;" alt="{\displaystyle z=\int X(x)e^{ax}\,dx\quad {\text{ and }}\quad z=\int X(x)x^{A}\,dx}"></span> as solutions of differential equations, introducing in particular the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a> was an admirer of Euler and, in his work on integrating <a href="/wiki/Probability_density_function" title="Probability density function">probability density functions</a>, investigated expressions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int X(x)e^{-ax}a^{x}\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>x</mi> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int X(x)e^{-ax}a^{x}\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e618803bc9a7c33bcbcb907eff4be396836cc51a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.086ex; height:5.676ex;" alt="{\displaystyle \int X(x)e^{-ax}a^{x}\,dx,}"></span> which resembles a Laplace transform.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>These types of integrals seem first to have attracted Laplace's attention in 1782, where he was following in the spirit of Euler in using the integrals themselves as solutions of equations.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> However, in 1785, Laplace took the critical step forward when, rather than simply looking for a solution in the form of an integral, he started to apply the transforms in the sense that was later to become popular. He used an integral of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{s}\varphi (x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{s}\varphi (x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2ba1ede95c4ca1e8202c36f5fcf17becc286e8a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.152ex; height:5.676ex;" alt="{\displaystyle \int x^{s}\varphi (x)\,dx,}"></span> akin to a <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a>, to transform the whole of a <a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">difference equation</a>, in order to look for solutions of the transformed equation. He then went on to apply the Laplace transform in the same way and started to derive some of its properties, beginning to appreciate its potential power.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Laplace also recognised that <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a>'s method of <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> for solving the <a href="/wiki/Diffusion_equation" title="Diffusion equation">diffusion equation</a> could only apply to a limited region of space, because those solutions were <a href="/wiki/Periodic_function" title="Periodic function">periodic</a>. In 1809, Laplace applied his transform to find solutions that diffused indefinitely in space.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> In 1821, <a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a> developed an <a href="/wiki/Operational_calculus" title="Operational calculus">operational calculus</a> for the Laplace transform that could be used to study linear differential equations in much the same way the transform is now used in basic engineering. This method was popularized, and perhaps rediscovered, by <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a> around the turn of the century.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> used the Laplace transform in his 1859 paper <a href="/wiki/On_the_number_of_primes_less_than_a_given_magnitude" class="mw-redirect" title="On the number of primes less than a given magnitude"><i>On the Number of Primes Less Than a Given Magnitude</i></a>, in which he also developed the inversion theorem. Riemann used the Laplace transform to develop the functional equation of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>, and this method is still used to related the <a href="/wiki/Modular_form" title="Modular form">modular transformation law</a> of the <a href="/wiki/Jacobi_theta_function" class="mw-redirect" title="Jacobi theta function">Jacobi theta function</a>, which is simple to prove via <a href="/wiki/Poisson_summation" class="mw-redirect" title="Poisson summation">Poisson summation</a>, to the functional equation. </p><p><a href="/wiki/Hjalmar_Mellin" title="Hjalmar Mellin">Hjalmar Mellin</a> was among the first to study the Laplace transform, rigorously in the <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Karl Weierstrass</a> school of analysis, and apply it to the study of <a href="/wiki/Differential_equations" class="mw-redirect" title="Differential equations">differential equations</a> and <a href="/wiki/Special_functions" title="Special functions">special functions</a>, at the turn of the 20th century.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> At around the same time, Heaviside was busy with his operational calculus. <a href="/wiki/Thomas_Joannes_Stieltjes" title="Thomas Joannes Stieltjes">Thomas Joannes Stieltjes</a> considered a generalization of the Laplace transform connected to his <a href="/wiki/Stieltjes_moment_problem" title="Stieltjes moment problem">work on moments</a>. Other contributors in this time period included <a href="/wiki/Mathias_Lerch" title="Mathias Lerch">Mathias Lerch</a>,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a>, and <a href="/wiki/Thomas_John_I%27Anson_Bromwich" title="Thomas John I&#39;Anson Bromwich">Thomas Bromwich</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1934, <a href="/wiki/Raymond_Paley" title="Raymond Paley">Raymond Paley</a> and <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a> published the important work <i>Fourier transforms in the complex domain</i>, about what is now called the Laplace transform (see below). Also during the 30s, the Laplace transform was instrumental in <a href="/wiki/G_H_Hardy" class="mw-redirect" title="G H Hardy">G H Hardy</a> and <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">John Edensor Littlewood</a>'s study of <a href="/wiki/Tauberian_theorem" class="mw-redirect" title="Tauberian theorem">tauberian theorems</a>, and this application was later expounded on by Widder (1941), who developed other aspects of the theory such as a new method for inversion. <a href="/wiki/Edward_Charles_Titchmarsh" title="Edward Charles Titchmarsh">Edward Charles Titchmarsh</a> wrote the influential <i>Introduction to the theory of the Fourier integral</i> (1937). </p><p>The current widespread use of the transform (mainly in engineering) came about during and soon after <a href="/wiki/World_War_II" title="World War II">World War II</a>,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> replacing the earlier Heaviside <a href="/wiki/Operational_calculus" title="Operational calculus">operational calculus</a>. The advantages of the Laplace transform had been emphasized by <a href="/wiki/Gustav_Doetsch" title="Gustav Doetsch">Gustav Doetsch</a>,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> to whom the name Laplace transform is apparently due. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=2" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Complex_frequency_s-domain_negative.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Complex_frequency_s-domain_negative.jpg/220px-Complex_frequency_s-domain_negative.jpg" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Complex_frequency_s-domain_negative.jpg/330px-Complex_frequency_s-domain_negative.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Complex_frequency_s-domain_negative.jpg/440px-Complex_frequency_s-domain_negative.jpg 2x" data-file-width="697" data-file-height="700" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re (e^{-st})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re (e^{-st})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/252b2936f843645deb1da1e8ffbfaf8d581a6c81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.693ex; height:3.009ex;" alt="{\displaystyle \Re (e^{-st})}"></span> for various complex frequencies in the <i>s</i>-domain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s=\sigma +i\omega ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s=\sigma +i\omega ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8fa49e8c0398413251a2f6957f1d57581a22539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.063ex; height:2.843ex;" alt="{\displaystyle (s=\sigma +i\omega ),}"></span> which can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\sigma t}\cos(\omega t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> </msup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\sigma t}\cos(\omega t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ce54deb22d55c09e85f6a4672a99febe8dceac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.368ex; height:3.009ex;" alt="{\displaystyle e^{-\sigma t}\cos(\omega t).}"></span> The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eb4831f1e0ca1ba7d007dc6b973e54787e1a4b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle \sigma =0}"></span> axis contains pure cosines. Positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> contains <a href="/wiki/Damped_sinusoid" class="mw-redirect" title="Damped sinusoid">damped cosines</a>. Negative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> contains <a href="/wiki/Exponential_growth" title="Exponential growth">exponentially growing</a> cosines.</figcaption></figure> <p>The Laplace transform of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml"><i>f</i>(<i>t</i>)</span>, defined for all <a href="/wiki/Real_number" title="Real number">real numbers</a> <span class="texhtml"><i>t</i> ≥ 0</span>, is the function <span class="texhtml"><i>F</i>(<i>s</i>)</span>, which is a unilateral transform defined by </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/982f44b7a82326e7cfe6cf9d2aaa945605ae38fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.442ex; height:5.843ex;" alt="{\displaystyle F(s)=\int _{0}^{\infty }f(t)e^{-st}\,dt,}"></span>&#160;&#160;&#160;(<span id="math_Eq._1" class="reference nourlexpansion" style="font-weight:bold;">Eq. 1</span>) </p> </div> <p>where <i>s</i> is a <a href="/wiki/Complex_number" title="Complex number">complex</a> frequency-domain parameter <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\sigma +i\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\sigma +i\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54cae0a096fc30983395d84e6d07fa3d2818fac0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.607ex; height:2.343ex;" alt="{\displaystyle s=\sigma +i\omega }"></span> with real numbers <span class="texhtml mvar" style="font-style:italic;">σ</span> and <span class="texhtml mvar" style="font-style:italic;">ω</span>. </p><p>An alternate notation for the Laplace transform is <span class="anchor" id="ℒ"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2734e92c352d7115a47553097a0e35462f915ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.207ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}\{f\}}"></span> instead of <span class="texhtml"><i>F</i></span>,<sup id="cite_ref-:1_3-1" class="reference"><a href="#cite_note-:1-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> often written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bd0b873c7673d6ef7f6e9ea4e0e121d5771981f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.595ex; height:2.843ex;" alt="{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}"></span> in an <a href="/wiki/Function_(mathematics)#Functional_notation" title="Function (mathematics)">abuse of notation</a>. </p><p>The meaning of the integral depends on types of functions of interest. A necessary condition for existence of the integral is that <span class="texhtml mvar" style="font-style:italic;">f</span> must be <a href="/wiki/Locally_integrable" class="mw-redirect" title="Locally integrable">locally integrable</a> on <span class="texhtml">&#91;0, ∞)</span>. For locally integrable functions that decay at infinity or are of <a href="/wiki/Exponential_type" title="Exponential type">exponential type</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(t)|\leq Ae^{B|t|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(t)|\leq Ae^{B|t|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3afb2261b1eddec57e0578ed13c92cb3a891821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.134ex; height:3.343ex;" alt="{\displaystyle |f(t)|\leq Ae^{B|t|}}"></span>), the integral can be understood to be a (proper) <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a>. However, for many applications it is necessary to regard it as a <a href="/wiki/Conditionally_convergent" class="mw-redirect" title="Conditionally convergent">conditionally convergent</a> <a href="/wiki/Improper_integral" title="Improper integral">improper integral</a> at <span class="texhtml">∞</span>. Still more generally, the integral can be understood in a <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">weak sense</a>, and this is dealt with below. </p><p>One can define the Laplace transform of a finite <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a> <span class="texhtml mvar" style="font-style:italic;">μ</span> by the Lebesgue integral<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{\mu \}(s)=\int _{[0,\infty )}e^{-st}\,d\mu (t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>&#x03BC;<!-- μ --></mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{\mu \}(s)=\int _{[0,\infty )}e^{-st}\,d\mu (t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d28c2f4979692767dc46b5c537fb4ae7a370118" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.519ex; height:6.009ex;" alt="{\displaystyle {\mathcal {L}}\{\mu \}(s)=\int _{[0,\infty )}e^{-st}\,d\mu (t).}"></span> </p><p>An important special case is where <span class="texhtml mvar" style="font-style:italic;">μ</span> is a <a href="/wiki/Probability_measure" title="Probability measure">probability measure</a>, for example, the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>. In <a href="/wiki/Operational_calculus" title="Operational calculus">operational calculus</a>, the Laplace transform of a measure is often treated as though the measure came from a probability density function <span class="texhtml mvar" style="font-style:italic;">f</span>. In that case, to avoid potential confusion, one often writes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0^{-}}^{\infty }f(t)e^{-st}\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0^{-}}^{\infty }f(t)e^{-st}\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/927b5a7f96e795abb080680527abae4fc7016cd1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.908ex; height:5.843ex;" alt="{\displaystyle {\mathcal {L}}\{f\}(s)=\int _{0^{-}}^{\infty }f(t)e^{-st}\,dt,}"></span> where the lower limit of <span class="texhtml">0<sup>−</sup></span> is shorthand notation for <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\varepsilon }^{\infty }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\varepsilon }^{\infty }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49c0048ea0225182048b3f1e705588ef8b4afab2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.807ex; height:6.009ex;" alt="{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\varepsilon }^{\infty }.}"></span> </p><p>This limit emphasizes that any point mass located at <span class="texhtml">0</span> is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the <a href="/wiki/Laplace%E2%80%93Stieltjes_transform" title="Laplace–Stieltjes transform">Laplace–Stieltjes transform</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Bilateral_Laplace_transform">Bilateral Laplace transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=3" title="Edit section: Bilateral Laplace transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Two-sided_Laplace_transform" title="Two-sided Laplace transform">Two-sided Laplace transform</a></div> <p>When one says "the Laplace transform" without qualification, the unilateral or one-sided transform is usually intended. The Laplace transform can be alternatively defined as the <i>bilateral Laplace transform</i>, or <a href="/wiki/Two-sided_Laplace_transform" title="Two-sided Laplace transform">two-sided Laplace transform</a>, by extending the limits of integration to be the entire real axis. If that is done, the common unilateral transform simply becomes a special case of the bilateral transform, where the definition of the function being transformed is multiplied by the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside step function</a>. </p><p>The bilateral Laplace transform <span class="texhtml"><i>F</i>(<i>s</i>)</span> is defined as follows: </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)=\int _{-\infty }^{\infty }e^{-st}f(t)\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)=\int _{-\infty }^{\infty }e^{-st}f(t)\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84820999bf8c11f845a98b762047520bf947f960" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.549ex; height:6.009ex;" alt="{\displaystyle F(s)=\int _{-\infty }^{\infty }e^{-st}f(t)\,dt.}"></span>&#160;&#160;&#160;(<span id="math_Eq._2" class="reference nourlexpansion" style="font-weight:bold;">Eq. 2</span>) </p> </div> <p>An alternate notation for the bilateral Laplace transform is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}\{f\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}\{f\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f162776eba3f1c5666aa134b0dd270b7ce62a998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.147ex; height:2.843ex;" alt="{\displaystyle {\mathcal {B}}\{f\}}"></span>, instead of <span class="texhtml mvar" style="font-style:italic;">F</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Inverse_Laplace_transform">Inverse Laplace transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=4" title="Edit section: Inverse Laplace transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Inverse_Laplace_transform" title="Inverse Laplace transform">Inverse Laplace transform</a></div> <p>Two integrable functions have the same Laplace transform only if they differ on a set of <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a> zero. This means that, on the range of the transform, there is an inverse transform. In fact, besides integrable functions, the Laplace transform is a <a href="/wiki/One-to-one_function" class="mw-redirect" title="One-to-one function">one-to-one mapping</a> from one function space into another in many other function spaces as well, although there is usually no easy characterization of the range. </p><p>Typical function spaces in which this is true include the spaces of bounded continuous functions, the space <span class="texhtml"><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup>∞</sup>(0, ∞)</a></span>, or more generally <a href="/wiki/Tempered_distributions" class="mw-redirect" title="Tempered distributions">tempered distributions</a> on <span class="texhtml">(0, ∞)</span>. The Laplace transform is also defined and injective for suitable spaces of tempered distributions. </p><p>In these cases, the image of the Laplace transform lives in a space of <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a> in the <a href="#Region_of_convergence">region of convergence</a>. The <a href="/wiki/Inverse_Laplace_transform" title="Inverse Laplace transform">inverse Laplace transform</a> is given by the following complex integral, which is known by various names (the <b>Bromwich integral</b>, the <b>Fourier–Mellin integral</b>, and <b>Mellin's inverse formula</b>): </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)={\mathcal {L}}^{-1}\{F\}(t)={\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{\gamma -iT}^{\gamma +iT}e^{st}F(s)\,ds,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mi>i</mi> <mi>T</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)={\mathcal {L}}^{-1}\{F\}(t)={\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{\gamma -iT}^{\gamma +iT}e^{st}F(s)\,ds,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5efafcd962aa264ad91c3e5dc7b73c07970776a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.767ex; height:6.509ex;" alt="{\displaystyle f(t)={\mathcal {L}}^{-1}\{F\}(t)={\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{\gamma -iT}^{\gamma +iT}e^{st}F(s)\,ds,}"></span>&#160;&#160;&#160;(<span id="math_Eq._3" class="reference nourlexpansion" style="font-weight:bold;">Eq. 3</span>) </p> </div> <p>where <span class="texhtml mvar" style="font-style:italic;">γ</span> is a real number so that the contour path of integration is in the region of convergence of <span class="texhtml"><i>F</i>(<i>s</i>)</span>. In most applications, the contour can be closed, allowing the use of the <a href="/wiki/Residue_theorem" title="Residue theorem">residue theorem</a>. An alternative formula for the inverse Laplace transform is given by <a href="/wiki/Post%27s_inversion_formula" class="mw-redirect" title="Post&#39;s inversion formula">Post's inversion formula</a>. The limit here is interpreted in the <a href="/wiki/Weak_topology#Weak-*_topology" title="Weak topology">weak-* topology</a>. </p><p>In practice, it is typically more convenient to decompose a Laplace transform into known transforms of functions obtained from a table and construct the inverse by inspection. </p> <div class="mw-heading mw-heading3"><h3 id="Probability_theory">Probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=5" title="Edit section: Probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">pure</a> and <a href="/wiki/Applied_probability" title="Applied probability">applied probability</a>, the Laplace transform is defined as an <a href="/wiki/Expected_value" title="Expected value">expected value</a>. If <span class="texhtml mvar" style="font-style:italic;">X</span> is a <a href="/wiki/Random_variable" title="Random variable">random variable</a> with probability density function <span class="texhtml mvar" style="font-style:italic;">f</span>, then the Laplace transform of <span class="texhtml mvar" style="font-style:italic;">f</span> is given by the expectation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f\}(s)=\operatorname {E} \left[e^{-sX}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>X</mi> </mrow> </msup> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f\}(s)=\operatorname {E} \left[e^{-sX}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3da28029aa437333b370a72f00e2745d1f8e8c73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.14ex; height:3.343ex;" alt="{\displaystyle {\mathcal {L}}\{f\}(s)=\operatorname {E} \left[e^{-sX}\right],}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [r]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>r</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [r]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715165949e716ef97cb5b61ba0982325cef86a1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.925ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [r]}"></span> is the <a href="/wiki/Expected_value" title="Expected value">expectation</a> of <a href="/wiki/Random_variable" title="Random variable">random variable</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>. </p><p>By <a href="/wiki/Abuse_of_notation" title="Abuse of notation">convention</a>, this is referred to as the Laplace transform of the random variable <span class="texhtml mvar" style="font-style:italic;">X</span> itself. Here, replacing <span class="texhtml mvar" style="font-style:italic;">s</span> by <span class="texhtml">−<i>t</i></span> gives the <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a> of <span class="texhtml mvar" style="font-style:italic;">X</span>. The Laplace transform has applications throughout probability theory, including <a href="/wiki/First_passage_time" class="mw-redirect" title="First passage time">first passage times</a> of <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic processes</a> such as <a href="/wiki/Markov_chain" title="Markov chain">Markov chains</a>, and <a href="/wiki/Renewal_theory" title="Renewal theory">renewal theory</a>. </p><p>Of particular use is the ability to recover the <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> of a continuous random variable <span class="texhtml mvar" style="font-style:italic;">X</span> by means of the Laplace transform as follows:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}\operatorname {E} \left[e^{-sX}\right]\right\}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>X</mi> </mrow> </msup> <mo>]</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}\operatorname {E} \left[e^{-sX}\right]\right\}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9728fa6f7b7c0cf6c7fd18917b64a4bbea2c7f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.56ex; height:6.176ex;" alt="{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}\operatorname {E} \left[e^{-sX}\right]\right\}(x)={\mathcal {L}}^{-1}\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}(x).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_construction">Algebraic construction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=6" title="Edit section: Algebraic construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform can be alternatively defined in a purely algebraic manner by applying a <a href="/wiki/Field_of_fractions" title="Field of fractions">field of fractions</a> construction to the convolution <a href="/wiki/Ring_(abstract_algebra)" class="mw-redirect" title="Ring (abstract algebra)">ring</a> of functions on the positive half-line. The resulting <a href="/wiki/Convolution_quotient" title="Convolution quotient">space of abstract operators</a> is exactly equivalent to Laplace space, but in this construction the forward and reverse transforms never need to be explicitly defined (avoiding the related difficulties with proving convergence).