CINXE.COM
Search results for: rumen content
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rumen content</title> <meta name="description" content="Search results for: rumen content"> <meta name="keywords" content="rumen content"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rumen content" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rumen content"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6149</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rumen content</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6149</span> Investigation of Biogas from Slaughterhouse and Dairy Farm Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saadelnour%20Abdueljabbar%20Adam">Saadelnour Abdueljabbar Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-digester" title=" bio-digester"> bio-digester</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20manure" title=" cow manure"> cow manure</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a> </p> <a href="https://publications.waset.org/abstracts/20167/investigation-of-biogas-from-slaughterhouse-and-dairy-farm-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6148</span> Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hassan%20Onsa">Mahmoud Hassan Onsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadelnour%20Abdueljabbar%20Adam"> Saadelnour Abdueljabbar Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-digester" title=" bio-digester"> bio-digester</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20manure" title=" cow manure"> cow manure</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a> </p> <a href="https://publications.waset.org/abstracts/27392/enhancing-of-biogas-production-from-slaughterhouse-and-dairy-farm-waste-with-pasteurization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6147</span> Amplified Ribosomal DNA Restriction Analysis Method to Assess Rumen Microbial Diversity of Ruminant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Natsir">A. Natsir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadir"> M. Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Syahrir"> S. Syahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mujnisa"> A. Mujnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Purnomo"> N. Purnomo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Egan"> A. R. Egan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Leury"> B. J. Leury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rumen degradation characteristic of feedstuff is one of the prominent factors affecting microbial population in rumen of animal. High rumen degradation rate of faba bean protein may lead to inconstant rumen conditions that could have a prominent impact on rumen microbial diversity. Amplified Ribosomal DNA Restriction Analysis (ARDRA) is utilized to monitor diversity of rumen microbes on sheep fed low quality forage supplemented by faba beans. Four mature merino sheep with existing rumen cannula were used in this study according to 4 x 4 Latin square design. The results of study indicated that there were 37 different ARDRA types identified out of 136 clones examined. Among those clones, five main clone types existed across the treatments with different percentages. In conclusion, the ARDRA method is potential to be used as a routine tool to assess the temporary changes in the rumen community as a result of different feeding strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARDRA%20method" title="ARDRA method">ARDRA method</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20diversity" title=" genomic diversity"> genomic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbes" title=" rumen microbes"> rumen microbes</a> </p> <a href="https://publications.waset.org/abstracts/55076/amplified-ribosomal-dna-restriction-analysis-method-to-assess-rumen-microbial-diversity-of-ruminant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6146</span> Changes in the Quantity of Milk and the PH and Temperature of Rumen Content, after Surgical Treatment of Displaced Abomasum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%C5%ABnas%20Antanaitis">Ramūnas Antanaitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Robertas%20Sto%C5%A1kus"> Robertas Stoškus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Televi%C4%8Dius"> Mindaugas Televičius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective is to identify changes in the quantity of milk and the pH and the temperature of rumen content after omentopexia. The research was performed in a dairy farm with 550 cows on December 2014 – January 2015. The sample consisted of 10 cows. Left-sided displacement of the abomasums was diagnosed in 5 of them, which was treated by lateral omentopexia according to Dirksen; the rest 5 were used for control. Additional treatment was not applied. A special bolus for measuring pH and temperature was administered to the rumen of healthy cows and cows after the operation. The quantity of milk was registered with the help of herd management program Westfalia DP C21. All data were recorded ones a week in the period of four weeks. Statistically reliable difference in the quantity of milk (p<0.05) between the research groups was observed during the entire research. The major difference was recorded on Week 1 after the treatment (29.18 kg/d); on Week 4, the difference was 13.97 kg/d. During the entire research, rumen pH of Test group was lower than that of the Control group. Statistically reliable difference between the groups was identified on Week 1 (p<0.05). On the period mentioned, the pH of the rumen content of Test group was lower by 0.42 than that of the Control group. On Week 3, the difference increased up to 0.84. On Weeks 1, 2, and 3, statistically reliable (p<0.05) higher temperature was observed in the Test group. Major difference of temperature, 1.81 °C, was recorded on Week 1. On Week 4, the temperature of rumen in the Test group became equal to that of the Control group. After omentopexia treatment, the first four weeks showed the following results: statistically reliable difference in the quantity of milk remains the most obvious in Week 1 after the treatment; cows with left-sided displacement of abomasums were exposed to greater risk of acidosis; they indicated lower pH of rumen content; the first two weeks after omentopexia, rumen content has increased temperature, especially obvious in Week 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Displacement%20of%20the%20abomasum" title="Displacement of the abomasum">Displacement of the abomasum</a>, <a href="https://publications.waset.org/abstracts/search?q=omentopexia" title=" omentopexia"> omentopexia</a>, <a href="https://publications.waset.org/abstracts/search?q=acidosis" title=" acidosis"> acidosis</a> </p> <a href="https://publications.waset.org/abstracts/24965/changes-in-the-quantity-of-milk-and-the-ph-and-temperature-of-rumen-content-after-surgical-treatment-of-displaced-abomasum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6145</span> Performance and Economics of Goats Fed Poultry Litter and Rumen Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed">A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Umar"> A. M. Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Adamu"> S. H. Adamu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to evaluate the growth performance and nutrients utilization using 20 entire males of Sahelian goats fed Rumen content (fore-stomach digest) and poultry litter waste (PLW) at various levels of inclusion. The experimental animals were randomly allocated to diet A (Control), B (10% each of FSD and PLW), C (6.67%PLW and 13.33 FSD) and D(13.33% PLW and 6.67% FDS) at the rate of five animals per treatment. After 90 days of feeding trial, It was observed that Diets D had best feed intake and body weight gain which might be due to the good palatability of PLW and less odour of FSD in the diet. Diet C had the least feed cost then followed by diet B and while diet A(control) was more expensive than other treatments. There was the significant difference (P<0.05) between the treatments in the cost of daily feed consumption. Treatment A had the highest value while treatment C recorded the lowest cost of daily feed consumption. There was no significant difference (P > 0.05) between all treatments in terms of Cost of feed kg/ live weight gain, where treatment B had the highest value while the lowest obtained in treatment D. However, it is recommended that more research trial should be carried out to ascertain the true value of incorporating poultry litter waste and fore-stomach digest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20litter" title="poultry litter">poultry litter</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20gain" title=" weight gain"> weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=economics" title=" economics "> economics </a> </p> <a href="https://publications.waset.org/abstracts/20033/performance-and-economics-of-goats-fed-poultry-litter-and-rumen-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6144</span> Macroscopic Lesions and Histological Changes Caused by Non-Biodegradable Foreign Bodies in the Rumen of Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Zahra">Rouabah Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tlidjane%20Madjid"> Tlidjane Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Lilia"> Belkacem Lilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafid%20Nadia"> Hafid Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallem%20Mouna"> Mallem Mouna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the current study was to evaluate the gross and histopathological changes caused by the presence of non-biodegradable foreign bodies (plastic bags) in the rumen-reticulum of cattle. To identify this problem, we conducted this study at a slaughterhouse on a total of 212 cattle without any previous selection. After slaughter and draining of the rumen, foreign bodies and macroscopic lesions were investigated, and rumen samples were taken for histopathological examination. Gross examination of the rumen-reticulum with non-biodegradable foreign bodies revealed congestion, hemorrhage, stunting, sagging, atrophy, and thinning of the papillae had been observed. Areas of erosion and ulceration were also observed in the rumen-reticulum of all cattle harboring a large quantity of plastic bags. Ulcerations and nodular formations were also present. The rumen-reticulum wall was thinner than normal and had a light-mottled wall and compressed papillae. The histopathological examination revealed a wide variety of lesions. We observed especially lesions of fragmentary or segmental ruptures, destruction, necrosis, degeneration and focal hyperplasia of the keratinized epithelium. The papillae are shortened, enlarged, atrophied, folded, and compressed. The length of the taste buds was reduced. These observed histopathological changes can be attributed to mechanical irritation induced by plastic bags or released chemicals by these non-biodegradable foreign bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle" title="cattle">cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=non-biodegradable%20foreign%20bodies" title=" non-biodegradable foreign bodies"> non-biodegradable foreign bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=lesions" title=" lesions"> lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a> </p> <a href="https://publications.waset.org/abstracts/183968/macroscopic-lesions-and-histological-changes-caused-by-non-biodegradable-foreign-bodies-in-the-rumen-of-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6143</span> The Changes of Chemical Composition of Rice Straw Treated by a Biodecomposer Developed from Rumen Bacterial of Buffalo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Natsir">A. Natsir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadir"> M. Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Syahrir"> S. Syahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mujnisa"> A. Mujnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In tropical countries such as in Indonesia, rice straw plays an important role in fulfilling the needs of feed for ruminant, especially during the dry season in which the availability of forage is very limited. However, the main problem of using rice straw as a feedstuff is low digestibility due to the existence of the links between lignin and cellulose or hemicellulose, and imbalance of its minerals content. One alternative to solve this problem is by application of biodecomposer (BS) derived from rumen bacterial of the ruminant. This study was designed to assess the effects of BS application on the changes of the chemical composition of rice straw. Four adults local buffalo raised under typical feeding conditions were used as a source of inoculum for BS development. The animal was fed for a month with a diet consisted of rice straw and elephant grass before taking rumen fluid samples. Samples of rumen fluid were inoculated in the carboxymethyl cellulose (CMC) media under anaerobic condition for 48 hours at 37°C. The mixture of CMC media and microbes are ready to be used as a biodecomposer following incubation of the mixture under anaerobic condition for 7 days at 45°C. The effectiveness of BS then assessed by applying the BS on the straw according to completely randomized design consisted of four treatments and three replication. One hundred g of ground coarse rice straw was used as the substrate. The BS was applied to the rice straw substrate with the following composition: Rice straw without BS (P0), rice straw + 5% BS (P1), rice straw +10% BS (P2), and rice straw + 15% BS. The mixture of rice straw and BS then fermented under anaerobic for four weeks. Following the fermentation, the chemical composition of rice straw was evaluated. The results indicated that the crude protein content of rice straw significantly increased (P < 0.05) as the level of BS increased. On the other hand, the concentration of crude fiber of the rice straw was significantly decreased (P < 0.05) as the level of BS increased. Other nutrients such as minerals did not change (P > 0.05) due to the treatments. In conclusion, application of BS developed from rumen bacterial of buffalo has a promising prospect to be used as a biological agent to improve the quality of rice straw as feeding for ruminant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodecomposer" title="biodecomposer">biodecomposer</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20buffalo" title=" local buffalo"> local buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbial" title=" rumen microbial"> rumen microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a> </p> <a href="https://publications.waset.org/abstracts/102548/the-changes-of-chemical-composition-of-rice-straw-treated-by-a-biodecomposer-developed-from-rumen-bacterial-of-buffalo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6142</span> Assessment on Rumen Microbial Diversity of Bali Cattle Using 16S rRNA Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmuddin%20Natsir">Asmuddin Natsir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mujnisa"> A. Mujnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Syahriani%20Syahrir"> Syahriani Syahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=Marhamah%20Nadir"> Marhamah Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Purnomo"> Nurul Purnomo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria, protozoa, Archaea, and fungi are the dominant microorganisms found in the rumen ecosystem that has an important role in converting feed ingredients into components that can be digested and utilized by the livestock host. This study was conducted to assess the diversity of rumen bacteria of bali cattle raised under traditional farming condition. Three adult bali cattle were used in this experiment. The rumen fluid samples from the three experimental animals were obtained by the Stomach Tube method before the morning feeding. The results of study indicated that the Illumina sequencing was successful in identifying 301,589 sequences, averaging 100,533 sequences, from three rumen fluid samples of three cattle. Furthermore, based on the SILVA taxonomic database, there were 19 kinds of phyla that had been successfully identified. Of the 19 phyla, there were only two dominant groups across the three samples, namely Bacteroidetes and Firmicutes, with an average percentage of 83.68% and 13.43%, respectively. Other groups such as Synergistetes, Spirochaetae, Planctomycetes can also be identified but in relatively small percentage. At the genus level, there were 157 sequences obtained from all three samples. Of this number, the most dominant group was Prevotella 1 with a percentage of 71.82% followed by 6.94% of Christencenellaceae R-7 group. Other groups such as Prevotellaceae UCG-001, Ruminococcaceae NK4A214 group, Sphaerochaeta, Ruminococcus 2, Rikenellaceae RC9 gut group, Quinella were also identified but with very low percentages. The sequencing results were able to detect the presence of 3.06% and 3.92% respectively for uncultured rumen bacterium and uncultured bacterium. In conclusion, the results of this experiment can provide an opportunity for a better understanding of the rumen bacterial diversity of the bali cattle raised under traditional farming condition and insight regarding the uncultured rumen bacterium and uncultured bacterium that need to be further explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20sequencing" title="16S rRNA sequencing">16S rRNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=bali%20cattle" title=" bali cattle"> bali cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbial%20diversity" title=" rumen microbial diversity"> rumen microbial diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncultured%20rumen%20bacterium" title=" uncultured rumen bacterium"> uncultured rumen bacterium</a> </p> <a href="https://publications.waset.org/abstracts/80303/assessment-on-rumen-microbial-diversity-of-bali-cattle-using-16s-rrna-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6141</span> Effects of Rations with High Amount of Crude Fiber on Rumen Fermentation in Suckler Cows </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Scholz">H. Scholz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kuehne"> P. Kuehne</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Heckenberger"> G. Heckenberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems during the calving period (December until May) often are results in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue, and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS, and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significantly influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue, and the number of infusorians. The use of rations with a high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rumen%20fermentation" title="rumen fermentation">rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=suckler%20cow" title=" suckler cow"> suckler cow</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility%20organic%20matter" title=" digestibility organic matter"> digestibility organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20fiber" title=" crude fiber "> crude fiber </a> </p> <a href="https://publications.waset.org/abstracts/110412/effects-of-rations-with-high-amount-of-crude-fiber-on-rumen-fermentation-in-suckler-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6140</span> Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adeel%20Arshad">Muhammad Adeel Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz-Ul%20Hassan"> Faiz-Ul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanfen%20Cheng"> Yanfen Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Genome%20sequences" title="Genome sequences">Genome sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungate1000" title=" Hungate1000"> Hungate1000</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogens" title=" methanogens"> methanogens</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminal%20fermentation" title=" ruminal fermentation"> ruminal fermentation</a> </p> <a href="https://publications.waset.org/abstracts/128010/mitigating-ruminal-methanogenesis-through-genomic-and-transcriptomic-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6139</span> Comparison of Rumen Microbial Analysis Pipelines Based on 16s rRNA Gene Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoxing%20Ye">Xiaoxing Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate complex rumen microbial communities, 16S ribosomal RNA (rRNA) sequencing is widely used. Here, we evaluated the impact of bioinformatics pipelines on the observation of OTUs and taxonomic classification of 750 cattle rumen microbial samples by comparing three commonly used pipelines (LotuS, UPARSE, and QIIME) with Usearch. In LotuS-based analyses, 189 archaeal and 3894 bacterial OTUs were observed. The observed OTUs for the Usearch analysis were significantly larger than the LotuS results. We discovered 1495 OTUs for archaea and 92665 OTUs for bacteria using Usearch analysis. In addition, taxonomic assignments were made for the rumen microbial samples. All pipelines had consistent taxonomic annotations from the phylum to the genus level. A difference in relative abundance was calculated for all microbial levels, including Bacteroidetes (QIIME: 72.2%, Usearch: 74.09%), Firmicutes (QIIME: 18.3%, Usearch: 20.20%) for the bacterial phylum, Methanobacteriales (QIIME: 64.2%, Usearch: 45.7%) for the archaeal class, Methanobacteriaceae (QIIME: 35%, Usearch: 45.7%) and Methanomassiliicoccaceae (QIIME: 35%, Usearch: 31.13%) for archaeal family. However, the most prevalent archaeal class varied between these two annotation pipelines. The Thermoplasmata was the top class according to the QIIME annotation, whereas