CINXE.COM

exotic smooth structure in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> exotic smooth structure in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> exotic smooth structure </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1557/#Item_15" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="differential_geometry">Differential geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/synthetic+differential+geometry">synthetic</a> <a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a></strong></p> <p><strong>Introductions</strong></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+1">from point-set topology to differentiable manifolds</a></p> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics">geometry of physics</a>: <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+coordinate+systems">coordinate systems</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+smooth+spaces">smooth spaces</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+manifolds+and+orbifolds">manifolds</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+smooth+homotopy+types">smooth homotopy types</a>, <a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+supergeometry">supergeometry</a></p> <p><strong>Differentials</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiation">differentiation</a>, <a class="existingWikiWord" href="/nlab/show/chain+rule">chain rule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+function">differentiable function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+space">infinitesimal space</a>, <a class="existingWikiWord" href="/nlab/show/infinitesimally+thickened+point">infinitesimally thickened point</a>, <a class="existingWikiWord" href="/nlab/show/amazing+right+adjoint">amazing right adjoint</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/V-manifolds">V-manifolds</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+manifold">differentiable manifold</a>, <a class="existingWikiWord" href="/nlab/show/coordinate+chart">coordinate chart</a>, <a class="existingWikiWord" href="/nlab/show/atlas">atlas</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/smooth+structure">smooth structure</a>, <a class="existingWikiWord" href="/nlab/show/exotic+smooth+structure">exotic smooth structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/analytic+manifold">analytic manifold</a>, <a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formal+smooth+manifold">formal smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/derived+smooth+manifold">derived smooth manifold</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/smooth+space">smooth space</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/diffeological+space">diffeological space</a>, <a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+space">Frölicher space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/manifold+structure+of+mapping+spaces">manifold structure of mapping spaces</a></p> </li> </ul> <p><strong>Tangency</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a>, <a class="existingWikiWord" href="/nlab/show/frame+bundle">frame bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+field">vector field</a>, <a class="existingWikiWord" href="/nlab/show/multivector+field">multivector field</a>, <a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a>;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+forms+in+synthetic+differential+geometry">differential forms</a>, <a class="existingWikiWord" href="/nlab/show/de+Rham+complex">de Rham complex</a>, <a class="existingWikiWord" href="/nlab/show/Dolbeault+complex">Dolbeault complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+of+differential+forms">pullback of differential forms</a>, <a class="existingWikiWord" href="/nlab/show/invariant+differential+form">invariant differential form</a>, <a class="existingWikiWord" href="/nlab/show/Maurer-Cartan+form">Maurer-Cartan form</a>, <a class="existingWikiWord" href="/nlab/show/horizontal+differential+form">horizontal differential form</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cogerm+differential+form">cogerm differential form</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integration+of+differential+forms">integration of differential forms</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+diffeomorphism">local diffeomorphism</a>, <a class="existingWikiWord" href="/nlab/show/formally+%C3%A9tale+morphism">formally étale morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/submersion">submersion</a>, <a class="existingWikiWord" href="/nlab/show/formally+smooth+morphism">formally smooth morphism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/immersion">immersion</a>, <a class="existingWikiWord" href="/nlab/show/formally+unramified+morphism">formally unramified morphism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+space">de Rham space</a>, <a class="existingWikiWord" href="/nlab/show/crystal">crystal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+disk+bundle">infinitesimal disk bundle</a></p> </li> </ul> <p><strong>The magic algebraic facts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">embedding of smooth manifolds into formal duals of R-algebras</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+Serre-Swan+theorem">smooth Serre-Swan theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivations+of+smooth+functions+are+vector+fields">derivations of smooth functions are vector fields</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hadamard+lemma">Hadamard lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Borel%27s+theorem">Borel's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Boman%27s+theorem">Boman's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitney+extension+theorem">Whitney extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Steenrod-Wockel+approximation+theorem">Steenrod-Wockel approximation theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitney+embedding+theorem">Whitney embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Kostant-Rosenberg+theorem">Hochschild-Kostant-Rosenberg theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology+hexagon">differential cohomology hexagon</a></p> </li> </ul> <p><strong>Axiomatics</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Kock-Lawvere+axiom">Kock-Lawvere axiom</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a>, <a class="existingWikiWord" href="/nlab/show/super+smooth+topos">super smooth topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/microlinear+space">microlinear space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integration+axiom">integration axiom</a></p> </li> </ul> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohesion">cohesion</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/shape+modality">shape modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/flat+modality">flat modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/sharp+modality">sharp modality</a>)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">ʃ</mo><mo>⊣</mo><mo>♭</mo><mo>⊣</mo><mo>♯</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\esh \dashv \flat \dashv \sharp )</annotation></semantics></math></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+object">discrete object</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+object">codiscrete object</a>, <a class="existingWikiWord" href="/nlab/show/concrete+object">concrete object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/points-to-pieces+transform">points-to-pieces transform</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+%28infinity%2C1%29-topos+--+structures">structures in cohesion</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dR-shape+modality">dR-shape modality</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/dR-flat+modality">dR-flat modality</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">ʃ</mo> <mi>dR</mi></msub><mo>⊣</mo><msub><mo>♭</mo> <mi>dR</mi></msub></mrow><annotation encoding="application/x-tex">\esh_{dR} \dashv \flat_{dR}</annotation></semantics></math></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/infinitesimal+cohesion">infinitesimal cohesion</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/classical+modality">classical modality</a></li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/tangent+cohesive+%28%E2%88%9E%2C1%29-topos">tangent cohesion</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+cohomology+diagram">differential cohomology diagram</a></li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+cohesion">differential cohesion</a></strong></p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/reduction+modality">reduction modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/infinitesimal+shape+modality">infinitesimal shape modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/infinitesimal+flat+modality">infinitesimal flat modality</a>)</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ℜ</mi><mo>⊣</mo><mi>ℑ</mi><mo>⊣</mo><mi>&amp;</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Re \dashv \Im \dashv \&amp;)</annotation></semantics></math></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reduced+object">reduced object</a>, <a class="existingWikiWord" href="/nlab/show/coreduced+object">coreduced object</a>, <a class="existingWikiWord" href="/nlab/show/formally+smooth+object">formally smooth object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formally+%C3%A9tale+map">formally étale map</a></p> </li> <li> <p><a href="cohesive+%28infinity%2C1%29-topos+--+infinitesimal+cohesion#StructuresInDifferentialCohesion">structures in differential cohesion</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/super+smooth+infinity-groupoid">graded differential cohesion</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fermionic+modality">fermionic modality</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/bosonic+modality">bosonic modality</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊣</mo></mrow><annotation encoding="application/x-tex">\dashv</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/rheonomy+modality">rheonomy modality</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>⇉</mo><mo>⊣</mo><mo>⇝</mo><mo>⊣</mo><mi>Rh</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)</annotation></semantics></math></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/orbifold+cohomology">singular cohesion</a></strong></p> <div id="Diagram" class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>id</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>id</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>fermionic</mi></mover></mtd> <mtd><mo>⇉</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>⇝</mo></mtd> <mtd><mover><mrow></mrow><mi>bosonic</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>bosonic</mi></mover></mtd> <mtd><mo>⇝</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi mathvariant="normal">R</mi><mspace width="negativethinmathspace"></mspace><mspace width="negativethinmathspace"></mspace><mi mathvariant="normal">h</mi></mtd> <mtd><mover><mrow></mrow><mi>rheonomic</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>reduced</mi></mover></mtd> <mtd><mi>ℜ</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>ℑ</mi></mtd> <mtd><mover><mrow></mrow><mi>infinitesimal</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>infinitesimal</mi></mover></mtd> <mtd><mi>ℑ</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mi>&amp;</mi></mtd> <mtd><mover><mrow></mrow><mtext>étale</mtext></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>cohesive</mi></mover></mtd> <mtd><mo lspace="0em" rspace="thinmathspace">ʃ</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>♭</mo></mtd> <mtd><mover><mrow></mrow><mi>discrete</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd> <mtd></mtd> <mtd><mo>⊥</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mrow></mrow><mi>discrete</mi></mover></mtd> <mtd><mo>♭</mo></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>♯</mo></mtd> <mtd><mover><mrow></mrow><mi>continuous</mi></mover></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd> <mtd></mtd> <mtd><mo>∨</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>∅</mi></mtd> <mtd><mo>⊣</mo></mtd> <mtd><mo>*</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; id &amp;\dashv&amp; id \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{fermionic}{}&amp; \rightrightarrows &amp;\dashv&amp; \rightsquigarrow &amp; \stackrel{bosonic}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{bosonic}{} &amp; \rightsquigarrow &amp;\dashv&amp; \mathrm{R}\!\!\mathrm{h} &amp; \stackrel{rheonomic}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{reduced}{} &amp; \Re &amp;\dashv&amp; \Im &amp; \stackrel{infinitesimal}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{infinitesimal}{}&amp; \Im &amp;\dashv&amp; \&amp; &amp; \stackrel{\text{&amp;#233;tale}}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;\stackrel{cohesive}{}&amp; \esh &amp;\dashv&amp; \flat &amp; \stackrel{discrete}{} \\ &amp;&amp; \bot &amp;&amp; \bot \\ &amp;\stackrel{discrete}{}&amp; \flat &amp;\dashv&amp; \sharp &amp; \stackrel{continuous}{} \\ &amp;&amp; \vee &amp;&amp; \vee \\ &amp;&amp; \emptyset &amp;\dashv&amp; \ast } </annotation></semantics></math></div></div> <p id="models_2"><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Models+for+Smooth+Infinitesimal+Analysis">Models for Smooth Infinitesimal Analysis</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+algebra">smooth algebra</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mn>∞</mn></msup></mrow><annotation encoding="application/x-tex">C^\infty</annotation></semantics></math>-ring)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+locus">smooth locus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fermat+theory">Fermat theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cahiers+topos">Cahiers topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/formal+smooth+%E2%88%9E-groupoid">formal smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+formal+smooth+%E2%88%9E-groupoid">super formal smooth ∞-groupoid</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Lie+n-algebra">Lie n-algebra</a>, <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a>, <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth ∞-group</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+equations">differential equations</a>, <a class="existingWikiWord" href="/nlab/show/variational+calculus">variational calculus</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/D-geometry">D-geometry</a>, <a class="existingWikiWord" href="/nlab/show/D-module">D-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/jet+bundle">jet bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/variational+bicomplex">variational bicomplex</a>, <a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+complex">Euler-Lagrange complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+equation">Euler-Lagrange equation</a>, <a class="existingWikiWord" href="/nlab/show/de+Donder-Weyl+formalism">de Donder-Weyl formalism</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/phase+space">phase space</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection on a bundle</a>, <a class="existingWikiWord" href="/nlab/show/connection+on+an+%E2%88%9E-bundle">connection on an ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">ordinary differential cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Deligne+complex">Deligne complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/parallel+transport">parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/higher+parallel+transport">higher parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+cohomology">fiber integration in differential cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/holonomy">holonomy</a>, <a class="existingWikiWord" href="/nlab/show/higher+holonomy">higher holonomy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a>, <a class="existingWikiWord" href="/nlab/show/higher+gauge+theory">higher