<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Region_of_convergence">Region of convergence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=7" title="Edit section: Region of convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Pole%E2%80%93zero_plot#Continuous-time_systems" title="Pole–zero plot">Pole–zero plot §&#160;Continuous-time systems</a></div> <p>If <span class="texhtml"><i>f</i></span> is a locally integrable function (or more generally a Borel measure locally of bounded variation), then the Laplace transform <span class="texhtml"><i>F</i>(<i>s</i>)</span> of <span class="texhtml"><i>f</i></span> converges provided that the limit <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{R\to \infty }\int _{0}^{R}f(t)e^{-st}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{R\to \infty }\int _{0}^{R}f(t)e^{-st}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258b60d39214672b6ca0977ff53c264b1d98d205" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.581ex; height:6.176ex;" alt="{\displaystyle \lim _{R\to \infty }\int _{0}^{R}f(t)e^{-st}\,dt}"></span> exists. </p><p>The Laplace transform <a href="/wiki/Absolute_convergence" title="Absolute convergence">converges absolutely</a> if the integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }\left|f(t)e^{-st}\right|\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }\left|f(t)e^{-st}\right|\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e83ac2f44d3bc78033a4771e78fe1304fed57c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.737ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }\left|f(t)e^{-st}\right|\,dt}"></span> exists as a proper Lebesgue integral. The Laplace transform is usually understood as <a href="/wiki/Conditional_convergence" title="Conditional convergence">conditionally convergent</a>, meaning that it converges in the former but not in the latter sense. </p><p>The set of values for which <span class="texhtml"><i>F</i>(<i>s</i>)</span> converges absolutely is either of the form <span class="texhtml">Re(<i>s</i>) &gt; <i>a</i></span> or <span class="texhtml">Re(<i>s</i>) ≥ <i>a</i></span>, where <span class="texhtml"><i>a</i></span> is an <a href="/wiki/Extended_real_number" class="mw-redirect" title="Extended real number">extended real constant</a> with <span class="texhtml">−∞ ≤ <i>a</i> ≤ ∞</span> (a consequence of the <a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">dominated convergence theorem</a>). The constant <span class="texhtml"><i>a</i></span> is known as the abscissa of absolute convergence, and depends on the growth behavior of <span class="texhtml"><i>f</i>(<i>t</i>)</span>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Analogously, the two-sided transform converges absolutely in a strip of the form <span class="texhtml"><i>a</i> &lt; Re(<i>s</i>) &lt; <i>b</i></span>, and possibly including the lines <span class="texhtml">Re(<i>s</i>) = <i>a</i></span> or <span class="texhtml">Re(<i>s</i>) = <i>b</i></span>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The subset of values of <span class="texhtml"><i>s</i></span> for which the Laplace transform converges absolutely is called the region of absolute convergence, or the domain of absolute convergence. In the two-sided case, it is sometimes called the strip of absolute convergence. The Laplace transform is analytic in the region of absolute convergence: this is a consequence of <a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's theorem</a> and <a href="/wiki/Morera%27s_theorem" title="Morera&#39;s theorem">Morera's theorem</a>. </p><p>Similarly, the set of values for which <span class="texhtml"><i>F</i>(<i>s</i>)</span> converges (conditionally or absolutely) is known as the region of conditional convergence, or simply the <b>region of convergence</b> (ROC). If the Laplace transform converges (conditionally) at <span class="texhtml"><i>s</i> = <i>s</i><sub>0</sub></span>, then it automatically converges for all <span class="texhtml"><i>s</i></span> with <span class="texhtml">Re(<i>s</i>) &gt; Re(<i>s</i><sub>0</sub>)</span>. Therefore, the region of convergence is a half-plane of the form <span class="texhtml">Re(<i>s</i>) &gt; <i>a</i></span>, possibly including some points of the boundary line <span class="texhtml">Re(<i>s</i>) = <i>a</i></span>. </p><p>In the region of convergence <span class="texhtml">Re(<i>s</i>) &gt; Re(<i>s</i><sub>0</sub>)</span>, the Laplace transform of <span class="texhtml"><i>f</i></span> can be expressed by <a href="/wiki/Integration_by_parts" title="Integration by parts">integrating by parts</a> as the integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)=(s-s_{0})\int _{0}^{\infty }e^{-(s-s_{0})t}\beta (t)\,dt,\quad \beta (u)=\int _{0}^{u}e^{-s_{0}t}f(t)\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mspace width="1em" /> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)=(s-s_{0})\int _{0}^{\infty }e^{-(s-s_{0})t}\beta (t)\,dt,\quad \beta (u)=\int _{0}^{u}e^{-s_{0}t}f(t)\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99e8feba04b19cd2c61d80c1ed00bed66332bc6e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:62.038ex; height:5.843ex;" alt="{\displaystyle F(s)=(s-s_{0})\int _{0}^{\infty }e^{-(s-s_{0})t}\beta (t)\,dt,\quad \beta (u)=\int _{0}^{u}e^{-s_{0}t}f(t)\,dt.}"></span> </p><p>That is, <span class="texhtml"><i>F</i>(<i>s</i>)</span> can effectively be expressed, in the region of convergence, as the absolutely convergent Laplace transform of some other function. In particular, it is analytic. </p><p>There are several <a href="/wiki/Paley%E2%80%93Wiener_theorem" title="Paley–Wiener theorem">Paley–Wiener theorems</a> concerning the relationship between the decay properties of <span class="texhtml"><i>f</i></span>, and the properties of the Laplace transform within the region of convergence. </p><p>In engineering applications, a function corresponding to a <a href="/wiki/Linear_time-invariant_system" title="Linear time-invariant system">linear time-invariant (LTI) system</a> is <i>stable</i> if every bounded input produces a bounded output. This is equivalent to the absolute convergence of the Laplace transform of the impulse response function in the region <span class="texhtml">Re(<i>s</i>) ≥ 0</span>. As a result, LTI systems are stable, provided that the poles of the Laplace transform of the impulse response function have negative real part. </p><p>This ROC is used in knowing about the causality and stability of a system. </p> <div class="mw-heading mw-heading2"><h2 id="Properties_and_theorems">Properties and theorems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=8" title="Edit section: Properties and theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform's key property is that it converts <a href="/wiki/Derivative" title="Derivative">differentiation</a> and <a href="/wiki/Integral" title="Integral">integration</a> in the time domain into multiplication and division by <span class="texhtml"><i>s</i></span> in the Laplace domain. Thus, the Laplace variable <span class="texhtml"><i>s</i></span> is also known as an <i>operator variable</i> in the Laplace domain: either the <i>derivative operator</i> or (for <span class="texhtml"><i>s</i><sup>−1</sup>)</span> the <i>integration operator</i>. </p><p>Given the functions <span class="texhtml"><i>f</i>(<i>t</i>)</span> and <span class="texhtml"><i>g</i>(<i>t</i>)</span>, and their respective Laplace transforms <span class="texhtml"><i>F</i>(<i>s</i>)</span> and <span class="texhtml"><i>G</i>(<i>s</i>)</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(t)&amp;={\mathcal {L}}^{-1}\{F(s)\},\\g(t)&amp;={\mathcal {L}}^{-1}\{G(s)\},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(t)&amp;={\mathcal {L}}^{-1}\{F(s)\},\\g(t)&amp;={\mathcal {L}}^{-1}\{G(s)\},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f0bc42b6abe9cf8011aaa7c74bb3d4f64006b3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.412ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}f(t)&amp;={\mathcal {L}}^{-1}\{F(s)\},\\g(t)&amp;={\mathcal {L}}^{-1}\{G(s)\},\end{aligned}}}"></span> </p><p>the following table is a list of properties of unilateral Laplace transform:<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" id="291017_tableid"> <caption>Properties of the unilateral Laplace transform </caption> <tbody><tr> <th scope="col">Property </th> <th scope="col">Time domain </th> <th scope="col"><span class="texhtml"><i>s</i></span> domain </th> <th scope="col">Comment </th></tr> <tr> <th scope="row"><a href="/wiki/Linearity" title="Linearity">Linearity</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle af(t)+bg(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle af(t)+bg(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c439e5ee4a098d215f3da4140f07fe1cc1c8a38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.341ex; height:2.843ex;" alt="{\displaystyle af(t)+bg(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aF(s)+bG(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aF(s)+bG(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/088f5665dc6da7d301477215f45387b8d60d1567" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.015ex; height:2.843ex;" alt="{\displaystyle aF(s)+bG(s)\ }"></span> </td> <td>Can be proved using basic rules of integration. </td></tr> <tr> <th scope="row">Frequency-domain derivative </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tf(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tf(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c4cc37f83e8dd4af082f40b6e4d8f6c9cae257d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.348ex; height:2.843ex;" alt="{\displaystyle tf(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -F'(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>F</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -F'(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5daabdcf623d228093dd62c7fa3eebdb4171e360" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.788ex; height:3.009ex;" alt="{\displaystyle -F&#039;(s)\ }"></span> </td> <td><span class="texhtml"><i>F</i>′</span> is the first derivative of <span class="texhtml"><i>F</i></span> with respect to <span class="texhtml"><i>s</i></span>. </td></tr> <tr> <th scope="row">Frequency-domain general derivative </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{n}f(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{n}f(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10fbe602f1730ce9da2c17500fefec4f4b2f3fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.566ex; height:2.843ex;" alt="{\displaystyle t^{n}f(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{n}F^{(n)}(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{n}F^{(n)}(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8286f5111f20c15a32de3f69af0f0aee5e90effa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.791ex; height:3.343ex;" alt="{\displaystyle (-1)^{n}F^{(n)}(s)\ }"></span> </td> <td>More general form, <span class="texhtml"><i>n</i></span>th derivative of <span class="texhtml"><i>F</i>(<i>s</i>)</span>. </td></tr> <tr> <th scope="row"><a href="/wiki/Derivative" title="Derivative">Derivative</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9694560ffc3e47b35c1c3e1412477c27b320b9fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.235ex; height:3.009ex;" alt="{\displaystyle f&#039;(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sF(s)-f(0^{-})\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sF(s)-f(0^{-})\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5885b8f8a869ee62abce04481b8e8459c8ac35a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.913ex; height:3.009ex;" alt="{\displaystyle sF(s)-f(0^{-})\ }"></span> </td> <td><span class="texhtml"><i>f</i></span> is assumed to be a <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a>, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts </td></tr> <tr> <th scope="row">Second derivative </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1eff2b5586780c5c53bea1ee26d4af2b15c3ee0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.687ex; height:3.009ex;" alt="{\displaystyle f&#039;&#039;(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle s^{2}F(s)-sf(0^{-})-f'(0^{-})\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle s^{2}F(s)-sf(0^{-})-f'(0^{-})\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37b9eaf40cb443a2c296c603317a7ce71fe9feb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.386ex; height:3.009ex;" alt="{\textstyle s^{2}F(s)-sf(0^{-})-f&#039;(0^{-})\ }"></span> </td> <td><span class="texhtml"><i>f</i></span> is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to <span class="texhtml"><i>f</i>′(<i>t</i>)</span>. </td></tr> <tr> <th scope="row">General derivative </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a044ef6802b999bd3e6361c2c40d48d41b29f714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.048ex; height:3.343ex;" alt="{\displaystyle f^{(n)}(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0^{-})\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0^{-})\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a0f4ab85560ae8f128c86c5dec506d9a15fb97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.828ex; height:6.843ex;" alt="{\displaystyle s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0^{-})\ }"></span> </td> <td><span class="texhtml"><i>f</i></span> is assumed to be <span class="texhtml"><i>n</i></span>-times differentiable, with <span class="texhtml"><i>n</i></span>th derivative of exponential type. Follows by <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a>. </td></tr> <tr> <th scope="row">Frequency-domain <a href="/wiki/Integral" title="Integral">integration</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{t}}f(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>t</mi> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{t}}f(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df18dc76a9f95733731da12ab2d34a113a094e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.507ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{t}}f(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{s}^{\infty }F(\sigma )\,d\sigma \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C3;<!-- σ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{s}^{\infty }F(\sigma )\,d\sigma \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40003b07a307c6bb60c8f43d4d9a92ea983c8d0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.12ex; height:5.843ex;" alt="{\displaystyle \int _{s}^{\infty }F(\sigma )\,d\sigma \ }"></span> </td> <td>This is deduced using the nature of frequency differentiation and conditional convergence. </td></tr> <tr> <th scope="row">Time-domain integration </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c4fa94ab0e694f4085849ae2c36110bd7d71ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.132ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1 \over s}F(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1 \over s}F(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/223581ba83d4b37e90d73631a211033a49cce039" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.639ex; height:5.176ex;" alt="{\displaystyle {1 \over s}F(s)}"></span> </td> <td><span class="texhtml"><i>u</i>(<i>t</i>)</span> is the Heaviside step function and <span class="texhtml">(<i>u</i> ∗ <i>f</i>)(<i>t</i>)</span> is the <a href="/wiki/Convolution" title="Convolution">convolution</a> of <span class="texhtml"><i>u</i>(<i>t</i>)</span> and <span class="texhtml"><i>f</i>(<i>t</i>)</span>. </td></tr> <tr> <th scope="row">Frequency shifting </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{at}f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{at}f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44bf3375acb0a610c819b37bdd76a6be8390efbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.707ex; height:3.009ex;" alt="{\displaystyle e^{at}f(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s-a)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s-a)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30de22ed8ce5737d22599626e896e0d062cf0cd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.291ex; height:2.843ex;" alt="{\displaystyle F(s-a)\ }"></span> </td> <td> </td></tr> <tr> <th scope="row">Time shifting </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t-a)u(t-a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t-a)u(t-a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13519ec40556e7d87ce3b7cd60ea8363a4cb4068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.047ex; height:2.843ex;" alt="{\displaystyle f(t-a)u(t-a)}"></span> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)u(t-a)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)u(t-a)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/428db0e16e0decf4c15d7e40cfd011bc76eb8013" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.557ex; height:2.843ex;" alt="{\displaystyle f(t)u(t-a)\ }"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-as}F(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>s</mi> </mrow> </msup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-as}F(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e79cbddac7b358b46a80bce893de401ac67b604" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.456ex; height:3.009ex;" alt="{\displaystyle e^{-as}F(s)\ }"></span> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-as}{\mathcal {L}}\{f(t+a)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>s</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-as}{\mathcal {L}}\{f(t+a)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1422f7273ecc0af7ab0332086db1394d1a4e1553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.161ex; height:3.009ex;" alt="{\displaystyle e^{-as}{\mathcal {L}}\{f(t+a)\}}"></span> </p> </td> <td><span class="texhtml"><i>a</i> &gt; 0</span>, <span class="texhtml"><i>u</i>(<i>t</i>)</span> is the Heaviside step function </td></tr> <tr> <th scope="row">Time scaling </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(at)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(at)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc5e841ccc8ab8cda90ccd73dcd798c3d9cca921" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.157ex; height:2.843ex;" alt="{\displaystyle f(at)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a}}F\left({s \over a}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mi>F</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a}}F\left({s \over a}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4ed97406d1e31926551099511e21be324562e7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.035ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{a}}F\left({s \over a}\right)}"></span> </td> <td><span class="texhtml"><i>a</i> &gt; 0</span> </td></tr> <tr> <th scope="row"><a href="/wiki/Multiplication" title="Multiplication">Multiplication</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1909fe4283b4370ed5330e44605ae1b3ef7ce411" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.692ex; height:2.843ex;" alt="{\displaystyle f(t)g(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>+</mo> <mi>i</mi> <mi>T</mi> </mrow> </msubsup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C3;<!-- σ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c430d083a7fe87a871ed5a0228c8adf199be4316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.439ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ }"></span> </td> <td>The integration is done along the vertical line <span class="texhtml">Re(<i>σ</i>) = <i>c</i></span> that lies entirely within the region of convergence of <span class="texhtml"><i>F</i></span>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Convolution" title="Convolution">Convolution</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d53844ff3560228f16c23b6c67488724fb09330" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.725ex; height:6.176ex;" alt="{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)\cdot G(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)\cdot G(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/200e8a1e18b17f2311b7a19d6f1eac9949983c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.627ex; height:2.843ex;" alt="{\displaystyle F(s)\cdot G(s)\ }"></span> </td> <td> </td></tr> <tr> <th scope="row"><a href="/wiki/Circular_convolution" title="Circular convolution">Circular convolution</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)=\int _{0}^{T}f(\tau )g(t-\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)=\int _{0}^{T}f(\tau )g(t-\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40246c062f029ca53b2da533dbfb3497aa3911c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.288ex; height:6.176ex;" alt="{\displaystyle (f*g)(t)=\int _{0}^{T}f(\tau )g(t-\tau )\,d\tau }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)\cdot G(s)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)\cdot G(s)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/200e8a1e18b17f2311b7a19d6f1eac9949983c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.627ex; height:2.843ex;" alt="{\displaystyle F(s)\cdot G(s)\ }"></span> </td> <td>For periodic functions with period <span class="texhtml"><i>T</i></span>. </td></tr> <tr> <th scope="row"><a href="/wiki/Complex_conjugation" class="mw-redirect" title="Complex conjugation">Complex conjugation</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ffa26d064d965ec25dea445401e03fe9044a40f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.024ex; height:2.843ex;" alt="{\displaystyle f^{*}(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{*}(s^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{*}(s^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a4b453480cfe4e42440787d372726edde21eef1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.823ex; height:2.843ex;" alt="{\displaystyle F^{*}(s^{*})}"></span> </td> <td> </td></tr> <tr> <th scope="row"><a href="/wiki/Periodic_function" title="Periodic function">Periodic function</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8ff2c2aeeae11c1ec1349d21d45e054ab59369" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.318ex; height:6.176ex;" alt="{\displaystyle {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt}"></span> </td> <td><span class="texhtml"><i>f</i>(<i>t</i>)</span> is a periodic function of period <span class="texhtml"><i>T</i></span> so that <span class="texhtml"><i>f</i>(<i>t</i>) = <i>f</i>(<i>t</i> + <i>T</i>)</span>, for all <span class="texhtml"><i>t</i> ≥ 0</span>. This is the result of the time shifting property and the <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a>. </td></tr> <tr> <th scope="row"><a href="/wiki/Periodic_summation" title="Periodic summation">Periodic summation</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }f(t-Tn)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }f(t-Tn)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/564e45d80f9562947ca13f953fd511c0989b26e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.894ex; height:6.843ex;" alt="{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }f(t-Tn)}"></span> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }(-1)^{n}f(t-Tn)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }(-1)^{n}f(t-Tn)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf13571be8be59de5dd706c12e67953794fa9cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.505ex; height:6.843ex;" alt="{\displaystyle f_{P}(t)=\sum _{n=0}^{\infty }(-1)^{n}f(t-Tn)}"></span> </p> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{P}(s)={\frac {1}{1-e^{-Ts}}}F(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{P}(s)={\frac {1}{1-e^{-Ts}}}F(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b862401eb0c4d4a8b798f11dc0151f72e07ddc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.961ex; height:5.676ex;" alt="{\displaystyle F_{P}(s)={\frac {1}{1-e^{-Ts}}}F(s)}"></span> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{P}(s)={\frac {1}{1+e^{-Ts}}}F(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{P}(s)={\frac {1}{1+e^{-Ts}}}F(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e26c58ab0fd3d2b139bb419b175bb35e606e650a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.961ex; height:5.676ex;" alt="{\displaystyle F_{P}(s)={\frac {1}{1+e^{-Ts}}}F(s)}"></span> </p> </td> <td> </td></tr></tbody></table> <dl><dt><a href="/wiki/Initial_value_theorem" title="Initial value theorem">Initial value theorem</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0^{+})=\lim _{s\to \infty }{sF(s)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0^{+})=\lim _{s\to \infty }{sF(s)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74ac05ae82e8d1284a536cb8950938af4b8faecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.682ex; height:4.009ex;" alt="{\displaystyle f(0^{+})=\lim _{s\to \infty }{sF(s)}.}"></span></dd> <dt><a href="/wiki/Final_value_theorem" title="Final value theorem">Final value theorem</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\infty )=\lim _{s\to 0}{sF(s)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\infty )=\lim _{s\to 0}{sF(s)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6585a27c398148bf0dd5f3d6bdbeb7264af9a216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.864ex; height:4.009ex;" alt="{\displaystyle f(\infty )=\lim _{s\to 0}{sF(s)}}"></span>, if all <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">poles</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sF(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sF(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdc7c6e65d7dafda3220815261abddc3ea392b03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.731ex; height:2.843ex;" alt="{\displaystyle sF(s)}"></span> are in the left half-plane.