CINXE.COM

Search results for: transcription

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transcription</title> <meta name="description" content="Search results for: transcription"> <meta name="keywords" content="transcription"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transcription" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transcription"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 271</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transcription</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Sustaining the Mitochondrial Transcription Factor A in Sperm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betty%20Anson">Betty Anson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have found that mature sperm cells are not only devoid of mature MTDNA (mitochondrial DNA) but also lack a particular protein essential for DNA maintenance, known as mitochondrial transcription factor A, or TFAM (transcription factor A mitochondria). As a result, children get the DNA of certain important body functions only from their mothers. More experiments show that TFAM appears to burn out when it is used as a source of energy for sperm movement. This study investigates alternative sources of energy for sperm movement that could sustain the existence of TFAM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mItochondria" title="mItochondria">mItochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=TFAM" title=" TFAM"> TFAM</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/173267/sustaining-the-mitochondrial-transcription-factor-a-in-sperm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Yunger">Sharon Yunger</a>, <a href="https://publications.waset.org/abstracts/search?q=Liat%20Altman"> Liat Altman</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuval%20Garini"> Yuval Garini</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaron%20Shav-Tal"> Yaron Shav-Tal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title="cell cycle">cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20cells" title=" living cells"> living cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleus" title=" nucleus"> nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription" title=" transcription"> transcription</a> </p> <a href="https://publications.waset.org/abstracts/40812/following-the-modulation-of-transcriptional-activity-of-genes-by-chromatin-modifications-during-the-cell-cycle-in-living-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> The Transcription Factor HNF4a: A Key Player in Haematological Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tareg%20Belali">Tareg Belali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosleh%20Abomughaid"> Mosleh Abomughaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhanad%20Alhujaily"> Muhanad Alhujaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatocyte%20nuclear%20factor%204%20alpha" title="hepatocyte nuclear factor 4 alpha">hepatocyte nuclear factor 4 alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=HNF4a%20nuclear%20receptor" title=" HNF4a nuclear receptor"> HNF4a nuclear receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=steroid%20hormone%20receptor%20family%20of%20transcription%20factors" title=" steroid hormone receptor family of transcription factors"> steroid hormone receptor family of transcription factors</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20disorders" title=" hematological disorders"> hematological disorders</a> </p> <a href="https://publications.waset.org/abstracts/149357/the-transcription-factor-hnf4a-a-key-player-in-haematological-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usha%20Kiran">Usha Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Abdin"> M. Z. Abdin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osmotin" title="osmotin">osmotin</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20signaling%20modulator" title=" cell signaling modulator"> cell signaling modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatic%20tools" title=" bioinformatic tools"> bioinformatic tools</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein "> protein </a> </p> <a href="https://publications.waset.org/abstracts/8485/analysis-of-osmotin-as-transcription-factorcell-signaling-modulator-using-bioinformatic-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Cdk1 Gates Cell Cycle-Dependent tRNA Synthesis by Regulating RNA Polymerase III Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maricarmen%20Herrera">Maricarmen Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Chymkowitch"> Pierre Chymkowitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Robertson"> Joe Robertson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Eriksson"> Jens Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorrit%20Enserink"> Jorrit Enserink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> tRNA genes are transcribed by RNA polymerase III. During recent years, it has become clear that tDNA transcription fluctuates during the cell cycle. However, the mechanism by which the cell cycle controls the amplitude of tDNA transcription remains unknown. We found that the cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to sharply increase tRNA synthesis during a brief interval in the cell cycle. We show that Cdk1 promotes the interaction of TFIIIB with TFIIIC, that it stimulates the recruitment of TFIIIC to tRNA genes, that it prevents the formation of an overly stable TFIIIB-tDNA complex and that it augments the dynamics of RNA polymerase III. Furthermore, we identify Bdp1 as a novel Cdk1 substrate, and phosphorylation of Bdp1 is required for the cell cycle-dependent increase in tDNA transcription. In addition, we show that phosphorylation of the Cdk1 substrate Nup60 mediates formation of a Nup60-Nup2 complex at tRNA genes, which is also required for cell cycle-dependent tDNA transcription. Together, our findings indicate that Cdk1 activity gates tRNA synthesis by regulating the dynamics of the TFIIIB-TFIIIC-RNAPIII complex, and that it may promote the formation of a nuclear pore microenvironment conducive to efficient tDNA transcription. