CINXE.COM

Ideal (ring theory) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ideal (ring theory) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"87e0e869-3506-4b6c-875d-09347d48f8c2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ideal_(ring_theory)","wgTitle":"Ideal (ring theory)","wgCurRevisionId":1245007572,"wgRevisionId":1245007572,"wgArticleId":25977,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Ideals (ring theory)","Algebraic structures","Commutative algebra","Algebraic number theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Ideal_(ring_theory)","wgRelevantArticleId":25977,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44649","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ideal (ring theory) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ideal_(ring_theory)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ideal_(ring_theory)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ideal_ring_theory rootpage-Ideal_ring_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ideal+%28ring+theory%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ideal+%28ring+theory%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ideal+%28ring+theory%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ideal+%28ring+theory%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Note_on_convention" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Note_on_convention"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Note on convention</span> </div> </a> <ul id="toc-Note_on_convention-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples_and_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples_and_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples and properties</span> </div> </a> <ul id="toc-Examples_and_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Types_of_ideals" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types_of_ideals"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Types of ideals</span> </div> </a> <ul id="toc-Types_of_ideals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ideal_operations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ideal_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Ideal operations</span> </div> </a> <ul id="toc-Ideal_operations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_ideal_operations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples_of_ideal_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Examples of ideal operations</span> </div> </a> <ul id="toc-Examples_of_ideal_operations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radical_of_a_ring" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Radical_of_a_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Radical of a ring</span> </div> </a> <ul id="toc-Radical_of_a_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extension_and_contraction_of_an_ideal" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Extension_and_contraction_of_an_ideal"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Extension and contraction of an ideal</span> </div> </a> <ul id="toc-Extension_and_contraction_of_an_ideal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ideal (ring theory)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 40 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AB%D8%A7%D9%84%D9%8A_(%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A7%D8%AA)" title="مثالي (نظرية الحلقات) – Arabic" lang="ar" hreflang="ar" data-title="مثالي (نظرية الحلقات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BF%D1%80%D1%8A%D1%81%D1%82%D0%B5%D0%BD%D0%B8%D1%82%D0%B5)" title="Идеал (теория на пръстените) – Bulgarian" lang="bg" hreflang="bg" data-title="Идеал (теория на пръстените)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Ideal_(matem%C3%A0tiques)" title="Ideal (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Ideal (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) – Chuvash" lang="cv" hreflang="cv" data-title="Идеал (алгебра)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)" title="Ideál (teorie okruhů) – Czech" lang="cs" hreflang="cs" data-title="Ideál (teorie okruhů)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) – Danish" lang="da" hreflang="da" data-title="Ideal (ringteori)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ideal_(Ringtheorie)" title="Ideal (Ringtheorie) – German" lang="de" hreflang="de" data-title="Ideal (Ringtheorie)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ringi_ideaal" title="Ringi ideaal – Estonian" lang="et" hreflang="et" data-title="Ringi ideaal" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%99%CE%B4%CE%B5%CF%8E%CE%B4%CE%B5%CF%82_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Ιδεώδες (μαθηματικά) – Greek" lang="el" hreflang="el" data-title="Ιδεώδες (μαθηματικά)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ideal_(teor%C3%ADa_de_anillos)" title="Ideal (teoría de anillos) – Spanish" lang="es" hreflang="es" data-title="Ideal (teoría de anillos)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Idealo_(algebro)" title="Idealo (algebro) – Esperanto" lang="eo" hreflang="eo" data-title="Idealo (algebro)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%DB%8C%D8%AF%D9%87%E2%80%8C%D8%A2%D9%84_(%D9%86%D8%B8%D8%B1%DB%8C%D9%87_%D8%AD%D9%84%D9%82%D9%87%E2%80%8C%D9%87%D8%A7)" title="ایده‌آل (نظریه حلقه‌ها) – Persian" lang="fa" hreflang="fa" data-title="ایده‌آل (نظریه حلقه‌ها)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Id%C3%A9al" title="Idéal – French" lang="fr" hreflang="fr" data-title="Idéal" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ideal_(teor%C3%ADa_dos_aneis)" title="Ideal (teoría dos aneis) – Galician" lang="gl" hreflang="gl" data-title="Ideal (teoría dos aneis)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%95%84%EC%9D%B4%EB%94%94%EC%96%BC" title="아이디얼 – Korean" lang="ko" hreflang="ko" data-title="아이디얼" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ideal_(teori_gelanggang)" title="Ideal (teori gelanggang) – Indonesian" lang="id" hreflang="id" data-title="Ideal (teori gelanggang)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Ideal_(theoria_de_anellos)" title="Ideal (theoria de anellos) – Interlingua" lang="ia" hreflang="ia" data-title="Ideal (theoria de anellos)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Ideale_(matematica)" title="Ideale (matematica) – Italian" lang="it" hreflang="it" data-title="Ideale (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99%D7%93%D7%99%D7%90%D7%9C_(%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94)" title="אידיאל (אלגברה) – Hebrew" lang="he" hreflang="he" data-title="אידיאל (אלגברה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%D0%B4%D0%B0)" title="Идеал (математикада) – Kazakh" lang="kk" hreflang="kk" data-title="Идеал (математикада)" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Ideaal_(matem%C3%A0tica)" title="Ideaal (matemàtica) – Lombard" lang="lmo" hreflang="lmo" data-title="Ideaal (matemàtica)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Ide%C3%A1l_(gy%C5%B1r%C5%B1elm%C3%A9let)" title="Ideál (gyűrűelmélet) – Hungarian" lang="hu" hreflang="hu" data-title="Ideál (gyűrűelmélet)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ideaal_(ringtheorie)" title="Ideaal (ringtheorie) – Dutch" lang="nl" hreflang="nl" data-title="Ideaal (ringtheorie)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%87%E3%82%A2%E3%83%AB_(%E7%92%B0%E8%AB%96)" title="イデアル (環論) – Japanese" lang="ja" hreflang="ja" data-title="イデアル (環論)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ideal_(matematikk)" title="Ideal (matematikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Ideal (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ideal_i_matematikk" title="Ideal i matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Ideal i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Idea%C5%82_(teoria_pier%C5%9Bcieni)" title="Ideał (teoria pierścieni) – Polish" lang="pl" hreflang="pl" data-title="Ideał (teoria pierścieni)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Ideal_(teoria_dos_an%C3%A9is)" title="Ideal (teoria dos anéis) – Portuguese" lang="pt" hreflang="pt" data-title="Ideal (teoria dos anéis)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ideal_(teoria_inelelor)" title="Ideal (teoria inelelor) – Romanian" lang="ro" hreflang="ro" data-title="Ideal (teoria inelelor)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) – Russian" lang="ru" hreflang="ru" data-title="Идеал (алгебра)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Ide%C3%A1l_(okruhu)" title="Ideál (okruhu) – Slovak" lang="sk" hreflang="sk" data-title="Ideál (okruhu)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ideal_(teorija_kolobarjev)" title="Ideal (teorija kolobarjev) – Slovenian" lang="sl" hreflang="sl" data-title="Ideal (teorija kolobarjev)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Идеал (математика) – Serbian" lang="sr" hreflang="sr" data-title="Идеал (математика)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ideaali_(rengasteoria)" title="Ideaali (rengasteoria) – Finnish" lang="fi" hreflang="fi" data-title="Ideaali (rengasteoria)" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) – Swedish" lang="sv" hreflang="sv" data-title="Ideal (ringteori)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF%E0%AE%B2%E0%AF%8D_%E0%AE%9A%E0%AF%80%E0%AE%B0%E0%AF%8D%E0%AE%AE%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="வளையத்தில் சீர்மம் (கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="வளையத்தில் சீர்மம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Ідеал (алгебра) – Ukrainian" lang="uk" hreflang="uk" data-title="Ідеал (алгебра)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/I-%C4%91%C3%AA-an" title="I-đê-an – Vietnamese" lang="vi" hreflang="vi" data-title="I-đê-an" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%92%B0%E5%80%8D%E6%95%B8" title="環倍數 – Cantonese" lang="yue" hreflang="yue" data-title="環倍數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%90%86%E6%83%B3_(%E7%8E%AF%E8%AE%BA)" title="理想 (环论) – Chinese" lang="zh" hreflang="zh" data-title="理想 (环论)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ideal_(ring_theory)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ideal_(ring_theory)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ideal_(ring_theory)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ideal_(ring_theory)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ideal_(ring_theory)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ideal_(ring_theory)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;oldid=1245007572" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ideal_%28ring_theory%29&amp;id=1245007572&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIdeal_%28ring_theory%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIdeal_%28ring_theory%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ideal_%28ring_theory%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ideal_(ring_theory)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Ideals" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Additive subgroup of a mathematical ring that absorbs multiplication</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist" style="width: 20.5em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → Ring theory</span><br /><a href="/wiki/Ring_theory" title="Ring theory">Ring theory</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Basic concepts</div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">Rings</a></b> <dl><dd>• <a href="/wiki/Subring" title="Subring">Subrings</a></dd> <dd>• <a class="mw-selflink selflink">Ideal</a></dd> <dd>• <a href="/wiki/Quotient_ring" title="Quotient ring">Quotient ring</a> <dl><dd>• <a href="/wiki/Fractional_ideal" title="Fractional ideal">Fractional ideal</a></dd> <dd>• <a href="/wiki/Total_ring_of_fractions" title="Total ring of fractions">Total ring of fractions</a></dd></dl></dd> <dd>• <a href="/wiki/Product_of_rings" title="Product of rings">Product of rings</a></dd> <dd>•&#160;<a href="/wiki/Free_product_of_associative_algebras" title="Free product of associative algebras">Free product of associative algebras</a></dd> <dd>• <a href="/wiki/Tensor_product_of_algebras" title="Tensor product of algebras">Tensor product of algebras</a></dd></dl> <p><b><a href="/wiki/Ring_homomorphism" title="Ring homomorphism">Ring homomorphisms</a></b> </p> <dl><dd>• <a href="/wiki/Kernel_(algebra)#Ring_homomorphisms" title="Kernel (algebra)">Kernel</a></dd> <dd>• <a href="/wiki/Inner_automorphism#Ring_case" title="Inner automorphism">Inner automorphism</a></dd> <dd>• <a href="/wiki/Frobenius_endomorphism" title="Frobenius endomorphism">Frobenius endomorphism</a></dd></dl> <p><b><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structures</a></b> </p> <dl><dd>• <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a></dd> <dd>• <a href="/wiki/Associative_algebra" title="Associative algebra">Associative algebra</a></dd> <dd>• <a href="/wiki/Graded_ring" title="Graded ring">Graded ring</a></dd> <dd>• <a href="/wiki/Involutive_ring" class="mw-redirect" title="Involutive ring">Involutive ring</a></dd> <dd>• <a href="/wiki/Category_of_rings" title="Category of rings">Category of rings</a> <dl><dd>• <a href="/wiki/Integer" title="Integer">Initial ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span></dd> <dd>• <a href="/wiki/Zero_ring" title="Zero ring">Terminal ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45ab495cb8cfbac68a9322af662c3d6c7dbe494" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.686ex; height:2.843ex;" alt="{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }"></span></dd></dl></dd></dl> <p><b>Related structures</b> </p> <dl><dd>• <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a> <dl><dd>• <a href="/wiki/Finite_field" title="Finite field">Finite field</a></dd></dl></dd> <dd>• <a href="/wiki/Non-associative_ring" class="mw-redirect" title="Non-associative ring">Non-associative ring</a> <dl><dd>• <a href="/wiki/Lie_ring" class="mw-redirect" title="Lie ring">Lie ring</a></dd> <dd>• <a href="/wiki/Jordan_ring" class="mw-redirect" title="Jordan ring">Jordan ring</a></dd></dl></dd> <dd>• <a href="/wiki/Semiring" title="Semiring">Semiring</a> <dl><dd>• <a href="/wiki/Semifield" title="Semifield">Semifield</a></dd></dl></dd></dl></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative algebra</a></div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a href="/wiki/Commutative_ring" title="Commutative ring">Commutative rings</a></b> <dl><dd>• <a href="/wiki/Integral_domain" title="Integral domain">Integral domain</a> <dl><dd>• <a href="/wiki/Integrally_closed_domain" title="Integrally closed domain">Integrally closed domain</a></dd> <dd>• <a href="/wiki/GCD_domain" title="GCD domain">GCD domain</a></dd> <dd>• <a href="/wiki/Unique_factorization_domain" title="Unique factorization domain">Unique factorization domain</a></dd> <dd>• <a href="/wiki/Principal_ideal_domain" title="Principal ideal domain">Principal ideal domain</a></dd> <dd>• <a href="/wiki/Euclidean_domain" title="Euclidean domain">Euclidean domain</a></dd> <dd>• <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a> <dl><dd>• <a href="/wiki/Finite_field" title="Finite field">Finite field</a></dd></dl></dd> <dd>• <a href="/wiki/Polynomial_ring" title="Polynomial ring">Polynomial ring</a></dd> <dd>• <a href="/wiki/Formal_power_series_ring" class="mw-redirect" title="Formal power series ring">Formal power series ring</a></dd></dl></dd></dl> <p><b><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></b> </p> <dl><dd>• <a href="/wiki/Algebraic_number_field" title="Algebraic number field">Algebraic number field</a></dd> <dd>• <a href="/wiki/Integers_modulo_n" class="mw-redirect" title="Integers modulo n">Integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a></dd> <dd>• <a href="/wiki/Ring_of_integers" title="Ring of integers">Ring of integers</a></dd> <dd>• <a href="/wiki/P-adic_integer" class="mw-redirect" title="P-adic integer"><i>p</i>-adic integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span></dd> <dd>• <a href="/wiki/P-adic_number" title="P-adic number"><i>p</i>-adic numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f44bc6894c682710705f3ea74f33042e0acc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.867ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}}"></span></dd> <dd>• <a href="/wiki/Pr%C3%BCfer_group#The_Prüfer_group_as_a_ring" title="Prüfer group">Prüfer <i>p</i>-ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} (p^{\infty })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} (p^{\infty })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14af623e08c241266c125ad927dd35086ec8ce90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.404ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} (p^{\infty })}"></span></dd></dl></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Noncommutative_algebra" class="mw-redirect" title="Noncommutative algebra">Noncommutative algebra</a></div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a href="/wiki/Noncommutative_ring" title="Noncommutative ring">Noncommutative rings</a></b> <dl><dd>• <a href="/wiki/Division_ring" title="Division ring">Division ring</a></dd> <dd>• <a href="/wiki/Semiprimitive_ring" title="Semiprimitive ring">Semiprimitive ring</a></dd> <dd>• <a href="/wiki/Simple_ring" title="Simple ring">Simple ring</a></dd> <dd>• <a href="/wiki/Commutator_(ring_theory)" class="mw-redirect" title="Commutator (ring theory)">Commutator</a></dd></dl> <p><b><a