CINXE.COM
Search results for: greenhouse gas emission
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: greenhouse gas emission</title> <meta name="description" content="Search results for: greenhouse gas emission"> <meta name="keywords" content="greenhouse gas emission"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="greenhouse gas emission" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="greenhouse gas emission"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2069</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: greenhouse gas emission</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Makuteniene">D. Makuteniene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants%20of%20intensity" title=" determinants of intensity"> determinants of intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a> </p> <a href="https://publications.waset.org/abstracts/97199/determinants-of-intensity-of-greenhouse-gas-emission-in-lithuanian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> Environmental Policy Instruments and Greenhouse Gas Emissions: VAR Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronika%20Solilov%C3%A1">Veronika Solilová</a>, <a href="https://publications.waset.org/abstracts/search?q=Danu%C5%A1e%20Nerudov%C3%A1"> Danuše Nerudová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the interaction between the environmental taxation, size of government spending on environmental protection and greenhouse gas emissions and gross inland energy consumption. The aim is to analyze the effects of environmental taxation and government spending on environmental protection as an environmental policy instruments on greenhouse gas emissions and gross inland energy consumption in the EU15. The empirical study is performed using a VAR approach with the application of aggregated data of EU15 over the period 1995 to 2012. The results provide the evidence that the reactions of greenhouse gas emission and gross inland energy consumption to the shocks of environmental policy instruments are strong, mainly in the short term and decay to zero after about 8 years. Further, the reactions of the environmental policy instruments to the shocks of greenhouse gas emission and gross inland energy consumption are also strong in the short term, however with the deferred effects. In addition, the results show that government spending on environmental protection together with gross inland energy consumption has stronger effect on greenhouse gas emissions than environmental taxes in EU15 over the examined period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VAR%20analysis" title="VAR analysis">VAR analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emissions" title=" greenhouse gas emissions"> greenhouse gas emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20taxation" title=" environmental taxation"> environmental taxation</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20spending" title=" government spending"> government spending</a> </p> <a href="https://publications.waset.org/abstracts/17332/environmental-policy-instruments-and-greenhouse-gas-emissions-var-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronbanchob%20Apiratikul">Ronbanchob Apiratikul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=garbage%20bank" title=" garbage bank"> garbage bank</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclable%20wastes" title=" recyclable wastes"> recyclable wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/10657/reducing-greenhouse-gass-emissions-by-recyclable-material-bank-project-of-universities-in-central-region-of-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Biodiesel Is an Alternative Fuel for CI Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanat%20Kumar">Sanat Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kumar%20Tiwari"> Rahul Kumar Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At this time when society is becoming increasingly aware of the declining reserves of fossil, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. In this regard, the significance of biodiesel is technically and commercially viable alternative to fossil-diesel. There are different potential feed stocks for biodiesel production. This paper analyses the performance, combustion and emission characteristics of biodiesel from different feed stocks. Biodiesel fuel is considered as offering many benefits like reduction of greenhouse gas emissions and many harmful pollutants (PM, HC, CO etc.). This paper critically reviews the effect of injection timing on combustion and emission characteristics. An attempt has been carried out to discuss the effect of biodiesel in terms of combustion, emission and performance based up on composition and properties. The results of the study show that different chemical composition leads to variation in its combustion, performance and emission characteristics. Biodiesel produced from different aspired feed stocks reduces the pollutant emission and resistive to oxidation but exhibit poor atomization. As a conclusion many research needs to be carried out to understand the relationship between the types of biodiesel feed stock, performance conclusion and emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomization" title="atomization">atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/35736/biodiesel-is-an-alternative-fuel-for-ci-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Kiani">Ahmed Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission%20reductions" title=" greenhouse gas emission reductions"> greenhouse gas emission reductions</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20analysis" title=" market analysis"> market analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20recommendations" title=" policy recommendations"> policy recommendations</a> </p> <a