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cdk1" title="Cdk1">Cdk1</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=RNAPIII%20machinery" title=" RNAPIII machinery"> RNAPIII machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=tRNA" title=" tRNA"> tRNA</a> </p> <a href="https://publications.waset.org/abstracts/77416/cdk1-gates-cell-cycle-dependent-trna-synthesis-by-regulating-rna-polymerase-iii-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Fundator">Michael Fundator</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fokker-Plank%20stochastic%20differential%20equation" title="Fokker-Plank stochastic differential equation">Fokker-Plank stochastic differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov-Chentsov%20continuity%20theorem" title=" Kolmogorov-Chentsov continuity theorem"> Kolmogorov-Chentsov continuity theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=translation%20and%20transcription" title=" translation and transcription"> translation and transcription</a> </p> <a href="https://publications.waset.org/abstracts/130033/dynamical-relation-of-poisson-spike-trains-in-hodkin-huxley-neural-ion-current-model-and-formation-of-non-canonical-bases-islands-and-analog-bases-in-dna-mrna-and-rna-at-or-near-the-transcription" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakeh%20N.%20Mohd">Sakeh N. Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahari%20M.%20N.%20Abdul"> Bahari M. N. Abdul</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20S.%20N.%20Akmar"> Abdullah S. N. Akmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganoderma%20boninense" title="Ganoderma boninense">Ganoderma boninense</a>, <a href="https://publications.waset.org/abstracts/search?q=necrotrophic" title=" necrotrophic"> necrotrophic</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a> </p> <a href="https://publications.waset.org/abstracts/70220/characterization-of-transcription-factors-involved-in-early-defense-response-during-interaction-of-oil-palm-elaeis-guineensis-jacq-with-ganoderma-boninense" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Biophysically Motivated Phylogenies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Felce">Catherine Felce</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title="phylogenetics">phylogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=single-cell" title=" single-cell"> single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20modeling" title=" biophysical modeling"> biophysical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription" title=" transcription"> transcription</a> </p> <a href="https://publications.waset.org/abstracts/186016/biophysically-motivated-phylogenies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Evaluation of Important Transcription Factors and Kinases in Regulating the Signaling Pathways of Cancer Stem Cells With Low and High Proliferation Rate Derived From Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Habibi">Mohammad Hossein Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atena%20Sadat%20Hosseini"> Atena Sadat Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer is the third leading cause of cancer-related death in the world. Colorectal cancer screening, early detection, and treatment programs could benefit from the most up-to-date information on the disease's burden, given the present worldwide trend of increasing colorectal cancer incidence. Tumor recurrence and resistance are exacerbated by the presence of chemotherapy-resistant cancer stem cells that can generate rapidly proliferating tumor cells. In addition, tumor cells can evolve chemoresistance through adaptation mechanisms. In this work, we used in silico analysis to select suitable GEO datasets. In this study, we compared slow-growing cancer stem cells with high-growth colorectal cancer-derived cancer stem cells. We then evaluated the signal pathways, transcription factors, and kinases associated with these two types of cancer stem cells. A total of 980 upregulated genes and 870 downregulated genes were clustered. MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Fc gamma R-mediated phagocytosis, and Steroid biosynthesis signaling pathways were observed in upregulated genes. Also, caffeine metabolism, amino sugar and nucleotide sugar metabolism, TNF signaling pathway, and cytosolic DNA-sensing pathway were involved in downregulated genes. In the next step, we evaluated the best transcription factors and kinases in two types of cancer stem cells. In this regard, NR2F2, ZEB2, HEY1, and HDGF as transcription factors and PRDM5, SMAD, CBP, and KDM2B as critical kinases in upregulated genes. On the other hand, IRF1, SPDEF, NCOA1, and STAT1 transcription factors and CTNNB1 and CDH7 kinases were regulated low expression genes. Using bioinformatics analysis in the present study, we conducted an in-depth study of colorectal cancer stem cells at low and high growth rates so that we could take further steps to detect and even target these cells. Naturally, more additional tests are needed in this direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20analysis" title=" bioinformatics analysis"> bioinformatics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a>, <a href="https://publications.waset.org/abstracts/search?q=kinases" title=" kinases"> kinases</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title=" cancer stem cells"> cancer stem cells</a> </p> <a href="https://publications.waset.org/abstracts/149949/evaluation-of-important-transcription-factors-and-kinases-in-regulating-the-signaling-pathways-of-cancer-stem-cells-with-low-and-high-proliferation-rate-derived-from-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> The Interplay between Autophagy and Macrophages&#039; Polarization in Wound Healing: A Genetic Regulatory Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayada%20Mazher">Mayada Mazher</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Moustafa"> Ahmed Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdellatif"> Ahmed Abdellatif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy%20related%20proteins" title="autophagy related proteins">autophagy related proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20network%20analysis" title=" integrated network analysis"> integrated network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophages%20polarization%20M1%20and%20M2" title=" macrophages polarization M1 and M2"> macrophages polarization M1 and M2</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20remodelling" title=" tissue remodelling"> tissue remodelling</a> </p> <a href="https://publications.waset.org/abstracts/108802/the-interplay-between-autophagy-and-macrophages-polarization-in-wound-healing-a-genetic-regulatory-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Detection of PCD-Related Transcription Factors for Improving Salt Tolerance in Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahieldin">A. Bahieldin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Atef"> A. Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Edris"> S. Edris</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Gadalla"> N. O. Gadalla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hassan"> S. M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Al-Kordy"> M. A. Al-Kordy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ramadan"> A. M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20M.%20Al-%20Hajar"> A. S. M. Al- Hajar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20El-Domyati"> F. M. El-Domyati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of this work is based on a natural exciting phenomenon suggesting that suppression of genes related to the program cell death (or PCD) mechanism might help the plant cells to efficiently tolerate abiotic stresses. The scope of this work was the detection of PCD-related transcription factors (TFs) that might also be related to salt stress tolerance in plant. Two model plants, e.g., tobacco and Arabidopsis, were utilized in order to investigate this phenomenon. Occurrence of PCD was first proven by Evans blue staining and DNA laddering after tobacco leaf discs were treated with oxalic acid (OA) treatment (20 mM) for 24 h. A number of 31 TFs up regulated after 2 h and co-expressed with genes harboring PCD-related domains were detected via RNA-Seq analysis and annotation. These TFs were knocked down via virus induced gene silencing (VIGS), an RNA interference (RNAi) approach, and tested for their influence on triggering PCD machinery. Then, Arabidopsis SALK knocked out T-DNA insertion mutants in selected TFs analogs to those in tobacco were tested under salt stress (up to 250 mM NaCl) in order to detect the influence of different TFs on conferring salt tolerance in Arabidopsis. Involvement of a number of candidate abiotic-stress related TFs was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VIGS" title="VIGS">VIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=PCD" title=" PCD"> PCD</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a> </p> <a href="https://publications.waset.org/abstracts/42508/detection-of-pcd-related-transcription-factors-for-improving-salt-tolerance-in-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Identification of Tissue-Specific Transcription Factors in C. roseus with Emphasis to the TIA Biosynthetic Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20El-Domyati">F. M. El-Domyati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Atef"> A. Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Edris"> S. Edris</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Gadalla"> N. O. Gadalla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Al-Kordy"> M. A. Al-Kordy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ramadan"> A. M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Saad"> Y. M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Al-Zahrani"> H. S. Al-Zahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahieldin"> A. Bahieldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcriptome retrieved from SRA database of different tissues and treatments of C. roseus was assembled in order to detect tissue-specific transcription factors (TFs) and TFs possibly related to terpenoid indole alkaloids (TIA) pathway. A number of 290 TF-like transcripts along with 12 transcripts related to TIA biosynthetic pathway were divided in terms of co-expression in the different tissues, treatments and genotypes. Three transcripts encoding peroxidases 1 and 12 were downregulated in hairy root, while upregulated in mature leaf. Eight different transcripts of the TIA pathway co-expressed with TFs either functioning downstream tryptophan biosynthesis, e.g., tdc, str1 and sgd, or upstream vindoline biosynthesis, e.g., t16h, omt, nmt, d4h and dat. The results showed no differential expression of TF transcripts in hairy roots knocked down for tdc gene (TDCi) as compared to their wild type controls. There were several evidences of tissue-specific expression of TF transcripts in flower, mature leaf, root/hairy root, stem, seedling, hairy root and immature/mature leaves. Regulation included transcription factor families, e.g., bHLH, MYB and WRKY mostly induced by ABA and/or JA (or MeJA) and regulated during abiotic or biotic stress. The information of tissue-specific regulation and co-expression of TFs and genes in the TIA pathway can be utilized in manipulating alkaloid biosynthesis in C. roseus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SRA%20database" title="SRA database">SRA database</a>, <a href="https://publications.waset.org/abstracts/search?q=bHLH" title=" bHLH"> bHLH</a>, <a href="https://publications.waset.org/abstracts/search?q=MYB" title=" MYB"> MYB</a>, <a href="https://publications.waset.org/abstracts/search?q=WRKY" title=" WRKY"> WRKY</a>, <a href="https://publications.waset.org/abstracts/search?q=co-expression" title=" co-expression "> co-expression </a> </p> <a href="https://publications.waset.org/abstracts/42512/identification-of-tissue-specific-transcription-factors-in-c-roseus-with-emphasis-to-the-tia-biosynthetic-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Evolution of DNA-Binding With-One-Finger Transcriptional Factor Family in Diploid Cotton Gossypium raimondii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Shafqat%20Chattha">Waqas Shafqat Chattha</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Iqbal"> Muhammad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shakeel"> Amir Shakeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcriptional factors are proteins that play a vital role in regulating the transcription of target genes in different biological processes and are being widely