gauge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wilson+line">Wilson line</a>, <a class="existingWikiWord" href="/nlab/show/Wilson+surface">Wilson surface</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Cartan+geometry">Cartan geometry</a> (<a class="existingWikiWord" href="/nlab/show/super+Cartan+geometry">super</a>, <a class="existingWikiWord" href="/nlab/show/higher+Cartan+geometry">higher</a>)</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Klein+geometry">Klein geometry</a>, (<a class="existingWikiWord" href="/nlab/show/higher+Klein+geometry">higher</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/G-structure">G-structure</a>, <a class="existingWikiWord" href="/nlab/show/torsion+of+a+G-structure">torsion of a G-structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+geometry">Euclidean geometry</a>, <a class="existingWikiWord" href="/nlab/show/hyperbolic+geometry">hyperbolic geometry</a>, <a class="existingWikiWord" href="/nlab/show/elliptic+geometry">elliptic geometry</a></p> </li> <li> <p>(<a class="existingWikiWord" href="/nlab/show/pseudo-Riemannian+geometry">pseudo</a>-)<a class="existingWikiWord" href="/nlab/show/Riemannian+geometry">Riemannian geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+structure">orthogonal structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isometry">isometry</a>, <a class="existingWikiWord" href="/nlab/show/Killing+vector+field">Killing vector field</a>, <a class="existingWikiWord" href="/nlab/show/Killing+spinor">Killing spinor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a>, <a class="existingWikiWord" href="/nlab/show/super-spacetime">super-spacetime</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+geometry">complex geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+geometry">conformal geometry</a></p> </li> </ul> </div></div> <h4 id="topology">Topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topology">topology</a></strong> (<a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a>, <a class="existingWikiWord" href="/nlab/show/point-free+topology">point-free topology</a>)</p> <p>see also <em><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a></em> and <em><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a> <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></em></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology">Introduction</a></p> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a>, <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+for+the+topology">base for the topology</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood+base">neighbourhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finer+topology">finer/coarser topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a>, <a class="existingWikiWord" href="/nlab/show/topological+interior">interior</a>, <a class="existingWikiWord" href="/nlab/show/topological+boundary">boundary</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separation+axiom">separation</a>, <a class="existingWikiWord" href="/nlab/show/sober+topological+space">sobriety</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>, <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/uniformly+continuous+function">uniformly continuous function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+embedding">embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+map">open map</a>, <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence">sequence</a>, <a class="existingWikiWord" href="/nlab/show/net">net</a>, <a class="existingWikiWord" href="/nlab/show/sub-net">sub-net</a>, <a class="existingWikiWord" href="/nlab/show/filter">filter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/convergence">convergence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a><a class="existingWikiWord" href="/nlab/show/Top">Top</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a></li> </ul> </li> </ul> <p><strong><a href="Top#UniversalConstructions">Universal constructions</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+topology">initial topology</a>, <a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a>,</p> </li> <li> <p>fiber space, <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product+space">product space</a>, <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colimits+of+normal+spaces">colimits of normal spaces</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">Extra stuff, structure, properties</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>, <a class="existingWikiWord" href="/nlab/show/metrisable+space">metrisable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov space</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff space</a>, <a class="existingWikiWord" href="/nlab/show/regular+space">regular space</a>, <a class="existingWikiWord" href="/nlab/show/normal+space">normal space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sober+space">sober space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+space">compact space</a>, <a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+topological+space">sequentially compact</a>, <a class="existingWikiWord" href="/nlab/show/countably+compact+topological+space">countably compact</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, <a class="existingWikiWord" href="/nlab/show/sigma-compact+topological+space">sigma-compact</a>, <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>, <a class="existingWikiWord" href="/nlab/show/countably+paracompact+topological+space">countably paracompact</a>, <a class="existingWikiWord" href="/nlab/show/strongly+compact+topological+space">strongly compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+space">compactly generated space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable space</a>, <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contractible+space">contractible space</a>, <a class="existingWikiWord" href="/nlab/show/locally+contractible+space">locally contractible space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+space">connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+connected+space">locally connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simply-connected+space">simply-connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+simply-connected+space">locally simply-connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>, <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, <a class="existingWikiWord" href="/nlab/show/point+space">point space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+space">discrete space</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+space">codiscrete space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/order+topology">order topology</a>, <a class="existingWikiWord" href="/nlab/show/specialization+topology">specialization topology</a>, <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/real+line">real line</a>, <a class="existingWikiWord" href="/nlab/show/plane">plane</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder">cylinder</a>, <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere">sphere</a>, <a class="existingWikiWord" href="/nlab/show/ball">ball</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle">circle</a>, <a class="existingWikiWord" href="/nlab/show/torus">torus</a>, <a class="existingWikiWord" href="/nlab/show/annulus">annulus</a>, <a class="existingWikiWord" href="/nlab/show/Moebius+strip">Moebius strip</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polytope">polytope</a>, <a class="existingWikiWord" href="/nlab/show/polyhedron">polyhedron</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+space">projective space</a> (<a class="existingWikiWord" href="/nlab/show/real+projective+space">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+projective+space">complex</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space+%28mathematics%29">configuration space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path">path</a>, <a