Methanobacteria was the top class according to Usearch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle%20rumen" title="cattle rumen">cattle rumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbial" title=" rumen microbial"> rumen microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20gene%20sequencing" title=" 16S rRNA gene sequencing"> 16S rRNA gene sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20pipeline" title=" bioinformatics pipeline"> bioinformatics pipeline</a> </p> <a href="https://publications.waset.org/abstracts/171247/comparison-of-rumen-microbial-analysis-pipelines-based-on-16s-rrna-gene-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6138</span> Effect of Amount of Crude Fiber in Grass or Silage to the Digestibility of Organic Matter in Suckler Cow Feeding Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scholz%20Heiko">Scholz Heiko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuhne%20Petra"> Kuhne Petra</a>, <a href="https://publications.waset.org/abstracts/search?q=Heckenberger%20Gerd"> Heckenberger Gerd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems during the calving period (December to May) often result in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significant influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue and the number of infusorians. The use of rations with the high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suckler%20cow" title="suckler cow">suckler cow</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20systems" title=" feeding systems"> feeding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20fiber" title=" crude fiber"> crude fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibilty%20of%20organic%20matter" title=" digestibilty of organic matter"> digestibilty of organic matter</a> </p> <a href="https://publications.waset.org/abstracts/131838/effect-of-amount-of-crude-fiber-in-grass-or-silage-to-the-digestibility-of-organic-matter-in-suckler-cow-feeding-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6137</span> Comparative Rumen Degradable and Rumen Undegradable Fractions in Untreated, Formaldehyde and Heat Treated Vegetable Protein Sources of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illahi%20Bakhsh%20Marghazani">Illahi Bakhsh Marghazani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasrullah"> Nasrullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20Ul%20Haq%20Kakar"> Masood Ul Haq Kakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hameed%20Baloch"> Abdul Hameed Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz%20Khoso"> Ahmad Nawaz Khoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Behram%20Chacher"> Behram Chacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein sources are the major part of ration fed to dairy buffaloes in Pakistan however, the limited availability and lack of judicious use of protein resources are further aggravating the conditions to enhance milk and meat production. In order to gain maximum production from limited protein source availability, it is necessary to balance feed for rumen degradable and rumen undegradable protein fractions. This study planned to know the rumen degradable and rumen undegradable fractions in all vegetable protein sources with (formaldehyde and heat treatment) and without treatments. Samples of soybean meal, corn gluten meal 60%, maize gluten feed, guar meal, sunflower meal, rapeseed meal, rapeseed cake, canola meal, cottonseed cake, cottonseed meal, coconut cake, coconut meal, palm kernel cake, almond cake and sesame cake were collected from ten different geographical locations of Pakistan. These samples were also subjected to formaldehyde (1% /100g CP of test feed) and heat treatments (1 hr at 15 lb psi/100 g CP of test feed). In situ technique was used to know the ruminal degradability characteristics. Data obtained were fitted to Orskove equation. Results showed that both treatments significantly (P < 0.05) decreased ruminal degradability in all vegetable protein sources than untreated vegetable protein sources, however, of both treatments, heat treatment was more effective than formaldehyde treatment in decreasing ruminal degradability in most of the studied vegetable protein sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20and%20heat%20treatments" title="formaldehyde and heat treatments">formaldehyde and heat treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20technique" title=" in situ technique"> in situ technique</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20degradable%20and%20rumen%20undegradable%20fractions" title=" rumen degradable and rumen undegradable fractions"> rumen degradable and rumen undegradable fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20protein%20sources" title=" vegetable protein sources"> vegetable protein sources</a> </p> <a href="https://publications.waset.org/abstracts/58814/comparative-rumen-degradable-and-rumen-undegradable-fractions-in-untreated-formaldehyde-and-heat-treated-vegetable-protein-sources-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6136</span> Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Nguyen">S. H. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Li"> L. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Hegarty"> R. S. Hegarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defaunation" title="defaunation">defaunation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20production" title=" methane production"> methane production</a> </p> <a href="https://publications.waset.org/abstracts/29114/effects-of-rumen-protozoa-and-nitrate-on-fermentation-and-methane-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6135</span> Impact of Dietary Rumen Protected Choline on Transition Dairy Cows’ Productive Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Tony">Mohamed Ahmed Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Fayez%20Abaza"> Fayez Abaza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition and some blood metabolites were evaluated in transition dairy cows. Forty multiparous cows were blocked into 20 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 2 weeks before and until 8 weeks after calving. Both groups received the same basal diet as total mixed ration. Additionally, 50 g of a rumen-protected choline supplement (25% rumen protected choline chloride) was added individually in the feed. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at week 2 before calving, d 1, d 4, d 7, d 10, week 2, week 3, and week 8 after calving. Glucose, triglycerids, nonesterified fatty acids, and β-hydroxybutyric acid in blood were analysed. The results revealed that choline supplementation increased DM intake from 16.5 to 18.0 kg/d and, hence, net energy intake from 99.2 to 120.5 MJ/d at the intercept of the lactation curve at 1 day in milk. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.11 to 1.22 kg/d at the intercept of the lactation curve. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 day in milking, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation decreased the concentration of blood triglycerids during the first 4 wk after parturition. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight and body condition score. Results from this study suggest that fat metabolism in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=choline" title="choline">choline</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle" title=" dairy cattle"> dairy cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20cow" title=" transition cow"> transition cow</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerids" title=" triglycerids"> triglycerids</a> </p> <a href="https://publications.waset.org/abstracts/24047/impact-of-dietary-rumen-protected-choline-on-transition-dairy-cows-productive-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6134</span> Effect of Feeding Camel Rumen Content on Growth Performance and Haematological Parameters of Broiler Chickens under Semi-Arid Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alhaji%20Musa%20Abdullahi">Alhaji Musa Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Abdullahi"> Usman Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Adamu"> Adamu Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminu%20%20Maidala"> Aminu Maidala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One hundred and fifty (150) day old chicks were randomly allocated into five dietary treatments birds and each treatment where replicated twice in groups of fifteen birds in each replicate. Camel rumen content (CRC) was included in the diets of broiler at 0, 5, 10, 15, and 20% to replace maize and groundnut cake to evaluate the effect on the performance and hematological parameters at the starter and finisher phase. A completely randomized design was used and 600g of feed was given daily and water was given ad libitum. At the starter phase, the daily weight gain and feed conversion ratio were significantly affected by the test ingredients, although T1(0% CRC) which serve as a control, were similar with T2(5% CRC), T3(10% CRC), and T4(15% CRC), while the lowest value was recorded in T5(20% CRC). The result indicates that up to 15% (CRC) level can be included in the starter diet to replace maize and groundnut cake without any effect on the performance. However, at the finisher phase, the daily feed intake, daily weight gain and feed conversion ratio show no significant (F>0.05) difference among the dietary treatments. Similarly, Packed cell volume (PCV), Red Blood Cell (RBC), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), and Mean Corpuscular Haemoglobin (MCH) also did not differ significantly (F>0.05) among the dietary treatments while hemoglobin (Hb) and Mean Corpuscular Haemoglobin Concentration (MCHC) differs significantly. The differential counts of eosinophils, heterophils, and lymphocytes differ significantly among the treatment groups, while that of basophils and monocytes shows no significant difference among the treatment groups. This means up to 20% CRC inclusion level can be used to replaced maize and groundnut cake in the finisher diet without any adverse effect on the performance and hematological parameters of the chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel" title="camel">camel</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a> </p> <a href="https://publications.waset.org/abstracts/135294/effect-of-feeding-camel-rumen-content-on-growth-performance-and-haematological-parameters-of-broiler-chickens-under-semi-arid-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6133</span> In vitro Fermentation Characteristics of Palm Oil Byproducts Which is Supplemented with Growth Factor Rumen Microbes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurnida%20Rahman"> Jurnida Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Khasrad"> Khasrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Erpomen"> Erpomen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to study the use of palm oil by products (oil palm fronds (OPF), palm oil sludge (POS) and palm kernel cake (PKC)), that supplemented with growth factor rumen microbes (Sapindus rarak and Sacharomyces cerevisiae) on digestibility and fermentation in vitro. Oil Palm Fronds was previously treated with 3% urea. The treatments consist of 50% OPF+ 30% POS+ 20% PKC as a control diet (A), B = A + 4% Sapindus rarak, C = A + 0.5 % Sacharomyces cerevisiae and D = A + 4% Sapindus rarak + 0.5% Sacharomyces cerevisiae. Digestibility of DM, OM, ADF, NDF, cellulose and rumen parameters (NH3 and VFA) of all treatments were significantly different (P < 0.05). Fermentation and digestibility treatment A were significantly lower than treatments B, C, and D. The result indicated that supplementation Sapindus rarak and S. cerevisiae were able to improve fermentability and digestibility of palm oil by product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20by%20product" title="palm oil by product">palm oil by product</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapindus%20rarak" title=" Sapindus rarak"> Sapindus rarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sacharomyces%20rerevisiae" title=" Sacharomyces rerevisiae"> Sacharomyces rerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentability" title=" fermentability"> fermentability</a>, <a href="https://publications.waset.org/abstracts/search?q=OPF%20ammoniated" title=" OPF ammoniated "> OPF ammoniated </a> </p> <a href="https://publications.waset.org/abstracts/19247/in-vitro-fermentation-characteristics-of-palm-oil-byproducts-which-is-supplemented-with-growth-factor-rumen-microbes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6132</span> In Vitro Assessment of True Digestibility and Rumen Parameters of Forage-Based Sheep Diet, Supplemented with Dietary Fossil Shell Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20O.%20Ikusika">Olusegun O. Ikusika</a>, <a href="https://publications.waset.org/abstracts/search?q=Conference%20T.%20Mpendulo"> Conference T. Mpendulo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundance of fossil shell flour (FSF) globally has increased interest in its use as a natural feed additive in livestock diets. Therefore, identifying its optimum inclusion levels in livestock production is essential for animal productivity. This study investigated the effects of various fossil shell flour (FSF) inclusion levels on in vitro digestibility, relative feed values, and rumen parameters of Dohne-Merino wethers. Twenty-four fistulated wethers with an average body weight of 20 ± 1•5 kg in a complete randomized design of four treatments having six wethers per treatment were used. They were fed a basal diet without fossil shell flour (control, 0%) or with the addition of 2% FSF (T2), 4% FSF(T3), and 6% FSF (T4) of diet DM for 35 days, excluding 14 days adaptation period. The results showed that increasing FSF levels had no effect on ruminal T0C or pH, but Ammonia-N increased (P<0.01) with increasing FSF. The total molar concentrations of volatile fatty acids (VFA) decreased (P<0.05) with increasing levels of FSF. Acetic: propionic ratio decreased except at the 4 % inclusion level. IVTDDM, IVTDNDF and IVTDADF decreased up till 4% FSF inclusion but tended to increase (P = 0.06) at 6% inclusion. Relative feed values of the diets tended to increase (P=0.07) by adding fossil shell flour. In conclusion, adding FSF to the diets of Dohne-Merino wether up to 6% FSF inclusion rates did not improve IVTDDM (In vitro true digestibility dry matter), IVTDNDF (In vitro true digestibility neutral detergent