studied in different plant species. In the current era of genomics, plant genomes sequencing has directed to the genome-wide identification, analyses and categorization of diverse transcription factor families and hence provide key insights into their structural as well as functional diversity. The DNA-binding with One Finger (DOF) proteins belongs to C2-C2-type zinc finger protein family. DOF proteins are plant-specific transcription factors implicated in diverse functions including seed maturation and germination, phytohormone signalling, light-mediated gene regulation, cotton-fiber elongation and responses of the plant to biotic as well as abiotic stresses. In this context, a genome-wide in-silico analysis of DOF TF family in diploid cotton species i.e. Gossypium raimondii has enabled us to identify 55 non-redundant genes encoding DOF proteins renamed as GrDofs (Gossypium raimondii Dof). Gene distribution studies have shown that all of the GrDof genes are unevenly distributed across 12 out of 13 G. raimondii chromosomes. The gene structure analysis illustrated that 34 out of 55 GrDof genes are intron-less while remaining 21 genes have a single intron. Protein sequence-based phylogenetic analysis of putative 55 GrDOFs has divided these proteins into 5 major groups with various paralogous gene pairs. Molecular evolutionary studies aided with the conserved domain as well as gene structure analysis suggested that segmental duplications were the principal contributors for the expansion of Dof genes in G. raimondii. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diploid%20cotton" title="diploid cotton ">diploid cotton </a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20raimondii" title=" G. raimondii"> G. raimondii</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a> </p> <a href="https://publications.waset.org/abstracts/107483/evolution-of-dna-binding-with-one-finger-transcriptional-factor-family-in-diploid-cotton-gossypium-raimondii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Identified Transcription Factors and Gene Regulation in Scient Biosynthesis in Ophrys Orchids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengwei%20Wang">Chengwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20Xu"> Shuqing Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20M.%20Schl%C3%BCter"> Philipp M. Schlüter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genus Ophrys is remarkable for its mimicry, flower-lip closely resembling pollinator females in a species-specific manner. Therefore, floral traits associated with pollinator attraction, especially scent, are suitable models for investigating the molecular basis of adaption, speciation, and evolution. Within the two Ophrys species groups: O. sphegodes (S) and O. fusca (F), pollinator shifts among the same insect species have taken place. Preliminary data suggest that they involve a comparable hydrocarbon profile in their scent, which is mainly composed of alkanes and alkenes. Genes encoding stearoyl-acyl carrier protein desaturases (SAD) involved in alkene biosynthesis have been identified in the S group. This study aims to investigate the control and parallel evolution of ecologically significant alkene production in Ophrys. Owing to the central role those SAD genes play in determining positioning of the alkene double-bonds, a detailed understanding of their functional mechanism and of regulatory aspects is of utmost importance. We have identified 5 transcription factors potentially related to SAD expression in O. sphegodes which belong to the MYB, GTE, WRKY, and MADS families. Ultimately, our results will contribute to understanding genes important in the regulatory control of floral scent synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floral%20traits" title="floral traits">floral traits</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20evolution" title=" parallel evolution"> parallel evolution</a> </p> <a href="https://publications.waset.org/abstracts/165903/identified-transcription-factors-and-gene-regulation-in-scient-biosynthesis-in-ophrys-orchids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pui%20Shan%20Wong">Pui Shan Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosuke%20Tashiro"> Kosuke Tashiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Kuhara"> Satoru Kuhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series" title=" time-series"> time-series</a> </p> <a href="https://publications.waset.org/abstracts/65272/elucidation-of-the-sequential-transcriptional-activity-in-escherichia-coli-using-time-series-rna-seq-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Wisnik">Ewelina Wisnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Regdon"> Zsolt Regdon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinga%20Chmielewska"> Kinga Chmielewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Virag"> Laszlo Virag</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Robaszkiewicz"> Agnieszka Robaszkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinoblastoma%20transcriptional%20co-repressor%20like%202%20%28RBL2%29" title="retinoblastoma transcriptional co-repressor like 2 (RBL2)">retinoblastoma transcriptional co-repressor like 2 (RBL2)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ADP-ribose%29%20polymerase%201%20%28PARP1%29" title=" poly(ADP-ribose) polymerase 1 (PARP1)"> poly(ADP-ribose) polymerase 1 (PARP1)</a>, <a href="https://publications.waset.org/abstracts/search?q=E1A%20binding%20protein%20p300%20%28EP300%29" title=" E1A binding protein p300 (EP300)"> E1A binding protein p300 (EP300)</a>, <a href="https://publications.waset.org/abstracts/search?q=monocytes" title=" monocytes"> monocytes</a> </p> <a href="https://publications.waset.org/abstracts/79896/parp1-links-transcription-of-a-subset-of-rbl2-dependent-genes-with-cell-cycle-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Transcription Skills and Written Composition in Chinese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pui-sze%20Yeung">Pui-sze Yeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Connie%20Suk-han%20Ho"> Connie Suk-han Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Wai-ock%20Chan"> David Wai-ock Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Kien-hoa%20Chung"> Kevin