CINXE.COM
noetherian ring in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> noetherian ring in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> noetherian ring </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/7043/#Item_4" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, <a class="existingWikiWord" href="/nlab/show/semigroup">semigroup</a>, <a class="existingWikiWord" href="/nlab/show/quasigroup">quasigroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/nonassociative+algebra">nonassociative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/associative+unital+algebra">associative unital algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Jordan+algebra">Jordan algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Leibniz+algebra">Leibniz algebra</a>, <a class="existingWikiWord" href="/nlab/show/pre-Lie+algebra">pre-Lie algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+algebra">Frobenius algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/quantale">quantale</a></li> <li><a class="existingWikiWord" href="/nlab/show/Boolean+ring">Boolean ring</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutator">commutator</a>, <a class="existingWikiWord" href="/nlab/show/center">center</a></li> <li><a class="existingWikiWord" href="/nlab/show/monad">monad</a>, <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a></li> <li><a class="existingWikiWord" href="/nlab/show/distributive+law">distributive law</a></li> </ul> <h2 id="group_theory">Group theory</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/Cayley%27s+theorem">Cayley's theorem</a></li> <li><a class="existingWikiWord" href="/nlab/show/centralizer">centralizer</a>, <a class="existingWikiWord" href="/nlab/show/normalizer">normalizer</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>, <a class="existingWikiWord" href="/nlab/show/Galois+extension">Galois extension</a></li> <li><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a>, <a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> <h2 id="ring_theory">Ring theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+ring">local ring</a>, <a class="existingWikiWord" href="/nlab/show/Artinian+ring">Artinian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Noetherian+ring">Noetherian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/skewfield">skewfield</a>, <a class="existingWikiWord" href="/nlab/show/field">field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+domain">integral domain</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ideal">ideal</a>, <a class="existingWikiWord" href="/nlab/show/prime+ideal">prime ideal</a>, <a class="existingWikiWord" href="/nlab/show/maximal+ideal">maximal ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ore+localization">Ore localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/central+simple+algebra">central simple algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivation">derivation</a>, <a class="existingWikiWord" href="/nlab/show/Ore+extension">Ore extension</a></p> </li> </ul> <h2 id="module_theory">Module theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>, <a class="existingWikiWord" href="/nlab/show/linear+algebra">linear algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/matrix">matrix</a>, <a class="existingWikiWord" href="/nlab/show/eigenvalue">eigenvalue</a>, <a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/determinant">determinant</a>, <a class="existingWikiWord" href="/nlab/show/quasideterminant">quasideterminant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a>, <a class="existingWikiWord" href="/nlab/show/Schur+lemma">Schur lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/restriction+of+scalars">restriction of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frobenius+reciprocity">Frobenius reciprocity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Morita+equivalence">Morita equivalence</a>, <a class="existingWikiWord" href="/nlab/show/Morita+context">Morita context</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wedderburn-Artin+theorem">Wedderburn-Artin theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a>, <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> </ul> <h2 id=""><a class="existingWikiWord" href="/nlab/show/gebra+theory">Gebras</a></h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coalgebra">coalgebra</a>, <a class="existingWikiWord" href="/nlab/show/coring">coring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bialgebra">bialgebra</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comodule">comodule</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+module">Hopf module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yetter-Drinfeld+module">Yetter-Drinfeld module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associative+bialgebroid">associative bialgebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+gebra">dual gebra</a>, <a class="existingWikiWord" href="/nlab/show/cotensor+product">cotensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf-Galois+extension">Hopf-Galois extension</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#noetherian_rings'>Noetherian rings</a></li> <li><a href='#left_noetherian_rings'>Left Noetherian rings</a></li> <li><a href='#right_noetherian_rings'>Right Noetherian rings</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#a_homological_characterization'>A homological characterization</a></li> </ul> <li><a href='#noetherian_and_artinian_rings'>Noetherian and Artinian rings</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A Noetherian (or often, as below, noetherian) <a class="existingWikiWord" href="/nlab/show/ring">ring</a> (or <a class="existingWikiWord" href="/nlab/show/rng">rng</a>) is one where it is possible to do <a class="existingWikiWord" href="/nlab/show/induction">induction</a> over its ideals, because the ordering of ideals by reverse inclusion is <a class="existingWikiWord" href="/nlab/show/well-founded+relation">well-founded</a>.