href="/wiki/Noncommutative_algebraic_geometry" title="Noncommutative algebraic geometry">Noncommutative algebraic geometry</a></b> </p><p><b><a href="/wiki/Free_algebra" title="Free algebra">Free algebra</a></b> </p><p><b><a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a></b> </p> <dl><dd>• <a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></dd></dl> <b><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></b></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Ring_theory_sidebar" title="Template:Ring theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Ring_theory_sidebar" title="Template talk:Ring theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Ring_theory_sidebar" title="Special:EditPage/Template:Ring theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, and more specifically in <a href="/wiki/Ring_theory" title="Ring theory">ring theory</a>, an <b>ideal</b> of a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> is a special <a href="/wiki/Subset" title="Subset">subset</a> of its elements. Ideals generalize certain subsets of the <a href="/wiki/Integer" title="Integer">integers</a>, such as the <a href="/wiki/Even_numbers" class="mw-redirect" title="Even numbers">even numbers</a> or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closure</a> and absorption properties are the defining properties of an ideal. An ideal can be used to construct a <a href="/wiki/Quotient_ring" title="Quotient ring">quotient ring</a> in a way similar to how, in <a href="/wiki/Group_theory" title="Group theory">group theory</a>, a <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroup</a> can be used to construct a <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a>. </p><p>Among the integers, the ideals correspond one-for-one with the <a href="/wiki/Non-negative_integer" class="mw-redirect" title="Non-negative integer">non-negative integers</a>: in this ring, every ideal is a <a href="/wiki/Principal_ideal" title="Principal ideal">principal ideal</a> consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideals</a> of a ring are analogous to <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>, and the <a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a> can be generalized to ideals. There is a version of <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">unique prime factorization</a> for the ideals of a <a href="/wiki/Dedekind_domain" title="Dedekind domain">Dedekind domain</a> (a type of ring important in <a href="/wiki/Number_theory" title="Number theory">number theory</a>). </p><p>The related, but distinct, concept of an <a href="/wiki/Ideal_(order_theory)" title="Ideal (order theory)">ideal</a> in <a href="/wiki/Order_theory" title="Order theory">order theory</a> is derived from the notion of ideal in ring theory. A <a href="/wiki/Fractional_ideal" title="Fractional ideal">fractional ideal</a> is a generalization of an ideal, and the usual ideals are sometimes called <b>integral ideals</b> for clarity. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Ernst Kummer</a> invented the concept of <a href="/wiki/Ideal_number" title="Ideal number">ideal numbers</a> to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity.<sup id="cite_ref-Stillwell_1-0" class="reference"><a href="#cite_note-Stillwell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> In 1876, <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of <a href="/wiki/Dirichlet" class="mw-redirect" title="Dirichlet">Dirichlet</a>'s book <i><a href="/wiki/Vorlesungen_%C3%BCber_Zahlentheorie" title="Vorlesungen über Zahlentheorie">Vorlesungen über Zahlentheorie</a></i>, to which Dedekind had added many supplements.<sup id="cite_ref-Stillwell_1-1" class="reference"><a href="#cite_note-Stillwell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-flt_2-0" class="reference"><a href="#cite_note-flt-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-everest_ward_3-0" class="reference"><a href="#cite_note-everest_ward-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> and especially <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=2" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="texhtml mvar" style="font-style:italic;">R</span>, a <b>left ideal</b> is a subset <span class="texhtml mvar" style="font-style:italic;">I</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> that is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of the <a href="/wiki/Additive_group" title="Additive group">additive group</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> that "absorbs multiplication from the left by elements of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>"; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is a left ideal if it satisfies the following two conditions: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (I,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>I</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (I,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9795f78cf420c87df00914f8dfad7047db1fa807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.823ex; height:2.843ex;" alt="{\displaystyle (I,+)}"></span> is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/466356a631ac93bc70fbe2d276117d22f980e285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.415ex; height:2.843ex;" alt="{\displaystyle (R,+)}"></span>&#8288;</span>,</li> <li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span> and every <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>&#8288;</span>, the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10279e90b103d9755ac5fb24ba474d8ce6ec133f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.378ex; height:1.676ex;" alt="{\displaystyle rx}"></span> is in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>&#8288;</span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li></ol> <p>In other words, a left ideal is a left <a href="/wiki/Submodule" class="mw-redirect" title="Submodule">submodule</a> of <span class="texhtml mvar" style="font-style:italic;">R</span>, considered as a <a href="/wiki/Left_module" class="mw-redirect" title="Left module">left module</a> over itself.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>A <b>right ideal</b> is defined similarly, with the condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rx\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rx\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eda8509b3e70011a622c1665430563036cf16cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.391ex; height:2.176ex;" alt="{\displaystyle rx\in I}"></span> replaced by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xr\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xr\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2142379ff5c6f63d3be75f988d477050a59fde87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.391ex; height:2.176ex;" alt="{\displaystyle xr\in I}"></span>&#8288;</span>. A <b>two-sided ideal</b> is a left ideal that is also a right ideal. </p><p>If the ring is <a href="/wiki/Commutative_ring" title="Commutative ring">commutative</a>, the three definitions are the same, and one talks simply of an <b>ideal</b>. In the non-commutative case, "ideal" is often used instead of "two-sided ideal". </p><p>If <span class="texhtml mvar" style="font-style:italic;">I</span> is a left, right or two-sided ideal, the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\sim y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\sim y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbd1014d850b7c883eb76301dd58c643e3c7e4eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x\sim y}"></span> if and only if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a38120b4e5728ed34204ea954872e3dcf828749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.338ex; height:2.509ex;" alt="{\displaystyle x-y\in I}"></span></dd></dl> <p>is an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> on <span class="texhtml mvar" style="font-style:italic;">R</span>, and the set of <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> forms a left, right or bi module denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0650c975ee7bf3b39ce3144a5de71179c40ee493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.098ex; height:2.843ex;" alt="{\displaystyle R/I}"></span> and called the <i><a href="/wiki/Quotient_module" title="Quotient module">quotient</a></i> of <span class="texhtml mvar" style="font-style:italic;">R</span> by <span class="texhtml mvar" style="font-style:italic;">I</span>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> (It is an instance of a <a href="/wiki/Congruence_relation" title="Congruence relation">congruence relation</a> and is a generalization of <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular arithmetic</a>.) </p><p>If the ideal <span class="texhtml mvar" style="font-style:italic;">I</span> is two-sided, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0650c975ee7bf3b39ce3144a5de71179c40ee493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.098ex; height:2.843ex;" alt="{\displaystyle R/I}"></span> is a ring,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> and the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\to R/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\to R/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec2da9cf0094c5948d4b0b56d8132683d902f7d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.476ex; height:2.843ex;" alt="{\displaystyle R\to R/I}"></span></dd></dl> <p>that associates to each element of <span class="texhtml mvar" style="font-style:italic;">R</span> its equivalence class is a <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a> that has the ideal as its <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Conversely, the kernel of a ring homomorphism is a two-sided ideal. Therefore, <i>the two-sided ideals are exactly the kernels of ring homomorphisms.</i> </p> <div class="mw-heading mw-heading3"><h3 id="Note_on_convention">Note on convention</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=3" title="Edit section: Note on convention"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By convention, a ring has the multiplicative identity. But some authors do not require a ring to have the multiplicative identity; i.e., for them, a ring is a <a href="/wiki/Rng_(mathematics)" class="mw-redirect" title="Rng (mathematics)">rng</a>. For a rng <span class="texhtml mvar" style="font-style:italic;">R</span>, a <b>left ideal</b> <span class="texhtml mvar" style="font-style:italic;">I</span> is a subrng with the additional property that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10279e90b103d9755ac5fb24ba474d8ce6ec133f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.378ex; height:1.676ex;" alt="{\displaystyle rx}"></span> is in <span class="texhtml mvar" style="font-style:italic;">I</span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span> and every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span>. (Right and two-sided ideals are defined similarly.) For a ring, an ideal <span class="texhtml mvar" style="font-style:italic;">I</span> (say a left ideal) is rarely a subring; since a subring shares the same multiplicative identity with the ambient ring <span class="texhtml mvar" style="font-style:italic;">R</span>, if <span class="texhtml mvar" style="font-style:italic;">I</span> were a subring, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r1\in I;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mn>1</mn> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r1\in I;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad71212c9ec41171bd6ee2b54cc4d866e53da8d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.017ex; height:2.509ex;" alt="{\displaystyle r=r1\in I;}"></span> i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed3470fadf888a1e4f3a018c699e78de45501c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.034ex; height:2.176ex;" alt="{\displaystyle I=R}"></span>. </p><p>The notion of an ideal does not involve associativity; thus, an ideal is also defined for <a href="/wiki/Non-associative_ring" class="mw-redirect" title="Non-associative ring">non-associative rings</a> (often without the multiplicative identity) such as a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_and_properties">Examples and properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=4" title="Edit section: Examples and properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.) </p> <ul><li>In a ring <i>R</i>, the set <i>R</i> itself forms a two-sided ideal of <i>R</i> called the <b>unit ideal</b>. It is often also denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25115739469707c4758b189fe310a750092a80a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (1)}"></span> since it is precisely the two-sided ideal generated (see below) by the unity <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4b84310fba9b328ce04e95ee5aeaf1c81236785" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.642ex; height:2.509ex;" alt="{\displaystyle 1_{R}}"></span>&#8288;</span>. Also, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0_{R}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0_{R}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07a13e6e1ad75eed0eb036d9b14134133fd86291" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.967ex; height:2.843ex;" alt="{\displaystyle \{0_{R}\}}"></span> consisting of only the additive identity 0<sub><i>R</i></sub> forms a two-sided ideal called the <b>zero ideal</b> and is denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf6d00d0d700cc9a652fb7e4b7f858b6eb2e9925" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (0)}"></span>&#8288;</span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> Every (left, right or two-sided) ideal contains the zero ideal and is contained in the unit ideal.<sup id="cite_ref-FOOTNOTEDummitFoote2004243_10-0" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004243-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li> <li>An (left, right or two-sided) ideal that is not the unit ideal is called a <b>proper ideal</b> (as it is a <a href="/wiki/Proper_subset" class="mw-redirect" title="Proper subset">proper subset</a>).<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Note: a left ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is proper if and only if it does not contain a unit element, since if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u\in {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u\in {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5665b13bc4f45deb850d3f1d346aa200f550901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.333ex; height:1.843ex;" alt="{\displaystyle u\in {\mathfrak {a}}}"></span> is a unit element, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=(ru^{-1})u\in {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>r</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=(ru^{-1})u\in {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca96b60bb0f20cee6fcf83d25b02df5d873401b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16ex; height:3.176ex;" alt="{\displaystyle r=(ru^{-1})u\in {\mathfrak {a}}}"></span> for every <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca49c66b5e9b5f32249a737e4429c3df136c33f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.653ex; height:2.176ex;" alt="{\displaystyle r\in R}"></span>&#8288;</span>. Typically there are plenty of proper ideals. In fact, if <i>R</i> is a <a href="/wiki/Skew-field" class="mw-redirect" title="Skew-field">skew-field</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0),(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0),(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfc8d3a91c71a3be47618191b39bc6c6584d328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.977ex; height:2.843ex;" alt="{\displaystyle (0),(1)}"></span> are its only ideals and conversely: that is, a nonzero ring <i>R</i> is a skew-field if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0),(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0),(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfc8d3a91c71a3be47618191b39bc6c6584d328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.977ex; height:2.843ex;" alt="{\displaystyle (0),(1)}"></span> are the only left (or right) ideals. (Proof: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is a nonzero element, then the principal left ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8072625515d9f43b2fd354deb2126199df9bb4cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.094ex; height:2.176ex;" alt="{\displaystyle Rx}"></span> (see below) is nonzero and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rx=(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rx=(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb14b60cc8a52a2259b857ff42301f46ee464c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.164ex; height:2.843ex;" alt="{\displaystyle Rx=(1)}"></span>; i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle yx=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle yx=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f345b54e1fe329ebb23ee5ec275aef5fdb67724" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.746ex; height:2.509ex;" alt="{\displaystyle yx=1}"></span> for some nonzero <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>&#8288;</span>. Likewise, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle zy=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle zy=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43bc5f5a726623f0a722be8f0f947d2641e3834e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.505ex; height:2.509ex;" alt="{\displaystyle zy=1}"></span> for some nonzero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(yx)=(zy)x=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z(yx)=(zy)x=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b3dbfec9677c9123272d31fd933e12f5c548013" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.478ex; height:2.843ex;" alt="{\displaystyle z=z(yx)=(zy)x=x}"></span>.)