Kien-hoa Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthographic%20knowledge" title="orthographic knowledge">orthographic knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20skills" title=" transcription skills"> transcription skills</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20reading" title=" word reading"> word reading</a>, <a href="https://publications.waset.org/abstracts/search?q=writing" title=" writing"> writing</a> </p> <a href="https://publications.waset.org/abstracts/32659/transcription-skills-and-written-composition-in-chinese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Structural and Functional Characterization of the Transcriptional Regulator Rv1176 of Mycobacterium tuberculosis H37Rv</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikash%20Yadav">Vikash Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Arora"> Ashish Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms have self-defense mechanisms to protect themselves from toxic environments. Phenolic acid decarboxylase(pad) is responsible for the defense against toxicity caused by phenolic acids, converting them into less toxic vinyl derivatives. The transcription of the pad gene is regulated by a negative transcription factor, phenolic acid decarboxylase regulators (PadR), in a substrate-inducible manner. The PadR family members share the conserved DNA-binding features and interact with the operator DNA using a winged helix-turn-helix (wHTH) motif, which contains a three-helix motif and a β-stranded wing. The members of this family function as transcriptional regulators that are involved in various cellular survival processes, such as toxin production, detoxification, multidrug resistance, antibiotic biosynthesis, and carbon catabolism. Rv1176 of Mycobacterium tuberculosis H37Rv has been assigned to the PadR family protein that remains to be structurally and functionally uncharacterized. To reveal the structural mechanism by which Rv1176 could regulates effector-responsive transcription, several experiments were performed, including Electrophoretic Mobility Shift Assay (EMSA) for DNA protein interaction, differential scanning calorimetry (DSC) and Differential Scanning Fluorimetry (DSF) for temperature and ligand-dependent protein stability, Circular Dichroism (CD) spectroscopy for secondary structure analysis. Further, to evaluate the functional role of Rv1176, the intracellular survival of recombinant M. smegmatis was examined in murine macrophage cell line J774A.1 and different stressed conditions like oxidative, pH, and nutritive stress. All these studies demonstrated that Rv1176 could behave as a transcription regulator and its expression in recombinant M. smegmatis increases intracellular survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMSA" title="EMSA">EMSA</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculosis" title=" Mycobacterium tuberculosis"> Mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=PadR%20family%20protein" title=" PadR family protein"> PadR family protein</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptional%20regulator" title=" transcriptional regulator"> transcriptional regulator</a> </p> <a href="https://publications.waset.org/abstracts/161202/structural-and-functional-characterization-of-the-transcriptional-regulator-rv1176-of-mycobacterium-tuberculosis-h37rv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Biophysical and Structural Characterization of Transcription Factor Rv0047c of Mycobacterium Tuberculosis H37Rv</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Samsuddin%20Ansari">Md. Samsuddin Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Arora"> Ashish Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year 10 million people fall ill with one of the oldest diseases known as tuberculosis, caused by Mycobacterium tuberculosis. The success of M. tuberculosis as a pathogen is because of its ability to persist in host tissues. Multidrug resistance (MDR) mycobacteria cases increase every day, which is associated with efflux pumps controlled at the level of transcription. The transcription regulators of MDR transporters in bacteria belong to one of the following four regulatory protein families: AraC, MarR, MerR, and TetR. Phenolic acid decarboxylase repressor (PadR), like a family of transcription regulators, is closely related to the MarR family. Phenolic acid decarboxylase repressor (PadR) was first identified as a transcription factor involved in the regulation of phenolic acid stress response in various microorganisms (including Mycobacterium tuberculosis H37Rv). Recently research has shown that the PadR family transcription factors are global, multifunction transcription regulators. Rv0047c is a PadR subfamily-1 protein. We are exploring the biophysical and structural characterization of Rv0047c. The Rv0047 gene was amplified by PCR using the primers containing EcoRI and HindIII restriction enzyme sites cloned in pET-NH6 vector and overexpressed in DH5α and BL21 (λDE3) cells of E. coli following purification with Ni2+-NTA column and size exclusion chromatography. We did DSC to know the thermal stability; the Tm (transition temperature) of protein is 55.29ºC, and ΔH (enthalpy change) of 6.92 kcal/mol. Circular dichroism to know the secondary structure and conformation and fluorescence spectroscopy for tertiary structure study of protein. To understand the effect of pH on the structure, function, and stability of Rv0047c we employed spectroscopy techniques such as circular dichroism, fluorescence, and absorbance measurements in a wide range of pH (from pH-2.0 to pH-12). At low and high pH, it shows drastic changes in the secondary and tertiary structure of the protein. EMSA studies showed the specific binding of Rv0047c with its own 30-bp promoter region. To determine the effect of complex formation on the secondary structure of Rv0047c, we examined the CD spectra of the complex of Rv0047c with promoter DNA of rv0047. The functional role of Rv0047c was characterized by over-expressing the Rv0047c gene under the control of hsp60 promoter in Mycobacterium tuberculosis H37Rv. We have predicted the three-dimensional structure of Rv0047c using the Swiss Model and Modeller, with validity checked by the Ramachandra plot. We did molecular docking of Rv0047c with