</p> <h2 id="definition">Definition</h2> <h3 id="noetherian_rings">Noetherian rings</h3> <p>Every <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> has a canonical <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a> structure, with <a class="existingWikiWord" href="/nlab/show/left+action">left action</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>L</mi></msub><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">\alpha_L:R \times R \to R</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/right+action">right action</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>R</mi></msub><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">\alpha_R:R \times R \to R</annotation></semantics></math> defined as the multiplicative binary operation on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/biaction">biaction</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">\alpha:R \times R \times R \to R</annotation></semantics></math> defined as the ternary product on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>L</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">\alpha_L(a, b) \coloneqq a \cdot b</annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>R</mi></msub><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">\alpha_R(a, b) \coloneqq a \cdot b</annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>⋅</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">\alpha(a, b, c) \coloneqq a \cdot b \cdot c</annotation></semantics></math></div> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">TwoSidedIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{TwoSidedIdeals}(R)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/category+of+two-sided+ideals">category of two-sided ideals</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, whose objects are <a class="existingWikiWord" href="/nlab/show/two-sided+ideals">two-sided ideals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, <a class="existingWikiWord" href="/nlab/show/subbimodules">sub-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>R</mi> </mrow> <annotation encoding="application/x-tex">R</annotation> </semantics> </math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>R</mi> </mrow> <annotation encoding="application/x-tex">R</annotation> </semantics> </math>-bimodules</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> with respect to the canonical bimodule structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, and whose <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/bimodule+monomorphisms">bimodule monomorphisms</a>.</p> <p>An ascending chain of two-sided ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/direct+sequence">direct sequence</a> of two-sided ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, a <a class="existingWikiWord" href="/nlab/show/sequence">sequence</a> of two-sided ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant="normal">TwoSidedIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A:\mathbb{N} \to \mathrm{TwoSidedIdeals}(R)</annotation></semantics></math> with the following <a class="existingWikiWord" href="/nlab/show/dependent+sequence">dependent sequence</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-bimodule monomorphisms: for natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>, a dependent <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-bimodule monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is <strong>Noetherian</strong> if it satisfies the <a class="existingWikiWord" href="/nlab/show/ascending+chain+condition">ascending chain condition</a> on its two-sided ideals: for every ascending chain of two-sided ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A, i_n)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, there exists a natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">n \geq m</annotation></semantics></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-bimodule monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/bimodule+isomorphism">bimodule isomorphism</a>.</p> <h3 id="left_noetherian_rings">Left Noetherian rings</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">LeftIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{LeftIdeals}(R)</annotation></semantics></math> be the category of <a class="existingWikiWord" href="/nlab/show/left+ideals">left ideals</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, whose objects are <a class="existingWikiWord" href="/nlab/show/left+ideals">left ideals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, sub-left-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-modules of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> with respect to the canonical <a class="existingWikiWord" href="/nlab/show/left+module">left module</a> structure <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">(-)\cdot(-):R \times R \to R</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, and whose <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> are left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphisms.</p> <p>An ascending chain of left ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/direct+sequence">direct sequence</a> of left ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, a <a class="existingWikiWord" href="/nlab/show/sequence">sequence</a> of left ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant="normal">LeftIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A:\mathbb{N} \to \mathrm{LeftIdeals}(R)</annotation></semantics></math> with the following <a class="existingWikiWord" href="/nlab/show/dependent+sequence">dependent sequence</a> of left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphisms: for natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>, a dependent left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is <strong>left Noetherian</strong> if it satisfies the <a class="existingWikiWord" href="/nlab/show/ascending+chain+condition">ascending chain condition</a> on its left ideals: for every ascending chain of left ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A, i_n)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, there exists a natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">n \geq m</annotation></semantics></math>, the left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module isomorphism.