href="https://publications.waset.org/abstracts/68508/electric-vehicle-market-penetration-impact-on-greenhouse-gas-emissions-for-policy-making-a-case-study-of-united-arab-emirates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/167779/a-performance-study-of-a-solar-heating-system-on-the-microclimate-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> Influence of Digestate Fertilization on Soil Microbial Activity, Greenhouse Gas Emissions and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Doyeni">M. Doyeni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Suproniene"> S. Suproniene</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tilvikiene"> V. Tilvikiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural wastes contribute significantly to global climate change through greenhouse gas emissions if not adequately recycled and sustainably managed. A recurring agricultural waste is livestock wastes that have consistently served as feedstock for biogas systems. The objective of this study was to access the influence of digestate fertilization on soil microbial activity and greenhouse gas emissions in agricultural fields. Wheat (Triticum spp. L.) was fertilized with different types of animal wastes digestates (organic fertilizers) and mineral nitrogen (inorganic fertilizer) for three years. The 170 kg N ha⁻¹ presented in digestates were split fertilized at an application rate of 90 and 80 kg N ha⁻¹. The soil microorganism activity could be predicted significantly using the dehydrogenase activity and soil microbial biomass carbon. By combining the two different monitoring approaches, the different methods applied in this study were sensitive to enzymatic activities and organic carbon in the living component of the soil organic matter. The emissions of greenhouse gasses (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) were monitored directly by a static chamber system. The soil and environmental variables were measured to determine their influence on greenhouse gas emissions. Emission peaks was observed in N₂O and CO₂ after the first application of fertilizers with the emissions flattening out over the cultivating season while CH₄ emission was negligible with no apparent patterns observed. Microbial biomass carbon and dehydrogenase activity were affected by the fertilized organic digestates. A significant difference was recorded between the control and the digestate treated soils for the microbial biomass carbon and dehydrogenase. Results also showed individual and cumulative emissions of CO₂, CH₄ and N₂O from the digestates were relatively low suggesting the digestate fertilization can be an efficient method for improving soil quality and reducing greenhouse gases from agricultural sources in temperate climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title="greenhouse gas emission">greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=manure%20digestate" title=" manure digestate"> manure digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20activity" title=" soil microbial activity"> soil microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/135154/influence-of-digestate-fertilization-on-soil-microbial-activity-greenhouse-gas-emissions-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mourad">M. Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahmoud"> K. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO<sub>2</sub> emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrification%20strategy" title="electrification strategy">electrification strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20cycle" title=" driving cycle"> driving cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/50278/electrification-strategy-of-hybrid-electric-vehicle-as-a-solution-to-decrease-co2-emission-in-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyung%20Jung">Jaehyung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiman%20Kim"> Kiman Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Heesang%20Eum"> Heesang Eum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom-up%20approach" title="bottom-up approach">bottom-up approach</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20%28GHG%29" title=" greenhouse gas (GHG)"> greenhouse gas (GHG)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/57212/estimation-of-greenhouse-gas-ghg-reductions-from-solar-cell-technology-using-bottom-up-approach-and-scenario-analysis-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Futoshi%20Kakuta">Futoshi Kakuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ishida"> Takashi Ishida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20warming%20countermeasure" title="global warming countermeasure">global warming countermeasure</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20technology" title=" energy technology"> energy technology</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20fuel%20production" title=" solid fuel production"> solid fuel production</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/34070/the-evaluation-of-costs-and-greenhouse-gas-reduction-by-using-technologies-for-energy-from-sewage-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/174386/a-solar-heating-system-performance-on-the-microclimate-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> Determination of Non-CO2 Greenhouse Gas Emission in Electronics Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong%20Jae%20Lee">Bong Jae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Il%20Lee"> Jeong Il Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Su%20Kim"> Hyo Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both developed and developing countries have adopted the decision to join the Paris agreement to reduce greenhouse gas (GHG) emissions at the Conference of the Parties (COP) 21 meeting in Paris. As a result, the developed and developing countries have to submit the Intended Nationally Determined Contributions (INDC) by 2020, and each country will be assessed for their performance in reducing GHG. After that, they