</dd> <dd>The final value theorem is useful because it gives the long-term behaviour without having to perform <a href="/wiki/Partial_fraction" class="mw-redirect" title="Partial fraction">partial fraction</a> decompositions (or other difficult algebra). If <span class="texhtml"><i>F</i>(<i>s</i>)</span> has a pole in the right-hand plane or poles on the imaginary axis (e.g., if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=e^{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=e^{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15fa4a9ed9d37ae49a8debc38fb8c82b737c25b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.935ex; height:3.009ex;" alt="{\displaystyle f(t)=e^{t}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=\sin(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=\sin(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93d4577f832ee44bf5fe84880495a114bfe3c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.53ex; height:2.843ex;" alt="{\displaystyle f(t)=\sin(t)}"></span>), then the behaviour of this formula is undefined.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Relation_to_power_series">Relation to power series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=9" title="Edit section: Relation to power series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform can be viewed as a <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> analogue of a <a href="/wiki/Power_series" title="Power series">power series</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> If <span class="texhtml"><i>a</i>(<i>n</i>)</span> is a discrete function of a positive integer <span class="texhtml"><i>n</i></span>, then the power series associated to <span class="texhtml"><i>a</i>(<i>n</i>)</span> is the series <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }a(n)x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>a</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }a(n)x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df542255cd9b38f9a353c2f2be5fb3a90aaa3002" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.724ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }a(n)x^{n}}"></span> where <span class="texhtml"><i>x</i></span> is a real variable (see <i><a href="/wiki/Z-transform" title="Z-transform">Z-transform</a></i>). Replacing summation over <span class="texhtml"><i>n</i></span> with integration over <span class="texhtml"><i>t</i></span>, a continuous version of the power series becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }f(t)x^{t}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }f(t)x^{t}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cac2b54c4539736f9b6d0142a168b97b25ecfd4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.252ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }f(t)x^{t}\,dt}"></span> where the discrete function <span class="texhtml"><i>a</i>(<i>n</i>)</span> is replaced by the continuous one <span class="texhtml"><i>f</i>(<i>t</i>)</span>. </p><p>Changing the base of the power from <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>e</i></span> gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }f(t)\left(e^{\ln {x}}\right)^{t}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }f(t)\left(e^{\ln {x}}\right)^{t}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5eaf1980963132ec4399741805fb6b8126143b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.067ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }f(t)\left(e^{\ln {x}}\right)^{t}\,dt}"></span> </p><p>For this to converge for, say, all bounded functions <span class="texhtml"><i>f</i></span>, it is necessary to require that <span class="texhtml">ln <i>x</i> &lt; 0</span>. Making the substitution <span class="texhtml">&#8722;<i>s</i> = ln <i>x</i></span> gives just the Laplace transform: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }f(t)e^{-st}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }f(t)e^{-st}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f1ac056ca6fa1e2a6eceaa4cc66eba57effc7dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.056ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }f(t)e^{-st}\,dt}"></span> </p><p>In other words, the Laplace transform is a continuous analog of a power series, in which the discrete parameter <span class="texhtml"><i>n</i></span> is replaced by the continuous parameter <span class="texhtml"><i>t</i></span>, and <span class="texhtml"><i>x</i></span> is replaced by <span class="texhtml"><i>e</i><sup>&#8722;<i>s</i></sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_moments">Relation to moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=10" title="Edit section: Relation to moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Moment-generating_function" title="Moment-generating function">Moment-generating function</a></div> <p>The quantities <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{n}=\int _{0}^{\infty }t^{n}f(t)\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{n}=\int _{0}^{\infty }t^{n}f(t)\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1f33c010791e74ba2ca9856005ad67cccd27dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.873ex; height:5.843ex;" alt="{\displaystyle \mu _{n}=\int _{0}^{\infty }t^{n}f(t)\,dt}"></span> </p><p>are the <i>moments</i> of the function <span class="texhtml"><i>f</i></span>. If the first <span class="texhtml"><i>n</i></span> moments of <span class="texhtml"><i>f</i></span> converge absolutely, then by repeated <a href="/wiki/Differentiation_under_the_integral" class="mw-redirect" title="Differentiation under the integral">differentiation under the integral</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{n}({\mathcal {L}}f)^{(n)}(0)=\mu _{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{n}({\mathcal {L}}f)^{(n)}(0)=\mu _{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bacd14dcf2df4497c46ddae5b051cbe2f3f869e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.525ex; height:3.343ex;" alt="{\displaystyle (-1)^{n}({\mathcal {L}}f)^{(n)}(0)=\mu _{n}.}"></span> This is of special significance in probability theory, where the moments of a random variable <span class="texhtml"><i>X</i></span> are given by the expectation values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{n}=\operatorname {E} [X^{n}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{n}=\operatorname {E} [X^{n}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a470b23edb981c95e00f5690370662b6b102341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.81ex; height:2.843ex;" alt="{\displaystyle \mu _{n}=\operatorname {E} [X^{n}]}"></span>. Then, the relation holds <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{n}=(-1)^{n}{\frac {d^{n}}{ds^{n}}}\operatorname {E} \left[e^{-sX}\right](0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>X</mi> </mrow> </msup> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{n}=(-1)^{n}{\frac {d^{n}}{ds^{n}}}\operatorname {E} \left[e^{-sX}\right](0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aebff76a8e2a99d41a4d654999b7309d1a2f5916" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.371ex; height:5.509ex;" alt="{\displaystyle \mu _{n}=(-1)^{n}{\frac {d^{n}}{ds^{n}}}\operatorname {E} \left[e^{-sX}\right](0).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Transform_of_a_function's_derivative"><span id="Transform_of_a_function.27s_derivative"></span>Transform of a function's derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=11" title="Edit section: Transform of a function&#039;s derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is often convenient to use the differentiation property of the Laplace transform to find the transform of a function's derivative. This can be derived from the basic expression for a Laplace transform as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {L}}\left\{f(t)\right\}&amp;=\int _{0^{-}}^{\infty }e^{-st}f(t)\,dt\\[6pt]&amp;=\left[{\frac {f(t)e^{-st}}{-s}}\right]_{0^{-}}^{\infty }-\int _{0^{-}}^{\infty }{\frac {e^{-st}}{-s}}f'(t)\,dt\quad {\text{(by parts)}}\\[6pt]&amp;=\left[-{\frac {f(0^{-})}{-s}}\right]+{\frac {1}{s}}{\mathcal {L}}\left\{f'(t)\right\},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>(by parts)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {L}}\left\{f(t)\right\}&amp;=\int _{0^{-}}^{\infty }e^{-st}f(t)\,dt\\[6pt]&amp;=\left[{\frac {f(t)e^{-st}}{-s}}\right]_{0^{-}}^{\infty }-\int _{0^{-}}^{\infty }{\frac {e^{-st}}{-s}}f'(t)\,dt\quad {\text{(by parts)}}\\[6pt]&amp;=\left[-{\frac {f(0^{-})}{-s}}\right]+{\frac {1}{s}}{\mathcal {L}}\left\{f'(t)\right\},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/574460c0fe29a550c4b4a66b9aa82601ea9f956b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:57.406ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {L}}\left\{f(t)\right\}&amp;=\int _{0^{-}}^{\infty }e^{-st}f(t)\,dt\\[6pt]&amp;=\left[{\frac {f(t)e^{-st}}{-s}}\right]_{0^{-}}^{\infty }-\int _{0^{-}}^{\infty }{\frac {e^{-st}}{-s}}f&#039;(t)\,dt\quad {\text{(by parts)}}\\[6pt]&amp;=\left[-{\frac {f(0^{-})}{-s}}\right]+{\frac {1}{s}}{\mathcal {L}}\left\{f&#039;(t)\right\},\end{aligned}}}"></span> yielding <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f'(t)\}=s\cdot {\mathcal {L}}\{f(t)\}-f(0^{-}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>s</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f'(t)\}=s\cdot {\mathcal {L}}\{f(t)\}-f(0^{-}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98dfcd64d59743af64df17e66bcc60208ded9726" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.555ex; height:3.009ex;" alt="{\displaystyle {\mathcal {L}}\{f&#039;(t)\}=s\cdot {\mathcal {L}}\{f(t)\}-f(0^{-}),}"></span> and in the bilateral case, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f'(t)\}=s\int _{-\infty }^{\infty }e^{-st}f(t)\,dt=s\cdot {\mathcal {L}}\{f(t)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>s</mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>s</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f'(t)\}=s\int _{-\infty }^{\infty }e^{-st}f(t)\,dt=s\cdot {\mathcal {L}}\{f(t)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6180c907cad4b6aeb6d20aee7df0b3b13c32511" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.693ex; height:6.009ex;" alt="{\displaystyle {\mathcal {L}}\{f&#039;(t)\}=s\int _{-\infty }^{\infty }e^{-st}f(t)\,dt=s\cdot {\mathcal {L}}\{f(t)\}.}"></span> </p><p>The general result <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\left\{f^{(n)}(t)\right\}=s^{n}\cdot {\mathcal {L}}\{f(t)\}-s^{n-1}f(0^{-})-\cdots -f^{(n-1)}(0^{-}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\left\{f^{(n)}(t)\right\}=s^{n}\cdot {\mathcal {L}}\{f(t)\}-s^{n-1}f(0^{-})-\cdots -f^{(n-1)}(0^{-}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577cda357519bb4a7797adcac4ae094235d03d7c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:58.965ex; height:4.843ex;" alt="{\displaystyle {\mathcal {L}}\left\{f^{(n)}(t)\right\}=s^{n}\cdot {\mathcal {L}}\{f(t)\}-s^{n-1}f(0^{-})-\cdots -f^{(n-1)}(0^{-}),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span> denotes the <span class="texhtml"><i>n</i></span>th derivative of <span class="texhtml"><i>f</i></span>, can then be established with an inductive argument. </p> <div class="mw-heading mw-heading3"><h3 id="Evaluating_integrals_over_the_positive_real_axis">Evaluating integrals over the positive real axis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=12" title="Edit section: Evaluating integrals over the positive real axis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A useful property of the Laplace transform is the following: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }f(x)g(x)\,dx=\int _{0}^{\infty }({\mathcal {L}}f)(s)\cdot ({\mathcal {L}}^{-1}g)(s)\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }f(x)g(x)\,dx=\int _{0}^{\infty }({\mathcal {L}}f)(s)\cdot ({\mathcal {L}}^{-1}g)(s)\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f622261e2084edd910d0fa39e34e454165c4734" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:45.495ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }f(x)g(x)\,dx=\int _{0}^{\infty }({\mathcal {L}}f)(s)\cdot ({\mathcal {L}}^{-1}g)(s)\,ds}"></span> under suitable assumptions on the behaviour of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b6ab1762925585cd7605809caa8b1b5284177b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.429ex; height:2.509ex;" alt="{\displaystyle f,g}"></span> in a right neighbourhood of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> and on the decay rate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b6ab1762925585cd7605809caa8b1b5284177b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.429ex; height:2.509ex;" alt="{\displaystyle f,g}"></span> in a left neighbourhood of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>. The above formula is a variation of integration by parts, with the operators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e80537df4f7e8d3d157ed7d50514cfe0c04b91f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.382ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a665e507c57994476eade35eace082d3859f36b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:5.513ex; height:5.676ex;" alt="{\displaystyle \int \,dx}"></span> being replaced by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9027196ecb178d598958555ea01c43157d83597c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.604ex; height:2.176ex;" alt="{\displaystyle {\mathcal {L}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a0067e9f5f25b8a53746c33679f86814cfb61b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.937ex; height:2.676ex;" alt="{\displaystyle {\mathcal {L}}^{-1}}"></span>. Let us prove the equivalent formulation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }({\mathcal {L}}f)(x)g(x)\,dx=\int _{0}^{\infty }f(s)({\mathcal {L}}g)(s)\,ds.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }({\mathcal {L}}f)(x)g(x)\,dx=\int _{0}^{\infty }f(s)({\mathcal {L}}g)(s)\,ds.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94e11a828b41fc154473863652db18508b5b9881" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.13ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }({\mathcal {L}}f)(x)g(x)\,dx=\int _{0}^{\infty }f(s)({\mathcal {L}}g)(s)\,ds.}"></span> </p><p>By plugging in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}f)(x)=\int _{0}^{\infty }f(s)e^{-sx}\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}f)(x)=\int _{0}^{\infty }f(s)e^{-sx}\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/508ae153cca088e9e9de4a25d6d250ff555fd9a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.833ex; height:5.843ex;" alt="{\displaystyle ({\mathcal {L}}f)(x)=\int _{0}^{\infty }f(s)e^{-sx}\,ds}"></span> the left-hand side turns into: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }\int _{0}^{\infty }f(s)g(x)e^{-sx}\,ds\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }\int _{0}^{\infty }f(s)g(x)e^{-sx}\,ds\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6086e6b1dd955c83c09298d6ed8a3431686848c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.465ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }\int _{0}^{\infty }f(s)g(x)e^{-sx}\,ds\,dx,}"></span> but assuming Fubini's theorem holds, by reversing the order of integration we get the wanted right-hand side. </p><p>This method can be used to compute integrals that would otherwise be difficult to compute using elementary methods of real calculus. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}dx=\int _{0}^{\infty }{\mathcal {L}}(1)(x)\sin xdx=\int _{0}^{\infty }1\cdot {\mathcal {L}}(\sin )(x)dx=\int _{0}^{\infty }{\frac {dx}{x^{2}+1}}={\frac {\pi }{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mn>1</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>sin</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}dx=\int _{0}^{\infty }{\mathcal {L}}(1)(x)\sin xdx=\int _{0}^{\infty }1\cdot {\mathcal {L}}(\sin )(x)dx=\int _{0}^{\infty }{\frac {dx}{x^{2}+1}}={\frac {\pi }{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4ccab9798f6d3f06ff673e67b18de97e184465" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:79.307ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}dx=\int _{0}^{\infty }{\mathcal {L}}(1)(x)\sin xdx=\int _{0}^{\infty }1\cdot {\mathcal {L}}(\sin )(x)dx=\int _{0}^{\infty }{\frac {dx}{x^{2}+1}}={\frac {\pi }{2}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Relationship_to_other_transforms">Relationship to other transforms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=13" title="Edit section: Relationship to other transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Laplace–Stieltjes_transform"><span id="Laplace.E2.80.93Stieltjes_transform"></span>Laplace–Stieltjes transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=14" title="Edit section: Laplace–Stieltjes transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The (unilateral) Laplace–Stieltjes transform of a function <span class="texhtml"><i>g</i>&#160;: ℝ → ℝ</span> is defined by the <a href="/wiki/Lebesgue%E2%80%93Stieltjes_integral" class="mw-redirect" title="Lebesgue–Stieltjes integral">Lebesgue–Stieltjes integral</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{{\mathcal {L}}^{*}g\}(s)=\int _{0}^{\infty }e^{-st}\,d\,g(t)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{{\mathcal {L}}^{*}g\}(s)=\int _{0}^{\infty }e^{-st}\,d\,g(t)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3158842e61c2dda2beea2744acf283989e59d2a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.765ex; height:5.843ex;" alt="{\displaystyle \{{\mathcal {L}}^{*}g\}(s)=\int _{0}^{\infty }e^{-st}\,d\,g(t)~.}"></span> </p><p>The function <span class="texhtml"><i>g</i></span> is assumed to be of <a href="/wiki/Bounded_variation" title="Bounded variation">bounded variation</a>. If <span class="texhtml"><i>g</i></span> is the <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> of <span class="texhtml"><i>f</i></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=\int _{0}^{x}f(t)\,d\,t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=\int _{0}^{x}f(t)\,d\,t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e19fc1607e09b034f776496c7a1a0398424b70c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.134ex; height:5.843ex;" alt="{\displaystyle g(x)=\int _{0}^{x}f(t)\,d\,t}"></span> </p><p>then the Laplace–Stieltjes transform of <span class="texhtml mvar" style="font-style:italic;">g</span> and the Laplace transform of <span class="texhtml mvar" style="font-style:italic;">f</span> coincide. In general, the Laplace–Stieltjes transform is the Laplace transform of the <a href="/wiki/Stieltjes_measure" class="mw-redirect" title="Stieltjes measure">Stieltjes measure</a> associated to <span class="texhtml mvar" style="font-style:italic;">g</span>. So in practice, the only distinction between the two transforms is that the Laplace transform is thought of as operating on the density function of the measure, whereas the Laplace–Stieltjes transform is thought of as operating on its <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fourier_transform">Fourier transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=15" title="Edit section: Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Fourier_transform#Laplace_transform" title="Fourier transform">Fourier transform §&#160;Laplace transform</a></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> be a complex-valued Lebesgue integrable function supported on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc2d914c2df66bc0f7893bfb8da36766650fe47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle [0,\infty )}"></span>, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)={\mathcal {L}}f(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)={\mathcal {L}}f(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008d7a4a9897236cdb814000b8bf7d6146cc6fdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.521ex; height:2.843ex;" alt="{\displaystyle F(s)={\mathcal {L}}f(s)}"></span> be its Laplace transform. Then, within the region of convergence, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(\sigma +i\tau )=\int _{0}^{\infty }f(t)e^{-\sigma t}e^{-i\tau t}\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C4;<!-- τ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(\sigma +i\tau )=\int _{0}^{\infty }f(t)e^{-\sigma t}e^{-i\tau t}\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed583580cb790252b83166445e4a38ac8e373038" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.3ex; height:5.843ex;" alt="{\displaystyle F(\sigma +i\tau )=\int _{0}^{\infty }f(t)e^{-\sigma t}e^{-i\tau t}\,dt,}"></span></dd></dl> <p>which is the Fourier transform of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)e^{-\sigma t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)e^{-\sigma t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92097a9015f5673497215e329fff088dec9e0de1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.056ex; height:3.009ex;" alt="{\displaystyle f(t)e^{-\sigma t}}"></span>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>Indeed, the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> is a special case (under certain conditions) of the bilateral Laplace transform. The main difference is that the Fourier transform of a function is a complex function of a <i>real</i> variable (frequency), the Laplace transform of a function is a complex function of a <i>complex</i> variable. The Laplace transform is usually restricted to transformation of functions of <span class="texhtml"><i>t</i></span> with <span class="texhtml"><i>t</i> ≥ 0</span>. A consequence of this restriction is that the Laplace transform of a function is a <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic function</a> of the variable <span class="texhtml"><i>s</i></span>. Unlike the Fourier transform, the Laplace transform of a <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distribution</a> is generally a <a href="/wiki/Well-behaved" class="mw-redirect" title="Well-behaved">well-behaved</a> function. Techniques of complex variables can also be used to directly study Laplace transforms. As a holomorphic function, the Laplace transform has a <a href="/wiki/Power_series" title="Power series">power series</a> representation. This power series expresses a function as a linear superposition of <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> of the function. This perspective has applications in probability theory. </p><p>Formally, the Fourier transform is equivalent to evaluating the bilateral Laplace transform with imaginary argument <span class="texhtml"><i>s</i> = <i>iω</i></span><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> <sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> when the condition explained below is fulfilled, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\hat {f}}(\omega )&amp;={\mathcal {F}}\{f(t)\}\\[4pt]&amp;={\mathcal {L}}\{f(t)\}|_{s=i\omega }=F(s)|_{s=i\omega }\\[4pt]&amp;=\int _{-\infty }^{\infty }e^{-i\omega t}f(t)\,dt~.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msub> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\hat {f}}(\omega )&amp;={\mathcal {F}}\{f(t)\}\\[4pt]&amp;={\mathcal {L}}\{f(t)\}|_{s=i\omega }=F(s)|_{s=i\omega }\\[4pt]&amp;=\int _{-\infty }^{\infty }e^{-i\omega t}f(t)\,dt~.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44fd8f6a7374f8e3ae9b00c7ca0107108784f9cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.484ex; margin-bottom: -0.187ex; width:33.436ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\hat {f}}(\omega )&amp;={\mathcal {F}}\{f(t)\}\\[4pt]&amp;={\mathcal {L}}\{f(t)\}|_{s=i\omega }=F(s)|_{s=i\omega }\\[4pt]&amp;=\int _{-\infty }^{\infty }e^{-i\omega t}f(t)\,dt~.