</p> <h3 id="right_noetherian_rings">Right Noetherian rings</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">RightIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{RightIdeals}(R)</annotation></semantics></math> be the category of <a class="existingWikiWord" href="/nlab/show/right+ideals">right ideals</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, whose objects are <a class="existingWikiWord" href="/nlab/show/right+ideals">right ideals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, sub-right-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-modules of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> with respect to the canonical <a class="existingWikiWord" href="/nlab/show/right+module">right module</a> structure <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>:</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">(-)\cdot(-):R \times R \to R</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, and whose <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> are right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphisms.</p> <p>An ascending chain of right ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/direct+sequence">direct sequence</a> of right ideals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, a <a class="existingWikiWord" href="/nlab/show/sequence">sequence</a> of right ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi mathvariant="normal">RightIdeals</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A:\mathbb{N} \to \mathrm{RightIdeals}(R)</annotation></semantics></math> with the following <a class="existingWikiWord" href="/nlab/show/dependent+sequence">dependent sequence</a> of right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphisms: for natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>, a dependent right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math>.</p> <p>A <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is <strong>right Noetherian</strong> if it satisfies the <a class="existingWikiWord" href="/nlab/show/ascending+chain+condition">ascending chain condition</a> on its right ideals: for every ascending chain of right ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mi>i</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A, i_n)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, there exists a natural number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">m \in \mathbb{N}</annotation></semantics></math> such that for all natural numbers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">n \geq m</annotation></semantics></math>, the right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module monomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>↪</mo><msub><mi>A</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">i_n:A_{n} \hookrightarrow A_{n+1}</annotation></semantics></math> is an right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module isomorphism.</p> <h2 id="examples">Examples</h2> <div class="num_example" id="FieldIsNoetherianRing"> <h6 id="example">Example</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/field">field</a> is a noetherian ring.</p> </div> <div class="num_example" id="PIDIsNoetherianRing"> <h6 id="example_2">Example</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/principal+ideal+domain">principal ideal domain</a> is a noetherian ring.</p> </div> <div class="num_example" id="PolynomialAlgebraOverNoetherianRingIsNoetherian"> <h6 id="example_3">Example</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/Noetherian+ring">Noetherian ring</a> (e.g. a <a class="existingWikiWord" href="/nlab/show/field">field</a> by example <a class="maruku-ref" href="#FieldIsNoetherianRing"></a>) then</p> <ol> <li> <p>the <a class="existingWikiWord" href="/nlab/show/polynomial+algebra">polynomial algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><msub><mi>X</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">R[X_1, \cdots, X_n]</annotation></semantics></math></p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/formal+power+series+algebra">formal power series algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>X</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">R[ [ X_1, \cdots, X_n ] ]</annotation></semantics></math></p> </li> </ol> <p>over R in a <a class="existingWikiWord" href="/nlab/show/finite+number">finite number</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/coordinates">coordinates</a> are Noetherian.</p> </div> <h2 id="properties">Properties</h2> <p>Spectra of noetherian rings are glued together to define <a class="existingWikiWord" href="/nlab/show/noetherian+scheme">locally noetherian schemes</a>.</p> <h3 id="general">General</h3> <p>One of the best-known properties is the Hilbert basis theorem. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> be a (unital) ring.</p> <div class="num_theorem"> <h6 id="theorem">Theorem</h6> <p><strong>(Hilbert)</strong> If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is left Noetherian, then so is the <a class="existingWikiWord" href="/nlab/show/polynomial">polynomial algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">R[x]</annotation></semantics></math>. (Similarly if “right” is substituted for “left”.)