</li> <li>The even <a href="/wiki/Integer" title="Integer">integers</a> form an ideal in the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> of all integers, since the sum of any two even integers is even, and the product of any integer with an even integer is also even; this ideal is usually denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c112372c16743e8c02db5eac5c6de0659841bec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\displaystyle 2\mathbb {Z} }"></span>&#8288;</span>. More generally, the set of all integers divisible by a fixed integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is an ideal denoted <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33e5e8bd9b24ba5d0b31eda653b78a63e1af831d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.945ex; height:2.176ex;" alt="{\displaystyle n\mathbb {Z} }"></span>&#8288;</span>. In fact, every non-zero ideal of the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> is generated by its smallest positive element, as a consequence of <a href="/wiki/Euclidean_division" title="Euclidean division">Euclidean division</a>, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> is a <a href="/wiki/Principal_ideal_domain" title="Principal ideal domain">principal ideal domain</a>.<sup id="cite_ref-FOOTNOTEDummitFoote2004243_10-1" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004243-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li> <li>The set of all <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> with real coefficients that are divisible by the polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a3a8d23f9f8123651e496dcf8490990c65cf9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.387ex; height:2.843ex;" alt="{\displaystyle x^{2}+1}"></span> is an ideal in the ring of all real-coefficient polynomials <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} [x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} [x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/453d1013f9dd290be70d5fe534e0d3311b0a7c6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.301ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} [x]}"></span>&#8288;</span>.</li> <li>Take a ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> and positive integer <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>&#8288;</span>. For each <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq i\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq i\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abbe58b9b83f8b6ec0da570e2249323a8930ef1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.557ex; height:2.343ex;" alt="{\displaystyle 1\leq i\leq n}"></span>&#8288;</span>, the set of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> with entries in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> whose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th row is zero is a right ideal in the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{n}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{n}(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/096af14d3445ce0171d03e59a6ac5d8a70317489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.046ex; height:2.843ex;" alt="{\displaystyle M_{n}(R)}"></span> of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrices with entries in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>. It is not a left ideal. Similarly, for each <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq j\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq j\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829066d1e818107baff629179da368c45fcb8883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.712ex; height:2.509ex;" alt="{\displaystyle 1\leq j\leq n}"></span>&#8288;</span>, the set of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrices whose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>-th <i>column</i> is zero is a left ideal but not a right ideal.</li> <li>The ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7c83d1af403f8fe4ad3b88bf35451369497d8c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.254ex; height:2.843ex;" alt="{\displaystyle C(\mathbb {R} )}"></span> of all <a href="/wiki/Continuous_function" title="Continuous function">continuous functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> under <a href="/wiki/Pointwise_multiplication" class="mw-redirect" title="Pointwise multiplication">pointwise multiplication</a> contains the ideal of all continuous functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> such that <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(1)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(1)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da761295ab324acdb04e33ab75299c7fb588675f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.511ex; height:2.843ex;" alt="{\displaystyle f(1)=0}"></span>&#8288;</span>.<sup id="cite_ref-FOOTNOTEDummitFoote2004244_12-0" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004244-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Another ideal in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7c83d1af403f8fe4ad3b88bf35451369497d8c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.254ex; height:2.843ex;" alt="{\displaystyle C(\mathbb {R} )}"></span> is given by those functions that vanish for large enough arguments, i.e. those continuous functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> for which there exists a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78d06bfbe00ff463870f868c958b37cbe46ea3a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L&gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf85883d74b75fe35ca8d3f2b44802df078e4fa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.678ex; height:2.843ex;" alt="{\displaystyle f(x)=0}"></span> whenever <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert x\vert &gt;L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi>x</mi> <mo fence="false" stretchy="false">|</mo> <mo>&gt;</mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert x\vert &gt;L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f14f778aaf586ed4b9e6f6e297042233a5dc9077" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.305ex; height:2.843ex;" alt="{\displaystyle \vert x\vert &gt;L}"></span>&#8288;</span>.</li> <li>A ring is called a <a href="/wiki/Simple_ring" title="Simple ring">simple ring</a> if it is nonzero and has no two-sided ideals other than <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0),(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0),(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfc8d3a91c71a3be47618191b39bc6c6584d328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.977ex; height:2.843ex;" alt="{\displaystyle (0),(1)}"></span>&#8288;</span>. Thus, a skew-field is simple and a simple commutative ring is a field. The <a href="/wiki/Matrix_ring" title="Matrix ring">matrix ring</a> over a skew-field is a simple ring.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:R\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:R\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9aa7daf2186fbf2fb3b5090e495ad432d4cf42c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.093ex; height:2.509ex;" alt="{\displaystyle f:R\to S}"></span> is a <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a>, then the kernel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ker(f)=f^{-1}(0_{S})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ker(f)=f^{-1}(0_{S})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6878229c8d5cfcc7ab1191358bb741c39697e854" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.275ex; height:3.176ex;" alt="{\displaystyle \ker(f)=f^{-1}(0_{S})}"></span> is a two-sided ideal of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>.<sup id="cite_ref-FOOTNOTEDummitFoote2004243_10-2" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004243-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> By definition, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(1_{R})=1_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(1_{R})=1_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c922d3c4a7aa35a9703521f921971b0e8fa7832" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.283ex; height:2.843ex;" alt="{\displaystyle f(1_{R})=1_{S}}"></span>&#8288;</span>, and thus if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is not the zero ring (so <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{S}\neq 0_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{S}\neq 0_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64d7b267c7e76856f3890efa674cfd6264688110" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.008ex; height:2.676ex;" alt="{\displaystyle 1_{S}\neq 0_{S}}"></span>&#8288;</span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ker(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ker(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d2eca3185b45d4462e15bf85bd4ad36e32062d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.259ex; height:2.843ex;" alt="{\displaystyle \ker(f)}"></span> is a proper ideal. More generally, for each left ideal <i>I</i> of <i>S</i>, the pre-image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8452df1221e90eed16265d61c0295ba54f457d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.634ex; height:3.176ex;" alt="{\displaystyle f^{-1}(I)}"></span> is a left ideal. If <i>I</i> is a left ideal of <i>R</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1120c98155741515143b09d7265a1d394fcf003d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.26ex; height:2.843ex;" alt="{\displaystyle f(I)}"></span> is a left ideal of the subring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/482b1cec7d8f410485628cf860c3b063c3cc9f59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.852ex; height:2.843ex;" alt="{\displaystyle f(R)}"></span> of <i>S</i>: unless <i>f</i> is surjective, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1120c98155741515143b09d7265a1d394fcf003d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.26ex; height:2.843ex;" alt="{\displaystyle f(I)}"></span> need not be an ideal of <i>S</i>; see also <a href="#Extension_and_contraction_of_an_ideal">#Extension and contraction of an ideal</a> below.</li> <li><b>Ideal correspondence</b>: Given a surjective ring homomorphism <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:R\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:R\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9aa7daf2186fbf2fb3b5090e495ad432d4cf42c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.093ex; height:2.509ex;" alt="{\displaystyle f:R\to S}"></span>&#8288;</span>, there is a bijective order-preserving correspondence between the left (resp. right, two-sided) ideals of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> containing the kernel of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and the left (resp. right, two-sided) ideals of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>: the correspondence is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\mapsto f(I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\mapsto f(I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41d7a7ebbb92e0a053958ca3a2f4fdd8f0d3f3be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.045ex; height:2.843ex;" alt="{\displaystyle I\mapsto f(I)}"></span> and the pre-image <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\mapsto f^{-1}(J)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>J</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\mapsto f^{-1}(J)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f007f013a7c92f84c287d9ba74e3d97dfdb58afc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.019ex; height:3.176ex;" alt="{\displaystyle J\mapsto f^{-1}(J)}"></span>&#8288;</span>. Moreover, for commutative rings, this bijective correspondence restricts to prime ideals, maximal ideals, and radical ideals (see the <a href="#Types_of_ideals">Types of ideals</a> section for the definitions of these ideals).</li> <li>(For those who know modules) If <i>M</i> is a left <i>R</i>-module and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\subset M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\subset M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71da27ce79329082f6bc54d5630d26814ec99a14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.04ex; height:2.176ex;" alt="{\displaystyle S\subset M}"></span> a subset, then the <a href="/wiki/Annihilator_(ring_theory)" title="Annihilator (ring theory)">annihilator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ann} _{R}(S)=\{r\in R\mid rs=0,s\in S\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Ann</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>r</mi> <mi>s</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ann} _{R}(S)=\{r\in R\mid rs=0,s\in S\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b48f9d41cc21455d4896a650bb85a34ca1871d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.994ex; height:2.843ex;" alt="{\displaystyle \operatorname {Ann} _{R}(S)=\{r\in R\mid rs=0,s\in S\}}"></span> of <i>S</i> is a left ideal. Given ideals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b7742bed6d8d23c026def725678bf71ab31f99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"></span> of a commutative ring <i>R</i>, the <i>R</i>-annihilator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathfrak {b}}+{\mathfrak {a}})/{\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathfrak {b}}+{\mathfrak {a}})/{\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a132e1b4e825a1195f6e24ee1ba3b7b6d36b161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.33ex; height:2.843ex;" alt="{\displaystyle ({\mathfrak {b}}+{\mathfrak {a}})/{\mathfrak {a}}}"></span> is an ideal of <i>R</i> called the <a href="/wiki/Ideal_quotient" title="Ideal quotient">ideal quotient</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> and is denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathfrak {a}}:{\mathfrak {b}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathfrak {a}}:{\mathfrak {b}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06c29c80c0558dbad6d05bb9090b4e0f1e921e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.102ex; height:2.843ex;" alt="{\displaystyle ({\mathfrak {a}}:{\mathfrak {b}})}"></span>&#8288;</span>; it is an instance of <a href="/wiki/Idealizer" title="Idealizer">idealizer</a> in commutative algebra.</li> <li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i},i\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i},i\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/443acab9de5a652c1649f247d53447b7b3efdf24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.138ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}_{i},i\in S}"></span> be an <b><a href="/wiki/Ascending_chain" class="mw-redirect" title="Ascending chain">ascending chain</a> of left ideals</b> in a ring <i>R</i>; i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is a totally ordered set and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}\subset {\mathfrak {a}}_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}\subset {\mathfrak {a}}_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78bf7652da2a57e66746813ebefc23ed16ce26f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.133ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}_{i}\subset {\mathfrak {a}}_{j}}"></span> for each <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i&lt;j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&lt;</mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i&lt;j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e60ff2d1b23e30fb2979e8c1536da03493f943cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.859ex; height:2.509ex;" alt="{\displaystyle i&lt;j}"></span>&#8288;</span>. Then the union <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \bigcup _{i\in S}{\mathfrak {a}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \bigcup _{i\in S}{\mathfrak {a}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e7c0431fbdf79ba4e0120f4c968a93515855053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.241ex; height:3.009ex;" alt="{\displaystyle \textstyle \bigcup _{i\in S}{\mathfrak {a}}_{i}}"></span> is a left ideal of <i>R</i>. (Note: this fact remains true even if <i>R</i> is without the unity 1.)</li> <li>The above fact together with <a href="/wiki/Zorn%27s_lemma" title="Zorn&#39;s lemma">Zorn's lemma</a> proves the following: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\subset R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\subset R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9a0d58ce4606a6c044315305acdd78e5c12cc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.638ex; height:2.176ex;" alt="{\displaystyle E\subset R}"></span> is a possibly empty subset and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{0}\subset R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2282;<!