\end{aligned}}}"></span> </p><p>This convention of the Fourier transform (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{3}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{3}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fca7249d253e4ed41cd847cdf257afce2f4b2dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.008ex; height:3.343ex;" alt="{\displaystyle {\hat {f}}_{3}(\omega )}"></span> in <a href="/wiki/Fourier_transform#Other_conventions" title="Fourier transform">Fourier transform §&#160;Other conventions</a>) requires a factor of <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2<i>π</i></span></span>&#8288;</span></span> on the inverse Fourier transform. This relationship between the Laplace and Fourier transforms is often used to determine the <a href="/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">frequency spectrum</a> of a <a href="/wiki/Signal_(information_theory)" class="mw-redirect" title="Signal (information theory)">signal</a> or dynamical system. </p><p>The above relation is valid as stated <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the region of convergence (ROC) of <span class="texhtml"><i>F</i>(<i>s</i>)</span> contains the imaginary axis, <span class="texhtml"><i>σ</i> = 0</span>. </p><p>For example, the function <span class="texhtml"><i>f</i>(<i>t</i>) = cos(<i>ω</i><sub>0</sub><i>t</i>)</span> has a Laplace transform <span class="texhtml"><i>F</i>(<i>s</i>) = <i>s</i>/(<i>s</i><sup>2</sup> + <i>ω</i><sub>0</sub><sup>2</sup>)</span> whose ROC is <span class="texhtml">Re(<i>s</i>) &gt; 0</span>. As <span class="texhtml"><i>s</i> = <i>iω</i><sub>0</sub></span> is a pole of <span class="texhtml"><i>F</i>(<i>s</i>)</span>, substituting <span class="texhtml"><i>s</i> = <i>iω</i></span> in <span class="texhtml"><i>F</i>(<i>s</i>)</span> does not yield the Fourier transform of <span class="texhtml"><i>f</i>(<i>t</i>)<i>u</i>(<i>t</i>)</span>, which contains terms proportional to the <a href="/wiki/Dirac_delta_functions" class="mw-redirect" title="Dirac delta functions">Dirac delta functions</a> <span class="texhtml"><i>δ</i>(<i>ω</i> ± <i>ω</i><sub>0</sub>)</span>. </p><p>However, a relation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\sigma \to 0^{+}}F(\sigma +i\omega )={\hat {f}}(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mi>F</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\sigma \to 0^{+}}F(\sigma +i\omega )={\hat {f}}(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8af581ee3a0060f86b9b837a7ec677b18d5c77d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.016ex; height:4.843ex;" alt="{\displaystyle \lim _{\sigma \to 0^{+}}F(\sigma +i\omega )={\hat {f}}(\omega )}"></span> holds under much weaker conditions. For instance, this holds for the above example provided that the limit is understood as a <a href="/wiki/Weak_limit" class="mw-redirect" title="Weak limit">weak limit</a> of measures (see <a href="/wiki/Vague_topology" title="Vague topology">vague topology</a>). General conditions relating the limit of the Laplace transform of a function on the boundary to the Fourier transform take the form of <a href="/wiki/Paley%E2%80%93Wiener_theorem" title="Paley–Wiener theorem">Paley–Wiener theorems</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Mellin_transform">Mellin transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=16" title="Edit section: Mellin transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mellin_transform" title="Mellin transform">Mellin transform</a></div> <p>The Mellin transform and its inverse are related to the two-sided Laplace transform by a simple change of variables. </p><p>If in the Mellin transform <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(s)={\mathcal {M}}\{g(\theta )\}=\int _{0}^{\infty }\theta ^{s}g(\theta )\,{\frac {d\theta }{\theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(s)={\mathcal {M}}\{g(\theta )\}=\int _{0}^{\infty }\theta ^{s}g(\theta )\,{\frac {d\theta }{\theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba07ffb3d7cbb20af402742490cd71c6b572c30a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.42ex; height:5.843ex;" alt="{\displaystyle G(s)={\mathcal {M}}\{g(\theta )\}=\int _{0}^{\infty }\theta ^{s}g(\theta )\,{\frac {d\theta }{\theta }}}"></span> we set <span class="texhtml"><i>θ</i> = <i>e</i><sup>−<i>t</i></sup></span> we get a two-sided Laplace transform. </p> <div class="mw-heading mw-heading3"><h3 id="Z-transform">Z-transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=17" title="Edit section: Z-transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Z-transform#Relationship_to_Laplace_transform" title="Z-transform">Z-transform §&#160;Relationship to Laplace transform</a></div> <p>The unilateral or one-sided Z-transform is simply the Laplace transform of an ideally sampled signal with the substitution of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z{\stackrel {\mathrm {def} }{{}={}}}e^{sT},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>T</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z{\stackrel {\mathrm {def} }{{}={}}}e^{sT},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd3f0fc4b7d863b35461b739efcd9b46aacedad6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.077ex; height:3.676ex;" alt="{\displaystyle z{\stackrel {\mathrm {def} }{{}={}}}e^{sT},}"></span> where <span class="texhtml"><i>T</i> = 1/<i>f<sub>s</sub></i></span> is the <a href="/wiki/Sampling_interval" class="mw-redirect" title="Sampling interval">sampling interval</a> (in units of time e.g., seconds) and <span class="texhtml"><i>f<sub>s</sub></i></span> is the <a href="/wiki/Sampling_rate" class="mw-redirect" title="Sampling rate">sampling rate</a> (in <a href="/wiki/Samples_per_second" class="mw-redirect" title="Samples per second">samples per second</a> or <a href="/wiki/Hertz" title="Hertz">hertz</a>). </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{T}(t)\ {\stackrel {\mathrm {def} }{=}}\ \sum _{n=0}^{\infty }\delta (t-nT)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{T}(t)\ {\stackrel {\mathrm {def} }{=}}\ \sum _{n=0}^{\infty }\delta (t-nT)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511550196d09cdaa497d7f2b5ac9e106aceb2d0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.089ex; height:6.843ex;" alt="{\displaystyle \Delta _{T}(t)\ {\stackrel {\mathrm {def} }{=}}\ \sum _{n=0}^{\infty }\delta (t-nT)}"></span> be a sampling impulse train (also called a <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac comb</a>) and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x_{q}(t)&amp;{\stackrel {\mathrm {def} }{{}={}}}x(t)\Delta _{T}(t)=x(t)\sum _{n=0}^{\infty }\delta (t-nT)\\&amp;=\sum _{n=0}^{\infty }x(nT)\delta (t-nT)=\sum _{n=0}^{\infty }x[n]\delta (t-nT)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x_{q}(t)&amp;{\stackrel {\mathrm {def} }{{}={}}}x(t)\Delta _{T}(t)=x(t)\sum _{n=0}^{\infty }\delta (t-nT)\\&amp;=\sum _{n=0}^{\infty }x(nT)\delta (t-nT)=\sum _{n=0}^{\infty }x[n]\delta (t-nT)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c334ec8f4011a84a4a305f1ac7894fb6e1038cf0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:48.726ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}x_{q}(t)&amp;{\stackrel {\mathrm {def} }{{}={}}}x(t)\Delta _{T}(t)=x(t)\sum _{n=0}^{\infty }\delta (t-nT)\\&amp;=\sum _{n=0}^{\infty }x(nT)\delta (t-nT)=\sum _{n=0}^{\infty }x[n]\delta (t-nT)\end{aligned}}}"></span> be the sampled representation of the continuous-time <span class="texhtml"><i>x</i>(<i>t</i>)</span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]{\stackrel {\mathrm {def} }{{}={}}}x(nT)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]{\stackrel {\mathrm {def} }{{}={}}}x(nT)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b6eaf257e418b217759fe3b9b982993004af01" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.514ex; height:3.843ex;" alt="{\displaystyle x[n]{\stackrel {\mathrm {def} }{{}={}}}x(nT)~.}"></span> </p><p>The Laplace transform of the sampled signal <span class="texhtml"><i>x</i><sub><i>q</i></sub>(<i>t</i>) </span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X_{q}(s)&amp;=\int _{0^{-}}^{\infty }x_{q}(t)e^{-st}\,dt\\&amp;=\int _{0^{-}}^{\infty }\sum _{n=0}^{\infty }x[n]\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]\int _{0^{-}}^{\infty }\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]e^{-nsT}~.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>T</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>s</mi> <mi>T</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X_{q}(s)&amp;=\int _{0^{-}}^{\infty }x_{q}(t)e^{-st}\,dt\\&amp;=\int _{0^{-}}^{\infty }\sum _{n=0}^{\infty }x[n]\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]\int _{0^{-}}^{\infty }\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]e^{-nsT}~.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee1fc990806a1d664c96eb253f19ff2def0f986" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.005ex; width:38.507ex; height:27.176ex;" alt="{\displaystyle {\begin{aligned}X_{q}(s)&amp;=\int _{0^{-}}^{\infty }x_{q}(t)e^{-st}\,dt\\&amp;=\int _{0^{-}}^{\infty }\sum _{n=0}^{\infty }x[n]\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]\int _{0^{-}}^{\infty }\delta (t-nT)e^{-st}\,dt\\&amp;=\sum _{n=0}^{\infty }x[n]e^{-nsT}~.\end{aligned}}}"></span> </p><p>This is the precise definition of the unilateral Z-transform of the discrete function <span class="texhtml"><i>x</i>[<i>n</i>]</span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(z)=\sum _{n=0}^{\infty }x[n]z^{-n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(z)=\sum _{n=0}^{\infty }x[n]z^{-n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf7e6d1a9bf26a3017c79040c80295cb1f2eaa1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.323ex; height:6.843ex;" alt="{\displaystyle X(z)=\sum _{n=0}^{\infty }x[n]z^{-n}}"></span> with the substitution of <span class="texhtml"><i>z</i> → <i>e</i><sup><i>sT</i></sup></span>. </p><p>Comparing the last two equations, we find the relationship between the unilateral Z-transform and the Laplace transform of the sampled signal, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{q}(s)=X(z){\Big |}_{z=e^{sT}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>T</mi> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{q}(s)=X(z){\Big |}_{z=e^{sT}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8c23e0ff230e75a3d72a8712ebdffa0e91f5fbb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:19.858ex; height:4.343ex;" alt="{\displaystyle X_{q}(s)=X(z){\Big |}_{z=e^{sT}}.}"></span> </p><p>The similarity between the Z- and Laplace transforms is expanded upon in the theory of <a href="/wiki/Time_scale_calculus" class="mw-redirect" title="Time scale calculus">time scale calculus</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Borel_transform">Borel transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=18" title="Edit section: Borel transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The integral form of the <a href="/wiki/Borel_summation" title="Borel summation">Borel transform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)=\int _{0}^{\infty }f(z)e^{-sz}\,dz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>z</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)=\int _{0}^{\infty }f(z)e^{-sz}\,dz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0004fadac103e9953add733138e5211444dde29e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.468ex; height:5.843ex;" alt="{\displaystyle F(s)=\int _{0}^{\infty }f(z)e^{-sz}\,dz}"></span> is a special case of the Laplace transform for <span class="texhtml"><i>f</i></span> an <a href="/wiki/Entire_function" title="Entire function">entire function</a> of exponential type, meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(z)|\leq Ae^{B|z|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(z)|\leq Ae^{B|z|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/044af052128fde06ddcc3e64a66299af65a67878" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.559ex; height:3.343ex;" alt="{\displaystyle |f(z)|\leq Ae^{B|z|}}"></span> for some constants <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span>. The generalized Borel transform allows a different weighting function to be used, rather than the exponential function, to transform functions not of exponential type. <a href="/wiki/Nachbin%27s_theorem" title="Nachbin&#39;s theorem">Nachbin's theorem</a> gives necessary and sufficient conditions for the Borel transform to be well defined. </p> <div class="mw-heading mw-heading3"><h3 id="Fundamental_relationships">Fundamental relationships</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=19" title="Edit section: Fundamental relationships"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since an ordinary Laplace transform can be written as a special case of a two-sided transform, and since the two-sided transform can be written as the sum of two one-sided transforms, the theory of the Laplace-, Fourier-, Mellin-, and Z-transforms are at bottom the same subject. However, a different point of view and different characteristic problems are associated with each of these four major integral transforms. </p> <div class="mw-heading mw-heading2"><h2 id="Table_of_selected_Laplace_transforms">Table of selected Laplace transforms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=20" title="Edit section: Table of selected Laplace transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_Laplace_transforms" title="List of Laplace transforms">List of Laplace transforms</a></div> <p>The following table provides Laplace transforms for many common functions of a single variable.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> For definitions and explanations, see the <i>Explanatory Notes</i> at the end of the table. </p><p>Because the Laplace transform is a linear operator, </p> <ul><li>The Laplace transform of a sum is the sum of Laplace transforms of each term.<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{f(t)+g(t)\}={\mathcal {L}}\{f(t)\}+{\mathcal {L}}\{g(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{f(t)+g(t)\}={\mathcal {L}}\{f(t)\}+{\mathcal {L}}\{g(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4428a2eb9346d5896b51f85611c6e3daad1db9bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.95ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}\{f(t)+g(t)\}={\mathcal {L}}\{f(t)\}+{\mathcal {L}}\{g(t)\}}"></span></li> <li>The Laplace transform of a multiple of a function is that multiple times the Laplace transformation of that function.<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\{af(t)\}=a{\mathcal {L}}\{f(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\{af(t)\}=a{\mathcal {L}}\{f(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/450c648b6dce57d9cb39dda8722afb1d47b3a115" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.27ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}\{af(t)\}=a{\mathcal {L}}\{f(t)\}}"></span></li></ul> <p>Using this linearity, and various <a href="/wiki/List_of_trigonometric_identities" title="List of trigonometric identities">trigonometric</a>, <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic</a>, and complex number (etc.) properties and/or identities, some Laplace transforms can be obtained from others more quickly than by using the definition directly. </p><p>The unilateral Laplace transform takes as input a function whose time domain is the <a href="/wiki/Non-negative" class="mw-redirect" title="Non-negative">non-negative</a> reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, <span class="texhtml"><i>u</i>(<i>t</i>)</span>. </p><p>The entries of the table that involve a time delay <span class="texhtml"><i>τ</i></span> are required to be <a href="/wiki/Causal_system" title="Causal system">causal</a> (meaning that <span class="texhtml"><i>τ</i> &gt; 0</span>). A causal system is a system where the <a href="/wiki/Impulse_response" title="Impulse response">impulse response</a> <span class="texhtml"><i>h</i>(<i>t</i>)</span> is zero for all time <span class="texhtml mvar" style="font-style:italic;">t</span> prior to <span class="texhtml"><i>t</i> = 0</span>. In general, the region of convergence for causal systems is not the same as that of <a href="/wiki/Anticausal_system" title="Anticausal system">anticausal systems</a>. </p> <table class="wikitable" style="text-align: center;"> <caption>Selected Laplace transforms </caption> <tbody><tr> <th scope="col">Function </th> <th scope="col">Time domain <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)={\mathcal {L}}^{-1}\{F(s)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)={\mathcal {L}}^{-1}\{F(s)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb893031822346a930afd76491fc9a2d0fd48707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.928ex; height:3.176ex;" alt="{\displaystyle f(t)={\mathcal {L}}^{-1}\{F(s)\}}"></span> </th> <th scope="col">Laplace <span class="texhtml">s</span>-domain <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bd0b873c7673d6ef7f6e9ea4e0e121d5771981f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.595ex; height:2.843ex;" alt="{\displaystyle F(s)={\mathcal {L}}\{f(t)\}}"></span> </th> <th scope="col">Region of convergence </th> <th scope="col">Reference </th></tr> <tr> <th scope="row">unit impulse </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da851d2e4afb359a36c5cb1c0dcfac6ed2b9ed03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.278ex; height:2.843ex;" alt="{\displaystyle \delta (t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td>all <span class="texhtml"><i>s</i></span> </td> <td>inspection </td></tr> <tr> <th scope="row">delayed impulse </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (t-\tau )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (t-\tau )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d6cd3580d0ca4c10c5f4e119b7d59f648f2f7fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.321ex; height:2.843ex;" alt="{\displaystyle \delta (t-\tau )\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\tau s}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mi>s</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\tau s}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c29d0ab60e43bc00fa3dedeb8147126694ebd96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.796ex; height:2.509ex;" alt="{\displaystyle e^{-\tau s}\ }"></span> </td> <td>all <span class="texhtml"><i>s</i></span> </td> <td>time shift of<br />unit impulse </td></tr> <tr> <th scope="row">unit step </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb97101ef1486e114dacda61c4a5a775e3a2548" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.559ex; height:2.843ex;" alt="{\displaystyle u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1 \over s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1 \over s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e12052432638c711c0441bdd33cf609b8748ea7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:1.999ex; height:5.176ex;" alt="{\displaystyle {1 \over s}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td>integrate unit impulse </td></tr> <tr> <th scope="row">delayed unit step </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(t-\tau )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(t-\tau )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f01928b97564610dbb5708a3eb426466d4718052" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.602ex; height:2.843ex;" alt="{\displaystyle u(t-\tau )\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s}}e^{-\tau s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mi>s</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s}}e^{-\tau s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3929545c83c9b542c44d456bc1987b0a1f1dc774" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.214ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{s}}e^{-\tau s}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td>time shift of<br />unit step </td></tr> <tr> <th scope="row">product of delayed function and delayed step </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t-\tau )u(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t-\tau )u(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/578588d732f29a9be348f9a2d465e2e4e8bd73ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.991ex; height:2.843ex;" alt="{\displaystyle f(t-\tau )u(t-\tau )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-s\tau }{\mathcal {L}}\{f(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-s\tau }{\mathcal {L}}\{f(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05071ec6c957ba4fa563d5e2d758e62bda991995" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.071ex; height:3.009ex;" alt="{\displaystyle e^{-s\tau }{\mathcal {L}}\{f(t)\}}"></span> </td> <td> </td> <td>u-substitution, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=t-\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=t-\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f136ba801f6bd00ee985e98cec37235490289b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.31ex; height:2.176ex;" alt="{\displaystyle u=t-\tau }"></span> </td></tr> <tr> <th>rectangular impulse </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(t)-u(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(t)-u(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57b648902f871bd93e0df4ba915ee55372b97bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.84ex; height:2.843ex;" alt="{\displaystyle u(t)-u(t-\tau )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s}}(1-e^{-\tau s})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mi>s</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s}}(1-e^{-\tau s})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02f84c63c3275bcdda87a430c15511e203486c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.026ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{s}}(1-e^{-\tau s})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td> </td></tr> <tr> <th scope="row"><a href="/wiki/Ramp_function" title="Ramp function">ramp</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb3cde9545296c49fba514af248a342570095492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.078ex; height:2.843ex;" alt="{\displaystyle t\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46948af3cd3b6074ff83a651e87fa2414c7f0f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:2.981ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{s^{2}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td>integrate unit<br />impulse twice </td></tr> <tr> <th scope="row"><span class="texhtml"><i>n</i></span>th power <br /> (for integer <span class="texhtml"><i>n</i></span>) </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{n}\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{n}\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5b896e253b06b1f04b53713f84c78c09af74433" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.716ex; height:2.843ex;" alt="{\displaystyle t^{n}\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n! \over s^{n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n! \over s^{n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1fad01d457183aab6c33d2afd840e118551ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.246ex; height:5.676ex;" alt="{\displaystyle {n! \over s^{n+1}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> <br /> (<span class="texhtml"><i>n</i> &gt; −1</span>) </td> <td>integrate unit<br />step <span class="texhtml"><i>n</i></span> times </td></tr> <tr> <th scope="row"><span class="texhtml"><i>q</i></span>th power <br /> (for complex <span class="texhtml"><i>q</i></span>) </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{q}\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{q}\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b38aae75d1d01f8dcd86fd38ff201f9de2e7bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.486ex; height:2.843ex;" alt="{\displaystyle t^{q}\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\operatorname {\Gamma } (q+1) \over s^{q+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\operatorname {\Gamma } (q+1) \over s^{q+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff5da3f715028ed58491ffda69c43cf66000950c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:9.171ex; height:6.009ex;" alt="{\displaystyle {\operatorname {\Gamma } (q+1) \over s^{q+1}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (q)&gt;-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (q)&gt;-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a76f768d20256f5e6a4ca9c1752a4a51639514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.691ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (q)&gt;-1}"></span> </td> <td><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><span class="texhtml"><i>n</i></span>th root </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{t}}\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{t}}\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4345a4c33a88daeb8ec5a3002d02d62f66ff3fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.433ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{t}}\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1 \over s^{{\frac {1}{n}}+1}}\operatorname {\Gamma } \left({\frac {1}{n}}+1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1 \over s^{{\frac {1}{n}}+1}}\operatorname {\Gamma } \left({\frac {1}{n}}+1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c19f00d756dcde3465b231a14e82a22a7fd61c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.391ex; height:6.676ex;" alt="{\displaystyle {1 \over s^{{\frac {1}{n}}+1}}\operatorname {\Gamma } \left({\frac {1}{n}}+1\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td>Set <span class="texhtml"><i>q</i> = 1/<i>n</i></span> above. </td></tr> <tr> <th scope="row"><span class="texhtml"><i>n</i></span>th power with frequency shift </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{n}e^{-\alpha t}\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{n}e^{-\alpha t}\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ed5279bfe16ff5fcb23fd2fbdbea2f07903b4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.956ex; height:3.009ex;" alt="{\displaystyle t^{n}e^{-\alpha t}\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n!}{(s+\alpha )^{n+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n!}{(s+\alpha )^{n+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9ec193d9657b8fd89deb9893c4ccc6ad18746a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.383ex; height:6.176ex;" alt="{\displaystyle {\frac {n!}{(s+\alpha )^{n+1}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2a74e2a87df4f4d30a2aa6c10c95cc701d211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.037ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"></span> </td> <td>Integrate unit step,<br />apply frequency shift </td></tr> <tr> <th scope="row">delayed <span class="texhtml"><i>n</i></span>th power <br /> with frequency shift </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t-\tau )^{n}e^{-\alpha (t-\tau )}\cdot u(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t-\tau )^{n}e^{-\alpha (t-\tau )}\cdot u(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3605609561a79361679ca30ff80af575a370a902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.257ex; height:3.343ex;" alt="{\displaystyle (t-\tau )^{n}e^{-\alpha (t-\tau )}\cdot u(t-\tau )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n!\cdot e^{-\tau s}}{(s+\alpha )^{n+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mi>s</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n!\cdot e^{-\tau s}}{(s+\alpha )^{n+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed9471e996bb67e33f1a8296e375844af1c79505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.383ex; height:6.343ex;" alt="{\displaystyle {\frac {n!