class="existingWikiWord" href="/nlab/show/loop">loop</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+spaces">mapping spaces</a>: <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>, <a class="existingWikiWord" href="/nlab/show/topology+of+uniform+convergence">topology of uniform convergence</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/path+space">path space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zariski+topology">Zariski topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cantor+space">Cantor space</a>, <a class="existingWikiWord" href="/nlab/show/Mandelbrot+space">Mandelbrot space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+curve">Peano curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+with+two+origins">line with two origins</a>, <a class="existingWikiWord" href="/nlab/show/long+line">long line</a>, <a class="existingWikiWord" href="/nlab/show/Sorgenfrey+line">Sorgenfrey line</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-topology">K-topology</a>, <a class="existingWikiWord" href="/nlab/show/Dowker+space">Dowker space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Warsaw+circle">Warsaw circle</a>, <a class="existingWikiWord" href="/nlab/show/Hawaiian+earring+space">Hawaiian earring space</a></p> </li> </ul> <p><strong>Basic statements</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+spaces+are+sober">Hausdorff spaces are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schemes+are+sober">schemes are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+images+of+compact+spaces+are+compact">continuous images of compact spaces are compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces">closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact">open subspaces of compact Hausdorff spaces are locally compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff">quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lebesgue+number+lemma">Lebesgue number lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces">sequentially compact metric spaces are equivalently compact metric spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded">sequentially compact metric spaces are totally bounded</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous">continuous metric space valued function on compact metric space is uniformly continuous</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+are+normal">paracompact Hausdorff spaces are normal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity">paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+injections+are+embeddings">closed injections are embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+maps+to+locally+compact+spaces+are+closed">proper maps to locally compact spaces are closed</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings">injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact">locally compact and sigma-compact spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces">CW-complexes are paracompact Hausdorff spaces</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Urysohn%27s+lemma">Urysohn's lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tietze+extension+theorem">Tietze extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tychonoff+theorem">Tychonoff theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tube+lemma">tube lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael%27s+theorem">Michael's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brouwer%27s+fixed+point+theorem">Brouwer's fixed point theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+invariance+of+dimension">topological invariance of dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jordan+curve+theorem">Jordan curve theorem</a></p> </li> </ul> <p><strong>Analysis Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heine-Borel+theorem">Heine-Borel theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/intermediate+value+theorem">intermediate value theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extreme+value+theorem">extreme value theorem</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological homotopy theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a>, <a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, <a class="existingWikiWord" href="/nlab/show/deformation+retract">deformation retract</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, <a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+extension+property">homotopy extension property</a>, <a class="existingWikiWord" href="/nlab/show/Hurewicz+cofibration">Hurewicz cofibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+cofiber+sequence">cofiber sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Str%C3%B8m+model+category">Strøm model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#existence_and_examples'>Existence and Examples</a></li> <ul> <li><a href='#no_exotic_smooth_structure_in_dimensions_'>No exotic smooth structure in dimensions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≤</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">\leq 3</annotation></semantics></math></a></li> <li><a href='#no_exotic_euclidean_space_away_from_dimension_4'>No exotic Euclidean space away from dimension 4</a></li> <li><a href='#ExoticEuclideal4Space'>Exotic Euclidean 4-space</a></li> <li><a href='#exotic_'>Exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>×</mo><msup><mi>S</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S^2 \times S^2</annotation></semantics></math></a></li> <li><a href='#Exotic4Spheres'>Exotic 4-spheres?</a></li> <li><a href='#Exotic7Sphere'>Exotic 7-sphere</a></li> <li><a href='#Exotic8Sphere'>Exotic 8-sphere</a></li> <li><a href='#ExoticNSpheresForNGreaterThanFour'>Exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-spheres for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n \geq 5</annotation></semantics></math></a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#for_the_mathematical_theory'>For the mathematical theory</a></li> <li><a href='#ReferencesForApplicationsToPhysics'>For applications to physics</a></li> <ul> <li><a href='#general_relativity'>General relativity</a></li> <li><a href='#generation_of_source_terms_fields'>Generation of source terms (fields)</a></li> <li><a href='#quantum_field_theory'>Quantum (field) theory</a></li> <li><a href='#ReferencesInStringTheory'>String theory</a></li> <li><a href='#cosmology'>Cosmology</a></li> <li><a href='#quantum_gravity'>Quantum gravity</a></li> </ul> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>An <em>exotic smooth structure</em> is, roughly speaking, a <a class="existingWikiWord" href="/nlab/show/smooth+structure">smooth structure</a> on a <a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> which makes the resulting <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> be <a class="existingWikiWord" href="/nlab/show/diffeomorphism">non-diffeomorphic</a> to the smooth manifold given by some evident ‘standard’ smooth structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <p>Mostly the term is used for smooth structures on <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> and on the <a class="existingWikiWord" href="/nlab/show/n-spheres">n-spheres</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">S^n</annotation></semantics></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>. The standard smooth structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> is exhibited by the identity <a class="existingWikiWord" href="/nlab/show/atlas">atlas</a>, and the standard smooth structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">S^n</annotation></semantics></math> is that given by the atlas of the two <a class="existingWikiWord" href="/nlab/show/hemispheres">hemispheres</a> as given by <a class="existingWikiWord" href="/nlab/show/stereographic+projection">stereographic projection</a>.</p> <p>For special values of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> there may exist smooth structure not equivalent to these. They are the <em>exotic smooth structures</em>.