-- ⊂ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{0}\subset R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca64b6fb3ed7a664f017410137b97c4165a457b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.079ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}_{0}\subset R}"></span> is a left ideal that is disjoint from <i>E</i>, then there is an ideal that is maximal among the ideals containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5db87213ff7a2ba6fc50dba0e6bd4f97a11e45f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{0}}"></span> and disjoint from <i>E</i>. (Again this is still valid if the ring <i>R</i> lacks the unity 1.) When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6668d74ef5db38b2f2b6202160649ac2cd67e4e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.025ex; height:2.676ex;" alt="{\displaystyle R\neq 0}"></span>, taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{0}=(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{0}=(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fed4612e703a06dd903a32d18cbf6a212e7cec5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.287ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}_{0}=(0)}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\{1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\{1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5e322fda7d5d20b8cf69c1ba91cb67c692f234f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.361ex; height:2.843ex;" alt="{\displaystyle E=\{1\}}"></span>&#8288;</span>, in particular, there exists a left ideal that is maximal among proper left ideals (often simply called a maximal left ideal); see <a href="/wiki/Krull%27s_theorem" title="Krull&#39;s theorem">Krull's theorem</a> for more.</li> <li>An arbitrary union of ideals need not be an ideal, but the following is still true: given a possibly empty subset <i>X</i> of <i>R</i>, there is the smallest left ideal containing <i>X</i>, called the left ideal generated by <i>X</i> and is denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RX}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RX}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/048569f7cdffbaa866c54adec2003f700412270e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle RX}"></span>&#8288;</span>. Such an ideal exists since it is the intersection of all left ideals containing <i>X</i>. Equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RX}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RX}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/048569f7cdffbaa866c54adec2003f700412270e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle RX}"></span> is the set of all the <a href="/wiki/Linear_combinations" class="mw-redirect" title="Linear combinations">(finite) left <i>R</i>-linear combinations</a> of elements of <i>X</i> over <i>R</i>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RX=\{r_{1}x_{1}+\dots +r_{n}x_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>X</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RX=\{r_{1}x_{1}+\dots +r_{n}x_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6870e2fd0ead5f6b2471373d621f92b9b7f87c49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.842ex; height:2.843ex;" alt="{\displaystyle RX=\{r_{1}x_{1}+\dots +r_{n}x_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\}.}"></span></dd></dl></li></ul> <dl><dd>(since such a span is the smallest left ideal containing <i>X</i>.)<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> A right (resp. two-sided) ideal generated by <i>X</i> is defined in the similar way. For "two-sided", one has to use linear combinations from both sides; i.e., <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RXR=\{r_{1}x_{1}s_{1}+\dots +r_{n}x_{n}s_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R,x_{i}\in X\}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>X</mi> <mi>R</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RXR=\{r_{1}x_{1}s_{1}+\dots +r_{n}x_{n}s_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R,x_{i}\in X\}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4518c93bd11a3ae343de84983cc5e92b045bc9df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.975ex; height:2.843ex;" alt="{\displaystyle RXR=\{r_{1}x_{1}s_{1}+\dots +r_{n}x_{n}s_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R,x_{i}\in X\}.\,}"></span></dd></dl></dd></dl> <ul><li>A left (resp. right, two-sided) ideal generated by a single element <i>x</i> is called the principal left (resp. right, two-sided) ideal generated by <i>x</i> and is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8072625515d9f43b2fd354deb2126199df9bb4cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.094ex; height:2.176ex;" alt="{\displaystyle Rx}"></span> (resp. <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xR,RxR}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>R</mi> <mo>,</mo> <mi>R</mi> <mi>x</mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xR,RxR}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/072b30abbdff02e3abb77323731d18f5ae92ccc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.985ex; height:2.509ex;" alt="{\displaystyle xR,RxR}"></span>&#8288;</span>). The principal two-sided ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RxR}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>x</mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RxR}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f995f1ea8aacb2b140aed2ad80b0b0cd62b2e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.858ex; height:2.176ex;" alt="{\displaystyle RxR}"></span> is often also denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd1f6d437f1742bfd5ffbdccd2477c07e9909e04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.139ex; height:2.843ex;" alt="{\displaystyle (x)}"></span>&#8288;</span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\{x_{1},\dots ,x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\{x_{1},\dots ,x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/100345e63f9659382d5a93de3bb0f87719a4ab07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.514ex; height:2.843ex;" alt="{\displaystyle X=\{x_{1},\dots ,x_{n}\}}"></span> is a finite set, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle RXR}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>X</mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle RXR}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2dab66d16ee3f4ca624b0ffc501888d806a204" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.508ex; height:2.176ex;" alt="{\displaystyle RXR}"></span> is also written as <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56204ada1ecf9dd5c6beddfdfd0f341cd69ff632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.92ex; height:2.843ex;" alt="{\displaystyle (x_{1},\dots ,x_{n})}"></span>&#8288;</span>.</li> <li>There is a bijective correspondence between ideals and <a href="/wiki/Congruence_relation" title="Congruence relation">congruence relations</a> (equivalence relations that respect the ring structure) on the ring: Given an ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> of a ring <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\sim y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\sim y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbd1014d850b7c883eb76301dd58c643e3c7e4eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x\sim y}"></span> if <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a38120b4e5728ed34204ea954872e3dcf828749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.338ex; height:2.509ex;" alt="{\displaystyle x-y\in I}"></span>&#8288;</span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x223C;<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span> is a congruence relation on <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>. Conversely, given a congruence relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x223C;<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span> on <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>, let <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\{x\in R:x\sim 0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>:</mo> <mi>x</mi> <mo>&#x223C;<!-- ∼ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\{x\in R:x\sim 0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6b44708ca3eb2e71fd3b2bd725d785b43b3fd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.057ex; height:2.843ex;" alt="{\displaystyle I=\{x\in R:x\sim 0\}}"></span>&#8288;</span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is an ideal of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Types_of_ideals">Types of ideals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=5" title="Edit section: Types of ideals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.</i> </p><p>Ideals are important because they appear as kernels of ring homomorphisms and allow one to define <a href="/wiki/Factor_ring" class="mw-redirect" title="Factor ring">factor rings</a>. Different types of ideals are studied because they can be used to construct different types of factor rings. </p> <ul><li><b><a href="/wiki/Maximal_ideal" title="Maximal ideal">Maximal ideal</a></b>: A proper ideal <span class="texhtml mvar" style="font-style:italic;">I</span> is called a <b>maximal ideal</b> if there exists no other proper ideal <i>J</i> with <span class="texhtml mvar" style="font-style:italic;">I</span> a proper subset of <i>J</i>. The factor ring of a maximal ideal is a <a href="/wiki/Simple_ring" title="Simple ring">simple ring</a> in general and is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> for commutative rings.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></li> <li><b><a href="/wiki/Minimal_ideal" title="Minimal ideal">Minimal ideal</a></b>: A nonzero ideal is called minimal if it contains no other nonzero ideal.</li> <li><b>Zero ideal</b>: the ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>Unit ideal</b>: the whole ring (being the ideal generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>).<sup id="cite_ref-FOOTNOTEDummitFoote2004243_10-3" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004243-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li> <li><b><a href="/wiki/Prime_ideal" title="Prime ideal">Prime ideal</a></b>: A proper ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is called a <b>prime ideal</b> if for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49337c5cf256196e2292f7047cb5da68c24ca95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.227ex; height:2.176ex;" alt="{\displaystyle ab}"></span> is in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>&#8288;</span>, then at least one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> is in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>&#8288;</span>. The factor ring of a prime ideal is a <a href="/wiki/Prime_ring" title="Prime ring">prime ring</a> in general and is an <a href="/wiki/Integral_domain" title="Integral domain">integral domain</a> for commutative rings.<sup id="cite_ref-FOOTNOTEDummitFoote2004255_16-0" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004255-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li> <li><b><a href="/wiki/Radical_of_an_ideal" title="Radical of an ideal">Radical ideal</a></b> or <a href="/wiki/Semiprime_ideal" class="mw-redirect" title="Semiprime ideal">semiprime ideal</a>: A proper ideal <span class="texhtml mvar" style="font-style:italic;">I</span> is called <b>radical</b> or <b>semiprime</b> if for any <i>a</i> in <i>R</i>, if <i>a</i><sup><i>n</i></sup> is in <span class="texhtml mvar" style="font-style:italic;">I</span> for some <i>n</i>, then <i>a</i> is in <span class="texhtml mvar" style="font-style:italic;">I</span>. The factor ring of a radical ideal is a <a href="/wiki/Semiprime_ring" title="Semiprime ring">semiprime ring</a> for general rings, and is a <a href="/wiki/Reduced_ring" title="Reduced ring">reduced ring</a> for commutative rings.</li> <li><b><a href="/wiki/Primary_ideal" title="Primary ideal">Primary ideal</a></b>: An ideal <span class="texhtml mvar" style="font-style:italic;">I</span> is called a <b>primary ideal</b> if for all <i>a</i> and <i>b</i> in <i>R</i>, if <i>ab</i> is in <span class="texhtml mvar" style="font-style:italic;">I</span>, then at least one of <i>a</i> and <i>b</i><sup><i>n</i></sup> is in <span class="texhtml mvar" style="font-style:italic;">I</span> for some <a href="/wiki/Natural_number" title="Natural number">natural number</a> <i>n</i>. Every prime ideal is primary, but not conversely. A semiprime primary ideal is prime.</li> <li><b><a href="/wiki/Principal_ideal" title="Principal ideal">Principal ideal</a></b>: An ideal generated by <i>one</i> element.<sup id="cite_ref-FOOTNOTEDummitFoote2004251_17-0" class="reference"><a href="#cite_note-FOOTNOTEDummitFoote2004251-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li> <li><span class="anchor" id="Finitely_generated_ideal"></span><b>Finitely generated ideal</b>: This type of ideal is <a href="/wiki/Finitely_generated_module" title="Finitely generated module">finitely generated</a> as a module.</li> <li><b><a href="/wiki/Primitive_ideal" title="Primitive ideal">Primitive ideal</a></b>: A left primitive ideal is the <a href="/wiki/Annihilator_(ring_theory)" title="Annihilator (ring theory)">annihilator</a> of a <a href="/wiki/Simple_module" title="Simple module">simple</a> left <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a>.</li> <li><b><a href="/wiki/Irreducible_ideal" title="Irreducible ideal">Irreducible ideal</a></b>: An ideal is said to be irreducible if it cannot be written as an intersection of ideals that properly contain it.</li> <li><b>Comaximal ideals</b>: Two ideals <span class="texhtml mvar" style="font-style:italic;">I</span>, <span class="texhtml mvar" style="font-style:italic;">J</span> are said to be <b>comaximal</b> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+y=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+y=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/232443130147e73c8333f0d5fd7be981223e2854" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.586ex; height:2.509ex;" alt="{\displaystyle x+y=1}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8caa8f241cb38a5348d7937b538227ad32c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.342ex; height:2.176ex;" alt="{\displaystyle x\in I}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eecbdcfb812f80b87c1deacaed375451bbcae9eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.468ex; height:2.509ex;" alt="{\displaystyle y\in J}"></span>&#8288;</span>.</li> <li><b><a href="/wiki/Regular_ideal" title="Regular ideal">Regular ideal</a></b>: This term has multiple uses. See the article for a list.</li> <li><b><a href="/wiki/Nil_ideal" title="Nil ideal">Nil ideal</a></b>: An ideal is a nil ideal if each of its elements is nilpotent.</li> <li><b><a href="/wiki/Nilpotent_ideal" title="Nilpotent ideal">Nilpotent ideal</a></b>: Some power of it is zero.</li> <li><b><a href="/wiki/Parameter_ideal" class="mw-redirect" title="Parameter ideal">Parameter ideal</a></b>: an ideal generated by a <a href="/wiki/System_of_parameters" title="System of parameters">system of parameters</a>.</li> <li><b><a href="/wiki/Perfect_ideal" title="Perfect ideal">Perfect ideal</a></b>: A proper ideal <span class="texhtml mvar" style="font-style:italic;">I</span> in a Noetherian ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is called a <b>perfect ideal</b> if its <a href="/wiki/Grade_(ring_theory)" title="Grade (ring theory)">grade</a> equals the <a href="/wiki/Projective_dimension" class="mw-redirect" title="Projective dimension">projective dimension</a> of the associated quotient ring,<sup id="cite_ref-Matsumura1_18-0" class="reference"><a href="#cite_note-Matsumura1-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {grade}}(I)={\textrm {proj}}\dim(R/I)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>grade</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>proj</mtext> </mrow> </mrow> <mi>dim</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textrm {grade}}(I)={\textrm {proj}}\dim(R/I)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b778dbcd18ae7d84a838d95d9118c74e748a170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.889ex; height:2.843ex;" alt="{\displaystyle {\textrm {grade}}(I)={\textrm {proj}}\dim(R/I)}"></span>&#8288;</span>. A perfect ideal is <a href="/wiki/Unmixed_ideal" class="mw-redirect" title="Unmixed ideal">unmixed</a>.</li> <li><b><a href="/wiki/Cohen%E2%80%93Macaulay_ring#unmixed" title="Cohen–Macaulay ring">Unmixed ideal</a></b>: A proper ideal <span class="texhtml mvar" style="font-style:italic;">I</span> in a Noetherian ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is called an <b>unmixed ideal</b> (in height) if the height of <i>I</i> is equal to the height of every <a href="/wiki/Associated_prime" title="Associated prime">associated prime</a> <i>P</i> of <i>R</i>/<i>I</i>. (This is stronger than saying that <i>R</i>/<i>I</i> is <a href="/wiki/Equidimensionality" title="Equidimensionality">equidimensional</a>. See also <a href="/wiki/Minimal_prime_ideal#Equidimensional_ring" title="Minimal prime ideal">equidimensional ring</a>.</li></ul> <p>Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details: </p> <ul><li><b><a href="/wiki/Fractional_ideal" title="Fractional ideal">Fractional ideal</a></b>: This is usually defined when <i>R</i> is a commutative domain with <a href="/wiki/Quotient_field" class="mw-redirect" title="Quotient field">quotient field</a> <i>K</i>. Despite their names, fractional ideals are <i>R</i> submodules of <i>K</i> with a special property. If the fractional ideal is contained entirely in <i>R</i>, then it is truly an ideal of <i>R</i>.