CINXE.COM
Search results for: bar model method
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bar model method</title> <meta name="description" content="Search results for: bar model method"> <meta name="keywords" content="bar model method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bar model method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bar model method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31467</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bar model method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31257</span> A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Korchi%20Ayoub">El Korchi Ayoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherif%20Raef"> Cherif Raef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SEA" title="SEA">SEA</a>, <a href="https://publications.waset.org/abstracts/search?q=SPL" title=" SPL"> SPL</a>, <a href="https://publications.waset.org/abstracts/search?q=DLF" title=" DLF"> DLF</a>, <a href="https://publications.waset.org/abstracts/search?q=NVH" title=" NVH"> NVH</a> </p> <a href="https://publications.waset.org/abstracts/166408/a-statistical-energy-analysis-model-of-an-automobile-for-the-prediction-of-the-internal-sound-pressure-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31256</span> Study of Heat Conduction in Multicore Chips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Seetharamu">K. N. Seetharamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Teggi"> Naveen Teggi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiranakumar%20Dhavalagi"> Kiranakumar Dhavalagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Kamath"> Narayana Kamath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=checkered%20pattern" title="checkered pattern">checkered pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=granularity%20level" title=" granularity level"> granularity level</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore%20chips" title=" multicore chips"> multicore chips</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20hotspot%20temperature" title=" target hotspot temperature"> target hotspot temperature</a> </p> <a href="https://publications.waset.org/abstracts/73987/study-of-heat-conduction-in-multicore-chips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31255</span> Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassen%20M.%20Ouakad">Hassen M. Ouakad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=fringing-fields" title=" fringing-fields"> fringing-fields</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-plane%20stretching" title=" mid-plane stretching"> mid-plane stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin" title=" Galerkin"> Galerkin</a> </p> <a href="https://publications.waset.org/abstracts/40199/nonlinear-structural-behavior-of-micro-and-nano-actuators-using-the-galerkin-discretization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31254</span> Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Guo">Feng Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20brain%20organoids" title="human brain organoids">human brain organoids</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=organ-on-a-chip" title=" organ-on-a-chip"> organ-on-a-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a> </p> <a href="https://publications.waset.org/abstracts/138112/human-brain-organoids-on-a-chip-systems-to-model-neuroinflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31253</span> Let It Rain In Our Conscious To Flourish Our Individual Self Like A Sakura: The Balance Model From Ppt And Rain Spiritual Method Used In A Drugs Prevention Program For Teenagers In A Psychoeducational Manner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moise%20Alin%20Ionu%C8%9B%20Cornel">Moise Alin Ionuț Cornel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a pilot lesson of prevention of consumption drugs in a classroom of teenager`s where the school want them to know how to manage their thoughts and emotions to protect themself an to be strong in an possible environment of drugs consumption. At this classroom was applied the RAIN(Recognize, Accept, Investigation,Non-identify) spiritual method and the balance model from positive and transcultural psychotherapy (PPT) in a manner of a game play for them to understand the methods in an individual experience. The balance model from PPT with his 4 parts and used in 3 ways, and the RAIN spiritual method was used to see how the teenager`s can bring clarity about theirs individual self and how they spend the time and energy in the daily life. The 3 ways of how they can used this model was explained like a analogy with the 3 periods of the SAKURA (Japanese cherry) flourish (kaika, mankai and chiru). The teenager`s received a new perspective and in the same time new tools from the spiritual point of view combined with the psychotherapeutic point of view to manage their thoughts, emotions, time and energy in the form of a psychoeducational game to be able to prevent the use of drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addiction" title="addiction">addiction</a>, <a href="https://publications.waset.org/abstracts/search?q=drugs%20consumption%20prevention%20education" title=" drugs consumption prevention education"> drugs consumption prevention education</a>, <a href="https://publications.waset.org/abstracts/search?q=psychotherapy" title=" psychotherapy"> psychotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Self" title=" Self"> Self</a>, <a href="https://publications.waset.org/abstracts/search?q=Spirituality" title=" Spirituality"> Spirituality</a>, <a href="https://publications.waset.org/abstracts/search?q=teenagers" title=" teenagers"> teenagers</a> </p> <a href="https://publications.waset.org/abstracts/177932/let-it-rain-in-our-conscious-to-flourish-our-individual-self-like-a-sakura-the-balance-model-from-ppt-and-rain-spiritual-method-used-in-a-drugs-prevention-program-for-teenagers-in-a-psychoeducational-manner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31252</span> Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hafid">Mohamed Hafid</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lacroix"> Marcel