shall propose a reduction target which is higher than the previous target every five years. Therefore, an accurate method for calculating greenhouse gas emissions is essential to be presented as a rational for implementing GHG reduction measures based on the reduction targets. Non-CO2 GHGs (CF4, NF3, N2O, SF6 and so on) are being widely used in fabrication process of semiconductor manufacturing, and etching/deposition process of display manufacturing process. The Global Warming Potential (GWP) value of Non-CO2 is much higher than CO2, which means it will have greater effect on a global warming than CO2. Therefore, GHG calculation methods of the electronics industry are provided by Intergovernmental Panel on climate change (IPCC) and U.S. Environmental Protection Agency (EPA), and it will be discussed at ISO/TC 146 meeting. As discussed earlier, being precise and accurate in calculating Non-CO2 GHG is becoming more important. Thus this study aims to discuss the implications of the calculating methods through comparing the methods of IPCC and EPA. As a conclusion, after analyzing the methods of IPCC & EPA, the method of EPA is more detailed and it also provides the calculation for N2O. In case of the default emission factor (by IPCC & EPA), IPCC provides more conservative results compared to that of EPA; The factor of IPCC was developed for calculating a national GHG emission, while the factor of EPA was specifically developed for the U.S. which means it must have been developed to address the environmental issue of the US. The semiconductor factory ‘A’ measured F gas according to the EPA Destruction and Removal Efficiency (DRE) protocol and estimated their own DRE, and it was observed that their emission factor shows higher DRE compared to default DRE factor of IPCC and EPA Therefore, each country can improve their GHG emission calculation by developing its own emission factor (if possible) at the time of reporting Nationally Determined Contributions (NDC). Acknowledgements: This work was supported by the Korea Evaluation Institute of Industrial Technology (No. 10053589). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-CO2%20GHG" title="non-CO2 GHG">non-CO2 GHG</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emission" title=" GHG emission"> GHG emission</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics%20industry" title=" electronics industry"> electronics industry</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20method" title=" measuring method"> measuring method</a> </p> <a href="https://publications.waset.org/abstracts/57832/determination-of-non-co2-greenhouse-gas-emission-in-electronics-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Naeemi%20Nooghabi">Mahdi Naeemi Nooghabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tofiqu%20Arif"> Mohammad Tofiqu Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIS%20substation" title="AIS substation">AIS substation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20substation" title=" GIS substation"> GIS substation</a>, <a href="https://publications.waset.org/abstracts/search?q=SF6" title=" SF6"> SF6</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming%20potential" title=" global warming potential"> global warming potential</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20price" title=" carbon price"> carbon price</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/40621/sustainable-development-of-hv-substation-in-urban-areas-considering-environmental-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume"> Ilham Ihoume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/158806/optimization-of-the-energy-management-for-a-solar-system-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Measurement of Greenhouse Gas Emissions from Sugarcane Plantation Soil in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilaiwan%20Sornpoon">Wilaiwan Sornpoon</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Bonnet"> Sébastien Bonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Savitri%20Garivait"> Savitri Garivait</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous measurements of greenhouse gases (GHGs) emitted from soils are required to understand diurnal and seasonal variations in soil emissions and related mechanism. This understanding plays an important role in appropriate quantification and assessment of the overall change in soil carbon flow and budget. This study proposes to monitor GHGs emissions from soil under sugarcane cultivation in Thailand. The measurements were conducted over 379 days. The results showed that the total net amount of GHGs emitted from sugarcane plantation soil amounts to 36 Mg CO2eq ha-1. Carbon dioxide (CO2) and nitrous oxide (N2O) were found to be the main contributors to the emissions. For methane (CH4), the net emission was found to be almost zero. The measurement results also confirmed that soil moisture content and GHGs emissions are positively correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emission" title=" GHG emission"> GHG emission</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/1427/measurement-of-greenhouse-gas-emissions-from-sugarcane-plantation-soil-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Y.%20C.%20Wong">Eugene Y. C. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Y.%20K.%20Lau"> Henry Y. K. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardjuki%20Raman"> Mardjuki Raman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slow%20steaming" title="slow steaming">slow steaming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20logistics" title=" maritime logistics"> maritime logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a> </p> <a href="https://publications.waset.org/abstracts/2594/supply-chain-decarbonisation-a-cost-based-decision-support-model-in-slow-steaming-maritime-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Paradigm Shift in Reducing Greenhouse Gas Emissions for Developing Countries: Focus on Behavioral Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bishal%20Saha">Bishal Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Musah%20Ahmed%20Rufai%20Muhyedeen"> Musah Ahmed Rufai Muhyedeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jubeyer%20Hossain%20Joy"> Jubeyer Hossain Joy</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Muhitur%20Rahman"> Muhammad Muhitur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shahedur%20Rahman"> Mohammad Shahedur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Arif%20Hasan"> Md Arif Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Masiur%20Rahman"> Syed Masiur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouse gas (GHG) emission is one of the critical problems of today’s world. Many countries have been taking many short- and long-term plans to reduce climate change mitigation. However, the potential of behavioral changes in addressing this problem is promising, as reported by many researchers. This paper presents a comprehensive literature review that focuses on ways to influence people’s behavior in their homes, workplace, and transportation to mitigate the emission directly or indirectly. This study will investigate different theories pertinent to planned behavior and the key elements for modifying behavior like biophilia, reinforcement to use optimum energy and recyclable products, proper application of greenhouse tax, modern technology, and sustainable design adaptation, transportation sharing, social and community norms, proper education and information, and financial incentives. There is a number of challenges associated with behavioral changes. Behavioral interventions have different actions varied by their type and need to combine various policy tools and great social marketing. Many interventions can reduce GHG emissions without any compromise with household well-being. This study will develop a landscape of prevailing theories of environmental psychology by identifying and reviewing the key themes and findings of this field of study. It will support especially the developing countries to reduce GHG emissions without significant capital investment. It is also expected that the behavioral changes will lead to the successful adoption of climate-friendly policies easily. This study will also generate new research questions and directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavioral%20changes" title="behavioral changes">behavioral changes</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20mitigation" title=" climate change mitigation"> climate change mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20psychology" title=" environmental psychology"> environmental psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a> </p> <a href="https://publications.waset.org/abstracts/136519/paradigm-shift-in-reducing-greenhouse-gas-emissions-for-developing-countries-focus-on-behavioral-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> A Life Cycle Assessment of Greenhouse Gas Emissions from the Traditional and Climate-smart Farming: A Case of Dhanusha District, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Dhakal">Arun Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoff%20Cockfield"> Geoff Cockfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the emission potential of different farming practices that the farmers have adopted in Dhanusha District of Nepal and scope of these practices in climate change mitigation. Which practice is more climate-smarter is the question that this aims to address through a life cycle assessment (LCA) of greenhouse gas (GHG) emissions. The LCA was performed to assess if there is difference in emission potential of broadly two farming systems (agroforestry–based and traditional agriculture) but specifically four farming systems. The required data for this was collected through household survey of randomly selected households of 200. The sources of emissions across the farming systems were paddy cultivation, livestock, chemical fertilizer, fossil fuels and biomass (fuel-wood and crop residue) burning. However, the amount of emission from these sources varied with farming system adopted. Emissions from biomass burning appeared to be the highest while the source ‘fossil fuel’ caused the lowest emission in all systems. The emissions decreased gradually from agriculture towards the highly integrated agroforestry-based farming system (HIS), indicating that integrating trees into farming system not only sequester more carbon but also help in reducing emissions from the system. The annual emissions for HIS, Medium integrated agroforestry-based farming system (MIS), LIS (less integrated agroforestry-based farming system and subsistence agricultural system (SAS) were 6.67 t ha-1, 8.62 t ha-1, 10.75 t ha-1 and 17.85 t ha-1 respectively. In one agroforestry cycle, the HIS, MIS and LIS released 64%, 52% and 40% less GHG emission than that of SAS. Within agroforestry-based farming systems, the HIS produced 25% and 50% less emissions than those of MIS and LIS respectively. Our finding suggests that a tree-based farming system is more climate-smarter than a traditional farming. If other two benefits (carbon sequestered within the farm and in the natural forest because of agroforestry) are to be considered, a considerable amount of emissions is reduced from a climate-smart farming. Some policy intervention is required to motivate farmers towards adopting such climate-friendly farming practices in developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=farming%20systems" title=" farming systems"> farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/29096/a-life-cycle-assessment-of-greenhouse-gas-emissions-from-the-traditional-and-climate-smart-farming-a-case-of-dhanusha-district-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume"> Ilham