</li> <li><b><a href="/wiki/Invertible_ideal" class="mw-redirect" title="Invertible ideal">Invertible ideal</a></b>: Usually an invertible ideal <i>A</i> is defined as a fractional ideal for which there is another fractional ideal <i>B</i> such that <span class="texhtml"><i>AB</i> = <i>BA</i> = <i>R</i></span>. Some authors may also apply "invertible ideal" to ordinary ring ideals <i>A</i> and <i>B</i> with <span class="texhtml"><i>AB</i> = <i>BA</i> = <i>R</i></span> in rings other than domains.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Ideal_operations">Ideal operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=6" title="Edit section: Ideal operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sum and product of ideals are defined as follows. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span>&#8288;</span>, left (resp. right) ideals of a ring <i>R</i>, their sum is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}:=\{a+b\mid a\in {\mathfrak {a}}{\mbox{ and }}b\in {\mathfrak {b}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}:=\{a+b\mid a\in {\mathfrak {a}}{\mbox{ and }}b\in {\mathfrak {b}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e669cf421b16a8e56b68f16e06688a46d94d9d88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.443ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}:=\{a+b\mid a\in {\mathfrak {a}}{\mbox{ and }}b\in {\mathfrak {b}}\}}"></span>,</dd></dl> <p>which is a left (resp. right) ideal, and, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b7742bed6d8d23c026def725678bf71ab31f99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"></span> are two-sided, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}:=\{a_{1}b_{1}+\dots +a_{n}b_{n}\mid a_{i}\in {\mathfrak {a}}{\mbox{ and }}b_{i}\in {\mathfrak {b}},i=1,2,\dots ,n;{\mbox{ for }}n=1,2,\dots \},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;and&#xA0;</mtext> </mstyle> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;for&#xA0;</mtext> </mstyle> </mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}{\mathfrak {b}}:=\{a_{1}b_{1}+\dots +a_{n}b_{n}\mid a_{i}\in {\mathfrak {a}}{\mbox{ and }}b_{i}\in {\mathfrak {b}},i=1,2,\dots ,n;{\mbox{ for }}n=1,2,\dots \},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c401f6cea1d5f022247e2c0bf88bc166daea7961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:76.642ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}:=\{a_{1}b_{1}+\dots +a_{n}b_{n}\mid a_{i}\in {\mathfrak {a}}{\mbox{ and }}b_{i}\in {\mathfrak {b}},i=1,2,\dots ,n;{\mbox{ for }}n=1,2,\dots \},}"></span></dd></dl> <p>i.e. the product is the ideal generated by all products of the form <i>ab</i> with <i>a</i> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> and <i>b</i> in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span>&#8288;</span>. </p><p>Note <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f71b2aff6bc8562cf1239121a1289664ce3486a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.196ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}}"></span> is the smallest left (resp. right) ideal containing both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> (or the union <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\cup {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x222A;<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\cup {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7c067cea3e612007a1e143a2b45266387ca74da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.938ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}\cup {\mathfrak {b}}}"></span>&#8288;</span>), while the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beae22b0a00a8f2356d4ef75ad88560846b218fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.355ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}}"></span> is contained in the intersection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span>&#8288;</span>. </p><p>The distributive law holds for two-sided ideals <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}},{\mathfrak {b}},{\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}},{\mathfrak {b}},{\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38d831b756d34b550a80f49218c64687ecbb368e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.328ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}},{\mathfrak {b}},{\mathfrak {c}}}"></span>&#8288;</span>, </p> <ul><li><span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}({\mathfrak {b}}+{\mathfrak {c}})={\mathfrak {a}}{\mathfrak {b}}+{\mathfrak {a}}{\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}({\mathfrak {b}}+{\mathfrak {c}})={\mathfrak {a}}{\mathfrak {b}}+{\mathfrak {a}}{\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3d3c6aa3107ca6c282f124a1790d2959ce59565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.271ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}({\mathfrak {b}}+{\mathfrak {c}})={\mathfrak {a}}{\mathfrak {b}}+{\mathfrak {a}}{\mathfrak {c}}}"></span>&#8288;</span>,</li> <li><span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathfrak {a}}+{\mathfrak {b}}){\mathfrak {c}}={\mathfrak {a}}{\mathfrak {c}}+{\mathfrak {b}}{\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathfrak {a}}+{\mathfrak {b}}){\mathfrak {c}}={\mathfrak {a}}{\mathfrak {c}}+{\mathfrak {b}}{\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f5b58860b7864d3f84a19582ee5a4a526cc4c20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.013ex; height:2.843ex;" alt="{\displaystyle ({\mathfrak {a}}+{\mathfrak {b}}){\mathfrak {c}}={\mathfrak {a}}{\mathfrak {c}}+{\mathfrak {b}}{\mathfrak {c}}}"></span>&#8288;</span>.</li></ul> <p>If a product is replaced by an intersection, a partial distributive law holds: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\cap ({\mathfrak {b}}+{\mathfrak {c}})\supset {\mathfrak {a}}\cap {\mathfrak {b}}+{\mathfrak {a}}\cap {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2283;<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\cap ({\mathfrak {b}}+{\mathfrak {c}})\supset {\mathfrak {a}}\cap {\mathfrak {b}}+{\mathfrak {a}}\cap {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65cd8609db815923ec5e0c885bd5cef512e4a40b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.018ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}\cap ({\mathfrak {b}}+{\mathfrak {c}})\supset {\mathfrak {a}}\cap {\mathfrak {b}}+{\mathfrak {a}}\cap {\mathfrak {c}}}"></span></dd></dl> <p>where the equality holds if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> contains <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21924b960341255be18e538e51404718f29cbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}}"></span>. </p><p><b>Remark</b>: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a <a href="/wiki/Complete_lattice" title="Complete lattice">complete</a> <a href="/wiki/Modular_lattice" title="Modular lattice">modular lattice</a>. The lattice is not, in general, a <a href="/wiki/Distributive_lattice" title="Distributive lattice">distributive lattice</a>. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a <a href="/wiki/Quantale" title="Quantale">quantale</a>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b7742bed6d8d23c026def725678bf71ab31f99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}},{\mathfrak {b}}}"></span> are ideals of a commutative ring <i>R</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f6853db7400534c0e286d00481683488469c98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.391ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}"></span> in the following two cases (at least) </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7128f42d3b9cd1d981b28089d9ce8cd82305fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.266ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(1)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is generated by elements that form a <a href="/wiki/Regular_sequence" title="Regular sequence">regular sequence</a> modulo <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span>&#8288;</span>.</li></ul> <p>(More generally, the difference between a product and an intersection of ideals is measured by the <a href="/wiki/Tor_functor" title="Tor functor">Tor functor</a>: <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Tor} _{1}^{R}(R/{\mathfrak {a}},R/{\mathfrak {b}})=({\mathfrak {a}}\cap {\mathfrak {b}})/{\mathfrak {a}}{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Tor</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Tor} _{1}^{R}(R/{\mathfrak {a}},R/{\mathfrak {b}})=({\mathfrak {a}}\cap {\mathfrak {b}})/{\mathfrak {a}}{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea766daa458ba97ea57b4d2f6c2924cfd1649a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.646ex; height:3.176ex;" alt="{\displaystyle \operatorname {Tor} _{1}^{R}(R/{\mathfrak {a}},R/{\mathfrak {b}})=({\mathfrak {a}}\cap {\mathfrak {b}})/{\mathfrak {a}}{\mathfrak {b}}}"></span>&#8288;</span>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup>) </p><p>An integral domain is called a <a href="/wiki/Dedekind_domain" title="Dedekind domain">Dedekind domain</a> if for each pair of ideals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\subset {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\subset {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8185e98deffa597a93568b267ea4a8ec1b592f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.454ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}\subset {\mathfrak {b}}}"></span>, there is an ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21924b960341255be18e538e51404718f29cbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.905ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {c}}}"></span> such that <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {\mathfrak {a}}}={\mathfrak {b}}{\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {\mathfrak {a}}}={\mathfrak {b}}{\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c02ffd31632b80fb1562f87cf5d3f861f0b352" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.358ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {\mathfrak {a}}}={\mathfrak {b}}{\mathfrak {c}}}"></span>&#8288;</span>.<sup id="cite_ref-FOOTNOTEMilnor19719_20-0" class="reference"><a href="#cite_note-FOOTNOTEMilnor19719-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_of_ideal_operations">Examples of ideal operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=7" title="Edit section: Examples of ideal operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n)\cap (m)=\operatorname {lcm} (n,m)\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n)\cap (m)=\operatorname {lcm} (n,m)\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41df782de50276e8710951f6322e0a8497d85fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.179ex; height:2.843ex;" alt="{\displaystyle (n)\cap (m)=\operatorname {lcm} (n,m)\mathbb {Z} }"></span></dd></dl> <p>since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n)\cap (m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n)\cap (m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df65bd1659e737379431aa403caf2f533eda828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.636ex; height:2.843ex;" alt="{\displaystyle (n)\cap (m)}"></span> is the set of integers that are divisible by both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>&#8288;</span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\mathbb {C} [x,y,z,w]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\mathbb {C} [x,y,z,w]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/374e83752e18b61098f8285791f9195519f1ba21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.173ex; height:2.843ex;" alt="{\displaystyle R=\mathbb {C} [x,y,z,w]}"></span> and let <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}=(z,w),{\mathfrak {b}}=(x+z,y+w),{\mathfrak {c}}=(x+z,w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}=(z,w),{\mathfrak {b}}=(x+z,y+w),{\mathfrak {c}}=(x+z,w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22bb012983ad26ae6fc3ac348bf8ac1ccaa61f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.746ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}=(z,w),{\mathfrak {b}}=(x+z,y+w),{\mathfrak {c}}=(x+z,w)}"></span>&#8288;</span>. Then, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(z,w,x+z,y+w)=(x,y,z,w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(z,w,x+z,y+w)=(x,y,z,w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b74ba042651905a0203dbf18223e4ae1e6722e5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.123ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(z,w,x+z,y+w)=(x,y,z,w)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}+{\mathfrak {c}}=(z,w,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}+{\mathfrak {c}}=(z,w,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87506f1b102dd09fe57f70a49549497566f26f59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.965ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}+{\mathfrak {c}}=(z,w,x)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}=(z(x+z),z(y+w),w(x+z),w(y+w))=(z^{2}+xz,zy+wz,wx+wz,wy+w^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>x</mi> <mi>z</mi> <mo>,</mo> <mi>z</mi> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mi>x</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mi>y</mi> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}{\mathfrak {b}}=(z(x+z),z(y+w),w(x+z),w(y+w))=(z^{2}+xz,zy+wz,wx+wz,wy+w^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b7bcbb54bd40b7ed438203d08604c30a32c868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:85.156ex; height:3.176ex;" alt="{\displaystyle {\mathfrak {a}}{\mathfrak {b}}=(z(x+z),z(y+w),w(x+z),w(y+w))=(z^{2}+xz,zy+wz,wx+wz,wy+w^{2})}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}{\mathfrak {c}}=(xz+z^{2},zw,xw+zw,w^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>z</mi> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>z</mi> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mi>w</mi> <mo>+</mo> <mi>z</mi> <mi>w</mi> <mo>,</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}{\mathfrak {c}}=(xz+z^{2},zw,xw+zw,w^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4202bf9016481bce06846956771fac4c2a42bcb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.537ex; height:3.176ex;" alt="{\displaystyle {\mathfrak {a}}{\mathfrak {c}}=(xz+z^{2},zw,xw+zw,w^{2})}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f6853db7400534c0e286d00481683488469c98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.391ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}}"></span> while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {c}}=(w,xz+z^{2})\neq {\mathfrak {a}}{\mathfrak {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mi>z</mi> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\cap {\mathfrak {c}}=(w,xz+z^{2})\neq {\mathfrak {a}}{\mathfrak {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a1e3d39a84273aa73fb6fa362dfe19f8e120ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.824ex; height:3.176ex;" alt="{\displaystyle {\mathfrak {a}}\cap {\mathfrak {c}}=(w,xz+z^{2})\neq {\mathfrak {a}}{\mathfrak {c}}}"></span></li></ul> <p>In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These computations can be checked using <a href="/wiki/Macaulay_2" class="mw-redirect" title="Macaulay 2">Macaulay2</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Radical_of_a_ring">Radical of a ring</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=8" title="Edit section: Radical of a ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Radical_of_a_ring" title="Radical of a ring">Radical of a ring</a></div> <p>Ideals appear naturally in the study of modules, especially in the form of a radical. </p> <dl><dd><i>For simplicity, we work with commutative rings but, with some changes, the results are also true for non-commutative rings.</i></dd></dl> <p>Let <i>R</i> be a commutative ring. By definition, a <a href="/wiki/Primitive_ideal" title="Primitive ideal">primitive ideal</a> of <i>R</i> is the annihilator of a (nonzero) <a href="/wiki/Simple_module" title="Simple module">simple <i>R</i>-module</a>. The <a href="/wiki/Jacobson_radical" title="Jacobson radical">Jacobson radical</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\operatorname {Jac} (R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mi>Jac</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\operatorname {Jac} (R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f517c268f684e8c41dbae81852e9483886d9b52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.533ex; height:2.843ex;" alt="{\displaystyle J=\operatorname {Jac} (R)}"></span> of <i>R</i> is the intersection of all primitive ideals. Equivalently, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\bigcap _{{\mathfrak {m}}{\text{ maximal ideals}}}{\mathfrak {m}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;maximal ideals</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\bigcap _{{\mathfrak {m}}{\text{ maximal ideals}}}{\mathfrak {m}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76512802934a4fea2531831a5df345edc2077630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.001ex; height:5.676ex;" alt="{\displaystyle J=\bigcap _{{\mathfrak {m}}{\text{ maximal ideals}}}{\mathfrak {m}}.