dnaA, through PatchDock following refinement through FireDock. Through this, it is possible to easily identify the binding hot-stop of the receptor molecule with that of the ligand, the nature of the interface itself, and the conformational change undergone by the protein pattern. We are using X-crystallography to unravel the structure of Rv0047c. Overall the studies show that Rv0047c may have transcription regulation along with providing an insight into the activity of Rv0047c in the pH range of subcellular environment and helps to understand the protein-protein interaction, a novel target to kill dormant bacteria and potential strategy for tuberculosis control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acid%20decarboxylase%20repressor" title=" phenolic acid decarboxylase repressor"> phenolic acid decarboxylase repressor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rv0047c" title=" Rv0047c"> Rv0047c</a>, <a href="https://publications.waset.org/abstracts/search?q=Circular%20dichroism" title=" Circular dichroism"> Circular dichroism</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20spectroscopy" title=" fluorescence spectroscopy"> fluorescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/161001/biophysical-and-structural-characterization-of-transcription-factor-rv0047c-of-mycobacterium-tuberculosis-h37rv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20J.%20Balwierz">Piotr J. Balwierz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Pachkov"> Mikhail Pachkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Arnold"> Phil Arnold</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20J.%20Gruber"> Andreas J. Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Zavolan"> Mihaela Zavolan</a>, <a href="https://publications.waset.org/abstracts/search?q=Erik%20van%20Nimwegen"> Erik van Nimwegen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20analysis" title="gene expression analysis">gene expression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput%20sequencing%20analysis" title=" high-throughput sequencing analysis"> high-throughput sequencing analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor%20activity" title=" transcription factor activity"> transcription factor activity</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20regulation" title=" transcription regulation"> transcription regulation</a> </p> <a href="https://publications.waset.org/abstracts/147333/ismara-completely-automated-inference-of-gene-regulatory-networks-from-high-throughput-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee-Seul%20So">Yee-Seul So</a>, <a href="https://publications.waset.org/abstracts/search?q=Guiseppe%20Ianiri"> Guiseppe Ianiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Idnurm"> Alex Idnurm</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sun%20Bahn"> Yong-Sun Bahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungal%20pathogen" title="fungal pathogen">fungal pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=serine%2Fthreonine%20kinase" title=" serine/threonine kinase"> serine/threonine kinase</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20of%20rapamycin" title=" target of rapamycin"> target of rapamycin</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a> </p> <a href="https://publications.waset.org/abstracts/69093/unravelling-of-the-tor-signaling-pathway-in-human-fungal-pathogen-cryptococcus-neoformans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fei%20Xu">Fei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Zhang"> Guofan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Liu"> Xiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20development" title="indirect development">indirect development</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation%20network" title=" gene regulation network"> gene regulation network</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20synthesis" title=" protein synthesis"> protein synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factors" title=" transcription factors"> transcription factors</a> </p> <a href="https://publications.waset.org/abstracts/104901/effects-of-epinephrine-on-gene-expressions-during-the-metamorphosis-of-pacific-oyster-crassostrea-gigas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingfang%20Guo">Qingfang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isodon%20rubescens" title="isodon rubescens">isodon rubescens</a>, <a href="https://publications.waset.org/abstracts/search?q=MYB" title=" MYB"> MYB</a>, <a href="https://publications.waset.org/abstracts/search?q=oridonin" title=" oridonin"> oridonin</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title=" CRISPR/Cas9"> CRISPR/Cas9</a> </p> <a href="https://publications.waset.org/abstracts/189637/function-study-of-irmyb55-in-regulating-synthesis-of-terpenoids-in-isodon-rubescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Identification of Conserved Domains and Motifs for GRF Gene Family </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Ahmadi">Jafar Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20Noormohammadi"> Nafiseh Noormohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedegeh%20Fabriki%20Ourang"> Sedegeh Fabriki Ourang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare, and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ, and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domain" title="domain">domain</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20family" title=" gene family"> gene family</a>, <a href="https://publications.waset.org/abstracts/search?q=GRF" title=" GRF"> GRF</a>, <a href="https://publications.waset.org/abstracts/search?q=motif" title=" motif"> motif</a> </p> <a href="https://publications.waset.org/abstracts/18842/identification-of-conserved-domains-and-motifs-for-grf-gene-family" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Stress-Controlled Senescence and Development in Arabidopsis thaliana by Root Associated Factor (RAF), a NAC Transcription Regulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Kamranfar">Iman Kamranfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang-Ping%20Xue"> Gang-Ping Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Balazadeh"> Salma Balazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Mueller-Roeber"> Bernd