Ihoume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/161297/performance-of-a-solar-heating-system-on-the-microclimate-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Copper Coil Heat Exchanger Performance for Greenhouse Heating: An Experimental and Theoretical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Bakkari">Maha Bakkari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.Tadili"> R.Tadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is a study of the performance of a solar copper coil heating system in a greenhouse microclimate. Our system is based on the circulation of a Heat transfer fluid, which is water in our case, in a closed loop under the greenhouse's roof in order to store heat all day, and then this heat will supply the greenhouse during the night. In order to evaluate our greenhouse, we made an experimental study in two identical greenhouses, where the first one is equipped with a heating system and the second (without heating) is used for control. The heating system allows the establishment of the thermal balance and determines the mass of water necessary for the process in order to ensure its functioning during the night. The results obtained showed that this solar heating system and the climatic parameters inside the experimental greenhouse were improved, and it presents a significant gain compared to a controlled greenhouse without a heating system. This research is one of the solutions that help to reduce the greenhouse effect of the planet Earth, a problem that worries the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/167095/copper-coil-heat-exchanger-performance-for-greenhouse-heating-an-experimental-and-theoretical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Performance of Copper Coil Heat Exchangers for Heating Greenhouses: An Experimental and Theoretical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20ihoume">Ilham ihoume</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui"> Nora Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the manner in which a solar copper coil heating system performs in a North-South-oriented greenhouse environment. In order to retain heat during the day and release it back into the greenhouse environment at night, this system relies on the circulation of water in a closed loop under the roof of the greenhouse. Experimental research was conducted to compare the results in two identical greenhouses. The first one has a heating system, whilst the second one has not and is regarded as a control. We determined the mass of the heat transfer fluid, which makes up the storage system, needed to heat the greenhouse during the night to be equivalent to 689 Kg using the heat balance of the greenhouse equipped with a heating system. The findings demonstrated that when compared to a controlled greenhouse without a heating system, the climatic conditions within the experimental greenhouse were greatly enhanced by the solar heating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=enviromental%20impact" title=" enviromental impact"> enviromental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a> </p> <a href="https://publications.waset.org/abstracts/163824/performance-of-copper-coil-heat-exchangers-for-heating-greenhouses-an-experimental-and-theoretical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Tak%20Kit">Kwok Tak Kit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 20C above the pre-industrial level in this century. A internationally Submit named “ 26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to the finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.50C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=net-zero%20carbon" title="net-zero carbon">net-zero carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/144405/challenge-of-net-zero-carbon-construction-and-measurement-of-energy-consumption-and-carbon-emission-reduction-to-climate-change-economy-and-job-growths-in-hong-kong-and-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> A Study on Marble-Slag Based Geopolymer Green Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zong-Xian%20Qiu">Zong-Xian Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta-Wui%20Cheng"> Ta-Wui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hao%20Lee"> Wei-Hao Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chin%20Ding"> Yung-Chin Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble" title="marble">marble</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a> </p> <a href="https://publications.waset.org/abstracts/101208/a-study-on-marble-slag-based-geopolymer-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Operational Measures for Greenhouse Gas Reduction from Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorana%20Jelic%20Mrcelic">Gorana Jelic Mrcelic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce greenhouse gas emissions from ships, technical and operational measures can be used. Operational measures are easier and cheaper compared to technical measures, so are well recommended. One of the most cost-effective operational measure is fuel consumption. Fuel consumption can be reduced by various options but it sometimes needs investments in new equipment, new procedures and crew education. In order to implement operational measures in everyday procedures and routines on board, good understanding of the mechanisms by which these measures work is essential for the seamen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20shipping" title="green shipping">green shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20emission%20reduction" title=" gas emission reduction"> gas emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20measures" title=" operational measures"> operational measures</a>, <a href="https://publications.waset.org/abstracts/search?q=seamen" title=" seamen"> seamen</a> </p> <a href="https://publications.waset.org/abstracts/20223/operational-measures-for-greenhouse-gas-reduction-from-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> The