}"></span></dd></dl> <p>Indeed, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is a simple module and <i>x</i> is a nonzero element in <i>M</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rx=M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>x</mi> <mo>=</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rx=M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3609669182bce8c4a40e3e5d26b4c522bf6413f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.634ex; height:2.176ex;" alt="{\displaystyle Rx=M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/\operatorname {Ann} (M)=R/\operatorname {Ann} (x)\simeq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Ann</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Ann</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2243;<!-- ≃ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/\operatorname {Ann} (M)=R/\operatorname {Ann} (x)\simeq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe62d9e34ad2b758483098a7966649f4a80feab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.313ex; height:2.843ex;" alt="{\displaystyle R/\operatorname {Ann} (M)=R/\operatorname {Ann} (x)\simeq M}"></span>, meaning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ann} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Ann</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ann} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d5fca7f3f63b96e5a5731e321ff72ac10831faa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.58ex; height:2.843ex;" alt="{\displaystyle \operatorname {Ann} (M)}"></span> is a maximal ideal. Conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc0e9162e96758157a34a6e44967288b481a7cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {m}}}"></span> is a maximal ideal, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc0e9162e96758157a34a6e44967288b481a7cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {m}}}"></span> is the annihilator of the simple <i>R</i>-module <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/{\mathfrak {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/{\mathfrak {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/695788b852be9fd463c7e135db432c98add7f7a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.709ex; height:2.843ex;" alt="{\displaystyle R/{\mathfrak {m}}}"></span>&#8288;</span>. There is also another characterization (the proof is not hard): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=\{x\in R\mid 1-yx\,{\text{ is a unit element for every }}y\in R\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>&#x2223;<!-- ∣ --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is a unit element for every&#xA0;</mtext> </mrow> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=\{x\in R\mid 1-yx\,{\text{ is a unit element for every }}y\in R\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac13c2d667626008dab4c52540b1f4b2f037744" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.069ex; height:2.843ex;" alt="{\displaystyle J=\{x\in R\mid 1-yx\,{\text{ is a unit element for every }}y\in R\}.}"></span></dd></dl> <p>For a not-necessarily-commutative ring, it is a general fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-yx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-yx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e6722b7a5782dacce05ce7dd2a562c7d7b87f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.488ex; height:2.509ex;" alt="{\displaystyle 1-yx}"></span> is a <a href="/wiki/Unit_element" class="mw-redirect" title="Unit element">unit element</a> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f99d8184d37b26d9f928168af1a54e5b2e31a39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.488ex; height:2.509ex;" alt="{\displaystyle 1-xy}"></span> is (see the link) and so this last characterization shows that the radical can be defined both in terms of left and right primitive ideals. </p><p>The following simple but important fact (<a href="/wiki/Nakayama%27s_lemma" title="Nakayama&#39;s lemma">Nakayama's lemma</a>) is built-in to the definition of a Jacobson radical: if <i>M</i> is a module such that <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle JM=M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mi>M</mi> <mo>=</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle JM=M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f853bb23ba516c64ef5ba13d6de4c7ed65ff47c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.454ex; height:2.176ex;" alt="{\displaystyle JM=M}"></span>&#8288;</span>, then <i>M</i> does not admit a <a href="/wiki/Maximal_submodule" class="mw-redirect" title="Maximal submodule">maximal submodule</a>, since if there is a maximal submodule <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\subsetneq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x228A;<!-- ⊊ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\subsetneq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e74671eab7e1a0fa6e3fb3b15987d63a7377aa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.124ex; height:2.676ex;" alt="{\displaystyle L\subsetneq M}"></span>&#8288;</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\cdot (M/L)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\cdot (M/L)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6fdc6b117f42fb697583bb6993ed89e707c1d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.408ex; height:2.843ex;" alt="{\displaystyle J\cdot (M/L)=0}"></span> and so <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=JM\subset L\subsetneq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>J</mi> <mi>M</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>L</mi> <mo>&#x228A;<!-- ⊊ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=JM\subset L\subsetneq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1fc161ce606743784e9ecedf0b1f155adc1d657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.676ex; height:2.676ex;" alt="{\displaystyle M=JM\subset L\subsetneq M}"></span>&#8288;</span>, a contradiction. Since a nonzero <a href="/wiki/Finitely_generated_module" title="Finitely generated module">finitely generated module</a> admits a maximal submodule, in particular, one has: </p> <dl><dd>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle JM=M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mi>M</mi> <mo>=</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle JM=M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f853bb23ba516c64ef5ba13d6de4c7ed65ff47c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.454ex; height:2.176ex;" alt="{\displaystyle JM=M}"></span> and <i>M</i> is finitely generated, then <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b4002e03449266e23b8766bed86d22d1b1c3067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M=0}"></span>&#8288;</span>.</dd></dl> <p>A maximal ideal is a prime ideal and so one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {nil} (R)=\bigcap _{{\mathfrak {p}}{\text{ prime ideals }}}{\mathfrak {p}}\subset \operatorname {Jac} (R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>nil</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;prime ideals&#xA0;</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <mi>Jac</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {nil} (R)=\bigcap _{{\mathfrak {p}}{\text{ prime ideals }}}{\mathfrak {p}}\subset \operatorname {Jac} (R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f4eb2b81c946121550c41ae0774800c984f6fff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:31.576ex; height:5.843ex;" alt="{\displaystyle \operatorname {nil} (R)=\bigcap _{{\mathfrak {p}}{\text{ prime ideals }}}{\mathfrak {p}}\subset \operatorname {Jac} (R)}"></span></dd></dl> <p>where the intersection on the left is called the <a href="/wiki/Nilradical_of_a_ring" title="Nilradical of a ring">nilradical</a> of <i>R</i>. As it turns out, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {nil} (R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>nil</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {nil} (R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5a209bd2b972d67a525ec406e4ec50e456a0b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.16ex; height:2.843ex;" alt="{\displaystyle \operatorname {nil} (R)}"></span> is also the set of <a href="/wiki/Nilpotent_element" class="mw-redirect" title="Nilpotent element">nilpotent elements</a> of <i>R</i>. </p><p>If <i>R</i> is an <a href="/wiki/Artinian_ring" title="Artinian ring">Artinian ring</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Jac} (R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Jac</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Jac} (R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fff3146e8831cf50a4ccbc11428c1fedef9a5ff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.963ex; height:2.843ex;" alt="{\displaystyle \operatorname {Jac} (R)}"></span> is nilpotent and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {nil} (R)=\operatorname {Jac} (R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>nil</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Jac</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {nil} (R)=\operatorname {Jac} (R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3401d9608d0567d97c2b7d6f6276565d559d420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.221ex; height:2.843ex;" alt="{\displaystyle \operatorname {nil} (R)=\operatorname {Jac} (R)}"></span>&#8288;</span>. (Proof: first note the DCC implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J^{n}=J^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J^{n}=J^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f89a9c2cb450b8a62b0c2dfca1835999d88721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.688ex; height:2.676ex;" alt="{\displaystyle J^{n}=J^{n+1}}"></span> for some <i>n</i>. If (DCC) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\supsetneq \operatorname {Ann} (J^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x228B;<!-- ⊋ --></mo> <mi>Ann</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\supsetneq \operatorname {Ann} (J^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8df32658a2d0b3e72842a18fa5376add5cdc981c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.143ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {a}}\supsetneq \operatorname {Ann} (J^{n})}"></span> is an ideal properly minimal over the latter, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\cdot ({\mathfrak {a}}/\operatorname {Ann} (J^{n}))=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Ann</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\cdot ({\mathfrak {a}}/\operatorname {Ann} (J^{n}))=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0122264976ee2457800355562f46f23bb1590d1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.814ex; height:2.843ex;" alt="{\displaystyle J\cdot ({\mathfrak {a}}/\operatorname {Ann} (J^{n}))=0}"></span>. That is, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J^{n}{\mathfrak {a}}=J^{n+1}{\mathfrak {a}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>=</mo> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J^{n}{\mathfrak {a}}=J^{n+1}{\mathfrak {a}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a76f78637b0ea052044af4ef7f64b927e3b64c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.273ex; height:2.676ex;" alt="{\displaystyle J^{n}{\mathfrak {a}}=J^{n+1}{\mathfrak {a}}=0}"></span>&#8288;</span>, a contradiction.) </p> <div class="mw-heading mw-heading2"><h2 id="Extension_and_contraction_of_an_ideal">Extension and contraction of an ideal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=9" title="Edit section: Extension and contraction of an ideal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <i>A</i> and <i>B</i> be two <a href="/wiki/Commutative_ring" title="Commutative ring">commutative rings</a>, and let <i>f</i>&#160;: <i>A</i> → <i>B</i> be a <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is an ideal in <i>A</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f({\mathfrak {a}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f({\mathfrak {a}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97afa190a4eff25d9f1f69552ed3e00da7401732" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.25ex; height:2.843ex;" alt="{\displaystyle f({\mathfrak {a}})}"></span> need not be an ideal in <i>B</i> (e.g. take <i>f</i> to be the <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion</a> of the ring of integers <b>Z</b> into the field of rationals <b>Q</b>). The <b>extension</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567fb2fbe6cbc450bf237481f07eafe5261db1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.161ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}^{e}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> in <i>B</i> is defined to be the ideal in <i>B</i> generated by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f({\mathfrak {a}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f({\mathfrak {a}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97afa190a4eff25d9f1f69552ed3e00da7401732" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.25ex; height:2.843ex;" alt="{\displaystyle f({\mathfrak {a}})}"></span>&#8288;</span>. Explicitly, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{e}={\Big \{}\sum y_{i}f(x_{i}):x_{i}\in {\mathfrak {a}},y_{i}\in B{\Big \}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">{</mo> </mrow> </mrow> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">}</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{e}={\Big \{}\sum y_{i}f(x_{i}):x_{i}\in {\mathfrak {a}},y_{i}\in B{\Big \}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600e7aff83606f579660ba987b72589fd6e2c543" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.292ex; height:4.843ex;" alt="{\displaystyle {\mathfrak {a}}^{e}={\Big \{}\sum y_{i}f(x_{i}):x_{i}\in {\mathfrak {a}},y_{i}\in B{\Big \}}}"></span></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> is an ideal of <i>B</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}({\mathfrak {b}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}({\mathfrak {b}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a024f0af20b50482ef08ed0c3d15d73936b7fb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.655ex; height:3.176ex;" alt="{\displaystyle f^{-1}({\mathfrak {b}})}"></span> is always an ideal of <i>A</i>, called the <b>contraction</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a0b993972c26c8d86ad67b82da92c14d613c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.137ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {b}}^{c}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> to <i>A</i>. </p><p>Assuming <i>f</i>&#160;: <i>A</i> → <i>B</i> is a ring homomorphism, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is an ideal in <i>A</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> is an ideal in <i>B</i>, then: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47431c0c547b479e2cb895f75e15aefdb16bfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.193ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {b}}}"></span> is prime in <i>B</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a0b993972c26c8d86ad67b82da92c14d613c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.137ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {b}}^{c}}"></span> is prime in <i>A</i>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{ec}\supseteq {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>c</mi> </mrow> </msup> <mo>&#x2287;<!-- ⊇ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{ec}\supseteq {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/446deaf532a897d293336ce672090b6b91729177" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.134ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}^{ec}\supseteq {\mathfrak {a}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}^{ce}\subseteq {\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>e</mi> </mrow> </msup> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}^{ce}\subseteq {\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41119aed93a35f7b083af784cc0ab957c59006ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.194ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {b}}^{ce}\subseteq {\mathfrak {b}}}"></span></li></ul> <p>It is false, in general, that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> being prime (or maximal) in <i>A</i> implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567fb2fbe6cbc450bf237481f07eafe5261db1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.161ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}^{e}}"></span> is prime (or maximal) in <i>B</i>. Many classic examples of this stem from algebraic number theory. For example, <a href="/wiki/Embedding" title="Embedding">embedding</a> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} \to \mathbb {Z} \left\lbrack i\right\rbrack }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow> <mo>[</mo> <mi>i</mi> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} \to \mathbb {Z} \left\lbrack i\right\rbrack }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7a34f76b881963b253d3f7bdc3df992914de8a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.198ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} \to \mathbb {Z} \left\lbrack i\right\rbrack }"></span>&#8288;</span>. In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\mathbb {Z} \left\lbrack i\right\rbrack }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow> <mo>[</mo> <mi>i</mi> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\mathbb {Z} \left\lbrack i\right\rbrack }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13c1527985ec7bc0afd350edf7e151d81e8f10f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.896ex; height:2.843ex;" alt="{\displaystyle B=\mathbb {Z} \left\lbrack i\right\rbrack }"></span>, the element 2 factors as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2=(1+i)(1-i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2=(1+i)(1-i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dbaee0376fb70c561f30c28c7d6417b8b916eef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.49ex; height:2.843ex;" alt="{\displaystyle 2=(1+i)(1-i)}"></span> where (one can show) neither of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+i,1-i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+i,1-i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2578759e6868f7ae8dcf599a632cf502d09fd096" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.645ex; height:2.509ex;" alt="{\displaystyle 1+i,1-i}"></span> are units in <i>B</i>. So <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2)^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2)^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0420b40e3536cf76a034943376ab6818b70212a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.97ex; height:2.843ex;" alt="{\displaystyle (2)^{e}}"></span> is not prime in <i>B</i> (and therefore not maximal, as well). Indeed, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1\pm i)^{2}=\pm 2i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x00B1;<!