CINXE.COM
Search results for: mold
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mold</title> <meta name="description" content="Search results for: mold"> <meta name="keywords" content="mold"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mold" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mold"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 178</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mold</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Hsuan%20Hsu">Wei-Hsuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Xuan%20Huang"> Yi-Xuan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrowetting" title="electrowetting">electrowetting</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20filling" title=" mold filling"> mold filling</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-imprint" title=" nano-imprint"> nano-imprint</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/99756/a-study-of-electrowetting-assisted-mold-filling-in-nanoimprint-lithography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Developing an Online Library for Faster Retrieval of Mold Base and Standard Parts of Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20C.%20Lin">Alan C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricky%20N.%20Joevan"> Ricky N. Joevan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on developing a system to transfer mold base plates and standard parts faster during the stage of injection mold design. This system not only provides a way to compare the file version, but also it utilizes <em>Siemens NX 10 </em>to isolate the updated information into a single executable file (<em>.dll</em>), and then, the file can be transferred without the need of transferring the whole file. By this way, the system can help the user to download only necessary mold base plates and standard parts, and those parts downloaded are only the updated portions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD" title="CAD">CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20base" title=" mold base"> mold base</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20retrieval" title=" data retrieval"> data retrieval</a> </p> <a href="https://publications.waset.org/abstracts/67449/developing-an-online-library-for-faster-retrieval-of-mold-base-and-standard-parts-of-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Unicellular to Multicellular: Some Empirically Parsimoniously Plausible Hypotheses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20K.%20Derow">Catherine K. Derow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Possibly a slime mold somehow mutated or already was mutated at progeniture and so stayed as a metazoan when it developed into the fruiting stage and so the slime mold(s) we are evolved and similar to are genetically differ from the slime molds in existence now. This may be why there are genetic links between humans and other metazoa now alive and slime molds now alive but we are now divergent branches of the evolutionary tree compared to the original slime mold, or perhaps slime mold-like organisms, that gave rise to metazoan animalia and perhaps algae and plantae as slime molds were undifferentiated enough in many ways that could allow their descendants to evolve into these three separate phylogenetic categories. Or it may be a slime mold was born or somehow progenated as multicellular, as the particular organism was mutated enough to have say divided in a a 'pseudo-embryonic' stage, and this could have happened for algae, plantae as well as animalia or all the branches may be from the same line but the missing link might be covered in 'phylogenetic sequence comparison noise'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metazoan%20evolution" title="metazoan evolution">metazoan evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=unicellular%20bridge%20to%20metazoans" title=" unicellular bridge to metazoans"> unicellular bridge to metazoans</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=slime%20mold" title=" slime mold"> slime mold</a> </p> <a href="https://publications.waset.org/abstracts/77868/unicellular-to-multicellular-some-empirically-parsimoniously-plausible-hypotheses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Kuskonmaz">Nilgun Kuskonmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20mold" title="ceramic mold">ceramic mold</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20casting" title=" stainless steel casting"> stainless steel casting</a>, <a href="https://publications.waset.org/abstracts/search?q=decorated%20glass%20mold" title=" decorated glass mold"> decorated glass mold</a> </p> <a href="https://publications.waset.org/abstracts/68215/reducing-the-chemical-activity-of-ceramic-casting-molds-for-producing-decorated-glass-moulds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Petcharaporn">K. Petcharaporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/16784/detection-of-internal-mold-infection-of-intact-tomatoes-by-non-destructive-transmittance-vis-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Petcharaporn">K. Petcharaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prathengjit"> N. Prathengjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/19657/detection-of-internal-mold-infection-of-intact-for-tomatoes-by-non-destructive-transmittance-vis-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok-Hyeon%20Park">Seok-Hyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mok-Tan-Ahn"> Mok-Tan-Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Hun%20Ha"> Seong-Hun Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clad%20pipe" title="clad pipe">clad pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20drawing" title=" hot drawing"> hot drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20pressure" title=" bonding pressure"> bonding pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20shape" title=" mold shape"> mold shape</a> </p> <a href="https://publications.waset.org/abstracts/77162/optimal-design-of-shape-for-increasing-the-bonding-pressure-drawing-of-hot-clad-pipes-by-finite-element-method-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Baghalian">Masoud Baghalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Arshad"> Musa Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple" title="apple">apple</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20mold" title=" blue