Lacroix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melting%20furnace" title="melting furnace">melting furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20heat%20transfer" title=" inverse heat transfer"> inverse heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20method" title=" enthalpy method"> enthalpy method</a>, <a href="https://publications.waset.org/abstracts/search?q=levenberg%E2%80%93marquardt%20method" title=" levenberg–marquardt method"> levenberg–marquardt method</a> </p> <a href="https://publications.waset.org/abstracts/49891/inverse-heat-transfer-analysis-of-a-melting-furnace-using-levenberg-marquardt-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31251</span> Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariful%20Islam">Ariful Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Showkat%20Ahmad%20Lone"> Showkat Ahmad Lone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title="comparative analysis">comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukherjee-Islam%20failure%20model" title=" Mukherjee-Islam failure model"> Mukherjee-Islam failure model</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20weighted%20moment%20estimation" title=" probability weighted moment estimation"> probability weighted moment estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/74517/reliability-and-probability-weighted-moment-estimation-for-three-parameter-mukherjee-islam-failure-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31250</span> An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li">Jia Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Huacong%20Li"> Huacong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaobao%20Han"> Xiaobao Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variable%20cycle%20engine%20%28VCE%29" title="variable cycle engine (VCE)">variable cycle engine (VCE)</a>, <a href="https://publications.waset.org/abstracts/search?q=full-state%20linear%20model" title=" full-state linear model"> full-state linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=by-pass%20ratio" title=" by-pass ratio"> by-pass ratio</a> </p> <a href="https://publications.waset.org/abstracts/57966/an-adaptive-controller-method-based-on-full-state-linear-model-of-variable-cycle-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31249</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31248</span> Time Series Regression with Meta-Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Chuchro">Monika Chuchro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a> </p> <a href="https://publications.waset.org/abstracts/3788/time-series-regression-with-meta-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31247</span> Buckling Analysis of 2D Frames Using the Modified Newmark Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Vakili">Seyed Amin Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sadat%20Vakili"> Sahar Sadat Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ehsan%20Vakili"> Seyed Ehsan Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abdoli%20Yazdi"> Nader Abdoli Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=frame" title=" frame"> frame</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20newmark%20method" title=" modified newmark method"> modified newmark method</a> </p> <a href="https://publications.waset.org/abstracts/42638/buckling-analysis-of-2d-frames-using-the-modified-newmark-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31246</span> Robust Speed Sensorless Control to Estimated Error for PMa-SynRM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Jin%20Joo">Kyoung-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong"> Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMa-SynRM" title="PMa-SynRM">PMa-SynRM</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless%20control" title=" sensorless control"> sensorless control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimation" title=" robust estimation"> robust estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=MRAS%20method" title=" MRAS method"> MRAS method</a> </p> <a href="https://publications.waset.org/abstracts/41418/robust-speed-sensorless-control-to-estimated-error-for-pma-synrm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31245</span> LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajeeha%20Ansar">Sajeeha Ansar</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20Ali%20Safi"> Asad Ali Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Ziauddin"> Sheikh Ziauddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20R.%20Shahid"> Ahmad R. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Ahsan"> Faraz Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor%20segmentation" title="brain tumor segmentation">brain tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LGG" title=" LGG"> LGG</a> </p> <a href="https://publications.waset.org/abstracts/89567/lgg-architecture-for-brain-tumor-segmentation-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31244</span> Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title="eddy current">eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20testing" title=" non destructive testing"> non destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/7187/modeling-and-simulation-for-3d-eddy-current-testing-in-conducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31243</span> An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiongxiong%20You">Xiongxiong You</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanwen%20Niu"> Zhanwen Niu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20selection" title="adaptive selection">adaptive selection</a>, <a href="https://publications.waset.org/abstracts/search?q=expensive%20optimization" title=" expensive optimization"> expensive optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20system" title=" rotor system"> rotor system</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogates%20assisted%20evolutionary%20algorithms" title=" surrogates assisted evolutionary algorithms"> surrogates assisted evolutionary algorithms</a> </p> <a