\cdot e^{-\tau s}}{(s+\alpha )^{n+1}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2a74e2a87df4f4d30a2aa6c10c95cc701d211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.037ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"></span> </td> <td>integrate unit step,<br />apply frequency shift,<br />apply time shift </td></tr> <tr> <th scope="row"><a href="/wiki/Exponential_decay" title="Exponential decay">exponential decay</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\alpha t}\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\alpha t}\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98695eb1dc70cd1151643626ec64661f80005394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.898ex; height:3.009ex;" alt="{\displaystyle e^{-\alpha t}\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {1 \over s+\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {1 \over s+\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0229f76cec6c45e76f727146329996a4cd9e895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.255ex; height:5.343ex;" alt="{\displaystyle {1 \over s+\alpha }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2a74e2a87df4f4d30a2aa6c10c95cc701d211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.037ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"></span> </td> <td>Frequency shift of<br />unit step </td></tr> <tr> <th scope="row"><a href="/wiki/Two-sided_Laplace_transform" title="Two-sided Laplace transform">two-sided</a> exponential decay <br />(only for bilateral transform) </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\alpha |t|}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\alpha |t|}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f9ac4a67cfcbc97320effc38c9d84cdad43d8e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.735ex; height:2.843ex;" alt="{\displaystyle e^{-\alpha |t|}\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {2\alpha \over \alpha ^{2}-s^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {2\alpha \over \alpha ^{2}-s^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0051efbbf8f1bd6df33b217d856e06fc7a89b491" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.363ex; height:5.676ex;" alt="{\displaystyle {2\alpha \over \alpha ^{2}-s^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\alpha &lt;\operatorname {Re} (s)&lt;\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\alpha &lt;\operatorname {Re} (s)&lt;\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c160ff756a28749d751a2795c0b1d4b03379b0f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.623ex; height:2.843ex;" alt="{\displaystyle -\alpha &lt;\operatorname {Re} (s)&lt;\alpha }"></span> </td> <td>Frequency shift of<br />unit step </td></tr> <tr> <th scope="row">exponential approach </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-e^{-\alpha t})\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-e^{-\alpha t})\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6c701de6d8a894649dd3513cc3e97844172b903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.29ex; height:3.009ex;" alt="{\displaystyle (1-e^{-\alpha t})\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\alpha }{s(s+\alpha )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mrow> <mi>s</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\alpha }{s(s+\alpha )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05505ff80466f8350293e9e58644838f4192da8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:9.154ex; height:5.509ex;" alt="{\displaystyle {\frac {\alpha }{s(s+\alpha )}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td>unit step minus<br />exponential decay </td></tr> <tr> <th scope="row"><a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(\omega t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(\omega t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02dde40ceb574c28a10539f224e87a29e7d63648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.189ex; height:2.843ex;" alt="{\displaystyle \sin(\omega t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\omega \over s^{2}+\omega ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\omega \over s^{2}+\omega ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/876ae003c68ad9023b3f0e85c4f93d6dbc1e0eaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.321ex; height:5.176ex;" alt="{\displaystyle {\omega \over s^{2}+\omega ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td><sup id="cite_ref-FOOTNOTEBracewell1978227_35-0" class="reference"><a href="#cite_note-FOOTNOTEBracewell1978227-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(\omega t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(\omega t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d975de98dca5bf39d786f8660da37e2dbfdc8292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.444ex; height:2.843ex;" alt="{\displaystyle \cos(\omega t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {s \over s^{2}+\omega ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {s \over s^{2}+\omega ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21481b6bd59e4250e5eac3503f8ee588dcb9c667" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.321ex; height:5.176ex;" alt="{\displaystyle {s \over s^{2}+\omega ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td><sup id="cite_ref-FOOTNOTEBracewell1978227_35-1" class="reference"><a href="#cite_note-FOOTNOTEBracewell1978227-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Hyperbolic_sine" class="mw-redirect" title="Hyperbolic sine">hyperbolic sine</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sinh(\alpha t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sinh(\alpha t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7718b00ca36d25104361aeab18cf8e1e7f9a627" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.523ex; height:2.843ex;" alt="{\displaystyle \sinh(\alpha t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\alpha \over s^{2}-\alpha ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\alpha \over s^{2}-\alpha ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e6ea24afce8149199cb1f61d500440b0808e79e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.363ex; height:5.176ex;" alt="{\displaystyle {\alpha \over s^{2}-\alpha ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mrow> <mo>|</mo> <mi>&#x03B1;<!-- α --></mi> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c777547ea8a3b6b843e45f9601b32221a75610cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.522ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}"></span> </td> <td><sup id="cite_ref-FOOTNOTEWilliams197388_36-0" class="reference"><a href="#cite_note-FOOTNOTEWilliams197388-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Hyperbolic_cosine" class="mw-redirect" title="Hyperbolic cosine">hyperbolic cosine</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cosh(\alpha t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cosh(\alpha t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b39113c0f6e3efd283ccfda7060de3123c82888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.779ex; height:2.843ex;" alt="{\displaystyle \cosh(\alpha t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {s \over s^{2}-\alpha ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {s \over s^{2}-\alpha ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c80ab2a34d0f9ff049027a729381874e9bd830c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.363ex; height:5.176ex;" alt="{\displaystyle {s \over s^{2}-\alpha ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mrow> <mo>|</mo> <mi>&#x03B1;<!-- α --></mi> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c777547ea8a3b6b843e45f9601b32221a75610cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.522ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;\left|\alpha \right|}"></span> </td> <td><sup id="cite_ref-FOOTNOTEWilliams197388_36-1" class="reference"><a href="#cite_note-FOOTNOTEWilliams197388-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row">exponentially decaying <br /> sine wave </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\alpha t}\sin(\omega t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\alpha t}\sin(\omega t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5def66018fbfc9d9d61f875183e7e33240fdd8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.816ex; height:3.009ex;" alt="{\displaystyle e^{-\alpha t}\sin(\omega t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\omega \over (s+\alpha )^{2}+\omega ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\omega \over (s+\alpha )^{2}+\omega ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55f4baa256fac73b43492a29cab9d49d87611d5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.459ex; height:5.509ex;" alt="{\displaystyle {\omega \over (s+\alpha )^{2}+\omega ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2a74e2a87df4f4d30a2aa6c10c95cc701d211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.037ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"></span> </td> <td><sup id="cite_ref-FOOTNOTEBracewell1978227_35-2" class="reference"><a href="#cite_note-FOOTNOTEBracewell1978227-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row">exponentially decaying <br /> cosine wave </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\alpha t}\cos(\omega t)\cdot u(t)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\alpha t}\cos(\omega t)\cdot u(t)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a05cfb92da9b3d2d19165a71df2f0f080ce2a44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.071ex; height:3.009ex;" alt="{\displaystyle e^{-\alpha t}\cos(\omega t)\cdot u(t)\ }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {s+\alpha \over (s+\alpha )^{2}+\omega ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {s+\alpha \over (s+\alpha )^{2}+\omega ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c63c48f07a46bcc5b39f1d87c0ea09403c1561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.459ex; height:5.843ex;" alt="{\displaystyle {s+\alpha \over (s+\alpha )^{2}+\omega ^{2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;-\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2a74e2a87df4f4d30a2aa6c10c95cc701d211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.037ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;-\alpha }"></span> </td> <td><sup id="cite_ref-FOOTNOTEBracewell1978227_35-3" class="reference"><a href="#cite_note-FOOTNOTEBracewell1978227-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(t)\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(t)\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb3b8f4fbbeafadc26da19ede9e3e10601d6f54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.246ex; height:2.843ex;" alt="{\displaystyle \ln(t)\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{1 \over s}\left[\ln(s)+\gamma \right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{1 \over s}\left[\ln(s)+\gamma \right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11e5254f2039e5373fac5178eb8da59890d0979f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.429ex; height:5.176ex;" alt="{\displaystyle -{1 \over s}\left[\ln(s)+\gamma \right]}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td><sup id="cite_ref-FOOTNOTEWilliams197388_36-2" class="reference"><a href="#cite_note-FOOTNOTEWilliams197388-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> <br /> of the first kind, <br /> of order <span class="texhtml"><i>n</i></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{n}(\omega t)\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J_{n}(\omega t)\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a71a39dba1701407eadcc42453bf821e0705a3b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.261ex; height:2.843ex;" alt="{\displaystyle J_{n}(\omega t)\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\left({\sqrt {s^{2}+\omega ^{2}}}-s\right)^{\!n}}{\omega ^{n}{\sqrt {s^{2}+\omega ^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mi>n</mi> </mrow> </msup> <mrow> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\left({\sqrt {s^{2}+\omega ^{2}}}-s\right)^{\!n}}{\omega ^{n}{\sqrt {s^{2}+\omega ^{2}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a15fc6e827c36a9c69326707fea8fb3133261838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.183ex; height:8.843ex;" alt="{\displaystyle {\frac {\left({\sqrt {s^{2}+\omega ^{2}}}-s\right)^{\!n}}{\omega ^{n}{\sqrt {s^{2}+\omega ^{2}}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> <br /> (<span class="texhtml"><i>n</i> &gt; −1</span>) </td> <td><sup id="cite_ref-FOOTNOTEWilliams197389_37-0" class="reference"><a href="#cite_note-FOOTNOTEWilliams197389-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <th scope="row"><a href="/wiki/Error_function" title="Error function">Error function</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {erf} (t)\cdot u(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {erf} (t)\cdot u(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbaab4b629505dd625c90944aba1981699dad121" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.962ex; height:2.843ex;" alt="{\displaystyle \operatorname {erf} (t)\cdot u(t)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s}}e^{(1/4)s^{2}}\!\left(1-\operatorname {erf} {\frac {s}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>s</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s}}e^{(1/4)s^{2}}\!\left(1-\operatorname {erf} {\frac {s}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdd0bc2936c98c66536e9c5620eeb863bec0df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.482ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{s}}e^{(1/4)s^{2}}\!\left(1-\operatorname {erf} {\frac {s}{2}}\right)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (s)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (s)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0992e3b29be0b1bb2feec2e4682f43fe61c38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.904ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (s)&gt;0}"></span> </td> <td><sup id="cite_ref-FOOTNOTEWilliams197389_37-1" class="reference"><a href="#cite_note-FOOTNOTEWilliams197389-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td colspan="5" style="text-align: left;"><b>Explanatory notes:</b> <style data-mw-deduplicate="TemplateStyles:r1216972533">.mw-parser-output .col-begin{border-collapse:collapse;padding:0;color:inherit;width:100%;border:0;margin:0}.mw-parser-output .col-begin-small{font-size:90%}.mw-parser-output .col-break{vertical-align:top;text-align:left}.mw-parser-output .col-break-2{width:50%}.mw-parser-output .col-break-3{width:33.3%}.mw-parser-output .col-break-4{width:25%}.mw-parser-output .col-break-5{width:20%}@media(max-width:720px){.mw-parser-output .col-begin,.mw-parser-output .col-begin>tbody,.mw-parser-output .col-begin>tbody>tr,.mw-parser-output .col-begin>tbody>tr>td{display:block!important;width:100%!important}.mw-parser-output .col-break{padding-left:0!important}}</style><div> <table class="col-begin" role="presentation"> <tbody><tr> <td class="col-break"> <ul><li><span class="texhtml"><i>u</i>(<i>t</i>)</span> represents the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside step function</a>.</li> <li><span class="texhtml"><i>δ</i></span> represents the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>.</li> <li><span class="texhtml">Γ(<i>z</i>)</span> represents the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>.</li> <li><span class="texhtml"><i>γ</i></span> is the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler&#8211;Mascheroni constant</a>.</li></ul> </td> <td class="col-break"> <ul><li><span class="texhtml"><i>t</i></span>, a real number, typically represents <i>time</i>, although it can represent <i>any</i> independent dimension.</li> <li><span class="texhtml"><i>s</i></span> is the <a href="/wiki/Complex_number" title="Complex number">complex</a> frequency domain parameter, and <span class="texhtml">Re(<i>s</i>)</span> is its <a href="/wiki/Real_part" class="mw-redirect" title="Real part">real part</a>.</li> <li><span class="texhtml"><i>α</i>, <i>β</i>, <i>τ</i>, and <i>ω</i></span> are <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a>.</li> <li><span class="texhtml"><i>n</i></span> is an <a href="/wiki/Integer" title="Integer">integer</a>.</li></ul> <p>&#32; </p> </td></tr></tbody></table></div> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="s-domain_equivalent_circuits_and_impedances"><i>s</i>-domain equivalent circuits and impedances</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=21" title="Edit section: s-domain equivalent circuits and impedances"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform is often used in <a href="/wiki/Network_analysis_(electrical_circuits)" title="Network analysis (electrical circuits)">circuit analysis</a>, and simple conversions to the <span class="texhtml"><i>s</i></span>-domain of circuit elements can be made. Circuit elements can be transformed into <a href="/wiki/Electrical_impedance" title="Electrical impedance">impedances</a>, very similar to <a href="/wiki/Phasor_(sine_waves)" class="mw-redirect" title="Phasor (sine waves)">phasor</a> impedances. </p><p>Here is a summary of equivalents: </p> <dl><dd><figure class="mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:S-Domain_circuit_equivalents.svg" class="mw-file-description" title="s-domain equivalent circuits"><img alt="s-domain equivalent circuits" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/S-Domain_circuit_equivalents.svg/400px-S-Domain_circuit_equivalents.svg.png" decoding="async" width="400" height="274" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/S-Domain_circuit_equivalents.svg/600px-S-Domain_circuit_equivalents.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/S-Domain_circuit_equivalents.svg/800px-S-Domain_circuit_equivalents.svg.png 2x" data-file-width="615" data-file-height="422" /></a><figcaption><span class="texhtml"><i>s</i></span>-domain equivalent circuits</figcaption></figure></dd></dl> <p>Note that the resistor is exactly the same in the time domain and the <span class="texhtml"><i>s</i></span>-domain. The sources are put in if there are initial conditions on the circuit elements. For example, if a capacitor has an initial voltage across it, or if the inductor has an initial current through it, the sources inserted in the <span class="texhtml"><i>s</i></span>-domain account for that. </p><p>The equivalents for current and voltage sources are simply derived from the transformations in the table above. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_and_applications">Examples and applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=22" title="Edit section: Examples and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform is used frequently in <a href="/wiki/Engineering" title="Engineering">engineering</a> and <a href="/wiki/Physics" title="Physics">physics</a>; the output of a <a href="/wiki/Linear_time-invariant_system" title="Linear time-invariant system">linear time-invariant system</a> can be calculated by convolving its unit impulse response with the input signal. Performing this calculation in Laplace space turns the convolution into a multiplication; the latter being easier to solve because of its algebraic form. For more information, see <a href="/wiki/Control_theory" title="Control theory">control theory</a>. The Laplace transform is invertible on a large class of functions. Given a simple mathematical or functional description of an input or output to a <a href="/wiki/System" title="System">system</a>, the Laplace transform provides an alternative functional description that often simplifies the process of analyzing the behavior of the system, or in synthesizing a new system based on a set of specifications.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Laplace transform can also be used to solve differential equations and is used extensively in <a href="/wiki/Mechanical_engineering" title="Mechanical engineering">mechanical engineering</a> and <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a>. The Laplace transform reduces a linear differential equation to an algebraic equation, which can then be solved by the formal rules of algebra. The original differential equation can then be solved by applying the inverse Laplace transform. English electrical engineer <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a> first proposed a similar scheme, although without using the Laplace transform; and the resulting operational calculus is credited as the Heaviside calculus. </p> <div class="mw-heading mw-heading3"><h3 id="Evaluating_improper_integrals">Evaluating improper integrals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=23" title="Edit section: Evaluating improper integrals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\left\{f(t)\right\}=F(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\left\{f(t)\right\}=F(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/457c90bbb581abb2c11aec90c91413a91c5499c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.982ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}\left\{f(t)\right\}=F(s)}"></span>. Then (see the table above) </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{s}{\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\partial _{s}\int _{0}^{\infty }{\frac {f(t)}{t}}e^{-st}\,dt=-\int _{0}^{\infty }f(t)e^{-st}dt=-F(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>t</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{s}{\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\partial _{s}\int _{0}^{\infty }{\frac {f(t)}{t}}e^{-st}\,dt=-\int _{0}^{\infty }f(t)e^{-st}dt=-F(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acea4575b485f1df65aa88013d1b472cd6ee8fc9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.603ex; height:6.343ex;" alt="{\displaystyle \partial _{s}{\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\partial _{s}\int _{0}^{\infty }{\frac {f(t)}{t}}e^{-st}\,dt=-\int _{0}^{\infty }f(t)e^{-st}dt=-F(s)}"></span> </p><p>From which one gets: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\int _{s}^{\infty }F(p)\,dp.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\int _{s}^{\infty }F(p)\,dp.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fb900bae03ad5146b2c65fdae139a7df6e649a0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.205ex; height:6.343ex;" alt="{\displaystyle {\mathcal {L}}\left\{{\frac {f(t)}{t}}\right\}=\int _{s}^{\infty }F(p)\,dp.}"></span> </p><p>In the limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\rightarrow 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\rightarrow 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18707f5a3ad0fa29ff1f32ef409349f235576588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.867ex; height:2.176ex;" alt="{\displaystyle s\rightarrow 0}"></span>, one gets <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }{\frac {f(t)}{t}}\,dt=\int _{0}^{\infty }F(p)\,dp,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>t</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>F</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }{\frac {f(t)}{t}}\,dt=\int _{0}^{\infty }F(p)\,dp,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fbe780ed0e9214ce7f97095ef53f109c3524073" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.897ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{\infty }{\frac {f(t)}{t}}\,dt=\int _{0}^{\infty }F(p)\,dp,}"></span> provided that the interchange of limits can be justified. This is often possible as a consequence of the <a href="/wiki/Final_value_theorem#Final_Value_Theorem_for_improperly_integrable_functions_(Abel&#39;s_theorem_for_integrals)" title="Final value theorem">final value theorem</a>. Even when the interchange cannot be justified the calculation can be suggestive. For example, with <span class="texhtml"><i>a</i> ≠ 0 ≠ <i>b</i></span>, proceeding formally one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\cos(at)-\cos(bt)}{t}}\,dt&amp;=\int _{0}^{\infty }\left({\frac {p}{p^{2}+a^{2}}}-{\frac {p}{p^{2}+b^{2}}}\right)\,dp\\[6pt]&amp;=\left[{\frac {1}{2}}\ln {\frac {p^{2}+a^{2}}{p^{2}+b^{2}}}\right]_{0}^{\infty }={\frac {1}{2}}\ln {\frac {b^{2}}{a^{2}}}=\ln \left|{\frac {b}{a}}\right|.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>t</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\cos(at)-\cos(bt)}{t}}\,dt&amp;=\int _{0}^{\infty }\left({\frac {p}{p^{2}+a^{2}}}-{\frac {p}{p^{2}+b^{2}}}\right)\,dp\\[6pt]&amp;=\left[{\frac {1}{2}}\ln {\frac {p^{2}+a^{2}}{p^{2}+b^{2}}}\right]_{0}^{\infty }={\frac {1}{2}}\ln {\frac {b^{2}}{a^{2}}}=\ln \left|{\frac {b}{a}}\right|.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/150eb829ed85ccdec437af079d262fc08428699c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:65.645ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\cos(at)-\cos(bt)}{t}}\,dt&amp;=\int _{0}^{\infty }\left({\frac {p}{p^{2}+a^{2}}}-{\frac {p}{p^{2}+b^{2}}}\right)\,dp\\[6pt]&amp;=\left[{\frac {1}{2}}\ln {\frac {p^{2}+a^{2}}{p^{2}+b^{2}}}\right]_{0}^{\infty }={\frac {1}{2}}\ln {\frac {b^{2}}{a^{2}}}=\ln \left|{\frac {b}{a}}\right|.