fiber), and IVTDADF (In vitro true digestibility acid detergent fiber). However, a small increment of rumen nitrogen with no adverse effects on the rumen parameters was observed. The relative feed value (RFV) moved the feed from good to premium when supplemented. Therefore, FSF supplementation could improve feed value and maintain a normal range of rumen parameters for the effective functionality of the rumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fossil%20shell%20flour" title="fossil shell flour">fossil shell flour</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20parameters" title=" rumen parameters"> rumen parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20digestibility" title=" in vitro digestibility"> in vitro digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20quality" title=" feed quality"> feed quality</a>, <a href="https://publications.waset.org/abstracts/search?q=dohne-merino%20sheep" title=" dohne-merino sheep"> dohne-merino sheep</a> </p> <a href="https://publications.waset.org/abstracts/156544/in-vitro-assessment-of-true-digestibility-and-rumen-parameters-of-forage-based-sheep-diet-supplemented-with-dietary-fossil-shell-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6131</span> Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avijit%20Dey">Avijit Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20S.%20Paul"> Shyam S. Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Satbir%20S.%20Dahiya"> Satbir S. Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Balbir%20S.%20Punia"> Balbir S. Punia</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20A.%20Gonzalez"> Luciano A. Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffalo" title="buffalo">buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis" title=" methanogenesis"> methanogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20fermentation" title=" rumen fermentation"> rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oils" title=" vegetable oils"> vegetable oils</a> </p> <a href="https://publications.waset.org/abstracts/55943/effects-of-vegetable-oils-supplementation-on-in-vitro-rumen-fermentation-and-methane-production-in-buffaloes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6130</span> Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adeel%20Arshad">Muhammad Adeel Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Ali%20Bhatti"> Shaukat Ali Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz-ul%20Hassan"> Faiz-ul Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbes" title="microbes">microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=roughages" title=" roughages"> roughages</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20efficiency" title=" feed efficiency"> feed efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/115319/direct-fed-microbes-a-better-approach-to-maximize-utilization-of-roughages-in-tropical-ruminants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6129</span> Improving the Feeding Value of Straws with Pleurotus Ostreatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hussain">S. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ahmad"> N. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alam"> S. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bezabhi"> M. Bezabhi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Hendriks"> W. H. Hendriks</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Yu"> P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Cone"> J. W. Cone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20residues" title="crop residues">crop residues</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin%20degradation" title=" lignin degradation"> lignin degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20stovers" title=" maize stovers"> maize stovers</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20straws" title=" wheat straws"> wheat straws</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20rot%20fungi" title=" white rot fungi"> white rot fungi</a> </p> <a href="https://publications.waset.org/abstracts/181994/improving-the-feeding-value-of-straws-with-pleurotus-ostreatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6128</span> Effect of an Oral Dose of M. elsdenii NCIMB 41125 on Lower Digestive Tract, Bacteria Count and Rumen Fermentation in Holstein Calves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Muya">M. C. Muya</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Erasmus"> L. J. Erasmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twenty four new born male Holstein calves were divided into two treatments groups and used to evaluate the effects of M. elsdenii NCIMB 41125. The first groups were dosed with 50 ml containing 108 CFU/mL of M. elsdenii NCIMB 41125 (Me) and the control calves were not dosed. Within each of the two treatments groups, calves were divided into three treatment groups (Not dosed: 7 d, 14 d and 21 d vs dosed Me 7 d, Me14 and Me21 d (treatments), each groups contained 4 calves within which two calves were euthanized at 24 h and two calves at 72 h. Calves entered the trial until euthanize at whether 24 or 72 H after dosing time. After receiving colostrum for 3 consecutive days after birth, calves were fed whole milk and had free access to a commercial calf starter pellet and fresh water. Fecal grab samples were taken from each calf in duplicate +24 h or +72 h relative to dosing. Immediately after euthanizing, the digestive tract was harvested, and duplicate rumen and colon digesta samples collected for VFA’s determination and DNA extraction for bacteria count using 16s RNA PCR probe technique. Independent two t-test was performed to compare mean volatile fatty acids. Mixed-effects linear regressions were performed to establish relationships between: 1) M. elsdenii and Me, and between VFA’s and Me using SAS (2009). M. elsdenii NCIMB 41125 was detected in the faeces, colon and rumen of dosed calves at both +24H and +72H and ranged from 1.6 x 106 to 4.9 x 109 cfu/ml, indicating its potential to colonize in the digestive tract of calves. There was a strong positive relationship (R²=0.96; P < 0.0001) between M. elsdenii NCIMB 41125 and M. elsdenii population (cfu/ml) in the rumen, suggesting that the increase in M. elsdenii was due to increased M. elsdenii NCIMB 41125. An increase in butyrate was observed from +24 h to +72 h when calves were dosed on both d 7 and 14. Results showed that Me presented a positive relationship with butyrate (P < 0.001, R² = 0.43) and a concomitant negative relationship with acetate (P = 0.017, R² = -0.33). These results suggest that dosing pre-weaned dairy calves with M. elsdenii NCIMB 41125 has the potential to alter ruminal VFA production through increasing proportions of butyrate at the expense of propionate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calves" title="calves">calves</a>, <a href="https://publications.waset.org/abstracts/search?q=megasphaera%20elsdenii" title=" megasphaera elsdenii"> megasphaera elsdenii</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20fermentation" title=" rumen fermentation"> rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/37345/effect-of-an-oral-dose-of-m-elsdenii-ncimb-41125-on-lower-digestive-tract-bacteria-count-and-rumen-fermentation-in-holstein-calves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6127</span> Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bello%20Muhammad%20Dogon%20Kade">Bello