href="https://publications.waset.org/abstracts/137516/an-adaptive-hybrid-surrogate-assisted-particle-swarm-optimization-algorithm-for-expensive-structural-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31242</span> Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song%20Hyok%20Choe">Song Hyok Choe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solenoid%20electromagnet" title="solenoid electromagnet">solenoid electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20hammer" title=" electromagnetic hammer"> electromagnetic hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20processing" title=" stone processing"> stone processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/187061/mathematical-modeling-of-the-operating-process-and-a-method-to-determine-the-design-parameters-in-an-electromagnetic-hammer-using-solenoid-electromagnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31241</span> The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakrim%20Abderrazak">Lakrim Abderrazak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahri%20Driss"> Tahri Driss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20power%20MOSFET" title="SiC power MOSFET">SiC power MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20electro-thermal%20model" title=" DC electro-thermal model"> DC electro-thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=ABM%20Spice%20library" title=" ABM Spice library"> ABM Spice library</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20modelling" title=" SPICE modelling"> SPICE modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioural%20model" title=" behavioural model"> behavioural model</a>, <a href="https://publications.waset.org/abstracts/search?q=C2M0025120D%20CREE." title=" C2M0025120D CREE."> C2M0025120D CREE.</a> </p> <a href="https://publications.waset.org/abstracts/20601/the-dc-behavioural-electrothermal-model-of-silicon-carbide-power-mosfets-under-spice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31240</span> A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Iyamuremye">Emmanuel Iyamuremye</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Fran%C3%A7ois%20Maniriho"> Jean François Maniriho</a>, <a href="https://publications.waset.org/abstracts/search?q=Irenee%20Ndayambaje"> Irenee Ndayambaje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5Es%20instructional%20model" title="5Es instructional model">5Es instructional model</a>, <a href="https://publications.waset.org/abstracts/search?q=achievement" title=" achievement"> achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20teaching%20method" title=" conventional teaching method"> conventional teaching method</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a> </p> <a href="https://publications.waset.org/abstracts/127480/a-quasi-experimental-study-of-the-impact-of-5es-instructional-model-on-students-mathematics-achievement-in-northern-province-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31239</span> A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yibin%20Qiu">Yibin Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yubo%20Ouyang"> Yubo Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihan%20Li"> Shihan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guorui%20Zhang"> Guorui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Li"> Qi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weirong%20Chen"> Weirong Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixture%20vine%20copula%20structure%20model" title="mixture vine copula structure model">mixture vine copula structure model</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20estimate%20method" title=" three-point estimate method"> three-point estimate method</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20probability%20integral%20transform" title=" the probability integral transform"> the probability integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20backtracking%20search%20algorithm" title=" modified backtracking search algorithm"> modified backtracking search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20optimization" title=" reactive power optimization"> reactive power optimization</a> </p> <a href="https://publications.waset.org/abstracts/66356/a-mixture-vine-copula-structures-model-for-dependence-wind-speed-among-wind-farms-and-its-application-in-reactive-power-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31238</span> Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benkraouda">S. Benkraouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Djelloul-Khedda"> Z. Djelloul-Khedda</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yagoubi"> B. Yagoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20fire" title="forest fire">forest fire</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fire%20detection" title=" forest fire detection"> forest fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20distribution" title=" normal distribution"> normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20gaussian%20model" title=" theoretical gaussian model"> theoretical gaussian model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20infrared%20matrix%20image" title=" thermal infrared matrix image"> thermal infrared matrix image</a> </p> <a href="https://publications.waset.org/abstracts/118320/gaussian-probability-density-for-forest-fire-detection-using-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31237</span> Competency Model as a Key Tool for Managing People in Organizations: Presentation of a Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20%C4%8Cop%C3%ADKov%C3%A1">Andrea ČopíKová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Competency Based Management is a new approach to management, which solves organization’s challenges with complexity and with the aim to find and solve organization’s problems and learn how to avoid these in future. They teach the organizations to create, apart from the state of stability – that is temporary, vital organization, which is permanently able to utilize and profit from internal and external opportunities. The aim of this paper is to propose a process of competency model design, based on which a competency model for a financial department manager in a production company will be created. Competency models are very