</p> <p>A classification of <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth</a>, <a class="existingWikiWord" href="/nlab/show/piecewise-linear+manifold">PL</a> and <a class="existingWikiWord" href="/nlab/show/topological+manifold">topological</a> structures on manifolds in dimension 5 and higher, in terms of various groups from <a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a> (many not known) was established by <a href="#KirbSieb">Kirby and Siebenmann (1977)</a> using <a class="existingWikiWord" href="/nlab/show/obstruction+theory">obstruction theory</a>.</p> <h2 id="existence_and_examples">Existence and Examples</h2> <h3 id="no_exotic_smooth_structure_in_dimensions_">No exotic smooth structure in dimensions <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≤</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">\leq 3</annotation></semantics></math></h3> <p><a href="#Rad">Rado (1925)</a> proved that in dimension 2 there are no exotic differentiable structures (or the uniqueness of the standard structure). The classification of 1-dimensional manifolds and the uniqueness of the smooth structure can be found in the Appendix of <a href="#Milnor1965b">Milnor (1965b)</a>.</p> <p><a href="#Moise">Moise (1952)</a> proved that in dimension 3 there are no exotic differentiable structures, or to put in another way, 3-dimensional differentiable manifolds which are <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphic</a> are <a class="existingWikiWord" href="/nlab/show/diffeomorphism">diffeomorphic</a>. In this way the 3-sphere <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">S^3</annotation></semantics></math> inherits a unique differentiable structure, no matter which <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> it is considered to be embedded in.</p> <h3 id="no_exotic_euclidean_space_away_from_dimension_4">No exotic Euclidean space away from dimension 4</h3> <p>There exists a unique smooth structure on the <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≠</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">n\neq 4</annotation></semantics></math> (<a href="#Stallings62">Stallings 1962</a>).</p> <h3 id="ExoticEuclideal4Space">Exotic Euclidean 4-space</h3> <p>There exists uncountably many exotic smooth structures on the <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> of dimension 4 (<a href="#Gompf">Gompf 1985</a>, <a href="#FreedTay">Freedman/Taylor 1986</a>, <a href="#Taubes">Taubes 1987</a>). See also at <em><a class="existingWikiWord" href="/nlab/show/exotic+R%5E4">exotic R^4</a></em>.</p> <p>There is a unique maximal exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> into which all other ‘versions’ of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> smoothly embed as open subsets (Freedman/Taylor 1986, <a href="#DeMFreed">DeMichelis/Freedman 1992</a>).</p> <p>There are two classes of exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>‘s: large and small. A large exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> cannot be embedded in the 4-sphere <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">S^4</annotation></semantics></math> (Gompf 1985, Taubes 1987) whereas a small exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> admits such an embedding (DeMichelis/Freedman 1992):</p> <ul> <li> <p>A <em>large exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math></em> is constructed by using the failure to smoothly split a smooth 4-manifold (the <a class="existingWikiWord" href="/nlab/show/K3+surface">K3 surface</a> for instance) as a <a class="existingWikiWord" href="/nlab/show/connected+sum">connected sum</a> of some factors (where a topological splitting exits).</p> </li> <li> <p>The <em>small exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math></em> (or <em>ribbon <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math></em>) is constructed by using the failure of the smooth <a class="existingWikiWord" href="/nlab/show/h-cobordism+theorem">h-cobordism theorem</a> in dimension 4 (<a href="#Donaldson1">Donaldson 1987</a>, <a href="#Donaldson2">1990</a>). <a href="#BizGompf">Bizaca and Gompf (1996)</a> are able to present an infinite handle body of a small exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> which serve as a coordinate representation.</p> </li> </ul> <h3 id="exotic_">Exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>×</mo><msup><mi>S</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S^2 \times S^2</annotation></semantics></math></h3> <p>There exists an infinite family of mutually non-diffeomorphic irreducible smooth structures on the topological 4-manifold <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>×</mo><msup><mi>S</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S^2 \times S^2</annotation></semantics></math> (<a href="#AkhmedovPark10">Akhmedov-Park 10</a>).</p> <h3 id="Exotic4Spheres">Exotic 4-spheres?</h3> <p>It is open whether the <a class="existingWikiWord" href="/nlab/show/4-sphere">4-sphere</a> admits an exotic smooth structure. See (<a href="#FreedmanGompfMorrisonWalker09">Freedman-Gompf-Morrison-Walker 09</a> for review).</p> <h3 id="Exotic7Sphere">Exotic 7-sphere</h3> <p><a href="#Milnor1956">Milnor (1956)</a> gave the first examples of exotic smooth structures on the <a class="existingWikiWord" href="/nlab/show/7-sphere">7-sphere</a>, finding at least seven.</p> <p>The <a class="existingWikiWord" href="/nlab/show/exotic+7-spheres">exotic 7-spheres</a> constructed in <a href="#Milnor1956">Milnor 1956</a> are all examples of <a class="existingWikiWord" href="/nlab/show/fibre+bundles">fibre bundles</a> over the <a class="existingWikiWord" href="/nlab/show/4-sphere">4-sphere</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">S^4</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/fibre">fibre</a> the <a class="existingWikiWord" href="/nlab/show/3-sphere">3-sphere</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">S^3</annotation></semantics></math>, with <a class="existingWikiWord" href="/nlab/show/structure+group">structure group</a> the <a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a> <a class="existingWikiWord" href="/nlab/show/SO%284%29">SO(4)</a> (see also at <em><a class="existingWikiWord" href="/nlab/show/8-manifold">8-manifold</a></em> the section <em><a href="8-manifold#ExoticBoundary7Spheres">With exotic boundary 7-spheres</a></em>):</p> <p>By the classification of bundles on spheres via the <a class="existingWikiWord" href="/nlab/show/clutching+construction">clutching construction</a>, these correspond to <a class="existingWikiWord" href="/nlab/show/homotopy+classes">homotopy classes</a> of maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup><mo>→</mo><mi>SO</mi><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S^3 \to SO(4)</annotation></semantics></math>, i.e. elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mi>SO</mi><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_3(SO(4))</annotation></semantics></math>. From the table at <a href="orthogonal+group#HomotopyGroups">orthogonal group – Homotopy groups</a>, this latter group is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo>⊕</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}\oplus\mathbb{Z}</annotation></semantics></math>. Thus any such bundle can be described, up to <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>, by a <a class="existingWikiWord" href="/nlab/show/pair">pair</a> of <a class="existingWikiWord" href="/nlab/show/integers">integers</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n,m)</annotation></semantics></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>+</mo><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+m=1</annotation></semantics></math>, then one can show there is a <a class="existingWikiWord" href="/nlab/show/Morse+function">Morse function</a> with exactly two <a class="existingWikiWord" href="/nlab/show/critical+points">critical points</a> on the total space of the bundle, and hence this 7-manifold is <a class="existingWikiWord" href="/nlab/show/homeomorphic">homeomorphic</a> to a sphere.