mold"> blue mold</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20calcium" title=" foliar calcium"> foliar calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/45553/the-impact-of-foliar-application-of-the-calcium-containing-compounds-in-increasing-resistance-to-blue-mold-on-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Development of Imprinting and Replica Molding of Soft Mold Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Jin%20Weng">Yung-Jin Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Chang"> Chia-Chi Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yu%20Tsai"> Chun-Yu Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20mold" title="soft mold">soft mold</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20surface" title=" curved surface"> curved surface</a> </p> <a href="https://publications.waset.org/abstracts/63938/development-of-imprinting-and-replica-molding-of-soft-mold-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Development of Methods for Plastic Injection Mold Weight Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bita%20Mohajernia">Bita Mohajernia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Urbanic"> R. J. Urbanic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20injection%20molding" title=" plastic injection molding"> plastic injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title=" topology optimization"> topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20reduction" title=" weight reduction"> weight reduction</a> </p> <a href="https://publications.waset.org/abstracts/27728/development-of-methods-for-plastic-injection-mold-weight-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> A Review on Parametric Optimization of Casting Processes Using Optimization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrugesh%20Radadiya">Bhrugesh Radadiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaydeep%20Shah"> Jaydeep Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20defects" title="casting defects">casting defects</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20optimization" title=" parametric optimization"> parametric optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=TLBO%20algorithm" title=" TLBO algorithm"> TLBO algorithm</a> </p> <a href="https://publications.waset.org/abstracts/21826/a-review-on-parametric-optimization-of-casting-processes-using-optimization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Lohr">Christoph Lohr</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Wund"> Hanna Wund</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Elsner"> Peter Elsner</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20Andr%C3%A9%20Weidenmann"> Kay André Weidenmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=birefringence" title="birefringence">birefringence</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarbonate" title=" polycarbonate"> polycarbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=variothermal%20processing" title=" variothermal processing"> variothermal processing</a> </p> <a href="https://publications.waset.org/abstracts/60259/reduction-of-residual-stress-by-variothermal-processing-and-validation-via-birefringence-measurement-technique-on-injection-molded-polycarbonate-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kampker">A. Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kreisk%C3%B6ther"> K. Kreisköther</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Reinders"> C. Reinders</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20making" title=" mold making"> mold making</a>, <a href="https://publications.waset.org/abstracts/search?q=PolyJet" title=" PolyJet"> PolyJet</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-Printing" title=" 3D-Printing"> 3D-Printing</a> </p> <a href="https://publications.waset.org/abstracts/55806/material-and-parameter-analysis-of-the-polyjet-process-for-mold-making-using-design-of-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> A Practical Technique of Airless Tyres’ Mold Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20Hodaib">Ahmed E. Hodaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Hashem"> Mohamed A. Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dissimilar to pneumatic tyres, airless tyres or flat-proof tyres (also known as tweel) is designed to have poly-composite compound treaded around a hub of flexible spokes. The main advantage of this design is its robustness as airless tyres are impossible to deflate or to blowout at highway speeds like conventional tyres so the driver does not have to be restless about having a spare tire. A summary of the study on manufacturing of airless tyres’ mold is given. Moreover, we have proposed some advantages and disadvantages of using tweel tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airless%20tyres" title="airless tyres">airless tyres</a>, <a href="https://publications.waset.org/abstracts/search?q=tweel" title=" tweel"> tweel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-pneumatic%20tyres" title=" non-pneumatic tyres"> non-pneumatic tyres</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/59171/a-practical-technique-of-airless-tyres-mold-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao%20Wang">Peng Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Garam%20Kim"> Garam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Sterkenburg"> Ronald Sterkenburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The applications of composite materials within the aviation industry has been increasing at a rapid pace. However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20tooling" title=" composite tooling"> composite tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=molds" title=" molds"> molds</a> </p> <a href="https://publications.waset.org/abstracts/122142/an-evaluation-on-the-effectiveness-of-a-3d-printed-composite-compression-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Investigating the Effectiveness of a 3D Printed Composite Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao%20Wang">Peng Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Garam%20Kim"> Garam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Sterkenburg"> Ronald Sterkenburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20tooling" title=" composite tooling"> composite tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=molds" title=" molds"> molds</a> </p> <a