\end{aligned}}}"></span> </p><p>The validity of this identity can be proved by other means. It is an example of a <a href="/wiki/Frullani_integral" title="Frullani integral">Frullani integral</a>. </p><p>Another example is <a href="/wiki/Dirichlet_integral" title="Dirichlet integral">Dirichlet integral</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Complex_impedance_of_a_capacitor">Complex impedance of a capacitor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=24" title="Edit section: Complex impedance of a capacitor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the theory of <a href="/wiki/Electrical_circuit" class="mw-redirect" title="Electrical circuit">electrical circuits</a>, the current flow in a <a href="/wiki/Capacitor" title="Capacitor">capacitor</a> is proportional to the capacitance and rate of change in the electrical potential (with equations as for the <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> unit system). Symbolically, this is expressed by the differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=C{dv \over dt},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>v</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=C{dv \over dt},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83bfad94907c3d3111a094ae9a2643abd7a7e437" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.494ex; height:5.509ex;" alt="{\displaystyle i=C{dv \over dt},}"></span> where <span class="texhtml"><i>C</i></span> is the capacitance of the capacitor, <span class="texhtml"><i>i</i> = <i>i</i>(<i>t</i>)</span> is the <a href="/wiki/Electric_current" title="Electric current">electric current</a> through the capacitor as a function of time, and <span class="texhtml"><i>v</i> = <i>v</i>(<i>t</i>)</span> is the <a href="/wiki/Electrostatic_potential" class="mw-redirect" title="Electrostatic potential">voltage</a> across the terminals of the capacitor, also as a function of time. </p><p>Taking the Laplace transform of this equation, we obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(s)=C(sV(s)-V_{0}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(s)=C(sV(s)-V_{0}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a142940c134a6388521a7dee9692ee87c32fe30" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.42ex; height:2.843ex;" alt="{\displaystyle I(s)=C(sV(s)-V_{0}),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I(s)&amp;={\mathcal {L}}\{i(t)\},\\V(s)&amp;={\mathcal {L}}\{v(t)\},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>I</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>V</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}I(s)&amp;={\mathcal {L}}\{i(t)\},\\V(s)&amp;={\mathcal {L}}\{v(t)\},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f198d497ac10e65162028228912437b31fb313" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.889ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}I(s)&amp;={\mathcal {L}}\{i(t)\},\\V(s)&amp;={\mathcal {L}}\{v(t)\},\end{aligned}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{0}=v(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{0}=v(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf78b400ca74acedeedbda8cf3fb793103659ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.254ex; height:2.843ex;" alt="{\displaystyle V_{0}=v(0).}"></span> </p><p>Solving for <span class="texhtml"><i>V</i>(<i>s</i>)</span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(s)={I(s) \over sC}+{V_{0} \over s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>s</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(s)={I(s) \over sC}+{V_{0} \over s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f110c587519eb4a4d6ffabf1b58624b0ad97231" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.426ex; height:5.843ex;" alt="{\displaystyle V(s)={I(s) \over sC}+{V_{0} \over s}.}"></span> </p><p>The definition of the complex impedance <span class="texhtml"><i>Z</i></span> (in <a href="/wiki/Ohm" title="Ohm">ohms</a>) is the ratio of the complex voltage <span class="texhtml"><i>V</i></span> divided by the complex current <span class="texhtml"><i>I</i></span> while holding the initial state <span class="texhtml"><i>V</i><sub>0</sub></span> at zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z(s)=\left.{V(s) \over I(s)}\right|_{V_{0}=0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>V</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z(s)=\left.{V(s) \over I(s)}\right|_{V_{0}=0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6711003350f4559c32bca99676f9ae3e2f000df7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.618ex; height:6.843ex;" alt="{\displaystyle Z(s)=\left.{V(s) \over I(s)}\right|_{V_{0}=0}.}"></span> </p><p>Using this definition and the previous equation, we find: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z(s)={\frac {1}{sC}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>C</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z(s)={\frac {1}{sC}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9aace1d29c498b7585d461970a874aa2ca5fefe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.018ex; height:5.343ex;" alt="{\displaystyle Z(s)={\frac {1}{sC}},}"></span> which is the correct expression for the complex impedance of a capacitor. In addition, the Laplace transform has large applications in control theory. </p> <div class="mw-heading mw-heading3"><h3 id="Impulse_response">Impulse response</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=25" title="Edit section: Impulse response"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a linear time-invariant system with <a href="/wiki/Transfer_function" title="Transfer function">transfer function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/553a78b681373612c87e6d31f6a2b52080d1871b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.845ex; height:6.009ex;" alt="{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}.}"></span> </p><p>The <a href="/wiki/Impulse_response" title="Impulse response">impulse response</a> is simply the inverse Laplace transform of this transfer function: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2fcfed3bfaf30f53ccc8c2b9d1064a4c51b9dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.958ex; height:3.176ex;" alt="{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}.}"></span> </p> <dl><dt>Partial fraction expansion</dt></dl> <p>To evaluate this inverse transform, we begin by expanding <span class="texhtml"><i>H</i>(<i>s</i>)</span> using the method of partial fraction expansion, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{(s+\alpha )(s+\beta )}}={P \over s+\alpha }+{R \over s+\beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>P</mi> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>R</mi> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{(s+\alpha )(s+\beta )}}={P \over s+\alpha }+{R \over s+\beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e59114cab3e1242b577c78ce884fe1225b4871" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.075ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{(s+\alpha )(s+\beta )}}={P \over s+\alpha }+{R \over s+\beta }.}"></span> </p><p>The unknown constants <span class="texhtml"><i>P</i></span> and <span class="texhtml"><i>R</i></span> are the <a href="/wiki/Residue_(complex_analysis)" title="Residue (complex analysis)">residues</a> located at the corresponding poles of the transfer function. Each residue represents the relative contribution of that <a href="/wiki/Mathematical_singularity" class="mw-redirect" title="Mathematical singularity">singularity</a> to the transfer function's overall shape. </p><p>By the <a href="/wiki/Residue_theorem" title="Residue theorem">residue theorem</a>, the inverse Laplace transform depends only upon the poles and their residues. To find the residue <span class="texhtml"><i>P</i></span>, we multiply both sides of the equation by <span class="texhtml"><i>s</i> + <i>α</i></span> to get <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s+\beta }}=P+{R(s+\alpha ) \over s+\beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>R</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s+\beta }}=P+{R(s+\alpha ) \over s+\beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6d4af6ff6e108f5079733011d48d7fd47e35c5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.258ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{s+\beta }}=P+{R(s+\alpha ) \over s+\beta }.}"></span> </p><p>Then by letting <span class="texhtml"><i>s</i> = −<i>α</i></span>, the contribution from <span class="texhtml"><i>R</i></span> vanishes and all that is left is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\left.{1 \over s+\beta }\right|_{s=-\alpha }={1 \over \beta -\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\left.{1 \over s+\beta }\right|_{s=-\alpha }={1 \over \beta -\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/667e086ca22b4819f4188e6a30c83baa4fbb329d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.443ex; height:6.176ex;" alt="{\displaystyle P=\left.{1 \over s+\beta }\right|_{s=-\alpha }={1 \over \beta -\alpha }.}"></span> </p><p>Similarly, the residue <span class="texhtml"><i>R</i></span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\left.{1 \over s+\alpha }\right|_{s=-\beta }={1 \over \alpha -\beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\left.{1 \over s+\alpha }\right|_{s=-\beta }={1 \over \alpha -\beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09980f06092ea8dccbaa90eaf11ceb6cc7225b4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.508ex; height:6.009ex;" alt="{\displaystyle R=\left.{1 \over s+\alpha }\right|_{s=-\beta }={1 \over \alpha -\beta }.}"></span> </p><p>Note that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={-1 \over \beta -\alpha }=-P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={-1 \over \beta -\alpha }=-P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c637470458d06ed421d04e21d52a9add74e4bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.011ex; height:5.676ex;" alt="{\displaystyle R={-1 \over \beta -\alpha }=-P}"></span> and so the substitution of <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>P</i></span> into the expanded expression for <span class="texhtml"><i>H</i>(<i>s</i>)</span> gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)=\left({\frac {1}{\beta -\alpha }}\right)\cdot \left({1 \over s+\alpha }-{1 \over s+\beta }\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)=\left({\frac {1}{\beta -\alpha }}\right)\cdot \left({1 \over s+\alpha }-{1 \over s+\beta }\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8526941d3c46c3c1430896441589019926caba3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.307ex; height:6.176ex;" alt="{\displaystyle H(s)=\left({\frac {1}{\beta -\alpha }}\right)\cdot \left({1 \over s+\alpha }-{1 \over s+\beta }\right).}"></span> </p><p>Finally, using the linearity property and the known transform for exponential decay (see <i>Item</i> #<i>3</i> in the <i>Table of Laplace Transforms</i>, above), we can take the inverse Laplace transform of <span class="texhtml"><i>H</i>(<i>s</i>)</span> to obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}={\frac {1}{\beta -\alpha }}\left(e^{-\alpha t}-e^{-\beta t}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}={\frac {1}{\beta -\alpha }}\left(e^{-\alpha t}-e^{-\beta t}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2c81157d4756c96c422d5967320210df699ea8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.667ex; height:5.676ex;" alt="{\displaystyle h(t)={\mathcal {L}}^{-1}\{H(s)\}={\frac {1}{\beta -\alpha }}\left(e^{-\alpha t}-e^{-\beta t}\right),}"></span> which is the impulse response of the system. </p> <dl><dt>Convolution</dt></dl> <p>The same result can be achieved using the <a href="/wiki/Convolution_theorem" title="Convolution theorem">convolution property</a> as if the system is a series of filters with transfer functions <span class="texhtml">1/(<i>s</i> + <i>α</i>)</span> and <span class="texhtml">1/(<i>s</i> + <i>β</i>)</span>. That is, the inverse of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}={\frac {1}{s+\alpha }}\cdot {\frac {1}{s+\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}={\frac {1}{s+\alpha }}\cdot {\frac {1}{s+\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f83c812b257b87a39edd6cdd0c79826b61e9ad32" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.329ex; height:6.009ex;" alt="{\displaystyle H(s)={\frac {1}{(s+\alpha )(s+\beta )}}={\frac {1}{s+\alpha }}\cdot {\frac {1}{s+\beta }}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\alpha }}\right\}*{\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\beta }}\right\}=e^{-\alpha t}*e^{-\beta t}=\int _{0}^{t}e^{-\alpha x}e^{-\beta (t-x)}\,dx={\frac {e^{-\alpha t}-e^{-\beta t}}{\beta -\alpha }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>x</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\alpha }}\right\}*{\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\beta }}\right\}=e^{-\alpha t}*e^{-\beta t}=\int _{0}^{t}e^{-\alpha x}e^{-\beta (t-x)}\,dx={\frac {e^{-\alpha t}-e^{-\beta t}}{\beta -\alpha }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62edb0aca04bd02425ae546219c81ad7ab06b65a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:80.771ex; height:6.343ex;" alt="{\displaystyle {\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\alpha }}\right\}*{\mathcal {L}}^{-1}\!\left\{{\frac {1}{s+\beta }}\right\}=e^{-\alpha t}*e^{-\beta t}=\int _{0}^{t}e^{-\alpha x}e^{-\beta (t-x)}\,dx={\frac {e^{-\alpha t}-e^{-\beta t}}{\beta -\alpha }}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Phase_delay">Phase delay</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=26" title="Edit section: Phase delay"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th scope="col">Time function </th> <th scope="col">Laplace transform </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin {(\omega t+\varphi )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin {(\omega t+\varphi )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99fa02d82ae510003ae9e9045febe28fb4f9b403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.698ex; height:2.843ex;" alt="{\displaystyle \sin {(\omega t+\varphi )}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37bbb5e5bebb5142164448c3cc5adf5a1e794526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.613ex; height:6.176ex;" alt="{\displaystyle {\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {(\omega t+\varphi )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {(\omega t+\varphi )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0babc64f2fdd9cb9c485567f05fa722ed847cf8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.953ex; height:2.843ex;" alt="{\displaystyle \cos {(\omega t+\varphi )}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {s\cos(\varphi )-\omega \sin(\varphi )}{s^{2}+\omega ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {s\cos(\varphi )-\omega \sin(\varphi )}{s^{2}+\omega ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b359723cc4e040248e21aec40f4119d350aa96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.259ex; height:6.176ex;" alt="{\displaystyle {\frac {s\cos(\varphi )-\omega \sin(\varphi )}{s^{2}+\omega ^{2}}}.}"></span> </td></tr></tbody></table> <p>Starting with the Laplace transform, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(s)={\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(s)={\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3f327d4b7ef4c3be5cd69e1916770a785d3357a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.591ex; height:6.176ex;" alt="{\displaystyle X(s)={\frac {s\sin(\varphi )+\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}}"></span> we find the inverse by first rearranging terms in the fraction: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X(s)&amp;={\frac {s\sin(\varphi )}{s^{2}+\omega ^{2}}}+{\frac {\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}\\&amp;=\sin(\varphi )\left({\frac {s}{s^{2}+\omega ^{2}}}\right)+\cos(\varphi )\left({\frac {\omega }{s^{2}+\omega ^{2}}}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C9;<!-- ω --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X(s)&amp;={\frac {s\sin(\varphi )}{s^{2}+\omega ^{2}}}+{\frac {\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}\\&amp;=\sin(\varphi )\left({\frac {s}{s^{2}+\omega ^{2}}}\right)+\cos(\varphi )\left({\frac {\omega }{s^{2}+\omega ^{2}}}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e964e4a6a345f724b029762f74452aefe43047bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:49.489ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}X(s)&amp;={\frac {s\sin(\varphi )}{s^{2}+\omega ^{2}}}+{\frac {\omega \cos(\varphi )}{s^{2}+\omega ^{2}}}\\&amp;=\sin(\varphi )\left({\frac {s}{s^{2}+\omega ^{2}}}\right)+\cos(\varphi )\left({\frac {\omega }{s^{2}+\omega ^{2}}}\right).\end{aligned}}}"></span> </p><p>We are now able to take the inverse Laplace transform of our terms: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x(t)&amp;=\sin(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {s}{s^{2}+\omega ^{2}}}\right\}+\cos(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {\omega }{s^{2}+\omega ^{2}}}\right\}\\&amp;=\sin(\varphi )\cos(\omega t)+\cos(\varphi )\sin(\omega t).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x(t)&amp;=\sin(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {s}{s^{2}+\omega ^{2}}}\right\}+\cos(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {\omega }{s^{2}+\omega ^{2}}}\right\}\\&amp;=\sin(\varphi )\cos(\omega t)+\cos(\varphi )\sin(\omega t).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add01b6fdbc411017b6baaf9cabe6e7cad8a1e29" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:55.557ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}x(t)&amp;=\sin(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {s}{s^{2}+\omega ^{2}}}\right\}+\cos(\varphi ){\mathcal {L}}^{-1}\left\{{\frac {\omega }{s^{2}+\omega ^{2}}}\right\}\\&amp;=\sin(\varphi )\cos(\omega t)+\cos(\varphi )\sin(\omega t).\end{aligned}}}"></span> </p><p>This is just the <a href="/wiki/Trigonometric_identity#Angle_sum_and_difference_identities" class="mw-redirect" title="Trigonometric identity">sine of the sum</a> of the arguments, yielding: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)=\sin(\omega t+\varphi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)=\sin(\omega t+\varphi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa38d219be9f0796685524de8b17b062220aa546" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.035ex; height:2.843ex;" alt="{\displaystyle x(t)=\sin(\omega t+\varphi ).}"></span> </p><p>We can apply similar logic to find that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{-1}\left\{{\frac {s\cos \varphi -\omega \sin \varphi }{s^{2}+\omega ^{2}}}\right\}=\cos {(\omega t+\varphi )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{-1}\left\{{\frac {s\cos \varphi -\omega \sin \varphi }{s^{2}+\omega ^{2}}}\right\}=\cos {(\omega t+\varphi )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0af87b7716ff10ed13a077cdd65f9a8949bc910c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.277ex; height:6.176ex;" alt="{\displaystyle {\mathcal {L}}^{-1}\left\{{\frac {s\cos \varphi -\omega \sin \varphi }{s^{2}+\omega ^{2}}}\right\}=\cos {(\omega t+\varphi )}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Statistical_mechanics">Statistical mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=27" title="Edit section: Statistical mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>, the Laplace transform of the density of states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc6f6fcf06a7c595416e9f92905fa4936751fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.701ex; height:2.843ex;" alt="{\displaystyle g(E)}"></span> defines the <a href="/wiki/Partition_function_(statistical_mechanics)" title="Partition function (statistical mechanics)">partition function</a>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> That is, the canonical partition function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z(\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z(\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7c552cea5b10b472898a6985fba0fb724941076" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.822ex; height:2.843ex;" alt="{\displaystyle Z(\beta )}"></span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z(\beta )=\int _{0}^{\infty }e^{-\beta E}g(E)\,dE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>E</mi> </mrow> </msup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z(\beta )=\int _{0}^{\infty }e^{-\beta E}g(E)\,dE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64dddd428c3a83473b8851f2a587ac558806dd56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.518ex; height:5.843ex;" alt="{\displaystyle Z(\beta )=\int _{0}^{\infty }e^{-\beta E}g(E)\,dE}"></span> and the inverse is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(E)={\frac {1}{2\pi i}}\int _{\beta _{0}-i\infty }^{\beta _{0}+i\infty }e^{\beta E}Z(\beta )\,d\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>E</mi> </mrow> </msup> <mi>Z</mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(E)={\frac {1}{2\pi i}}\int _{\beta _{0}-i\infty }^{\beta _{0}+i\infty }e^{\beta E}Z(\beta )\,d\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c45a4434f38900e5c0a57efc6e206ebba22922f9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:31.924ex; height:6.843ex;" alt="{\displaystyle g(E)={\frac {1}{2\pi i}}\int _{\beta _{0}-i\infty }^{\beta _{0}+i\infty }e^{\beta E}Z(\beta )\,d\beta }"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Spatial_(not_time)_structure_from_astronomical_spectrum"><span id="Spatial_.28not_time.29_structure_from_astronomical_spectrum"></span>Spatial (not time) structure from astronomical spectrum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=28" title="Edit section: Spatial (not time) structure from astronomical spectrum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The wide and general applicability of the Laplace transform and its inverse is illustrated by an application in astronomy which provides some information on the <i>spatial distribution</i> of matter of an <a href="/wiki/Astronomy" title="Astronomy">astronomical</a> source of <a href="/wiki/Radiofrequency" class="mw-redirect" title="Radiofrequency">radiofrequency</a> <a href="/wiki/Thermal_radiation" title="Thermal radiation">thermal radiation</a> too distant to <a href="/wiki/Angular_resolution" title="Angular resolution">resolve</a> as more than a point, given its <a href="/wiki/Flux_density" class="mw-redirect" title="Flux density">flux density</a> <a href="/wiki/Spectrum" title="Spectrum">spectrum</a>, rather than relating the <i>time</i> domain with the spectrum (frequency domain). </p><p>Assuming certain properties of the object, e.g. spherical shape and constant temperature, calculations based on carrying out an inverse Laplace transformation on the spectrum of the object can produce the only possible <a href="/wiki/Mathematical_model" title="Mathematical model">model</a> of the distribution of matter in it (density as a function of distance from the center) consistent with the spectrum.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> When independent information on the structure of an object is available, the inverse Laplace transform method has been found to be in good agreement. </p> <div class="mw-heading mw-heading3"><h3 id="Birth_and_death_processes">Birth and death processes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=29" title="Edit section: Birth and death processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a <a href="/wiki/Random_walk" title="Random walk">random walk</a>, with steps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{+1,-1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{+1,-1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99c2868081b5f246c41752f501c5eebebe0f94b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.3ex; height:2.843ex;" alt="{\displaystyle \{+1,-1\}}"></span> occurring with probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q=1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q=1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e1199fd05c8effa0070f33fcc7f781bd87420e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:11.633ex; height:2.509ex;" alt="{\displaystyle p,q=1-p}"></span>.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> Suppose also that the time step is an <a href="/wiki/Poisson_process" class="mw-redirect" title="Poisson process">Poisson process</a>, with parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>. Then the probability of the walk being at the lattice point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}(t)=\int _{0}^{t}\lambda e^{-\lambda (t-s)}(pP_{n-1}(s)+qP_{n+1}(s))\,ds\quad (+e^{-\lambda t}\quad {\text{when}}\ n=0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>&#x03BB;<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>q</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> <mspace width="1em" /> <mo stretchy="false">(</mo> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>t</mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>when</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}(t)=\int _{0}^{t}\lambda e^{-\lambda (t-s)}(pP_{n-1}(s)+qP_{n+1}(s))\,ds\quad (+e^{-\lambda t}\quad {\text{when}}\ n=0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a0959f6295bf88062fde4ba4b6ac0f81bcbc6a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:70.557ex; height:6.176ex;" alt="{\displaystyle P_{n}(t)=\int _{0}^{t}\lambda e^{-\lambda (t-s)}(pP_{n-1}(s)+qP_{n+1}(s))\,ds\quad (+e^{-\lambda t}\quad {\text{when}}\ n=0).