</p> <p>The <a class="existingWikiWord" href="/nlab/show/fractional+first+Pontryagin+class">fractional first Pontryagin class</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mfrac><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><mn>2</mn></mfrac><mo>∈</mo><msup><mi>H</mi> <mn>4</mn></msup><mo stretchy="false">(</mo><msup><mi>S</mi> <mn>4</mn></msup><mo stretchy="false">)</mo><mo>≃</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\frac{p_1}{2} \in H^4(S^4) \simeq \mathbb{Z}</annotation></semantics></math> of the bundle is given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">n-m</annotation></semantics></math>. Milnor constructs, using <a class="existingWikiWord" href="/nlab/show/cobordism">cobordism</a> theory and <a class="existingWikiWord" href="/nlab/show/Hirzebruch%27s+signature+theorem">Hirzebruch's signature theorem</a> for 8-manifolds, a mod-7 diffeomorphism invariant of the manifold, so that it is standard 7-sphere precisely when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mfrac><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><mn>2</mn></mfrac> <mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo stretchy="false">(</mo><mi>mod</mi><mn>7</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\frac{p_1}{2}^2 -1 = 0 (mod 7)</annotation></semantics></math>.</p> <p>By using the <a class="existingWikiWord" href="/nlab/show/connected+sum">connected sum</a> operation, the set of smooth, non-diffeomorphic structures on the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-sphere has the structure of an <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>. For the <a class="existingWikiWord" href="/nlab/show/7-sphere">7-sphere</a>, it is the <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">/</mo><mn>28</mn></mrow><annotation encoding="application/x-tex">Z/{28}</annotation></semantics></math> and Brieskorn (1966) found the generator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><munder><mrow><mi>Σ</mi><mo>#</mo><mi>⋯</mi><mo>#</mo><mi>Σ</mi></mrow><mo>⏟</mo></munder> <mn>28</mn></msub></mrow><annotation encoding="application/x-tex">\underbrace{\Sigma\#\cdots\#\Sigma}_28</annotation></semantics></math> is the standard sphere.</p> <p>For review see for instance (<a href="#Kreck10">Kreck 10, chapter 19</a>, <a href="#McEnroe15">McEnroe 15</a>). For more see at <em><a class="existingWikiWord" href="/nlab/show/exotic+7-sphere">exotic 7-sphere</a></em>.</p> <p>From the point of view of <a class="existingWikiWord" href="/nlab/show/M-theory+on+8-manifolds">M-theory on 8-manifolds</a>, these <a class="existingWikiWord" href="/nlab/show/8-manifolds">8-manifolds</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with (exotic) <a class="existingWikiWord" href="/nlab/show/7-sphere">7-sphere</a> <a class="existingWikiWord" href="/nlab/show/boundaries">boundaries</a> correspond to <a class="existingWikiWord" href="/nlab/show/near+horizon+limits">near horizon limits</a> of <a class="existingWikiWord" href="/nlab/show/black+brane">black</a> <a class="existingWikiWord" href="/nlab/show/M2+brane">M2 brane</a> spacetimes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}^{2,1} \times X</annotation></semantics></math>, where the <a class="existingWikiWord" href="/nlab/show/M2-branes">M2-branes</a> themselves would be sitting at the center of the <a class="existingWikiWord" href="/nlab/show/7-spheres">7-spheres</a> (if that were included in the spacetime, see also <a class="existingWikiWord" href="/nlab/show/Dirac+charge+quantization">Dirac charge quantization</a>).</p> <p>(<a href="M-theory+on+8-manifolds#MorrisonPlesser99">Morrison-Plesser 99, section 3.2</a>)</p> <p><br /></p> <h3 id="Exotic8Sphere">Exotic 8-sphere</h3> <p>The abelian group of non-diffeomorphic structures with connected sum on the <a class="existingWikiWord" href="/nlab/show/8-sphere">8-sphere</a> is the cyclic group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">Z/2</annotation></semantics></math>. The unique exotic 8-sphere corresponds to the nontrivial element of the <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a> of the <a class="existingWikiWord" href="/nlab/show/J-homomorphism">J-homomorphism</a> and is the first instance of an exotic sphere that does not bound a <a class="existingWikiWord" href="/nlab/show/parallelizable+manifold">parallelizable manifold</a> (<a href="#Amabel17">Amabel 17, Sec. 11</a>). It admits a metric of positive <a class="existingWikiWord" href="/nlab/show/Ricci+curvature">Ricci curvature</a>.</p> <h3 id="ExoticNSpheresForNGreaterThanFour">Exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-spheres for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n \geq 5</annotation></semantics></math></h3> <p>Via the celebrated <a class="existingWikiWord" href="/nlab/show/h+cobordism+theorem">h cobordism theorem</a> of Smale (<a href="#Smale">Smale 1962</a>, <a href="#Milnor1965a">Milnor 1965</a>) one gets a relation between the number of smooth structures on the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-sphere <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">S^n</annotation></semantics></math> (for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n \geq 5</annotation></semantics></math>) and the number of <a class="existingWikiWord" href="/nlab/show/isotopy">isotopy</a> classes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>Diff</mi><mo stretchy="false">(</mo><msup><mi>S</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_0 (Diff(S^{n-1}))</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/equator">equator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">S^{n-1}</annotation></semantics></math>.</p> <p>Then <a href="#KervMil">Kervaire and Milnor (1963)</a> proved that for each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n \geq 5</annotation></semantics></math> there are only finitely many exotic smooth structures on the <a class="existingWikiWord" href="/nlab/show/n-sphere">n-sphere</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">S^n</annotation></semantics></math> (possibly none).</p> <p>By using the <a class="existingWikiWord" href="/nlab/show/connected+sum">connected sum</a> operation, the set of smooth, non-diffeomorphic structures on the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-sphere has the structure of an <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>.</p> <p>The only odd-dimensional spheres with <em>no</em> exotic smooth structure are the <a class="existingWikiWord" href="/nlab/show/circle">circle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">S^1</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/3-sphere">3-sphere</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">S^3</annotation></semantics></math>, as well as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>5</mn></msup></mrow><annotation encoding="application/x-tex">S^5</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>61</mn></msup></mrow><annotation encoding="application/x-tex">S^{61}</annotation></semantics></math> (<a href="#WangXu16">Wang-Xu 16, corollary 1.13</a>)</p> <p>In the range <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>5</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>61</mn></mrow><annotation encoding="application/x-tex">5 \leq n \leq 61</annotation></semantics></math> the only <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-spheres with <em>no</em> exotic smooth structures are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>5</mn></msup></mrow><annotation encoding="application/x-tex">S^5</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>6</mn></msup></mrow><annotation encoding="application/x-tex">S^6</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>12</mn></msup></mrow><annotation encoding="application/x-tex">S^{12}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>56</mn></msup></mrow><annotation encoding="application/x-tex">S^{56}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>61</mn></msup></mrow><annotation encoding="application/x-tex">S^{61}</annotation></semantics></math> (<a href="#WangXu16">Wang-Xu 16, corollary 1.15</a>).