useful tool in many personnel processes in any organization. They are used for acquiring and selection of employees, designing training and development activities, employees’ evaluation, and they can be used as a guide for a career planning and as a tool for succession planning especially for managerial positions. When creating a competency model the method AHP (Analytic Hierarchy Process) and quantitative pair-wise comparison (Saaty’s method) will be used; these methods belong among the most used methods for the determination of weights, and it is used in the AHP procedure. The introduction part of the paper consists of the research results pertaining to the use of competency model in practice and then the issue of competency and competency models is explained. The application part describes in detail proposed methodology for the creation of competency models, based on which the competency model for the position of financial department manager in a foreign manufacturing company, will be created. In the conclusion of the paper, the final competency model will be shown for above mentioned position. The competency model divides selected competencies into three groups that are managerial, interpersonal and functional. The model describes in detail individual levels of competencies, their target value (required level) and the level of importance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title="analytic hierarchy process">analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=competency" title=" competency"> competency</a>, <a href="https://publications.waset.org/abstracts/search?q=competency%20model" title=" competency model"> competency model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20pairwise%20comparison" title=" quantitative pairwise comparison"> quantitative pairwise comparison</a> </p> <a href="https://publications.waset.org/abstracts/60510/competency-model-as-a-key-tool-for-managing-people-in-organizations-presentation-of-a-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31236</span> Presenting the Mathematical Model to Determine Retention in the Watersheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shamohammadi">S. Shamohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Razavi"> L. Razavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical" title=" mathematical"> mathematical</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS" title=" SCS"> SCS</a> </p> <a href="https://publications.waset.org/abstracts/45992/presenting-the-mathematical-model-to-determine-retention-in-the-watersheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31235</span> On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Durojaye">M. O. Durojaye</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20Agee"> J. T. Agee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title="electrical conductivity">electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20tangent%20function" title=" hyperbolic tangent function"> hyperbolic tangent function</a>, <a href="https://publications.waset.org/abstracts/search?q=PTC%20thermistor" title=" PTC thermistor"> PTC thermistor</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20lines" title=" method of lines"> method of lines</a> </p> <a href="https://publications.waset.org/abstracts/44120/on-the-ptc-thermistor-model-with-a-hyperbolic-tangent-electrical-conductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31234</span> The Impact of Artificial Intelligence on Spare Parts Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Andria%20Gad%20Shehata">Amir Andria Gad Shehata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spare%20part" title="spare part">spare part</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20part%20inventory" title=" spare part inventory"> spare part inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20model" title=" inventory model"> inventory model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenanceneural%20network" title=" maintenanceneural network"> maintenanceneural network</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=MLP" title=" MLP"> MLP</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20demand" title=" forecasting demand"> forecasting demand</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a> </p> <a href="https://publications.waset.org/abstracts/184674/the-impact-of-artificial-intelligence-on-spare-parts-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31233</span> The Origins of Inflation in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narimen%20Rdhaounia%20Mohamed%20Kouni">Narimen Rdhaounia Mohamed Kouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our aim in this paper is to identify the origins of inflation in Tunisia on the period from 1988 to 2018. In order to estimate the model, an ARDL methodology is used. We studied also the effect of informal economy on inflation. Indeed, we estimated the size of the informal economy in Tunisia based on Gutmann method. The results showed that there are three main origins of inflation. In fact, the first origin is the fiscal policy adopted by Tunisia, particularly after revolution. The second origin is the increase of monetary variables. Finally, informal economy played an important role in inflation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflation" title="inflation">inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20price%20index" title=" consumer price index"> consumer price index</a>, <a href="https://publications.waset.org/abstracts/search?q=informal" title=" informal"> informal</a>, <a href="https://publications.waset.org/abstracts/search?q=gutmann%20method" title=" gutmann method"> gutmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL%20model" title=" ARDL model"> ARDL model</a> </p> <a href="https://publications.waset.org/abstracts/158470/the-origins-of-inflation-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31232</span> Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Shahrbanozadeh">Mehrdad Shahrbanozadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholam%20Abbas%20Barani"> Gholam Abbas Barani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Shojaee"> Saeed Shojaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seepage" title="seepage">seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20foundation" title=" dam foundation"> dam foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=seep%203D%20model" title=" seep 3D model"> seep 3D model</a> </p> <a href="https://publications.waset.org/abstracts/20239/simulation-of-flow-through-dam-foundation-by-fem-and-ann-methods-case-study-shahid-abbaspour-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31231</span> Study of the Phenomenon Nature of Order and Disorder in BaMn(Fe/V)F7 Fluoride Glass by the Hybrid Reverse Monte Carlo Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Mesli">Sidi Mohamed Mesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habchi"> Mohamed Habchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kotbi"> Mohamed Kotbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Benallal"> Rafik Benallal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelali%20Derouiche"> Abdelali Derouiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluoride glasses with a nominal composition of BaMnMF7 (M = FeV assuming isomorphous replacement) have been structurally modelled through the simultaneous simulation of their neutron diffraction patterns by a reverse Monte Carlo (RMC) model and by a Rietveld for disordered materials (RDM) method. Model is consistent with an expected network of interconnected [MF6] polyhedra. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term in acceptance criteria. This method is called the Hybrid Reverse Monte Carlo (HRMC) method. The idea of this paper is to apply the (HRMC) method to the title glasses, in order to make a study of the phenomenon nature of order and disorder by displaying and discussing the partial pair distribution functions (PDFs) g(r). We suggest that this method can be used to describe average correlations between components of fluoride glass or similar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20glasses" title="fluoride glasses">fluoride glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=RMC%20simulation" title=" RMC simulation"> RMC simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20scattering" title=" neutron scattering"> neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20RMC%20simulation" title=" hybrid RMC simulation"> hybrid RMC simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lennard-Jones%20potential" title=" Lennard-Jones potential"> Lennard-Jones potential</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20pair%20distribution%20functions" title=" partial pair distribution functions"> partial pair distribution functions</a> </p> <a href="https://publications.waset.org/abstracts/3016/study-of-the-phenomenon-nature-of-order-and-disorder-in-bamnfevf7-fluoride-glass-by-the-hybrid-reverse-monte-carlo-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31230</span> Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritsuko%20Kawasaki%20%28Aiba%29">Ritsuko Kawasaki (Aiba)</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Hiromatsu"> Takeshi Hiromatsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20security%20risk%20treatment" title="information security risk treatment">information security risk treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=selection%20of%20risk%20measures" title=" selection of risk measures"> selection of risk measures</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20acceptance" title=" risk acceptance"> risk acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/8619/proposal-of-a-model-supporting-decision-making-based-on-multi-objective-optimization-analysis-on-information-security-risk-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31229</span> Study of the Stability of Underground Mines by Numerical Method: The Mine Chaabet El Hamra, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nakache%20Radouane">Nakache Radouane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Boukelloul"> M. Boukelloul</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fredj"> M. Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Method room and pillar sizes are key factors for safe mining and their recovery in open-stop mining. This method is advantageous due to its simplicity and requirement of little information to be used. It is probably the most representative method among the total load approach methods although it also remains a safe design method. Using a finite element software (PLAXIS 3D), analyses were carried out with an elasto-plastic model and comparisons were made with methods based on the total load approach. The results were presented as the optimization for improving the ore recovery rate while maintaining a safe working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=room%20and%20pillar" title="room and pillar">room and pillar</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20load%20approach" title=" total load approach"> total load approach</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic" title=" elasto-plastic"> elasto-plastic</a> </p> <a href="https://publications.waset.org/abstracts/48348/study-of-the-stability-of-underground-mines-by-numerical-method-the-mine-chaabet-el-hamra-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31228</span> Earnings vs Cash Flows: The Valuation Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megha%20Agarwal">Megha Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earnings" title="earnings">earnings</a>, <a href="https://publications.waset.org/abstracts/search?q=cash%20flows" title=" cash flows"> cash flows</a>, <a href="https://publications.waset.org/abstracts/search?q=valuation" title=" valuation"> valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=Residual%20Earnings%20Model%20%28REM%29" title=" Residual Earnings Model (REM)"> Residual Earnings Model (REM)</a> </p> <a href="https://publications.waset.org/abstracts/11464/earnings-vs-cash-flows-the-valuation-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=1048">1048</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=1049">1049</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bar%20model%20method&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>