}"></span></dd></dl> <p>This leads to a system of <a href="/wiki/Integral_equation" title="Integral equation">integral equations</a> (or equivalently a system of differential equations). However, because it is a system of convolution equations, the Laplace transform converts it into a system of linear equations for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{n}(s)={\mathcal {L}}(P_{n})(s),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{n}(s)={\mathcal {L}}(P_{n})(s),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72a4be44204142fa791f7eb09cd2c1bee75320a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.212ex; height:2.843ex;" alt="{\displaystyle \pi _{n}(s)={\mathcal {L}}(P_{n})(s),}"></span></dd></dl> <p>namely: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{n}(s)={\frac {\lambda }{\lambda +s}}(p\pi _{n-1}(s)+q\pi _{n+1}(s))\quad (+{\frac {1}{\lambda +s}}\quad {\text{when}}\ n=0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>s</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>q</mi> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mo stretchy="false">(</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>s</mi> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>when</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{n}(s)={\frac {\lambda }{\lambda +s}}(p\pi _{n-1}(s)+q\pi _{n+1}(s))\quad (+{\frac {1}{\lambda +s}}\quad {\text{when}}\ n=0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f907c5e590245abd2c8e0870a68b5b11bb84693d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:62.557ex; height:5.676ex;" alt="{\displaystyle \pi _{n}(s)={\frac {\lambda }{\lambda +s}}(p\pi _{n-1}(s)+q\pi _{n+1}(s))\quad (+{\frac {1}{\lambda +s}}\quad {\text{when}}\ n=0)}"></span></dd></dl> <p>which may now be solved by standard methods. </p> <div class="mw-heading mw-heading3"><h3 id="Tauberian_theory">Tauberian theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=30" title="Edit section: Tauberian theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Laplace transform of the measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc2d914c2df66bc0f7893bfb8da36766650fe47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle [0,\infty )}"></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}\mu (s)=\int _{0}^{\infty }e^{-st}d\mu (t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}\mu (s)=\int _{0}^{\infty }e^{-st}d\mu (t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9afbafabe4b90d6f7534beead22f30b7a6af667" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.603ex; height:5.843ex;" alt="{\displaystyle {\mathcal {L}}\mu (s)=\int _{0}^{\infty }e^{-st}d\mu (t).}"></span></dd></dl> <p>It is intuitively clear that, for small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76beea94b6662bd490c61c0628dddd8a8cd35538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s&gt;0}"></span>, the exponentially decaying integrand will become more sensitive to the concentration of the measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> on larger subsets of the domain. To make this more precise, introduce the distribution function: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(t)=\mu ([0,t)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(t)=\mu ([0,t)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea188d9526432605026c10b62b60ea358f3cc99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.635ex; height:2.843ex;" alt="{\displaystyle M(t)=\mu ([0,t)).}"></span></dd></dl> <p>Formally, we expect a limit of the following kind: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{s\to 0^{+}}{\mathcal {L}}\mu (s)=\lim _{t\to \infty }M(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>M</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{s\to 0^{+}}{\mathcal {L}}\mu (s)=\lim _{t\to \infty }M(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee1a67ea273361fb443854092f18c2dbc8e14312" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.834ex; height:4.343ex;" alt="{\displaystyle \lim _{s\to 0^{+}}{\mathcal {L}}\mu (s)=\lim _{t\to \infty }M(t).}"></span></dd></dl> <p><a href="/wiki/Tauberian_theorem" class="mw-redirect" title="Tauberian theorem">Tauberian theorems</a> are theorems relating the asymptotics of the Laplace transform, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\to 0^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\to 0^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9679f90f65dda0130f75c5cddf130f859cb51ed3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.378ex; height:2.509ex;" alt="{\displaystyle s\to 0^{+}}"></span>, to those of the distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a34d7a61899d577d950881b4a44888d43f3fa93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.777ex; height:2.009ex;" alt="{\displaystyle t\to \infty }"></span>. They are thus of importance in asymptotic formulae of <a href="/wiki/Probability" title="Probability">probability</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, where often the spectral side has asymptotics that are simpler to infer.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>Two tauberian theorems of note are the <a href="/wiki/Hardy%E2%80%93Littlewood_tauberian_theorem" class="mw-redirect" title="Hardy–Littlewood tauberian theorem">Hardy–Littlewood tauberian theorem</a> and the <a href="/wiki/Wiener_tauberian_theorem" class="mw-redirect" title="Wiener tauberian theorem">Wiener tauberian theorem</a>. The Wiener theorem generalizes the <a href="/wiki/Ikehara_tauberian_theorem" class="mw-redirect" title="Ikehara tauberian theorem">Ikehara tauberian theorem</a>, which is the following statement: </p><p>Let <i>A</i>(<i>x</i>) be a non-negative, <a href="/wiki/Monotonic_function" title="Monotonic function">monotonic</a> nondecreasing function of <i>x</i>, defined for 0&#160;≤&#160;<i>x</i>&#160;&lt;&#160;∞. Suppose that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(s)=\int _{0}^{\infty }A(x)e^{-xs}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>s</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(s)=\int _{0}^{\infty }A(x)e^{-xs}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60205a12b7b14fd767cb697f4292a1d332ca03c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.124ex; height:5.843ex;" alt="{\displaystyle f(s)=\int _{0}^{\infty }A(x)e^{-xs}\,dx}"></span></dd></dl> <p>converges for ℜ(<i>s</i>)&#160;&gt;&#160;1 to the function <i>&#402;</i>(<i>s</i>) and that, for some non-negative number <i>c</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(s)-{\frac {c}{s-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(s)-{\frac {c}{s-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ebfebe921c7680c0d3eeca5e46c83b77f1c7ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.948ex; height:4.843ex;" alt="{\displaystyle f(s)-{\frac {c}{s-1}}}"></span></dd></dl> <p>has an extension as a <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a> for ℜ(<i>s</i>)&#160;≥&#160;1. Then the <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a> as <i>x</i> goes to infinity of <i>e</i><sup>&#8722;<i>x</i></sup>&#8201;<i>A</i>(<i>x</i>) is equal to&#160;c. </p><p>This statement can be applied in particular to the <a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">logarithmic derivative</a> of <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>, and thus provides an extremely short way to prove the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=31" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Analog_signal_processing" title="Analog signal processing">Analog signal processing</a></li> <li><a href="/wiki/Bernstein%27s_theorem_on_monotone_functions" title="Bernstein&#39;s theorem on monotone functions">Bernstein's theorem on monotone functions</a></li> <li><a href="/wiki/Continuous-repayment_mortgage#Mortgage_difference_and_differential_equation" title="Continuous-repayment mortgage">Continuous-repayment mortgage</a></li> <li><a href="/wiki/Hamburger_moment_problem" title="Hamburger moment problem">Hamburger moment problem</a></li> <li><a href="/wiki/Hardy%E2%80%93Littlewood_Tauberian_theorem" title="Hardy–Littlewood Tauberian theorem">Hardy–Littlewood Tauberian theorem</a></li> <li><a href="/wiki/Laplace%E2%80%93Carson_transform" title="Laplace–Carson transform">Laplace–Carson transform</a></li> <li><a href="/wiki/Moment-generating_function" title="Moment-generating function">Moment-generating function</a></li> <li><a href="/wiki/Nonlocal_operator" title="Nonlocal operator">Nonlocal operator</a></li> <li><a href="/wiki/Post%27s_inversion_formula" class="mw-redirect" title="Post&#39;s inversion formula">Post's inversion formula</a></li> <li><a href="/wiki/Signal-flow_graph" title="Signal-flow graph">Signal-flow graph</a></li> <li><a href="/wiki/Transfer_function" title="Transfer function">Transfer function</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=32" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Lynn_1986_pp._225–272-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lynn_1986_pp._225–272_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLynn1986" class="citation book cs1">Lynn, Paul A. (1986). "The Laplace Transform and the <i>z</i>-transform". <i>Electronic Signals and Systems</i>. London: Macmillan Education UK. pp.&#160;225–272. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-349-18461-3_6">10.1007/978-1-349-18461-3_6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-333-39164-8" title="Special:BookSources/978-0-333-39164-8"><bdi>978-0-333-39164-8</bdi></a>. <q>Laplace Transform and the z-transform are closely related to the Fourier Transform. Laplace Transform is somewhat more general in scope than the Fourier Transform, and is widely used by engineers for describing continuous circuits and systems, including automatic control systems.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Laplace+Transform+and+the+z-transform&amp;rft.btitle=Electronic+Signals+and+Systems&amp;rft.place=London&amp;rft.pages=225-272&amp;rft.pub=Macmillan+Education+UK&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-349-18461-3_6&amp;rft.isbn=978-0-333-39164-8&amp;rft.aulast=Lynn&amp;rft.aufirst=Paul+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tutorial.math.lamar.edu/classes/de/LaplaceIntro.aspx">"Differential Equations – Laplace Transforms"</a>. <i>Pauls Online Math Notes</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Pauls+Online+Math+Notes&amp;rft.atitle=Differential+Equations+%E2%80%93+Laplace+Transforms&amp;rft_id=https%3A%2F%2Ftutorial.math.lamar.edu%2Fclasses%2Fde%2FLaplaceIntro.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-:1-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LaplaceTransform.html">"Laplace Transform"</a>. <i>Wolfram MathWorld</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+MathWorld&amp;rft.atitle=Laplace+Transform&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLaplaceTransform.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source">"Des Fonctions génératrices" &#91;On generating functions&#93;, <a rel="nofollow" class="external text" href="https://archive.org/details/thorieanalytiqu01laplgoog"><i>Théorie analytique des Probabilités</i></a> &#91;<i>Analytical Probability Theory</i>&#93; (in French) (2nd&#160;ed.), Paris, 1814, chap.I sect.2-20</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Des+Fonctions+g%C3%A9n%C3%A9ratrices&amp;rft.btitle=Th%C3%A9orie+analytique+des+Probabilit%C3%A9s&amp;rft.place=Paris&amp;rft.pages=chap.I+sect.2-20&amp;rft.edition=2nd&amp;rft.date=1814&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fthorieanalytiqu01laplgoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaynes,_E._T._(Edwin_T.)2003" class="citation book cs1">Jaynes, E. T. (Edwin T.) (2003). <i>Probability theory&#160;: the logic of science</i>. Bretthorst, G. Larry. Cambridge, UK: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0511065892" title="Special:BookSources/0511065892"><bdi>0511065892</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/57254076">57254076</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+theory+%3A+the+logic+of+science&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft_id=info%3Aoclcnum%2F57254076&amp;rft.isbn=0511065892&amp;rft.au=Jaynes%2C+E.+T.+%28Edwin+T.%29&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbel1820" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Abel, Niels H.</a> (1820), "Sur les fonctions génératrices et leurs déterminantes", <i>Œuvres Complètes</i> (in French), vol.&#160;II (published 1839), pp.&#160;77–88</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sur+les+fonctions+g%C3%A9n%C3%A9ratrices+et+leurs+d%C3%A9terminantes&amp;rft.btitle=%C5%92uvres+Compl%C3%A8tes&amp;rft.pages=77-88&amp;rft.date=1820&amp;rft.aulast=Abel&amp;rft.aufirst=Niels+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6FtDAQAAMAAJ&amp;pg=RA2-PA67">1881 edition</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFEuler1744">Euler 1744</a>, <a href="#CITEREFEuler1753">Euler 1753</a>, <a href="#CITEREFEuler1769">Euler 1769</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFLagrange1773">Lagrange 1773</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrattan-Guinness1997">Grattan-Guinness 1997</a>, p.&#160;260</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrattan-Guinness1997">Grattan-Guinness 1997</a>, p.&#160;261</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrattan-Guinness1997">Grattan-Guinness 1997</a>, pp.&#160;261–262</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrattan-Guinness1997">Grattan-Guinness 1997</a>, pp.&#160;262–266</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeaviside2008" class="citation cs2"><a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Heaviside, Oliver</a> (January 2008), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=y9auR0L6ZRcC&amp;pg=PA234">"The solution of definite integrals by differential transformation"</a>, <i>Electromagnetic Theory</i>, vol.&#160;III, London, section 526, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781605206189" title="Special:BookSources/9781605206189"><bdi>9781605206189</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+solution+of+definite+integrals+by+differential+transformation&amp;rft.btitle=Electromagnetic+Theory&amp;rft.place=London&amp;rft.pages=section+526&amp;rft.date=2008-01&amp;rft.isbn=9781605206189&amp;rft.aulast=Heaviside&amp;rft.aufirst=Oliver&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dy9auR0L6ZRcC%26pg%3DPA234&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardnerBarnes1942" class="citation cs2">Gardner, Murray F.; Barnes, John L. (1942), <i>Transients in Linear Systems studied by the Laplace Transform</i>, New York: Wiley</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Transients+in+Linear+Systems+studied+by+the+Laplace+Transform&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1942&amp;rft.aulast=Gardner&amp;rft.aufirst=Murray+F.&amp;rft.au=Barnes%2C+John+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span>, Appendix C</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLerch1903" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Mathias_Lerch" title="Mathias Lerch">Lerch, Mathias</a> (1903), "Sur un point de la théorie des fonctions génératrices d'Abel" &#91;Proof of the inversion formula&#93;, <i><a href="/wiki/Acta_Mathematica" title="Acta Mathematica">Acta Mathematica</a></i> (in French), <b>27</b>: 339–351, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02421315">10.1007/BF02421315</a></span>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10338.dmlcz%2F501554">10338.dmlcz/501554</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mathematica&amp;rft.atitle=Sur+un+point+de+la+th%C3%A9orie+des+fonctions+g%C3%A9n%C3%A9ratrices+d%27Abel&amp;rft.volume=27&amp;rft.pages=339-351&amp;rft.date=1903&amp;rft_id=info%3Ahdl%2F10338.dmlcz%2F501554&amp;rft_id=info%3Adoi%2F10.1007%2FBF02421315&amp;rft.aulast=Lerch&amp;rft.aufirst=Mathias&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBromwich1916" class="citation cs2"><a href="/wiki/Thomas_John_I%27Anson_Bromwich" title="Thomas John I&#39;Anson Bromwich">Bromwich, Thomas J.</a> (1916), <a rel="nofollow" class="external text" href="https://zenodo.org/record/2319588">"Normal coordinates in dynamical systems"</a>, <i><a href="/wiki/Proceedings_of_the_London_Mathematical_Society" class="mw-redirect" title="Proceedings of the London Mathematical Society">Proceedings of the London Mathematical Society</a></i>, <b>15</b>: 401–448, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fs2-15.1.401">10.1112/plms/s2-15.1.401</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+London+Mathematical+Society&amp;rft.atitle=Normal+coordinates+in+dynamical+systems&amp;rft.volume=15&amp;rft.pages=401-448&amp;rft.date=1916&amp;rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs2-15.1.401&amp;rft.aulast=Bromwich&amp;rft.aufirst=Thomas+J.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2319588&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">An influential book was: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardnerBarnes1942" class="citation cs2">Gardner, Murray F.; Barnes, John L. (1942), <i>Transients in Linear Systems studied by the Laplace Transform</i>, New York: Wiley</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Transients+in+Linear+Systems+studied+by+the+Laplace+Transform&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1942&amp;rft.aulast=Gardner&amp;rft.aufirst=Murray+F.&amp;rft.au=Barnes%2C+John+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoetsch1937" class="citation cs2 cs1-prop-foreign-lang-source">Doetsch, Gustav (1937), <i>Theorie und Anwendung der Laplacesche Transformation</i> &#91;<i>Theory and Application of the Laplace Transform</i>&#93; (in German), Berlin: Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theorie+und+Anwendung+der+Laplacesche+Transformation&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1937&amp;rft.aulast=Doetsch&amp;rft.aufirst=Gustav&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span> translation 1943</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFFeller1971">Feller 1971</a>, §XIII.1.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">The cumulative distribution function is the integral of the probability density function.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMikusiński2014" class="citation book cs1">Mikusiński, Jan (14 July 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e8LSBQAAQBAJ"><i>Operational Calculus</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781483278933" title="Special:BookSources/9781483278933"><bdi>9781483278933</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Operational+Calculus&amp;rft.pub=Elsevier&amp;rft.date=2014-07-14&amp;rft.isbn=9781483278933&amp;rft.aulast=Mikusi%C5%84ski&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De8LSBQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="#CITEREFWidder1941">Widder 1941</a>, Chapter II, §1</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><a href="#CITEREFWidder1941">Widder 1941</a>, Chapter VI, §2</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFKornKorn1967">Korn &amp; Korn 1967</a>, pp.&#160;226–227</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><a href="#CITEREFBracewell2000">Bracewell 2000</a>, Table 14.1, p. 385</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Archived at <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/zvbdoSeGAgI">Ghostarchive</a> and the <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141220033002/https://www.youtube.com/watch?v=zvbdoSeGAgI&amp;gl=US&amp;hl=en">Wayback Machine</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMattuck" class="citation web cs1">Mattuck, Arthur. <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=zvbdoSeGAgI">"Where the Laplace Transform comes from"</a>. <i><a href="/wiki/YouTube" title="YouTube">YouTube</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=YouTube&amp;rft.atitle=Where+the+Laplace+Transform+comes+from&amp;rft.aulast=Mattuck&amp;rft.aufirst=Arthur&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzvbdoSeGAgI&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFFeller1971">Feller 1971</a>, p.&#160;432</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaurent_Schwartz1966" class="citation book cs1"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Laurent Schwartz</a> (1966). <i>Mathematics for the physical sciences</i>. Addison-Wesley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+the+physical+sciences&amp;rft.pub=Addison-Wesley&amp;rft.date=1966&amp;rft.au=Laurent+Schwartz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span>, p 224.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTitchmarsh1986" class="citation cs2"><a href="/wiki/Edward_Charles_Titchmarsh" title="Edward Charles Titchmarsh">Titchmarsh, E.</a> (1986) [1948], <i>Introduction to the theory of Fourier integrals</i> (2nd&#160;ed.), <a href="/wiki/Clarendon_Press" class="mw-redirect" title="Clarendon Press">Clarendon Press</a>, p.&#160;6, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8284-0324-5" title="Special:BookSources/978-0-8284-0324-5"><bdi>978-0-8284-0324-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+theory+of+Fourier+integrals&amp;rft.pages=6&amp;rft.edition=2nd&amp;rft.pub=Clarendon+Press&amp;rft.date=1986&amp;rft.isbn=978-0-8284-0324-5&amp;rft.aulast=Titchmarsh&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><a href="#CITEREFTakacs1953">Takacs 1953</a>, p.&#160;93</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRileyHobsonBence2010" class="citation cs2">Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010), <i>Mathematical methods for physics and engineering</i> (3rd&#160;ed.), Cambridge University Press, p.&#160;455, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-86153-3" title="Special:BookSources/978-0-521-86153-3"><bdi>978-0-521-86153-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+methods+for+physics+and+engineering&amp;rft.pages=455&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-86153-3&amp;rft.aulast=Riley&amp;rft.aufirst=K.+F.&amp;rft.au=Hobson%2C+M.+P.&amp;rft.au=Bence%2C+S.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDistefanoStubberudWilliams1995" class="citation cs2">Distefano, J. J.; Stubberud, A. R.; Williams, I. J. (1995), <i>Feedback systems and control</i>, Schaum's outlines (2nd&#160;ed.), McGraw-Hill, p.&#160;78, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-017052-0" title="Special:BookSources/978-0-07-017052-0"><bdi>978-0-07-017052-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Feedback+systems+and+control&amp;rft.series=Schaum%27s+outlines&amp;rft.pages=78&amp;rft.edition=2nd&amp;rft.pub=McGraw-Hill&amp;rft.date=1995&amp;rft.isbn=978-0-07-017052-0&amp;rft.aulast=Distefano&amp;rft.aufirst=J.+J.&amp;rft.au=Stubberud%2C+A.+R.&amp;rft.au=Williams%2C+I.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLipschutzSpiegelLiu2009" class="citation book cs1">Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009). <i>Mathematical Handbook of Formulas and Tables</i>. Schaum's Outline Series (3rd&#160;ed.). McGraw-Hill. p.&#160;183. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-154855-7" title="Special:BookSources/978-0-07-154855-7"><bdi>978-0-07-154855-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Handbook+of+Formulas+and+Tables&amp;rft.series=Schaum%27s+Outline+Series&amp;rft.pages=183&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=2009&amp;rft.isbn=978-0-07-154855-7&amp;rft.aulast=Lipschutz&amp;rft.aufirst=S.&amp;rft.au=Spiegel%2C+M.+R.&amp;rft.au=Liu%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span> – provides the case for real <span class="texhtml"><i>q</i></span>.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://mathworld.wolfram.com/LaplaceTransform.html">http://mathworld.wolfram.com/LaplaceTransform.html</a> – Wolfram Mathword provides case for complex <span class="texhtml"><i>q</i></span></span> </li> <li id="cite_note-FOOTNOTEBracewell1978227-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBracewell1978227_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBracewell1978227_35-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBracewell1978227_35-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBracewell1978227_35-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBracewell1978">Bracewell 1978</a>, p.&#160;227.</span> </li> <li id="cite_note-FOOTNOTEWilliams197388-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEWilliams197388_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEWilliams197388_36-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEWilliams197388_36-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWilliams1973">Williams 1973</a>, p.&#160;88.</span> </li> <li id="cite_note-FOOTNOTEWilliams197389-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEWilliams197389_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEWilliams197389_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWilliams1973">Williams 1973</a>, p.&#160;89.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><a href="#CITEREFKornKorn1967">Korn &amp; Korn 1967</a>, §8.1</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRK_PathriaPaul_Beal1996" class="citation book cs1">RK Pathria; Paul Beal (1996). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/statisticalmecha00path_911"><i>Statistical mechanics</i></a></span> (2nd&#160;ed.). Butterworth-Heinemann. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/statisticalmecha00path_911/page/n66">56</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780750624695" title="Special:BookSources/9780750624695"><bdi>9780750624695</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+mechanics&amp;rft.pages=56&amp;rft.edition=2nd&amp;rft.pub=Butterworth-Heinemann&amp;rft.date=1996&amp;rft.isbn=9780750624695&amp;rft.au=RK+Pathria&amp;rft.au=Paul+Beal&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstatisticalmecha00path_911&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalemSeaton1974" class="citation cs2">Salem, M.; Seaton, M. J. (1974), "I. Continuum spectra and brightness contours", <i><a href="/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society" title="Monthly Notices of the Royal Astronomical Society">Monthly Notices of the Royal Astronomical Society</a></i>, <b>167</b>: 493–510, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974MNRAS.167..493S">1974MNRAS.167..493S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F167.3.493">10.1093/mnras/167.3.493</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=I.+Continuum+spectra+and+brightness+contours&amp;rft.volume=167&amp;rft.pages=493-510&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1093%2Fmnras%2F167.3.493&amp;rft_id=info%3Abibcode%2F1974MNRAS.167..493S&amp;rft.aulast=Salem&amp;rft.aufirst=M.&amp;rft.au=Seaton%2C+M.