-- ± --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mn>2</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1\pm i)^{2}=\pm 2i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e62f0b708a3b5ad404b3864ad5b8d033e52e28e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.54ex; height:3.176ex;" alt="{\displaystyle (1\pm i)^{2}=\pm 2i}"></span> shows that <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+i)=((1-i)-(1-i)^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+i)=((1-i)-(1-i)^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d400da5702b53ba32b77362f8e70684004064c83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.646ex; height:3.176ex;" alt="{\displaystyle (1+i)=((1-i)-(1-i)^{2})}"></span>&#8288;</span>, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-i)=((1+i)-(1+i)^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-i)=((1+i)-(1+i)^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2618c2bf49497b7a32f537c15b8d8aa84e22471b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.646ex; height:3.176ex;" alt="{\displaystyle (1-i)=((1+i)-(1+i)^{2})}"></span>&#8288;</span>, and therefore <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2)^{e}=(1+i)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2)^{e}=(1+i)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593ee579513b499408317c9130e6ccb92a9162cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.737ex; height:3.176ex;" alt="{\displaystyle (2)^{e}=(1+i)^{2}}"></span>&#8288;</span>. </p><p>On the other hand, if <i>f</i> is <a href="/wiki/Surjective_function" title="Surjective function">surjective</a> and <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}\supseteq \ker f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>&#x2287;<!-- ⊇ --></mo> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}\supseteq \ker f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5575d3fec9db772ef2d0a3cb4cd5fb8a4599ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.098ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}\supseteq \ker f}"></span></a> then: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{ec}={\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>c</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{ec}={\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8238afae1089b0aef8b952b878fc46439dc73798" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.134ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}^{ec}={\mathfrak {a}}}"></span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {b}}^{ce}={\mathfrak {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>e</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">b</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}^{ce}={\mathfrak {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff29b70c37f4d19c47e927ba523b3eef8e0607c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.194ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {b}}^{ce}={\mathfrak {b}}}"></span>&#8288;</span>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is a <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideal</a> in <i>A</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567fb2fbe6cbc450bf237481f07eafe5261db1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.161ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}^{e}}"></span> is a prime ideal in <i>B</i>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span> is a <a href="/wiki/Maximal_ideal" title="Maximal ideal">maximal ideal</a> in <i>A</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567fb2fbe6cbc450bf237481f07eafe5261db1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.161ex; height:2.343ex;" alt="{\displaystyle {\mathfrak {a}}^{e}}"></span> is a maximal ideal in <i>B</i>.</li></ul> <p><b>Remark</b>: Let <i>K</i> be a <a href="/wiki/Field_extension" title="Field extension">field extension</a> of <i>L</i>, and let <i>B</i> and <i>A</i> be the <a href="/wiki/Ring_of_integers" title="Ring of integers">rings of integers</a> of <i>K</i> and <i>L</i>, respectively. Then <i>B</i> is an <a href="/wiki/Integral_extension" class="mw-redirect" title="Integral extension">integral extension</a> of <i>A</i>, and we let <i>f</i> be the <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion map</a> from <i>A</i> to <i>B</i>. The behaviour of a <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideal</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}={\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}={\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffc1f22fab13d0a9090ba5b80489756700ad2152" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {a}}={\mathfrak {p}}}"></span> of <i>A</i> under extension is one of the central problems of <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a>. </p><p>The following is sometimes useful:<sup id="cite_ref-FOOTNOTEAtiyahMacdonald1969Proposition_3.16_24-0" class="reference"><a href="#cite_note-FOOTNOTEAtiyahMacdonald1969Proposition_3.16-24"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> a prime ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14c125cdf81ac25d76edc2e8d557302c9f555a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {p}}}"></span> is a contraction of a prime ideal if and only if <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}={\mathfrak {p}}^{ec}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}={\mathfrak {p}}^{ec}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7de2b7ea3a4b96816e98180296db2756800b6be2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.134ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {p}}={\mathfrak {p}}^{ec}}"></span>&#8288;</span>. (Proof: Assuming the latter, note <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}=B_{\mathfrak {p}}\Rightarrow {\mathfrak {p}}^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}=B_{\mathfrak {p}}\Rightarrow {\mathfrak {p}}^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e00d101cd7fd30869e4a1daf7f6e3f335a337afd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.671ex; height:3.009ex;" alt="{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}=B_{\mathfrak {p}}\Rightarrow {\mathfrak {p}}^{e}}"></span> intersects <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0424c5c918f46b425bec0323d7070aceb844ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.746ex; height:2.509ex;" alt="{\displaystyle A-{\mathfrak {p}}}"></span>&#8288;</span>, a contradiction. Now, the prime ideals of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac80226ccaff807ed073f88562198cf6b2ee9140" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.818ex; height:2.843ex;" alt="{\displaystyle B_{\mathfrak {p}}}"></span> correspond to those in <i>B</i> that are disjoint from <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0424c5c918f46b425bec0323d7070aceb844ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.746ex; height:2.509ex;" alt="{\displaystyle A-{\mathfrak {p}}}"></span>&#8288;</span>. Hence, there is a prime ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">q</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79b0448036d3f2e513dd80d94095c45d81510269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.137ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {q}}}"></span> of <i>B</i>, disjoint from <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0424c5c918f46b425bec0323d7070aceb844ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.746ex; height:2.509ex;" alt="{\displaystyle A-{\mathfrak {p}}}"></span>&#8288;</span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {q}}B_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">q</mi> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {q}}B_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97ab88b3356a637eaf4ef810bd5edcbd8fd1bd34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.955ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {q}}B_{\mathfrak {p}}}"></span> is a maximal ideal containing <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a16d6bf3ab8d7eebae6cde8ca13146499558ab9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.979ex; height:3.009ex;" alt="{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}}"></span>&#8288;</span>. One then checks that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">q</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79b0448036d3f2e513dd80d94095c45d81510269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.137ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {q}}}"></span> lies over <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14c125cdf81ac25d76edc2e8d557302c9f555a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {p}}}"></span>&#8288;</span>. The converse is obvious.) </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=10" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ideals can be generalized to any <a href="/wiki/Monoid_object" class="mw-redirect" title="Monoid object">monoid object</a> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/381351d85a4dd769ed4754bccd3ac154b33eb8eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.415ex; height:2.843ex;" alt="{\displaystyle (R,\otimes )}"></span>&#8288;</span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the object where the <a href="/wiki/Monoid" title="Monoid">monoid</a> structure has been <a href="/wiki/Forgetful_functor" title="Forgetful functor">forgotten</a>. A <b>left ideal</b> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a <a href="/wiki/Subobject" title="Subobject">subobject</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> that "absorbs multiplication from the left by elements of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>"; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is a <b>left ideal</b> if it satisfies the following two conditions: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is a <a href="/wiki/Subobject" title="Subobject">subobject</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span></li> <li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in (R,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in (R,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5e74c2a65fedb097c537a19b79cb70dc06ec39d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.305ex; height:2.843ex;" alt="{\displaystyle r\in (R,\otimes )}"></span> and every <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (I,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (I,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/816ea985ba9ecda6d173fdd261ab659975103d02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.993ex; height:2.843ex;" alt="{\displaystyle x\in (I,\otimes )}"></span>&#8288;</span>, the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\otimes x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\otimes x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a731dd8bbb934bba1816b3839cf98f1b9c71eade" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.219ex; height:2.176ex;" alt="{\displaystyle r\otimes x}"></span> is in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (I,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>I</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (I,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f835400db0d2f824540073714410eff4094ad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.823ex; height:2.843ex;" alt="{\displaystyle (I,\otimes )}"></span>&#8288;</span>.</li></ol> <p>A <b>right ideal</b> is defined with the condition "<span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\otimes x\in (I,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\otimes x\in (I,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7aaf31fa10c6012158baafb9ca935dc040d4826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.883ex; height:2.843ex;" alt="{\displaystyle r\otimes x\in (I,\otimes )}"></span>&#8288;</span>" replaced by "'<span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\otimes r\in (I,\otimes )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>,</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\otimes r\in (I,\otimes )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db856490a7552de1ac480b6063d5991e48f9a33a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.883ex; height:2.843ex;" alt="{\displaystyle x\otimes r\in (I,\otimes )}"></span>&#8288;</span>". A <b>two-sided ideal</b> is a left ideal that is also a right ideal, and is sometimes simply called an ideal. When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a commutative monoid object respectively, the definitions of left, right, and two-sided ideal coincide, and the term <b>ideal</b> is used alone. </p><p>An ideal can also be thought of as a specific type of <a href="/wiki/Module_(mathematics)" title="Module (mathematics)"><span class="texhtml"><i>R</i></span>-module</a>. If we consider <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> as a left <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-module (by left multiplication), then a left ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is really just a left <a href="/wiki/Module_(mathematics)#Submodules_and_homomorphisms" title="Module (mathematics)">sub-module</a> of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>. In other words, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is a left (right) ideal of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> if and only if it is a left (right) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-module that is a subset of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is a two-sided ideal if it is a sub-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>-bimodule of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>&#8288;</span>. </p><p>Example: If we let <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7d60fc180e76c47f663220cdb9ff8c6f564c0f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.413ex; height:2.176ex;" alt="{\displaystyle R=\mathbb {Z} }"></span>&#8288;</span>, an ideal of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> is an abelian group that is a subset of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span>, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb660446d851fca07d1cfdd36a71c022ad617d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.591ex; height:2.176ex;" alt="{\displaystyle m\mathbb {Z} }"></span> for some <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12e01e20e2bc24ab21cca6a82edddec5c1a20ec5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.431ex; height:2.176ex;" alt="{\displaystyle m\in \mathbb {Z} }"></span>&#8288;</span>. So these give all the ideals of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Modular_arithmetic" title="Modular arithmetic">Modular arithmetic</a></li> <li><a href="/wiki/Noether_isomorphism_theorem" class="mw-redirect" title="Noether isomorphism theorem">Noether isomorphism theorem</a></li> <li><a href="/wiki/Boolean_prime_ideal_theorem" title="Boolean prime ideal theorem">Boolean prime ideal theorem</a></li> <li><a href="/wiki/Ideal_theory" title="Ideal theory">Ideal theory</a></li> <li><a href="/wiki/Ideal_(order_theory)" title="Ideal (order theory)">Ideal (order theory)</a></li> <li><a href="/wiki/Ideal_norm" title="Ideal norm">Ideal norm</a></li> <li><a href="/wiki/Splitting_of_prime_ideals_in_Galois_extensions" title="Splitting of prime ideals in Galois extensions">Splitting of prime ideals in Galois extensions</a></li> <li><a href="/wiki/Ideal_sheaf" title="Ideal sheaf">Ideal sheaf</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=12" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Some authors call the zero and unit ideals of a ring <i>R</i> the <b>trivial ideals</b> of <i>R</i>.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">If <i>R</i> does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in <i>X</i> with things in <i>R</i>, we must allow the addition of <i>n</i>-fold sums of the form <span class="nowrap"><i>x</i> + <i>x</i> + ... + <i>x</i></span>, and <i>n</i>-fold sums of the form <span class="nowrap">(−<i>x</i>) + (−<i>x</i>) + ... + (−<i>x</i>)</span> for every <i>x</i> in <i>X</i> and every <i>n</i> in the natural numbers. When <i>R</i> has a unit, this extra requirement becomes superfluous.