</p> <p>It is conjectured that this exhausts in fact all examples of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-spheres without exotic smooth structure for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n \geq 5</annotation></semantics></math> (<a href="#WangXu16">Wang-Xu 16, conjecture 1.17</a>).</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></li> </ul> <h2 id="references">References</h2> <p>See also</p> <ul> <li>Wikipedia, <em><a href="http://en.wikipedia.org/wiki/Exotic_sphere">Exotic sphere</a></em></li> </ul> <h3 id="for_the_mathematical_theory">For the mathematical theory</h3> <p>The first construction of exotic smooth structures was on the 7-<a class="existingWikiWord" href="/nlab/show/sphere">sphere</a> in</p> <ul> <li id="Milnor1956"><a class="existingWikiWord" href="/nlab/show/John+Milnor">John Milnor</a>, <em>On manifolds homeomorphic to the 7-sphere</em>, Annals of Mathematics 64 (2): 399–405 (1956) (<a href="https://www.maths.ed.ac.uk/~v1ranick/papers/exotic.pdf">pdf</a>, <a href="https://doi.org/10.1142/9789812836878_0001">doi:10.1142/9789812836878_0001</a>)</li> </ul> <p>(…)</p> <ul> <li id="Smale"> <p><a class="existingWikiWord" href="/nlab/show/Stephen+Smale">Stephen Smale</a>, <em>On the structure of manifolds</em>, Amer. J. of Math. 84 : 387-399 (1962)</p> </li> <li id="Milnor1965a"> <p><a class="existingWikiWord" href="/nlab/show/John+Milnor">John Milnor</a> (1965), <em>Lectures on the h-cobordism theorem</em> (Princeton Univ. Press, Princeton)</p> </li> <li id="KervMil"> <p><a class="existingWikiWord" href="/nlab/show/Michel+Kervaire">Michel Kervaire</a>, ; <a class="existingWikiWord" href="/nlab/show/John+Milnor">John Milnor</a>, (1963) “Groups of homotopy spheres: I”, Ann. Math. 77, pp. 504 - 537.</p> </li> <li id="KirbSieb"> <p>Kirby, R.; Siebenmann, L. (1977) <em>Foundational essays on topological manifolds, smoothings, and triangulations</em>, Ann. Math. Studies (Princeton University Press, Princeton).</p> </li> <li id="Stallings62"> <p>John R. Stallings, <em>The piecewise-linear structure of Euclidean space</em>, Proceedings of the Cambridge Philosophical Society 58: 481–488 (1962) (<a href="http://www.maths.ed.ac.uk/~aar/papers/stallings2.pdf">pdf</a>)</p> </li> <li id="FreedTay"> <p>Freedman, Michael H.; Taylor, Laurence (1986) “A universal smoothing of four-space”, J. Diff. Geom. 24, pp. 69-78</p> </li> <li id="DeMFreed"> <p>De Michelis, Stefano; Freedman, Michael H. (1992) “Uncountably many exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>‘s in standard 4-space”, J. Diff. Geom. 35, pp. 219-254.</p> </li> <li id="Donaldson1"> <p><a class="existingWikiWord" href="/nlab/show/Simon+Donaldson">Simon Donaldson</a> (1987) “Irrationality and the h-cobordism conjecture”, J. Diff. Geom. 26, pp. 141-168.</p> </li> <li id="Donaldson2"> <p><a class="existingWikiWord" href="/nlab/show/Simon+Donaldson">Simon Donaldson</a>, (1990) “Polynomial invariants for smooth four manifolds”, Topology 29, pp. 257-315.</p> </li> <li id="Gompf"> <p>Gompf, Robert (1985) “An infinite set of exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>‘s”, J. Diff. Geom. 21, pp. 283-300.</p> </li> <li id="Taubes"> <p>Taubes, Clifford H. (1987) “Gauge theory on asymptotically periodic 4-manifolds”, J. Diff. Geom. 25, pp. 363-430</p> </li> <li id="BizGompf"> <p>Bizaca, Z.; Gompf, Robert (1996) “Elliptic surfaces and some simple exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>‘s”, J. Diff. Geom. 43, pp. 458-504.</p> </li> <li id="Rad"> <p>Rado, T. (1925) “Über den Begriff der Riemannschen Fläche” , Acta Litt. Scient. Univ. Szegd 2, pp. 101-121</p> </li> <li id="Milnor1965b"> <p><a class="existingWikiWord" href="/nlab/show/John+Milnor">John Milnor</a>, (1965b) <em>Topology from the Differentiable Viewpoint</em> (University Press of Virginia)</p> </li> <li id="WangXu16"> <p>Guozhen Wang, Zhouli Xu, <em>The triviality of the 61-stem in the stable homotopy groups of spheres</em> (<a href="https://arxiv.org&#10;/abs/1601.02184">arXiv:1601.02184</a>)</p> </li> <li> <p>Llohann D. Sperança, <em>Pulling back the Gromoll-Meyer construction and models of exotic spheres</em>, Proceedings of the American Mathematical Society 144.7 (2016): 3181-3196 (<a href="https://arxiv.org/abs/1010.6039">arXiv:1010.6039</a>)</p> </li> <li> <p>Llohann D. Sperança, <em>Explicit Constructions over the Exotic 8-sphere</em> (<a href="https://www.ime.unicamp.br/~rigas/sigma8EncontroTopol.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/SperancaExoticSpheres.pdf" title="pdf">pdf</a>)</p> </li> <li id="Amabel17"> <p>, <em>Exotic spheres</em> (<a href="https://math.mit.edu/~araminta/Exotic.pdf">pdf</a>)</p> </li> <li id="DRL10"> <p>C. Duran, A. Rigas, Llohann D. Sperança, <em>Bootstrapping Ad-equivariant maps, diffeomorphisms and involutions</em>, Matematica Contemporanea, 35:27–39, 2010 (<a href="http://www.ime.unicamp.br/~rigas/bootstrapping">pdf</a>)</p> </li> </ul> <p>On the open issue of exotic <a class="existingWikiWord" href="/nlab/show/4-spheres">4-spheres</a>:</p> <ul> <li id="FreedmanGompfMorrisonWalker09"><a class="existingWikiWord" href="/nlab/show/Michael+Freedman">Michael Freedman</a>, <a class="existingWikiWord" href="/nlab/show/Robert+Gompf">Robert Gompf</a>, <a class="existingWikiWord" href="/nlab/show/Scott+Morrison">Scott Morrison</a>, <a class="existingWikiWord" href="/nlab/show/Kevin+Walker">Kevin Walker</a>, <em>Man and machine thinking about the smooth 4-dimensional Poincaré conjecture</em>, Quantum Topology, Volume 1, Issue 2 (2010), pp. 171-208 (<a href="http://arxiv.org/abs/0906.5177">arXiv:0906.5177</a>)</li> </ul> <p>On exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>×</mo><msup><mi>S</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S^2 \times S^2</annotation></semantics></math></p> <ul> <li id="AkhmedovPark10">Anar Akhmedov, B. Doug Park, <em>Exotic smooth structures on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>×</mo><msup><mi>S</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S^2 \times S^2</annotation></semantics></math></em> (<a href="https://arxiv.org/abs/1005.3346">arXiv:1005.3346</a>)</li> </ul> <p>Review:</p> <ul> <li id="Kreck10"> <p><a class="existingWikiWord" href="/nlab/show/Matthias+Kreck">Matthias Kreck</a>, chapter 19 “Exotic 7-spheres” of <em>Differential Algebraic Topology – From Stratifolds to Exotic Spheres</em>, AMS 2010</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Rustam+Sadykov">Rustam Sadykov</a>, Sections 7,8 of: <em>Elements of Surgery Theory</em>, 2013 (<a href="https://www.math.ksu.edu/~sadykov/Lecture%20Notes/Surgery%20Theory.pdf">pdf</a>)</p> </li> <li id="McEnroe15"> <p>Rachel McEnroe, <em>Milnor’ construction of exotic 7-spheres</em>, 2015 (<a href="http://math.uchicago.edu/~may/REU2015/REUPapers/McEnroe.pdf">pdf</a>)</p> </li> </ul> <p>See also</p> <ul> <li>Wikipedia (<a href="http://en.wikipedia.org/wiki/Exotic_sphere#References">spheres</a>, <a href="http://en.wikipedia.org/wiki/Exotic_R4#References"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>R</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">R^4</annotation></semantics></math></a>)</li> </ul> <h3 id="ReferencesForApplicationsToPhysics">For applications to physics</h3> <p>The relevance of exotic smooth structure to <a class="existingWikiWord" href="/nlab/show/physics">physics</a> is tantalizing but remains by and large unclear. Some of the following references probably ought to be handled with care.