Muhammad Dogon Kade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20metabolites" title="blood metabolites">blood metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acid" title=" volatile fatty acid"> volatile fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20protein" title=" total protein"> total protein</a> </p> <a href="https://publications.waset.org/abstracts/184405/rumen-metabolites-and-microbial-load-in-fattening-yankasa-rams-fed-urea-and-lime-treated-groundnut-arachis-hypogeae-shell-in-a-complete-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6126</span> Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegay%20Teklebrhan%20Gebremariam">Tsegay Teklebrhan Gebremariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang"> Zhiliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjan%20Jonker"> Arjan Jonker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20gasses" title="dissolved gasses">dissolved gasses</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis" title=" methanogenesis"> methanogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community" title=" microbial community"> microbial community</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a> </p> <a href="https://publications.waset.org/abstracts/147510/sulfur-containing-diet-shift-hydrogen-metabolism-and-reduce-methane-emission-and-modulated-gut-microbiome-in-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6125</span> Inventory of Local Forages in Indonesia That Potentially Reduce Methane (CH4) Emissions and Increase Productivity in Ruminants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amriana%20Hifizah">Amriana Hifizah</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Edward%20Vercoe"> Philip Edward Vercoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Graeme%20Bruce%20Martin"> Graeme Bruce Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Teuku%20Reza%20Ferasy"> Teuku Reza Ferasy</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hambal"> Muhammad Hambal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many native forage plant species have been used in Indonesia as feed for ruminants. However, less information is available about how these plants affect productivity, let alone methane emissions. In the province of Aceh, where the traditional practice is to feed local forages to small ruminants, the farmers are not satisfied with the productivity of their livestock, and they attribute this problem to poor availability and too few options for good quality forages. Forage quality is reduced by high environmental temperatures which increase the amount of lignification. In addition to reducing productivity, these factors also increase enteric methane production. A preliminary survey about potential forage species was completed in three different districts, two of low elevation and one of high elevation: Syiah Kuala (05°30’5.08” N to 095°24’7.35” E), elevation 29 m MSL; Kajhu (05°32’34.6” N to 095°21’17.7” E), elevation 30 m MSL; Lembah Seulawah (05°28'06.4" N to 095°43' 14.2" E), elevation 254 m MSL. Information about local plants was collected in a semi-structured interview with scientists, government field officers and local farmers, in the city of Banda Aceh and in those three districts. The outcome was a list 40 species that could be useful, of which 21 were selected for further study. The selection process was based on several criteria: high availability, high protein content, low toxicity, and evidence of secondary metabolites (eg, history of medicinal plants for both human and animals). For some of the selected medicinal plants, there is experimental evidence of effects on methane production during rumen fermentation. Subsequently, the selected forages were tested for their effects on rumen fermentation in vitro, using batch culture. The data produced will be used to identify forages with the potential to reduce CH4 emissions. These candidates will then be assessed for their benefits (fermentability and productivity) and potential deleterious side-effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20culture" title="batch culture">batch culture</a>, <a href="https://publications.waset.org/abstracts/search?q=forage" title=" forage"> forage</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a> </p> <a href="https://publications.waset.org/abstracts/62230/inventory-of-local-forages-in-indonesia-that-potentially-reduce-methane-ch4-emissions-and-increase-productivity-in-ruminants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6124</span> Rumen Epithelium Development of Bovine Fetuses and Newborn Calves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Shimara%20Pires%20Ferr%C3%A3o">Juliana Shimara Pires Ferrão</a>, <a href="https://publications.waset.org/abstracts/search?q=Let%C3%ADcia%20Palmeira%20Pinto"> Letícia Palmeira Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Palma%20Renn%C3%B3"> Francisco Palma Rennó</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Javier%20Hernandez%20Blazquez"> Francisco Javier Hernandez Blazquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine" title="bovine">bovine</a>, <a href="https://publications.waset.org/abstracts/search?q=calf" title=" calf"> calf</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelium" title=" epithelium"> epithelium</a>, <a href="https://publications.waset.org/abstracts/search?q=fetus" title=" fetus"> fetus</a>, <a href="https://publications.waset.org/abstracts/search?q=hematoxylin-eosin" title=" hematoxylin-eosin"> hematoxylin-eosin</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title=" immunohistochemistry"> immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumen" title=" Rumen"> Rumen</a> </p> <a href="https://publications.waset.org/abstracts/51372/rumen-epithelium-development-of-bovine-fetuses-and-newborn-calves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6123</span> Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sesethu%20G.%20Njokweni">Sesethu G. Njokweni</a>, <a href="https://publications.waset.org/abstracts/search?q=Marelize%20Botes"> Marelize Botes</a>, <a href="https://publications.waset.org/abstracts/search?q=Emile%20W.%20H.