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span>, and<br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalem1974" class="citation cs2">Salem, M. (1974), "II. Three-dimensional models", <i>Monthly Notices of the Royal Astronomical Society</i>, <b>167</b>: 511–516, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974MNRAS.167..511S">1974MNRAS.167..511S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F167.3.511">10.1093/mnras/167.3.511</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=II.+Three-dimensional+models&amp;rft.volume=167&amp;rft.pages=511-516&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1093%2Fmnras%2F167.3.511&amp;rft_id=info%3Abibcode%2F1974MNRAS.167..511S&amp;rft.aulast=Salem&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller" class="citation book cs1">Feller. <i>Introduction to Probability Theory, volume II,pp=479-483</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+Theory%2C+volume+II%2Cpp%3D479-483&amp;rft.au=Feller&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller" class="citation book cs1">Feller. <i>Introduction to Probability Theory, volume II,pp=479-483</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+Theory%2C+volume+II%2Cpp%3D479-483&amp;rft.au=Feller&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFS._Ikehara1931" class="citation cs2"><a href="/wiki/Shikao_Ikehara" title="Shikao Ikehara">S. Ikehara</a> (1931), "An extension of Landau's theorem in the analytic theory of numbers", <i>Journal of Mathematics and Physics of the Massachusetts Institute of Technology</i>, <b>10</b> (1–4): 1–12, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsapm19311011">10.1002/sapm19311011</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0001.12902">0001.12902</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematics+and+Physics+of+the+Massachusetts+Institute+of+Technology&amp;rft.atitle=An+extension+of+Landau%27s+theorem+in+the+analytic+theory+of+numbers&amp;rft.volume=10&amp;rft.issue=1%E2%80%934&amp;rft.pages=1-12&amp;rft.date=1931&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0001.12902%23id-name%3DZbl&amp;rft_id=info%3Adoi%2F10.1002%2Fsapm19311011&amp;rft.au=S.+Ikehara&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=33" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Modern">Modern</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=34" title="Edit section: Modern"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBracewell1978" class="citation cs2">Bracewell, Ronald N. (1978), <i>The Fourier Transform and its Applications</i> (2nd&#160;ed.), McGraw-Hill Kogakusha, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-007013-4" title="Special:BookSources/978-0-07-007013-4"><bdi>978-0-07-007013-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Fourier+Transform+and+its+Applications&amp;rft.edition=2nd&amp;rft.pub=McGraw-Hill+Kogakusha&amp;rft.date=1978&amp;rft.isbn=978-0-07-007013-4&amp;rft.aulast=Bracewell&amp;rft.aufirst=Ronald+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBracewell2000" class="citation cs2">Bracewell, R. N. (2000), <i>The Fourier Transform and Its Applications</i> (3rd&#160;ed.), Boston: McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-116043-8" title="Special:BookSources/978-0-07-116043-8"><bdi>978-0-07-116043-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Fourier+Transform+and+Its+Applications&amp;rft.place=Boston&amp;rft.edition=3rd&amp;rft.pub=McGraw-Hill&amp;rft.date=2000&amp;rft.isbn=978-0-07-116043-8&amp;rft.aulast=Bracewell&amp;rft.aufirst=R.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller1971" class="citation cs2"><a href="/wiki/William_Feller" title="William Feller">Feller, William</a> (1971), <i>An introduction to probability theory and its applications. Vol. II.</i>, Second edition, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0270403">0270403</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+probability+theory+and+its+applications.+Vol.+II.&amp;rft.place=New+York&amp;rft.series=Second+edition&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0270403%23id-name%3DMR&amp;rft.aulast=Feller&amp;rft.aufirst=William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKornKorn1967" class="citation cs2">Korn, G. A.; <a href="/wiki/Theresa_M._Korn" title="Theresa M. Korn">Korn, T. M.</a> (1967), <i>Mathematical Handbook for Scientists and Engineers</i> (2nd&#160;ed.), McGraw-Hill Companies, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-035370-1" title="Special:BookSources/978-0-07-035370-1"><bdi>978-0-07-035370-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Handbook+for+Scientists+and+Engineers&amp;rft.edition=2nd&amp;rft.pub=McGraw-Hill+Companies&amp;rft.date=1967&amp;rft.isbn=978-0-07-035370-1&amp;rft.aulast=Korn&amp;rft.aufirst=G.+A.&amp;rft.au=Korn%2C+T.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWidder1941" class="citation cs2">Widder, David Vernon (1941), <i>The Laplace Transform</i>, Princeton Mathematical Series, v. 6, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0005923">0005923</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Laplace+Transform&amp;rft.series=Princeton+Mathematical+Series%2C+v.+6&amp;rft.pub=Princeton+University+Press&amp;rft.date=1941&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0005923%23id-name%3DMR&amp;rft.aulast=Widder&amp;rft.aufirst=David+Vernon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams1973" class="citation cs2">Williams, J. (1973), <i>Laplace Transforms</i>, Problem Solvers, George Allen &amp; Unwin, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-04-512021-5" title="Special:BookSources/978-0-04-512021-5"><bdi>978-0-04-512021-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Laplace+Transforms&amp;rft.series=Problem+Solvers&amp;rft.pub=George+Allen+%26+Unwin&amp;rft.date=1973&amp;rft.isbn=978-0-04-512021-5&amp;rft.aulast=Williams&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakacs1953" class="citation cs2 cs1-prop-foreign-lang-source">Takacs, J. (1953), "Fourier amplitudok meghatarozasa operatorszamitassal", <i>Magyar Hiradastechnika</i> (in Hungarian), <b>IV</b> (7–8): 93–96</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Magyar+Hiradastechnika&amp;rft.atitle=Fourier+amplitudok+meghatarozasa+operatorszamitassal&amp;rft.volume=IV&amp;rft.issue=7%E2%80%938&amp;rft.pages=93-96&amp;rft.date=1953&amp;rft.aulast=Takacs&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Historical">Historical</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=35" title="Edit section: Historical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1744" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler, L.</a> (1744), "De constructione aequationum" &#91;The Construction of Equations&#93;, <i>Opera Omnia</i>, 1st series (in Latin), <b>22</b>: 150–161</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Opera+Omnia&amp;rft.atitle=De+constructione+aequationum&amp;rft.volume=22&amp;rft.pages=150-161&amp;rft.date=1744&amp;rft.aulast=Euler&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1753" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler, L.</a> (1753), "Methodus aequationes differentiales" &#91;A Method for Solving Differential Equations&#93;, <i>Opera Omnia</i>, 1st series (in Latin), <b>22</b>: 181–213</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Opera+Omnia&amp;rft.atitle=Methodus+aequationes+differentiales&amp;rft.volume=22&amp;rft.pages=181-213&amp;rft.date=1753&amp;rft.aulast=Euler&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1992" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler, L.</a> (1992) [1769], "Institutiones calculi integralis, Volume 2" &#91;Institutions of Integral Calculus&#93;, <i>Opera Omnia</i>, 1st series (in Latin), <b>12</b>, Basel: Birkhäuser, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3764314743" title="Special:BookSources/978-3764314743"><bdi>978-3764314743</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Opera+Omnia&amp;rft.atitle=Institutiones+calculi+integralis%2C+Volume+2&amp;rft.volume=12&amp;rft.date=1992&amp;rft.isbn=978-3764314743&amp;rft.aulast=Euler&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span>, Chapters 3–5</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1769" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler, Leonhard</a> (1769), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BFqWNwpfqo8C"><i>Institutiones calculi integralis</i></a> &#91;<i>Institutions of Integral Calculus</i>&#93; (in Latin), vol.&#160;II, Paris: Petropoli, ch. 3–5, pp. 57–153</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Institutiones+calculi+integralis&amp;rft.place=Paris&amp;rft.pages=ch.+3-5%2C+pp.+57-153&amp;rft.pub=Petropoli&amp;rft.date=1769&amp;rft.aulast=Euler&amp;rft.aufirst=Leonhard&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBFqWNwpfqo8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrattan-Guinness1997" class="citation cs2"><a href="/wiki/Ivor_Grattan-Guinness" title="Ivor Grattan-Guinness">Grattan-Guinness, I</a> (1997), "Laplace's integral solutions to partial differential equations", in Gillispie, C. C. (ed.), <i>Pierre Simon Laplace 1749–1827: A Life in Exact Science</i>, Princeton: Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-01185-1" title="Special:BookSources/978-0-691-01185-1"><bdi>978-0-691-01185-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Laplace%27s+integral+solutions+to+partial+differential+equations&amp;rft.btitle=Pierre+Simon+Laplace+1749%E2%80%931827%3A+A+Life+in+Exact+Science&amp;rft.place=Princeton&amp;rft.pub=Princeton+University+Press&amp;rft.date=1997&amp;rft.isbn=978-0-691-01185-1&amp;rft.aulast=Grattan-Guinness&amp;rft.aufirst=I&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagrange1773" class="citation cs2"><a href="/wiki/Joseph_Louis_Lagrange" class="mw-redirect" title="Joseph Louis Lagrange">Lagrange, J. L.</a> (1773), <i>Mémoire sur l'utilité de la méthode</i>, Œuvres de Lagrange, vol.&#160;2, pp.&#160;171–234</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=M%C3%A9moire+sur+l%27utilit%C3%A9+de+la+m%C3%A9thode&amp;rft.series=%C5%92uvres+de+Lagrange&amp;rft.pages=171-234&amp;rft.date=1773&amp;rft.aulast=Lagrange&amp;rft.aufirst=J.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=36" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Arendt, Wolfgang; Batty, Charles J.K.; Hieber, Matthias; Neubrander, Frank (2002), <i>Vector-Valued Laplace Transforms and Cauchy Problems</i>, Birkhäuser Basel, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-6549-3" title="Special:BookSources/978-3-7643-6549-3"><bdi>978-3-7643-6549-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector-Valued+Laplace+Transforms+and+Cauchy+Problems&amp;rft.pub=Birkh%C3%A4user+Basel&amp;rft.date=2002&amp;rft.isbn=978-3-7643-6549-3&amp;rft.aulast=Arendt&amp;rft.aufirst=Wolfgang&amp;rft.au=Batty%2C+Charles+J.K.&amp;rft.au=Hieber%2C+Matthias&amp;rft.au=Neubrander%2C+Frank&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Davies, Brian (2002), <i>Integral transforms and their applications</i> (Third&#160;ed.), New York: Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95314-4" title="Special:BookSources/978-0-387-95314-4"><bdi>978-0-387-95314-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Integral+transforms+and+their+applications&amp;rft.place=New+York&amp;rft.edition=Third&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=978-0-387-95314-4&amp;rft.aulast=Davies&amp;rft.aufirst=Brian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Deakin, M. A. B. (1981), "The development of the Laplace transform", <i>Archive for History of Exact Sciences</i>, <b>25</b> (4): 343–390, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01395660">10.1007/BF01395660</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117913073">117913073</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=The+development+of+the+Laplace+transform&amp;rft.volume=25&amp;rft.issue=4&amp;rft.pages=343-390&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1007%2FBF01395660&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117913073%23id-name%3DS2CID&amp;rft.aulast=Deakin&amp;rft.aufirst=M.+A.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Deakin, M. A. B. (1982), "The development of the Laplace transform", <i>Archive for History of Exact Sciences</i>, <b>26</b> (4): 351–381, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00418754">10.1007/BF00418754</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123071842">123071842</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=The+development+of+the+Laplace+transform&amp;rft.volume=26&amp;rft.issue=4&amp;rft.pages=351-381&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1007%2FBF00418754&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123071842%23id-name%3DS2CID&amp;rft.aulast=Deakin&amp;rft.aufirst=M.+A.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a href="/wiki/Gustav_Doetsch" title="Gustav Doetsch">Doetsch, Gustav</a> (1974), <i>Introduction to the Theory and Application of the Laplace Transformation</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-06407-9" title="Special:BookSources/978-0-387-06407-9"><bdi>978-0-387-06407-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+and+Application+of+the+Laplace+Transformation&amp;rft.pub=Springer&amp;rft.date=1974&amp;rft.isbn=978-0-387-06407-9&amp;rft.aulast=Doetsch&amp;rft.aufirst=Gustav&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li>Mathews, Jon; Walker, Robert L. (1970), <i>Mathematical methods of physics</i> (2nd ed.), New York: W. A. Benjamin, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8053-7002-1" title="Special:BookSources/0-8053-7002-1">0-8053-7002-1</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Polyanin, A. D.; Manzhirov, A. V. (1998), <i>Handbook of Integral Equations</i>, Boca Raton: CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-2876-3" title="Special:BookSources/978-0-8493-2876-3"><bdi>978-0-8493-2876-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Integral+Equations&amp;rft.place=Boca+Raton&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=978-0-8493-2876-3&amp;rft.aulast=Polyanin&amp;rft.aufirst=A.+D.&amp;rft.au=Manzhirov%2C+A.+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, Laurent</a> (1952), "Transformation de Laplace des distributions", <i>Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]</i> (in French), <b>1952</b>: 196–206, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0052555">0052555</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comm.+S%C3%A9m.+Math.+Univ.+Lund+%5BMedd.+Lunds+Univ.+Mat.+Sem.%5D&amp;rft.atitle=Transformation+de+Laplace+des+distributions&amp;rft.volume=1952&amp;rft.pages=196-206&amp;rft.date=1952&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0052555%23id-name%3DMR&amp;rft.aulast=Schwartz&amp;rft.aufirst=Laurent&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, Laurent</a> (2008) [1966], <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-_AuDQAAQBAJ&amp;pg=PA215"><i>Mathematics for the Physical Sciences</i></a>, Dover Books on Mathematics, New York: Dover Publications, pp.&#160;215–241, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-46662-0" title="Special:BookSources/978-0-486-46662-0"><bdi>978-0-486-46662-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+the+Physical+Sciences&amp;rft.place=New+York&amp;rft.series=Dover+Books+on+Mathematics&amp;rft.pages=215-241&amp;rft.pub=Dover+Publications&amp;rft.date=2008&amp;rft.isbn=978-0-486-46662-0&amp;rft.aulast=Schwartz&amp;rft.aufirst=Laurent&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-_AuDQAAQBAJ%26pg%3DPA215&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span> - See Chapter VI. The Laplace transform.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Siebert, William McC. (1986), <i>Circuits, Signals, and Systems</i>, Cambridge, Massachusetts: MIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-19229-3" title="Special:BookSources/978-0-262-19229-3"><bdi>978-0-262-19229-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Circuits%2C+Signals%2C+and+Systems&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=MIT+Press&amp;rft.date=1986&amp;rft.isbn=978-0-262-19229-3&amp;rft.aulast=Siebert&amp;rft.aufirst=William+McC.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Widder, David Vernon (1945), "What is the Laplace transform?", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>52</b> (8): 419–425, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2305640">10.2307/2305640</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9890">0002-9890</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2305640">2305640</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0013447">0013447</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=What+is+the+Laplace+transform%3F&amp;rft.volume=52&amp;rft.issue=8&amp;rft.pages=419-425&amp;rft.date=1945&amp;rft.issn=0002-9890&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0013447%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2305640%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2305640&amp;rft.aulast=Widder&amp;rft.aufirst=David+Vernon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li>J.A.C.Weidman and Bengt Fornberg: "Fully numerical Laplace transform methods", Numerical Algorithms, vol.92 (2023), pp.&#160;985–1006. <a rel="nofollow" class="external free" href="https://doi.org/10.1007/s11075-022-01368-x">https://doi.org/10.1007/s11075-022-01368-x</a> .</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Laplace_transform&amp;action=edit&amp;section=37" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Laplace_transform" class="extiw" title="q:Special:Search/Laplace transform">Laplace transform</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Laplace_transformation" class="extiw" title="commons:Category:Laplace transformation">Laplace transformation</a></span>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Laplace_transform">"Laplace transform"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Laplace+transform&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DLaplace_transform&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://wims.unice.fr/wims/wims.cgi?lang=en&amp;+module=tool%2Fanalysis%2Ffourierlaplace">Online Computation</a> of the transform or inverse transform, wims.unice.fr</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/en/auxiliary/aux-inttrans.htm">Tables of Integral Transforms</a> at EqWorld: The World of Mathematical Equations.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Laplace_Transform"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LaplaceTransform.html">"Laplace Transform"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Laplace+Transform&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLaplaceTransform.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALaplace+transform" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/">Good explanations of the initial and final value theorems</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090108132440/http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/">Archived</a> 2009-01-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://www.mathpages.com/home/kmath508/kmath508.htm">Laplace Transforms</a> at MathPages</li> <li><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=laplace+transform+example">Computational Knowledge Engine</a> allows to easily calculate Laplace Transforms and its inverse Transform.</li> <li><a rel="nofollow" class="external text" href="http://www.laplacetransformcalculator.com/easy-laplace-transform-calculator/">Laplace Calculator</a> to calculate Laplace Transforms online easily.</li> <li><a rel="nofollow" class="external text" href="https://johnflux.com/2019/02/12/laplace-transform-visualized/">Code to visualize Laplace Transforms</a> and many example videos.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q199691#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85074666">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Transformation de Laplace"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119531733">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Transformation de Laplace"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119531733">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00567362">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Laplaceova transformace"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph117703&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007555498105171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐thrbb Cached time: 20241124053043 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.589 seconds Real time usage: 2.106 seconds Preprocessor visited node count: 14713/1000000 Post‐expand include size: 136233/2097152 bytes Template argument size: 16832/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 175844/5000000 bytes Lua time usage: 0.810/10.000 seconds Lua memory usage: 8626383/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1408.907 1 -total 27.67% 389.777 1 Template:Reflist 15.86% 223.433 184 Template:Math 15.37% 216.508 37 Template:Citation 11.28% 158.914 8 Template:Cite_book 9.96% 140.354 1 Template:Short_description 8.76% 123.353 1 Template:Authority_control 7.74% 108.979 2 Template:Pagetype 5.91% 83.322 9 Template:Sfn 5.61% 79.068 16 Template:Harvnb --> <!-- Saved in parser cache with key enwiki:pcache:idhash:18610-0!canonical and timestamp 20241124053043 and revision id 1259079631. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Laplace_transform&amp;oldid=1259079631">https://en.wikipedia.org/w/index.php?title=Laplace_transform&amp;oldid=1259079631</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Laplace_transforms" title="Category:Laplace transforms">Laplace transforms</a></li><li><a href="/wiki/Category:Differential_equations" title="Category:Differential equations">Differential equations</a></li><li><a href="/wiki/Category:Fourier_analysis" title="Category:Fourier analysis">Fourier analysis</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li><li><a href="/wiki/Category:Integral_transforms" title="Category:Integral transforms">Integral transforms</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:CS1_Hungarian-language_sources_(hu)" title="Category:CS1 Hungarian-language sources (hu)">CS1 Hungarian-language sources (hu)</a></li><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 November 2024, at 06:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Laplace_transform&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gdkxt","wgBackendResponseTime":173,"wgPageParseReport":{"limitreport":{"cputime":"1.589","walltime":"2.106","ppvisitednodes":{"value":14713,"limit":1000000},"postexpandincludesize":{"value":136233,"limit":2097152},"templateargumentsize":{"value":16832,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":175844,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1408.907 1 -total"," 27.67% 389.777 1 Template:Reflist"," 15.86% 223.433 184 Template:Math"," 15.37% 216.508 37 Template:Citation"," 11.28% 158.914 8 Template:Cite_book"," 9.96% 140.354 1 Template:Short_description"," 8.76% 123.353 1 Template:Authority_control"," 7.74% 108.979 2 Template:Pagetype"," 5.91% 83.322 9 Template:Sfn"," 5.61% 79.068 16 Template:Harvnb"]},"scribunto":{"limitreport-timeusage":{"value":"0.810","limit":"10.000"},"limitreport-memusage":{"value":8626383,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbel1820\"] = 1,\n [\"CITEREFBracewell1978\"] = 1,\n [\"CITEREFBracewell2000\"] = 1,\n [\"CITEREFBromwich1916\"] = 1,\n [\"CITEREFDistefanoStubberudWilliams1995\"] = 1,\n [\"CITEREFDoetsch1937\"] = 1,\n [\"CITEREFEuler1744\"] = 1,\n [\"CITEREFEuler1753\"] = 1,\n [\"CITEREFEuler1769\"] = 1,\n [\"CITEREFEuler1992\"] = 1,\n [\"CITEREFFeller\"] = 2,\n [\"CITEREFFeller1971\"] = 1,\n [\"CITEREFGardnerBarnes1942\"] = 2,\n [\"CITEREFGrattan-Guinness1997\"] = 1,\n [\"CITEREFHeaviside2008\"] = 1,\n [\"CITEREFJaynes,_E._T._(Edwin_T.)2003\"] = 1,\n [\"CITEREFKornKorn1967\"] = 1,\n [\"CITEREFLagrange1773\"] = 1,\n [\"CITEREFLaurent_Schwartz1966\"] = 1,\n [\"CITEREFLerch1903\"] = 1,\n [\"CITEREFLipschutzSpiegelLiu2009\"] = 1,\n [\"CITEREFLynn1986\"] = 1,\n [\"CITEREFMattuck\"] = 1,\n [\"CITEREFMikusiński2014\"] = 1,\n [\"CITEREFRK_PathriaPaul_Beal1996\"] = 1,\n [\"CITEREFRileyHobsonBence2010\"] = 1,\n [\"CITEREFS._Ikehara1931\"] = 1,\n [\"CITEREFSalem1974\"] = 1,\n [\"CITEREFSalemSeaton1974\"] = 1,\n [\"CITEREFTakacs1953\"] = 1,\n [\"CITEREFTitchmarsh1986\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"CITEREFWidder1941\"] = 1,\n [\"CITEREFWilliams1973\"] = 1,\n [\"ℒ\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Cbignore\"] = 3,\n [\"Citation\"] = 37,\n [\"Cite book\"] = 8,\n [\"Cite web\"] = 3,\n [\"Closed-open\"] = 1,\n [\"Col-begin\"] = 1,\n [\"Col-break\"] = 2,\n [\"Col-end\"] = 1,\n [\"Commons category\"] = 1,\n [\"DEFAULTSORT:Laplace Transform\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Equation box 1\"] = 3,\n [\"Further\"] = 2,\n [\"Google books\"] = 1,\n [\"Harvnb\"] = 16,\n [\"IPAc-en\"] = 1,\n [\"Isbn\"] = 1,\n [\"Main\"] = 1,\n [\"Main article\"] = 4,\n [\"Math\"] = 182,\n [\"MathWorld\"] = 1,\n [\"Mvar\"] = 19,\n [\"Open-open\"] = 1,\n [\"Portal\"] = 1,\n [\"Reflist\"] = 1,\n [\"Section link\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 9,\n [\"Sfrac\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Webarchive\"] = 1,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-thrbb","timestamp":"20241124053043","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Laplace transform","url":"https:\/\/en.wikipedia.org\/wiki\/Laplace_transform","sameAs":"http:\/\/www.wikidata.org\/entity\/Q199691","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q199691","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-12-26T13:54:27Z","dateModified":"2024-11-23T06:43:10Z","headline":"the integral transform \u222b\u2080^\u221e d\ud835\udc60\u2009\ud835\udc53(\ud835\udc61)\u2062exp(\u2212\ud835\udc60\ud835\udc61)"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10