Development and Testing of Greenhouse Comprehensive Environment Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alrefaie">Mohammed Alrefaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji"> Yaser Miaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title="greenhouse">greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20intensity" title=" light intensity"> light intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20environment" title=" comprehensive environment"> comprehensive environment</a> </p> <a href="https://publications.waset.org/abstracts/26779/the-development-and-testing-of-greenhouse-comprehensive-environment-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20de%20Abrantes">Rui de Abrantes</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Luiz%20Silva%20Forcetto"> André Luiz Silva Forcetto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=locomotives" title="locomotives">locomotives</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20control" title=" emission control"> emission control</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants%20emission" title=" pollutants emission"> pollutants emission</a> </p> <a href="https://publications.waset.org/abstracts/182216/the-environmental-benefits-of-the-adoption-of-emission-control-for-locomotives-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Assessment of the Thermal Performance of a Solar Heating System on an Agricultural Greenhouse Microclimate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The substantial increase of areas cultivated under glasshouses compels the use of other natural heating and cooling procedures to make a profit as well as avoid both exorbitant fuel consumption and CO₂ emissions. This experimental study is designed to examine the functioning of a solar heating system that will increase positive consequences in terms of both quantity and quality while successfully enhancing greenhouse microclimate during wintertime. Those configurations have been tested in a miniaturized greenhouse simply after having optimized the operating parameters. These were noteworthy results when compared to an unheated witness greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/189034/assessment-of-the-thermal-performance-of-a-solar-heating-system-on-an-agricultural-greenhouse-microclimate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> Impact of innovative Solar Heating Systems on Greenhouse Microclimates: A Case Study with Zucchini (Cucurbita pepo)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume">Ilham Ihoume</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui"> Nora Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent innovations in economical heating systems have significantly boosted agricultural production by effectively managing temperature drops in greenhouse microclimates. These advancements enhance product profitability in terms of quality, quantity, and growth duration. This study experimentally investigates the impact of a solar heating system on the microclimate of an agricultural greenhouse, focusing on zucchini (Cucurbita pepo). The System comprises a copper tube placed between double roof glazing and a sensible heat storage system, converting solar energy during the day and storing it for night-time release. A second control greenhouse without heating allows for comparative analysis at various growth stages. During the cold season, the experimental greenhouse showed a temperature increase of 3°C compared to the control greenhouse and 5°C above external ambient air. The relative humidity in the experimental greenhouse ranged from 69% to 70%, whereas the control greenhouse recorded 68% to 86%, and ambient air was between 94% to 99%. The heating systems achieved an efficiency of 73%, and zucchini plants in the experimental greenhouse developed fruit 13 days earlier than those in the control greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20managment" title=" energy managment"> energy managment</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20system" title=" heating system"> heating system</a> </p> <a href="https://publications.waset.org/abstracts/186661/impact-of-innovative-solar-heating-systems-on-greenhouse-microclimates-a-case-study-with-zucchini-cucurbita-pepo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timiebi%20Aganaba-Jeanty">Timiebi Aganaba-Jeanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emissions" title="greenhouse gas emissions">greenhouse gas emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=reporting" title=" reporting"> reporting</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20verification" title=" monitoring and verification"> monitoring and verification</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=UNFCCC" title=" UNFCCC"> UNFCCC</a> </p> <a href="https://publications.waset.org/abstracts/57507/satellite-technology-usage-for-greenhouse-gas-emissions-monitoring-and-verification-policy-considerations-for-an-international-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mthiyane%20Pretty">Mthiyane Pretty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsui%20Toshiake"> Mitsui Toshiake</a>, <a href="https://publications.waset.org/abstracts/search?q=Aycan%20Murat"> Aycan Murat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagano%20Hirohiko"> Nagano Hirohiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane" title="methane">methane</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy%20fields" title=" paddy fields"> paddy fields</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20varieties" title=" rice varieties"> rice varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a> </p> <a href="https://publications.waset.org/abstracts/167732/effect-of-rice-cultivars-and-water-regimes-application-as-mitigation-strategy-for-greenhouse-gases-in-paddy-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>