Mueller-Roeber </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adverse environmental conditions such as salinity stress, high temperature and drought limit plant growth and typically lead to precocious tissue degeneration and leaf senescence, a process by which nutrients from photosynthetic organs are recycled for the formation of flowers and seeds to secure reaching the next generation under such harmful conditions. In addition, abiotic stress affects developmental patterns that help the plant to withstand unfavourable environmental conditions. We discovered an NAC (for NAM, ATAF1, 2, and CUC2) transcription factor (TF), called RAF in the following, which plays a central role in abiotic drought stress-triggered senescence and the control of developmental adaptations to stressful environments. RAF is an ABA-responsive TF; RAF overexpressors are hypersensitive to abscisic acid (ABA) and exhibit precocious senescence while knock-out mutants show delayed senescence. To explore the RAF gene regulatory network (GRN), we determined its preferred DNA binding sites by binding site selection assay (BSSA) and performed microarray-based expression profiling using inducible RAF overexpression lines and chromatin immunoprecipitation (ChIP)-PCR. Our studies identified several direct target genes, including those encoding for catabolic enzymes acting during stress-induced senescence. Furthermore, we identified various genes controlling drought stress-related developmental changes. Based on our results, we conclude that RAF functions as a central transcriptional regulator that coordinates developmental programs with stress-related inputs from the environment. To explore the potential agricultural applications of our findings, we are currently extending our studies towards crop species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabidopsis" title=" Arabidopsis"> Arabidopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a> </p> <a href="https://publications.waset.org/abstracts/78835/stress-controlled-senescence-and-development-in-arabidopsis-thaliana-by-root-associated-factor-raf-a-nac-transcription-regulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suliman%20A.%20I.%20Ali">Suliman A. I. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mory%20Mandiana%20Diakite"> Mory Mandiana Diakite</a>, <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Ali"> Saqib Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Man-Qun%20Wang"> Man-Qun Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rhyzopertha%20dominica" title="Rhyzopertha dominica">Rhyzopertha dominica</a>, <a href="https://publications.waset.org/abstracts/search?q=CSPs" title=" CSPs"> CSPs</a>, <a href="https://publications.waset.org/abstracts/search?q=PBPs" title=" PBPs"> PBPs</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20cloning" title=" molecular cloning"> molecular cloning</a> </p> <a href="https://publications.waset.org/abstracts/96733/molecular-cloning-of-csp2s-pbp1-and-pbp2-genes-of-rhyzopertha-dominica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> The Role of Estradiol-17β and Type IV Collagen on the Regulation and Expression Level Of C-Erbb2 RNA and Protein in SKOV-3 Ovarian Cancer Cell Line </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merry%20Meryam%20Martgrita">Merry Meryam Martgrita</a>, <a href="https://publications.waset.org/abstracts/search?q=Marselina%20Irasonia%20Tan"> Marselina Irasonia Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of several aggresive cancer is cancer that overexpress c-erbB2 receptor along with the expression of estrogen receptor. Components of extracellular matrix play an important role to increase cancer cells proliferation, migration and invasion. Both components can affect cancer development by regulating the signal transduction pathways in cancer cells. In recent research, SKOV-3 ovarian cancer cell line, that overexpress c-erbB2 receptor was cultured on type IV collagen and treated with estradiol-17β, to reveal the role of both components on RNA and protein level of c-erbB2 receptor. In this research we found a modulation phenomena of increasing and decreasing of c-erbB2 RNA level and a stabilisation phenomena of c-erbB2 protein expression due to estradiol-17β and type IV collagen. It seemed that estradiol-17β has an important role to increase c-erbB2 transcription and the stability of c-erbB2 protein expression. Type IV collagen has an opposite role. It blocked c-erbB2 transcription when it bound to integrin receptor in SKOV-3 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=c-erbB2" title="c-erbB2">c-erbB2</a>, <a href="https://publications.waset.org/abstracts/search?q=estradiol-17%CE%B2" title=" estradiol-17β"> estradiol-17β</a>, <a href="https://publications.waset.org/abstracts/search?q=SKOV-3" title=" SKOV-3"> SKOV-3</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20IV%20collagen" title=" type IV collagen"> type IV collagen</a> </p> <a href="https://publications.waset.org/abstracts/27964/the-role-of-estradiol-17v-and-type-iv-collagen-on-the-regulation-and-expression-level-of-c-erbb2-rna-and-protein-in-skov-3-ovarian-cancer-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Sotoudeheian">Mohammadjavad Sotoudeheian</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Nematollahi"> Soroush Nematollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title="immune system">immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=Crohn%E2%80%99s%20Disease" title=" Crohn’s Disease"> Crohn’s Disease</a>, <a href="https://publications.waset.org/abstracts/search?q=BATF" title=" BATF"> BATF</a>, <a href="https://publications.waset.org/abstracts/search?q=T%20helper%20cells" title=" T helper cells"> T helper cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Bcl" title=" Bcl"> Bcl</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin" title=" interleukin"> interleukin</a>, <a href="https://publications.waset.org/abstracts/search?q=FOSL" title=" FOSL"> FOSL</a> </p> <a href="https://publications.waset.org/abstracts/151227/targeting-basic-leucine-zipper-transcription-factor-atf-like-mediated-immune-cells-regulation-to-reduce-crohns-disease-fistula-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Comparative Functional Analysis of Two Major