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Stillwell-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stillwell_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stillwell_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJohn_Stillwell2010" class="citation book cs1">John Stillwell (2010). <i>Mathematics and its history</i>. p.&#160;439.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+and+its+history&amp;rft.pages=439&amp;rft.date=2010&amp;rft.au=John+Stillwell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-flt-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-flt_2-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarold_M._Edwards1977" class="citation book cs1">Harold M. Edwards (1977). <i>Fermat's last theorem. A genetic introduction to algebraic number theory</i>. p.&#160;76.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fermat%27s+last+theorem.+A+genetic+introduction+to+algebraic+number+theory&amp;rft.pages=76&amp;rft.date=1977&amp;rft.au=Harold+M.+Edwards&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-everest_ward-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-everest_ward_3-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEverest_G.,_Ward_T.2005" class="citation book cs1">Everest G., Ward T. (2005). <i>An introduction to number theory</i>. p.&#160;83.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+number+theory&amp;rft.pages=83&amp;rft.date=2005&amp;rft.au=Everest+G.%2C+Ward+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote 2004</a>, p.&#160;242</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote 2004</a>, § 10.1., Examples (1).</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote 2004</a>, § 10.1., Proposition 3.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote 2004</a>, Ch. 7, Proposition 6.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote 2004</a>, Ch. 7, Theorem 7.</span> </li> <li id="cite_note-FOOTNOTEDummitFoote2004243-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEDummitFoote2004243_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEDummitFoote2004243_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEDummitFoote2004243_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEDummitFoote2004243_10-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote (2004)</a>, p.&#160;243.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2005">Lang 2005</a>, Section III.2</span> </li> <li id="cite_note-FOOTNOTEDummitFoote2004244-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDummitFoote2004244_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote (2004)</a>, p.&#160;244.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Because simple commutative rings are fields. See <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLam2001" class="citation book cs1">Lam (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=f15FyZuZ3-4C&amp;pg=PA39&amp;dq=%22simple+commutative+rings%22"><i>A First Course in Noncommutative Rings</i></a>. p.&#160;39.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Noncommutative+Rings&amp;rft.pages=39&amp;rft.date=2001&amp;rft.au=Lam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Df15FyZuZ3-4C%26pg%3DPA39%26dq%3D%2522simple%2Bcommutative%2Brings%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ZeroIdeal.html">"Zero ideal"</a>. <i>Math World</i>. 22 Aug 2024.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Math+World&amp;rft.atitle=Zero+ideal&amp;rft.date=2024-08-22&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FZeroIdeal.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEDummitFoote2004255-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDummitFoote2004255_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote (2004)</a>, p.&#160;255.</span> </li> <li id="cite_note-FOOTNOTEDummitFoote2004251-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDummitFoote2004251_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDummitFoote2004">Dummit &amp; Foote (2004)</a>, p.&#160;251.</span> </li> <li id="cite_note-Matsumura1-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Matsumura1_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatsumura1987" class="citation book cs1"><a href="/wiki/Hideyuki_Matsumura" title="Hideyuki Matsumura">Matsumura, Hideyuki</a> (1987). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/books/commutative-ring-theory/02819830750568B06C16E6199F3562C1"><i>Commutative Ring Theory</i></a>. Cambridge: Cambridge University Press. p.&#160;132. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781139171762" title="Special:BookSources/9781139171762"><bdi>9781139171762</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+Ring+Theory&amp;rft.place=Cambridge&amp;rft.pages=132&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1987&amp;rft.isbn=9781139171762&amp;rft.aulast=Matsumura&amp;rft.aufirst=Hideyuki&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fcommutative-ring-theory%2F02819830750568B06C16E6199F3562C1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFEisenbud1995">Eisenbud 1995</a>, Exercise A 3.17</span> </li> <li id="cite_note-FOOTNOTEMilnor19719-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMilnor19719_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMilnor1971">Milnor (1971)</a>, p.&#160;9.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170116190119/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_ideals.html">"ideals"</a>. <i>www.math.uiuc.edu</i>. Archived from <a rel="nofollow" class="external text" href="http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_ideals.html">the original</a> on 2017-01-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.math.uiuc.edu&amp;rft.atitle=ideals&amp;rft_id=http%3A%2F%2Fwww.math.uiuc.edu%2FMacaulay2%2Fdoc%2FMacaulay2-1.9.2%2Fshare%2Fdoc%2FMacaulay2%2FMacaulay2Doc%2Fhtml%2F_ideals.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170116185903/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html">"sums, products, and powers of ideals"</a>. <i>www.math.uiuc.edu</i>. Archived from <a rel="nofollow" class="external text" href="http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html">the original</a> on 2017-01-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.math.uiuc.edu&amp;rft.atitle=sums%2C+products%2C+and+powers+of+ideals&amp;rft_id=http%3A%2F%2Fwww.math.uiuc.edu%2FMacaulay2%2Fdoc%2FMacaulay2-1.9.2%2Fshare%2Fdoc%2FMacaulay2%2FMacaulay2Doc%2Fhtml%2F_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170116185829/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html">"intersection of ideals"</a>. <i>www.math.uiuc.edu</i>. Archived from <a rel="nofollow" class="external text" href="http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html">the original</a> on 2017-01-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.math.uiuc.edu&amp;rft.atitle=intersection+of+ideals&amp;rft_id=http%3A%2F%2Fwww.math.uiuc.edu%2FMacaulay2%2Fdoc%2FMacaulay2-1.9.2%2Fshare%2Fdoc%2FMacaulay2%2FMacaulay2Doc%2Fhtml%2F_intersection_spof_spideals.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEAtiyahMacdonald1969Proposition_3.16-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAtiyahMacdonald1969Proposition_3.16_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtiyahMacdonald1969">Atiyah &amp; Macdonald (1969)</a>, Proposition 3.16.</span> </li> </ol></div></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyahMacdonald1969" class="citation book cs1"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael F.</a>; <a href="/wiki/Ian_G._Macdonald" title="Ian G. Macdonald">Macdonald, Ian G.</a> (1969). <i><a href="/wiki/Introduction_to_Commutative_Algebra" title="Introduction to Commutative Algebra">Introduction to Commutative Algebra</a></i>. Perseus Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-00361-9" title="Special:BookSources/0-201-00361-9"><bdi>0-201-00361-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Commutative+Algebra&amp;rft.pub=Perseus+Books&amp;rft.date=1969&amp;rft.isbn=0-201-00361-9&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael+F.&amp;rft.au=Macdonald%2C+Ian+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDummitFoote2004" class="citation book cs1">Dummit, David Steven; Foote, Richard Martin (2004). <i>Abstract algebra</i> (Third&#160;ed.). Hoboken, NJ: John Wiley &amp; Sons, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780471433347" title="Special:BookSources/9780471433347"><bdi>9780471433347</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Abstract+algebra&amp;rft.place=Hoboken%2C+NJ&amp;rft.edition=Third&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=2004&amp;rft.isbn=9780471433347&amp;rft.aulast=Dummit&amp;rft.aufirst=David+Steven&amp;rft.au=Foote%2C+Richard+Martin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEisenbud1995" class="citation cs2"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, David</a> (1995), <i>Commutative Algebra with a View toward Algebraic Geometry</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol.&#160;150, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-5350-1">10.1007/978-1-4612-5350-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94268-1" title="Special:BookSources/978-0-387-94268-1"><bdi>978-0-387-94268-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1322960">1322960</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+Algebra+with+a+View+toward+Algebraic+Geometry&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1322960%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-5350-1&amp;rft.isbn=978-0-387-94268-1&amp;rft.aulast=Eisenbud&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2005" class="citation book cs1"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (2005). <i>Undergraduate Algebra</i> (Third&#160;ed.). <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-22025-3" title="Special:BookSources/978-0-387-22025-3"><bdi>978-0-387-22025-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Undergraduate+Algebra&amp;rft.edition=Third&amp;rft.pub=Springer-Verlag&amp;rft.date=2005&amp;rft.isbn=978-0-387-22025-3&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHazewinkelGubareniGubareniKirichenko2004" class="citation book cs1"><a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a>; Gubareni, Nadiya; Gubareni, Nadezhda Mikhaĭlovna; Kirichenko, Vladimir V. (2004). <i>Algebras, rings and modules</i>. Vol.&#160;1. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4020-2690-0" title="Special:BookSources/1-4020-2690-0"><bdi>1-4020-2690-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebras%2C+rings+and+modules&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft.isbn=1-4020-2690-0&amp;rft.aulast=Hazewinkel&amp;rft.aufirst=Michiel&amp;rft.au=Gubareni%2C+Nadiya&amp;rft.au=Gubareni%2C+Nadezhda+Mikha%C4%ADlovna&amp;rft.au=Kirichenko%2C+Vladimir+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilnor1971" class="citation book cs1"><a href="/wiki/John_Milnor" title="John Milnor">Milnor, John Willard</a> (1971). <i>Introduction to algebraic K-theory</i>. Annals of Mathematics Studies. Vol.&#160;72. Princeton, NJ: <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780691081014" title="Special:BookSources/9780691081014"><bdi>9780691081014</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0349811">0349811</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0237.18005">0237.18005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+algebraic+K-theory&amp;rft.place=Princeton%2C+NJ&amp;rft.series=Annals+of+Mathematics+Studies&amp;rft.pub=Princeton+University+Press&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0237.18005%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0349811%23id-name%3DMR&amp;rft.isbn=9780691081014&amp;rft.aulast=Milnor&amp;rft.aufirst=John+Willard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(ring_theory)&amp;action=edit&amp;section=14" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevinson2014" class="citation web cs1">Levinson, Jake (July 14, 2014). <a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/866598">"The Geometric Interpretation for Extension of Ideals?"</a>. <i><a href="/wiki/Stack_Exchange" title="Stack Exchange">Stack Exchange</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Stack+Exchange&amp;rft.atitle=The+Geometric+Interpretation+for+Extension+of+Ideals%3F&amp;rft.date=2014-07-14&amp;rft.aulast=Levinson&amp;rft.aufirst=Jake&amp;rft_id=https%3A%2F%2Fmath.stackexchange.com%2Fq%2F866598&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AIdeal+%28ring+theory%29" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q44649#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q44649#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q44649#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/966851/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4161198-6">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85064134">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119794357">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119794357">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007538412305171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐484md Cached time: 20241125135529 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.683 seconds Real time usage: 0.924 seconds Preprocessor visited node count: 4307/1000000 Post‐expand include size: 58289/2097152 bytes Template argument size: 3482/2097152 bytes Highest expansion depth: 11/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 81576/5000000 bytes Lua time usage: 0.322/10.000 seconds Lua memory usage: 7281218/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 513.605 1 -total 23.97% 123.109 2 Template:Reflist 19.82% 101.786 10 Template:Cite_book 17.83% 91.591 1 Template:Ring_theory_sidebar 17.56% 90.194 1 Template:Sidebar_with_collapsible_lists 14.39% 73.883 1 Template:Short_description 13.43% 68.986 9 Template:Sfnp 10.21% 52.447 2 Template:Pagetype 9.51% 48.843 1 Template:Authority_control 3.23% 16.572 1 Template:Main --> <!-- Saved in parser cache with key enwiki:pcache:25977:|#|:idhash:canonical and timestamp 20241125135529 and revision id 1245007572. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ideal_(ring_theory)&amp;oldid=1245007572">https://en.wikipedia.org/w/index.php?title=Ideal_(ring_theory)&amp;oldid=1245007572</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Ideals_(ring_theory)" title="Category:Ideals (ring theory)">Ideals (ring theory)</a></li><li><a href="/wiki/Category:Algebraic_structures" title="Category:Algebraic structures">Algebraic structures</a></li><li><a href="/wiki/Category:Commutative_algebra" title="Category:Commutative algebra">Commutative algebra</a></li><li><a href="/wiki/Category:Algebraic_number_theory" title="Category:Algebraic number theory">Algebraic number theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 10 September 2024, at 13:52<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ideal_(ring_theory)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-8gm9h","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"0.683","walltime":"0.924","ppvisitednodes":{"value":4307,"limit":1000000},"postexpandincludesize":{"value":58289,"limit":2097152},"templateargumentsize":{"value":3482,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":81576,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 513.605 1 -total"," 23.97% 123.109 2 Template:Reflist"," 19.82% 101.786 10 Template:Cite_book"," 17.83% 91.591 1 Template:Ring_theory_sidebar"," 17.56% 90.194 1 Template:Sidebar_with_collapsible_lists"," 14.39% 73.883 1 Template:Short_description"," 13.43% 68.986 9 Template:Sfnp"," 10.21% 52.447 2 Template:Pagetype"," 9.51% 48.843 1 Template:Authority_control"," 3.23% 16.572 1 Template:Main"]},"scribunto":{"limitreport-timeusage":{"value":"0.322","limit":"10.000"},"limitreport-memusage":{"value":7281218,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAtiyahMacdonald1969\"] = 1,\n [\"CITEREFDummitFoote2004\"] = 1,\n [\"CITEREFEisenbud1995\"] = 1,\n [\"CITEREFEverest_G.,_Ward_T.2005\"] = 1,\n [\"CITEREFHarold_M._Edwards1977\"] = 1,\n [\"CITEREFHazewinkelGubareniGubareniKirichenko2004\"] = 1,\n [\"CITEREFJohn_Stillwell2010\"] = 1,\n [\"CITEREFLam2001\"] = 1,\n [\"CITEREFLang2005\"] = 1,\n [\"CITEREFLevinson2014\"] = 1,\n [\"CITEREFMatsumura1987\"] = 1,\n [\"CITEREFMilnor1971\"] = 1,\n [\"Finitely_generated_ideal\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 1,\n [\"Cite book\"] = 10,\n [\"Cite web\"] = 5,\n [\"Google books\"] = 1,\n [\"Harvnb\"] = 7,\n [\"Main\"] = 1,\n [\"Math\"] = 3,\n [\"Mvar\"] = 28,\n [\"Nowrap\"] = 2,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 2,\n [\"Ring theory sidebar\"] = 1,\n [\"Sfnp\"] = 9,\n [\"Short description\"] = 1,\n [\"Tmath\"] = 86,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-484md","timestamp":"20241125135529","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ideal (ring theory)","url":"https:\/\/en.wikipedia.org\/wiki\/Ideal_(ring_theory)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44649","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44649","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-24T23:29:42Z","dateModified":"2024-09-10T13:52:02Z","headline":"additive subgroup of a ring closed under multiplcation by arbitrary ring element"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10