href="https://publications.waset.org/abstracts/112813/investigating-the-effectiveness-of-a-3d-printed-composite-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariangelo%20Hauer%20Dias%20Filho">Ariangelo Hauer Dias Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Antoni%C3%A1comi%20de%20Carvalho"> Gustavo Antoniácomi de Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamim%20de%20Melo%20Carvalho"> Benjamim de Melo Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20tooling" title=" rapid tooling"> rapid tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20mold" title=" casting mold"> casting mold</a> </p> <a href="https://publications.waset.org/abstracts/152307/accuracy-of-a-3d-printed-polymer-model-for-producing-casting-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Cacciotti">Riccardo Cacciotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Frankl"> Jiri Frankl</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Wolf"> Benjamin Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Machacek"> Michael Machacek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moisture" title="moisture">moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20growth" title=" mold growth"> mold growth</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/137297/environmental-conditions-simulation-device-for-evaluating-fungal-growth-on-wooden-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Biological Control of Blue Mold Disease of Grapes by Pichia anomala Supplemented by Chitosan and Its Possible Control Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esa%20Abiso%20Godana">Esa Abiso Godana</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiya%20%20Yang"> Qiya Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Wang"> Kaili Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hongyin"> Zhang Hongyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Zhang"> Xiaoyun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20%20Zhao"> Lina Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue mold decay caused by Penicillium expansum is among the recent identified diseases of grapes (Vitis vinifera). The increasing concern about use of chemical substance and pesticide in postharvest fruit push the trends of research toward biocontrol strategies which are more sustainable and ecofriendly. In this study, we determined the biocontrol efficacy of Pichia anomala alone and supplemented with 1% chitosan in the grapefruit against blue mold disease caused by P. expansum. The result showed that 1% chitosan better enhances the biocontrol efficacy P. anomala. Chitosan (1% w/v) also improved the number of population of P. anomala in grape wounds, surface and on nutrient yeast dextrose broth (NYDB). P. anomala supplemented with 1% w/v chitosan significantly reduced the disease incidence, lesion diameter and natural decay of grapefruits without affecting the fruit quality as compared to the control. The scanned electron microscope (SEM) concisely illustrates how the high number of yeast cells on the wounds reduced the growth of P. expansum. P. anomala alone or P. anomala supplemented with 1% w/v chitosan are presented as a potential biocontrol alternative against the postharvest blue mold of grapefruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichia%20anomala" title=" Pichia anomala"> Pichia anomala</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillium%20expansum" title=" Penicillium expansum"> Penicillium expansum</a>, <a href="https://publications.waset.org/abstracts/search?q=grape" title=" grape"> grape</a> </p> <a href="https://publications.waset.org/abstracts/118815/biological-control-of-blue-mold-disease-of-grapes-by-pichia-anomala-supplemented-by-chitosan-and-its-possible-control-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miriam%20I.%20Lautenschl%C3%A4ger">Miriam I. Lautenschläger</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20H.%20Scheiwe"> Max H. Scheiwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20A.%20Weidenmann"> Kay A. Weidenmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Henning"> Frank Henning</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Elsner"> Peter Elsner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filler" title="filler">filler</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=jute%20fiber" title=" jute fiber"> jute fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven" title=" nonwoven"> nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20molding%20compound" title=" sheet molding compound"> sheet molding compound</a> </p> <a href="https://publications.waset.org/abstracts/55517/study-of-influencing-factors-on-the-flowability-of-jute-nonwoven-reinforced-sheet-molding-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyunghun%20Kang">Kyunghun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangwoo%20Oh"> Sangwoo Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongha%20Hwang"> Yongha Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20channel" title="microfluidic channel">microfluidic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane" title=" polydimethylsiloxane"> polydimethylsiloxane</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=casting" title=" casting"> casting</a> </p> <a href="https://publications.waset.org/abstracts/64558/fabricating-method-for-complex-3d-microfluidic-channel-using-soluble-wax-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Malek%20Yarand">Morteza Malek Yarand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Saebi%20Monfared"> Hadi Saebi Monfared</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20force%20gauge" title="mechanical force gauge">mechanical force gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=reshaped%20fruit" title=" reshaped fruit"> reshaped fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20watermelon" title=" square watermelon"> square watermelon</a> </p> <a href="https://publications.waset.org/abstracts/13342/design-and-development-of-a-mechanical-force-gauge-for-the-square-watermelon-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Affordable and Sustainable Housing Construction: Case Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20Rizk">Tony Rizk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20housing" title="residential housing">residential housing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20housing" title=" sustainable housing"> sustainable housing</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title=" fire resistance"> fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation%20resistance" title=" infestation resistance"> infestation resistance</a> </p> <a href="https://publications.waset.org/abstracts/151099/affordable-and-sustainable-housing-construction-case-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Karimi-Sibaki">E. Karimi-Sibaki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kharicha"> A. Kharicha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wu"> M. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ludwig"> A. Ludwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=billet%20ingot" title="billet ingot">billet ingot</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics%20%28mhd%29" title=" magnetohydrodynamics (mhd)"> magnetohydrodynamics (mhd)</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=remelting" title=" remelting"> remelting</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=t-shaped%20mold." title=" t-shaped mold. "> t-shaped mold. </a> </p> <a href="https://publications.waset.org/abstracts/66855/full-scale-3d-simulation-of-the-electroslag-rapid-remelting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Automatic Slider Design in Injection Moldings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20C.%20Lin">Alan C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Anh%20Son"> Tran Anh Son</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an approach to determine the undercut regions and their releasing directions for slider design of complex parts represented by the file format of STL (STereoLithography). In order to delineate the border of undercut regions, orthogonal cutting planes are firstly employed to automatically find the inner loops of a part model. To discover the facets belonging to undercut regions, attributes are then assigned to the facets of the part model based on the topological relationship of adjacent facets of each inner loop. After that, the undercut regions are separated from other facets in the model. Through the recognized facets of the undercut regions, the concept of 'visibility map (V-map)' is further applied to determine feasible releasing directions for each of the undercut regions. The undercut regions having the same releasing direction are finally grouped to form a slider in the injection mold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20model" title="solid model">solid model</a>, <a href="https://publications.waset.org/abstracts/search?q=STL%20data" title=" STL data"> STL data</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20mold%20design" title=" injection mold design"> injection mold design</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility%20map" title=" visibility map"> visibility map</a> </p> <a href="https://publications.waset.org/abstracts/11104/automatic-slider-design-in-injection-moldings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kustyawati">M. Kustyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pratama"> F. Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Saputra"> D. Saputra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wijaya"> A. Wijaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tempe" title="tempe">tempe</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20supercritical%20CO2" title=" sub supercritical CO2"> sub supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=fungistatic%20effect" title=" fungistatic effect"> fungistatic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation" title=" preservation"> preservation</a> </p> <a href="https://publications.waset.org/abstracts/50233/effect-of-sub-supercritical-co2-processing-on-microflora-and-shelf-life-tempe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Sayed">M. A. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Aziz"> S. A. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speed%20range" title=" critical speed range"> critical speed range</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/6659/effect-of-the-mould-rotational-speed-on-the-quality-of-centrifugal-castings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Meethum">P. Meethum</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Suvanjumrat"> C. Suvanjumrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=die%20casting" title=" die casting"> die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cap" title=" fuel cap"> fuel cap</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle" title=" motorcycle"> motorcycle</a> </p> <a href="https://publications.waset.org/abstracts/16969/porosities-comparison-between-production-and-simulation-in-motorcycle-fuel-caps-of-aluminum-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Tscharnuter">Daniel Tscharnuter</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliza%20Truszkiewicz"> Eliza Truszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Pinter"> Gerald Pinter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title="hyperelastic">hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title=" anisotropic"> anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20film" title=" polymer film"> polymer film</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoforming" title=" thermoforming"> thermoforming</a> </p> <a href="https://publications.waset.org/abstracts/50739/an-adaptable-semi-numerical-anisotropic-hyperelastic-model-for-the-simulation-of-high-pressure-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naser%20Valipour%20Motlagh">Naser Valipour Motlagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Aliabadi"> Majid Aliabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elnaz%20Rahmani"> Elnaz Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ghorbanpour"> Samira Ghorbanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and <em>E. coli</em> are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20properties" title="antimicrobial properties">antimicrobial properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry" title=" strawberry "> strawberry </a> </p> <a href="https://publications.waset.org/abstracts/127879/the-effect-of-nano-silver-packaging-on-quality-maintenance-of-fresh-strawberry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mold&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>