%20Van%20Zyl"> Emile W. H. Van Zyl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylate%20platform" title=" carboxylate platform"> carboxylate platform</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbiome" title=" rumen microbiome"> rumen microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/92186/application-of-the-carboxylate-platform-in-the-consolidated-bioconversion-of-agricultural-wastes-to-biofuel-precursors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6122</span> In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanbao%20Chen">Wanbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20Yao"> Qianqian Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Zhou"> Zhenming Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cereal%20grains" title="cereal grains">cereal grains</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production" title=" gas production"> gas production</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20rumen%20fermentation" title=" in vitro rumen fermentation"> in vitro rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=steam-flaking%20processing" title=" steam-flaking processing"> steam-flaking processing</a> </p> <a href="https://publications.waset.org/abstracts/72557/in-vitro-method-to-evaluate-the-effect-of-steam-flaking-on-the-quality-of-common-cereal-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6121</span> In vivo Alterations in Ruminal Parameters by Megasphaera Elsdenii Inoculation on Subacute Ruminal Acidosis (SARA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alatas">M. S. Alatas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Umucalilar"> H. D. Umucalilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SARA is a common and serious metabolic disorder in early lactation in dairy cattle and in finishing beef cattle, caused by diets with high inclusion of cereal grain. This experiment was performed to determine the efficacy of Megasphaera elsdenii, a major lactate-utilizing bacterium in prevention/treatment of SARA in vivo. In vivo experimentation, it was used eight ruminally cannulated rams and it was applied the rapid adaptation with the mixture of grain based on wheat (%80 wheat, %20 barley) and barley (%80 barley, %20 wheat). During the systematic adaptation, it was followed the probability of SARA formation by being measured the rumen pH with two hours intervals after and before feeding. After being evaluated the data, it was determined the ruminal pH ranged from 5,2-5,6 on the condition of feeding with 60 percentage of grain mixture based on barley and wheat, that assured the definite form of subacute acidosis. In four days SARA period, M. elsdenii (1010 cfu ml-1) was inoculated during the first two days. During the SARA period, it was observed the decrease of feed intake with M. elsdenii inoculation. Inoculation of M. elsdenii was caused to differentiation of rumen pH (P < 0,0001), while it was found the pH level approximately 5,55 in animals applied the inoculation, it was 5,63 pH in other animals. It was observed that total VFA with the bacterium inoculation tended to change in terms of grain feed (P < 0,07). It increased with the effect of total VFA inoculation in barley based diet, but it was more stabilized in wheat based diet. Bacterium inoculation increased the ratio of propionic acid (18,33%-21,38%) but it caused to decrease the butyric acid, and acetic/propionic acid. During the rapid adaptation, the concentration of lactic acid in the rumen liquid increased depending upon grain level (P<0,0001). On the other hand bacterium inoculation did not have an effect on concentration of lactic acid. M. elsdenii inoculation did not affect ruminal ammonia concentration. In the group that did not apply inoculation, the level of ruminal ammonia concentration was higher than the others applied inoculation. M. elsdenii inoculation did not changed protozoa count in barley-based diet whereas it decreased in wheat-based diet. In the period of SARA, it was observed that the level of blood glucose, lactate and hematocrit increased greatly after inoculation (P < 0,0001). When it is generally evaluated, it is seen that M. elsdenii inoculation has not a positive impact on rumen parameters. Therefore, to reveal the full impact of the inoculation with different strains, feedstuffs and animal groups, further research is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20vivo" title="In vivo">In vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=Subactute%20ruminal%20acidosis" title=" Subactute ruminal acidosis"> Subactute ruminal acidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Megasphaera%20elsdenii" title=" Megasphaera elsdenii"> Megasphaera elsdenii</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumen%20fermentation" title=" Rumen fermentation"> Rumen fermentation</a> </p> <a href="https://publications.waset.org/abstracts/26011/in-vivo-alterations-in-ruminal-parameters-by-megasphaera-elsdenii-inoculation-on-subacute-ruminal-acidosis-sara" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">645</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6120</span> Utilization and Proximate Composition of Nile Tilapia, Common Carp and African Mudfish Polycultured in Fertilized Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Yola">I. A. Yola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of poultry dropping, cow dung and rumen content on utilization and proximate composition of Oreochromis niliticus, Clarias gariepinus and Cyprinus capio in a polyculture system were studied. The research was conducted over a period of 52 weeks. Poultry droppings (PD), cow dung (CD) and rumen content (RC) were applied at three levels 30g,60g and 120g/m2/week, 25g,50g and 100g/m2/week and 22g, 44g and 88g/m2/week treatment, respectively. The control only conventional feed with 40% CP without manure application was used. Physicochemical and biological properties measured were higher in manure pond than control. The difference was statistically significant (P < 0.05) between and within treatments with exception of temperature with a combined mean of 27.900C. The water was consistently alkaline with mean values for pH of 6.61, transparency 22.6cm, conductivity 35.00µhos/cm, dissolved oxygen 4.6 mg/l, biological oxygen demand 2.8mg/l, nitrate and phosphates 0.9mg/l and 0.35mg/l, respectively. The three fish species increase in weight with increased manure rate, with a higher value in PD treatment on C. capio record 340g, O. niloticus weighed 310g and C. gariepinus 280g over the experimental period. Fishes fed supplementary diet (control) grew bigger with highest value on C. capio (685g) O. niloticus (620g) and then C. gariepinus (526g). The differences were statistically significant (P < 0.05). The result of whole body proximate analysis indicated that various manures and rates had an irregular pattern on the protein and ash gain per 100g of fish body weight gain. The combined means for whole fish carcass protein, lipids, moisture, ash and gross energy were 11.84, 2.43, 74.63, 3.00 and 109.9 respectively. The notable exceptions were significant (p < 0.05) increases in body fat and gross energy gains in all fish species accompanied by decreases in percentages of moisture as manure rates increased. Survival percentage decreases from 80% to 70%. It is recommended to use poultry dropping as manure/feeds at the rate of 120kg/ha/week for good performances in polyculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title="organic manure">organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20tilapia" title=" Nile tilapia"> Nile tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=African%20mud%20fish" title=" African mud fish"> African mud fish</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20carp" title=" common carp"> common carp</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a> </p> <a href="https://publications.waset.org/abstracts/6810/utilization-and-proximate-composition-of-nile-tilapia-common-carp-and-african-mudfish-polycultured-in-fertilized-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=204">204</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=205">205</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rumen%20content&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>