Sterol-Biosynthesis Regulating Transcription Factors, Hob1 and Sre1, in Pathogenic Cryptococcus Species Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Gi%20Lee">Dong-Gi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyeon%20Cha"> Suyeon Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sun%20Bahn"> Yong-Sun Bahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sterol lipid is essential for cell membrane structure in eukaryotic cells. In mammalian cells, sterol regulatory element binding proteins (SREBPs) act as principal regulators of cellular cholesterol which is essential for proper cell membrane fluidity and structure. SREBP and sterol regulation are related to levels of cellular oxygen because it is a major substrate for sterol synthesis. Upon cellular sterol and oxygen levels are depleted, SREBP is translocated to the Golgi where it undergoes proteolytic cleavage of N terminus, then it travels to the nucleus to play a role as transcription factor. In yeast cells, synthesis of ergosterol is also highly oxygen consumptive, and Sre1 is a transcription factor known to play a central role in adaptation to growth under low oxygen condition and sterol homeostasis in Cryptococcus neoformans. In this study, we observed phenotypes in other strains of Cryptococcus species by constructing hob1Δ and sre1Δ mutants to confirm whether the functions of both genes are conserved in most serotypes. As a result, hob1Δ showed no noticeable phenotype under treatment of antifungal drugs and most environmental stresses in R265 (C. gattii) and XL280 (C. neoformans), suggesting that Hob1 is related to sterol regulation only in H99 (serotype A). On the other hand, the function of Sre1 was found to be conserved in most serotypes. Furthermore, mating experiment of hob1Δ or sre1Δ showed dramatic defects in serotype A (H99) and D (XL280). It revealed that Hob1 and Sre1 related to mating ability in Cryptococcus species, especially cell fusion efficiency. In conclusion, HOB1 and SRE1 play crucial role in regulating sterol-homeostasis and differentiation in C. neoformans, moreover, Hob1 is specific gene in Cryptococcus neoformans. It suggests that Hob1 is considered as potent factor-targeted new safety antifungal drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptococcus%20neoformans" title="cryptococcus neoformans">cryptococcus neoformans</a>, <a href="https://publications.waset.org/abstracts/search?q=Hob1" title=" Hob1"> Hob1</a>, <a href="https://publications.waset.org/abstracts/search?q=Sre1" title=" Sre1"> Sre1</a>, <a href="https://publications.waset.org/abstracts/search?q=sterol%20regulatory%20element%20binding%20proteins" title=" sterol regulatory element binding proteins"> sterol regulatory element binding proteins</a> </p> <a href="https://publications.waset.org/abstracts/69541/comparative-functional-analysis-of-two-major-sterol-biosynthesis-regulating-transcription-factors-hob1-and-sre1-in-pathogenic-cryptococcus-species-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Subtitling in the Classroom: Combining Language Mediation, ICT and Audiovisual Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rossella%20Resi">Rossella Resi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a project carried out in an Italian school with English learning pupils combining three didactic tools which are attested to be relevant for the success of young learner’s language curriculum: the use of technology, the intralingual and interlingual mediation (according to CEFR) and the cultural dimension. Aim of this project was to test a technological hands-on translation activity like subtitling in a formal teaching context and to exploit its potential as motivational tool for developing listening and writing, translation and cross-cultural skills among language learners. The activities proposed involved the use of professional subtitling software called Aegisub and culture-specific films. The workshop was optional so motivation was entirely based on the pleasure of engaging in the use of a realistic subtitling program and on the challenge of meeting the constraints that a real life/work situation might involve. Twelve pupils in the age between 16 and 18 have attended the afternoon workshop. The workshop was organized in three parts: (i) An introduction where the learners were opened up to the concept and constraints of subtitling and provided with few basic rules on spotting and segmentation. During this session learners had also the time to familiarize with the main software features. (ii) The second part involved three subtitling activities in plenum or in groups. In the first activity the learners experienced the technical dimensions of subtitling. They were provided with a short video segment together with its transcription to be segmented and time-spotted. The second activity involved also oral comprehension. Learners had to understand and transcribe a video segment before subtitling it. The third activity embedded a translation activity of a provided transcription including segmentation and spotting of subtitles. (iii) The workshop ended with a small final project. At this point learners were able to master a short subtitling assignment (transcription, translation, segmenting and spotting) on their own with a similar video interview. The results of these assignments were above expectations since the learners were highly motivated by the authentic and original nature of the assignment. The subtitled videos were evaluated and watched in the regular classroom together with other students who did not take part to the workshop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT" title="ICT">ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=L2" title=" L2"> L2</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20learning" title=" language learning"> language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20mediation" title=" language mediation"> language mediation</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitling" title=" subtitling"> subtitling</a> </p> <a href="https://publications.waset.org/abstracts/33987/subtitling-in-the-classroom-combining-language-mediation-ict-and-audiovisual-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transcription&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10