</p> <h4 id="general_relativity">General relativity</h4> <p>The argument that <a class="existingWikiWord" href="/nlab/show/exotic+spheres">exotic spheres</a> are to be regarded as <a class="existingWikiWord" href="/nlab/show/gravitational+instantons">gravitational instantons</a>:</p> <ul> <li id="Witten85"> <p><a class="existingWikiWord" href="/nlab/show/Edward+Witten">Edward Witten</a>, p. 12 of: <em>Global gravitational anomalies</em>, Comm. Math. Phys. Volume 100, Number 2 (1985), 197–229. (<a href="http://projecteuclid.org/euclid.cmp/1103943444">EUCLID</a>)</p> </li> <li> <p>Randy A. Baadhio, <em>On the global gravitational instanton and soliton that are homotopy spheres</em>, Journal of Mathematical Physics 32, 2869 (1991) (<a href="https://doi.org/10.1063/1.529078">doi:10.1063/1.529078</a>)</p> </li> </ul> <p>Further discussion of exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>4</mn></mrow><annotation encoding="application/x-tex">4</annotation></semantics></math>-manifolds from the <a class="existingWikiWord" href="/nlab/show/general+relativity">general relativity</a> point of view is in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Carl+Brans">Carl Brans</a>, Duane Randall, <em>Exotic differentiable structures and general relativity</em> Gen. Rel. Grav., 25 (1993) 205–220</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Carl+Brans">Carl Brans</a>, <em>Exotic smoothness and physics</em> J. Math. Phys. 35, (1994), 5494–5506.</p> </li> </ul> <p>The following paper contained a first proof to localize exotic smoothness in an exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Carl+Brans">Carl Brans</a>, <em>Localized exotic smoothness</em> Class. Quant. Grav., 11, (1994), 1785–1792.</li> </ul> <p>A more philosophical discussion can be found in:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Carl+Brans">Carl Brans</a>, <em>Absolute spacetime: the twentieth century ether</em> Gen. Rel. Grav. 31, (1999), 597–609</li> </ul> <h4 id="generation_of_source_terms_fields">Generation of source terms (fields)</h4> <p>Brans conjectured in the papers above, that exotic smoothness should be a source of an additional <a class="existingWikiWord" href="/nlab/show/gravity">gravitational field</a> (Brans conjecture). This conjecture was confirmed for compact <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>4</mn></mrow><annotation encoding="application/x-tex">4</annotation></semantics></math>-manifolds (using implicitly a mapping of basic classes):</p> <p>Using the invariant of L. Taylor <a href="http://de.arxiv.org/abs/math/9807143">arXiv</a>, Sladkowski confirmed the conjecture for the exotic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> in:</p> <ul> <li>Jan Sładkowski <em>Gravity on exotic R4 with few symmetries</em> Int.J. Mod. Phys. D, 10, (2001) 311–313</li> </ul> <h4 id="quantum_field_theory">Quantum (field) theory</h4> <p>The first real connection between exotic smoothness and <a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a> is Witten’s TQFT:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Edward+Witten">Edward Witten</a>, <em>Topological quantum field theory</em> Comm. Math. Phys., 117, (1988), 353–386.</li> </ul> <p>and the whole work of Seiberg and Witten leading to the celebrated invariants.</p> <p>The relation to particle physics by using the algebra of smooth functions can be found in</p> <ul> <li> <p>Jan Sładkowski, <em>Exotic smoothness, noncommutative geometry and particle physics</em> Int. J. Theor. Phys., 35, (1996), 2075–2083</p> </li> <li> <p>Jan Sładkowski, <em>Exotic smoothness and particle physics</em> Acta Phys. Polon., B 27, (1996), 1649–1652</p> </li> <li> <p>Jan Sładkowski, <em>Exotic smoothness, fundamental interactions and noncommutative geometry</em> <a href="http://arxiv.org/abs/hep-th/9610093">arXiv</a></p> </li> </ul> <p>The relation between TQFT and differential-topological invariants of smooth manifolds was clarified in:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hendryk+Pfeiffer">Hendryk Pfeiffer</a>: <em>Quantum general relativity and the classification of smooth manifolds</em> <a href="http://arxiv.org/abs/gr-qc/0404088">arXiv</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hendryk+Pfeiffer">Hendryk Pfeiffer</a>: <em>Diffeomorphisms from finite triangulations and absence of ‘local’ degrees of freedom</em> Phys.Lett. B, 591, (2004), 197-201</p> </li> </ul> <p>On the impact of exotic smooth structures on the spectrum of <a class="existingWikiWord" href="/nlab/show/Dirac+operators">Dirac operators</a>:</p> <ul> <li>Ulrich Chiapi-Ngamako, M. B. Paranjape: <em>Physics on manifolds with exotic differential structures</em> &lbrack;<a href="https://arxiv.org/abs/2501.13328">arXiv:2501.13328</a>&rbrack;</li> </ul> <h4 id="ReferencesInStringTheory">String theory</h4> <p>An argument for interpreting exotic smooth spheres as <a class="existingWikiWord" href="/nlab/show/gravitational+instantons">gravitational instantons</a> and to cancel the gravitational <a class="existingWikiWord" href="/nlab/show/anomalies">anomalies</a> of <a class="existingWikiWord" href="/nlab/show/string+theory">string theory</a> is in (<a href="#Witten85">Witten 85</a>).</p> <p>The influence of exotic smoothness for <a class="existingWikiWord" href="/nlab/show/Kaluza-Klein+mechanism">Kaluza-Klein models</a> was discussed here:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Matthias+Kreck">Matthias Kreck</a>, <a class="existingWikiWord" href="/nlab/show/Stefan+Stolz">Stefan Stolz</a>, <em>A diffeomorphism classification of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>7</mn></mrow><annotation encoding="application/x-tex">7</annotation></semantics></math>-dimensional homogeneous Einstein manifolds with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔰𝔲</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>×</mo><mi>𝔰𝔲</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>×</mo><mi>𝔲</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathfrak{su}(3) \times \mathfrak{su}(2) \times \mathfrak{u}(1)</annotation></semantics></math>-symmetry</em> Ann. Math. 127, (1988), 373–388.</li> </ul> <p>A discussion of topological effects (also of string theory) in relation to exotic smoothness is in</p> <ul> <li>Ryan Rohm, <em>Topological Defects and Differential Structures</em> Annals Of Physics, 189, (1989), 223–239.</li> </ul> <h4 id="cosmology">Cosmology</h4> <p>An overview can be also found in</p> <ul> <li>Jan Sładkowski, <em>Exotic smoothness and astrophysics</em> Act. Phys. Polon. B, 40, (2009), 3157–3163</li> </ul> <h4 id="quantum_gravity">Quantum gravity</h4> <p>A first calculation of the state sum in <a class="existingWikiWord" href="/nlab/show/quantum+gravity">quantum gravity</a> by inclusion of exotic smoothness</p> <ul> <li>Kristin Schleich, Donald Witt, <em>Exotic Spaces in Quantum Gravity I: Euclidean Quantum Gravity in Seven Dimensions</em> Class.Quant.Grav., 16, (1999), 2447–2469</li> </ul> <p>A semi-classical approach to the functional integral is discussed here:</p> <ul> <li>Christofer Duston, <em>Exotic smoothness in 4 dimensions and semiclassical Euclidean quantum gravity</em> <a href="http://arxiv.org/abs/0911.4068">arxiv</a></li> </ul> <p>The inclusion of singularities for asymptotically flat spacetimes is discussed here (with an example of a singularity coming from exotic smoothness):</p> <ul> <li>Kristin Schleich, Donald Witt, <em>Singularities from the Topology and Differentiable Structure of Asymptotically Flat Spacetimes</em>, <a href="http://arxiv.org/abs/1006.2890">arxiv</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 24, 2025 at 07:02:07. See the <a href="/nlab/history/exotic+smooth+structure" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/exotic+smooth+structure" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1557/#Item_15">Discuss</a><span class="backintime"><a href="/nlab/revision/exotic+smooth+structure/46" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/exotic+smooth+structure" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/exotic+smooth+structure" accesskey="S" class="navlink" id="history" rel="nofollow">History (46 revisions)</a> <a href="/nlab/show/exotic+smooth+structure/cite" style="color: black">Cite</a> <a href="/nlab/print/exotic+smooth+structure" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/exotic+smooth+structure" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10