</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>(We adapt the proof from <a href="https://en.wikipedia.org/wiki/Hilbert%27s_basis_theorem#First_Proof">Wikipedia</a>.) Suppose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is a left ideal of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">R[x]</annotation></semantics></math> that is not finitely generated. Using the <a class="existingWikiWord" href="/nlab/show/axiom+of+dependent+choice">axiom of dependent choice</a>, there is a <a class="existingWikiWord" href="/nlab/show/sequence">sequence</a> of polynomials <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">f_n \in I</annotation></semantics></math> such that the left ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mi>n</mi></msub><mo>≔</mo><mo stretchy="false">(</mo><msub><mi>f</mi> <mn>0</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>f</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">I_n \coloneqq (f_0, \ldots, f_{n-1})</annotation></semantics></math> form a strictly increasing chain and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub><mo>∈</mo><mi>I</mi><mo>∖</mo><msub><mi>I</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">f_n \in I \setminus I_n</annotation></semantics></math> is chosen to have degree as small as possible. Putting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>n</mi></msub><mo>≔</mo><mi>deg</mi><mo stretchy="false">(</mo><msub><mi>f</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d_n \coloneqq \deg(f_n)</annotation></semantics></math>, we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mn>0</mn></msub><mo>≤</mo><msub><mi>d</mi> <mn>1</mn></msub><mo>≤</mo><mi>…</mi></mrow><annotation encoding="application/x-tex">d_0 \leq d_1 \leq \ldots</annotation></semantics></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">a_n</annotation></semantics></math> be the leading coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">f_n</annotation></semantics></math>. The left ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>a</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a_0, a_1, \ldots)</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is finitely generated; say <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi> <mn>0</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>a</mi> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a_0, \ldots, a_{k-1})</annotation></semantics></math> generates. Thus we may write</p> <div class="maruku-equation" id="eq:kill"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>k</mi></msub><mo>=</mo><munderover><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></munderover><msub><mi>r</mi> <mi>i</mi></msub><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex"> a_k = \sum_{i=0}^{k-1} r_i a_i</annotation></semantics></math></div> <p>The polynomial <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo>=</mo><msubsup><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mi>r</mi> <mi>i</mi></msub><msup><mi>x</mi> <mrow><msub><mi>d</mi> <mi>k</mi></msub><mo>−</mo><msub><mi>d</mi> <mi>i</mi></msub></mrow></msup><msub><mi>f</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">g = \sum_{i=0}^{k-1} r_i x^{d_k - d_i} f_i</annotation></semantics></math> belongs to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">I_k</annotation></semantics></math>, so <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f_k - g</annotation></semantics></math> belongs to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>∖</mo><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">I \setminus I_k</annotation></semantics></math>. Also <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> has degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">d_k</annotation></semantics></math> or less, and therefore so does <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f_k - g</annotation></semantics></math>. But notice that the coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow></msup></mrow><annotation encoding="application/x-tex">x^{d_k}</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f_k - g</annotation></semantics></math> is zero, by <a class="maruku-eqref" href="#eq:kill">(1)</a>. So in fact <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub><mo>−</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f_k - g</annotation></semantics></math> has degree less than <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">d_k</annotation></semantics></math>, contradicting how <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">f_k</annotation></semantics></math> was chosen.</p> </div> <h3 id="a_homological_characterization">A homological characterization</h3> <div class="num_theorem"> <h6 id="theorem_2">Theorem</h6> <p>For a unital ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> the following are equivalent:</p> <ol> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is left Noetherian</li> <li>Any small direct sum of injective left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-modules is injective.</li> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mo lspace="0em" rspace="thinmathspace">Ext</mo> <mi>R</mi> <mi>k</mi></msubsup><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mo>⋅</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\operatorname{Ext}^k_R(A, \cdot)</annotation></semantics></math> commutes with small direct sums for any finitely generated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</li> </ol> </div> <p>Direct sums here can be replaced by filtered colimits.</p> <div class="proof"> <h6 id="proof_2">Proof</h6> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>⇒</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">1 \Rightarrow 2</annotation></semantics></math>: assume that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is Noetherian and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">I_\alpha</annotation></semantics></math> are injective modules. In order to verify that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi><mo>:</mo><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>α</mi></msub><msub><mi>I</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">I := \bigoplus_\alpha I_\alpha</annotation></semantics></math> is injective it is enough to show that for any ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔧</mi></mrow><annotation encoding="application/x-tex">\mathfrak{j}</annotation></semantics></math> any morphism of left modules <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>𝔧</mi><mo>→</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">f : \mathfrak{j} \to I</annotation></semantics></math> factors through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔧</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">\mathfrak{j} \to R</annotation></semantics></math>. Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is Notherian, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔧</mi></mrow><annotation encoding="application/x-tex">\mathfrak{j}</annotation></semantics></math> is finitely generated, so the image of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> lies in a finite sum <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mn>1</mn></msub></mrow></msub><mo>⊕</mo><mi>…</mi><mo>⊕</mo><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub></mrow><annotation encoding="application/x-tex">I_{\alpha_1} \oplus \dots \oplus I_{\alpha_n}</annotation></semantics></math>. Thus an extension to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> exists by the injectivity of each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mrow><msub><mi>α</mi> <mi>k</mi></msub></mrow></msub></mrow><annotation encoding="application/x-tex">I_{\alpha_k}</annotation></semantics></math>.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mo>⇒</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">2 \Rightarrow 1</annotation></semantics></math>: if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is not left Noetherian then there is a sequence of left ideals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔧</mi> <mn>1</mn></msub><mo>⊊</mo><msub><mi>𝔧</mi> <mn>2</mn></msub><mo>⊊</mo><mi>…</mi></mrow><annotation encoding="application/x-tex">\mathfrak{j}_1 \subsetneq \mathfrak{j}_2 \subsetneq \dots</annotation></semantics></math>. Take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔧</mi><mo>:</mo><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">⋃</mo> <mi>k</mi></msub><msub><mi>𝔧</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\mathfrak{j} := \bigcup_k \mathfrak{j}_k</annotation></semantics></math>. The obvious map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi><mo>→</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>𝔧</mi><mo stretchy="false">/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">j \to \prod_k (\mathfrak{j} / \mathfrak{j}_k)</annotation></semantics></math> factors through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>𝔧</mi><mo stretchy="false">/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\bigoplus_k (\mathfrak{j} / \mathfrak{j}_k)</annotation></semantics></math>, since any element lies in all but finitely many <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔧</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\mathfrak{j}_k</annotation></semantics></math>. Now take any injective <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">I_k</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>𝔧</mi><mo stretchy="false">/</mo><msub><mi>𝔧</mi> <mi>k</mi></msub><mo>→</mo><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">0 \to \mathfrak{j} / \mathfrak{j}_k \to I_k</annotation></semantics></math>. The map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔧</mi><mo>→</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>k</mi></msub><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\mathfrak{j} \to \bigoplus_k I_k</annotation></semantics></math> cannot extend to the whole <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, since otherwise its image would be contained in a sum of finitely many <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">I_k</annotation></semantics></math>. Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>k</mi></msub><msub><mi>I</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\bigoplus_k I_k</annotation></semantics></math> is not injective.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mo>⇒</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">2 \Rightarrow 3</annotation></semantics></math>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mo lspace="0em" rspace="thinmathspace">Ext</mo> <mi>R</mi> <mi>k</mi></msubsup><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>α</mi></msub><msub><mi>X</mi> <mi>α</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\operatorname{Ext}^k_R(A, \bigoplus_\alpha X_\alpha)</annotation></semantics></math> can be computed by taking an injective resolution of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">⨁</mo> <mi>α</mi></msub><msub><mi>X</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">\bigoplus_\alpha X_\alpha</annotation></semantics></math>. Since direct sums of injective modules are assumed to be injective, we can take a direct sum of injective resolutions of each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">X_\alpha</annotation></semantics></math>. It remains to note that Hom out of a finitely generated module commutes with arbitrary direct sums.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn><mo>⇒</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">3 \Rightarrow 2</annotation></semantics></math>: Follows from the fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is injective iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mo lspace="0em" rspace="thinmathspace">Ext</mo> <mi>R</mi> <mn>1</mn></msubsup><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">/</mo><mi>𝔦</mi><mo>,</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\operatorname{Ext}^1_R(R / \mathfrak{i}, I) = 0</annotation></semantics></math> for any ideal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔦</mi></mrow><annotation encoding="application/x-tex">\mathfrak{i}</annotation></semantics></math>.</p> </div> <h2 id="noetherian_and_artinian_rings">Noetherian and Artinian rings</h2> <p>A dual condition is artinian: an <strong><a class="existingWikiWord" href="/nlab/show/artinian+ring">artinian ring</a></strong> is a ring satisfying the descending chain condition on ideals. The symmetry is severely broken if one considers unital rings: for example every unital artinian ring is noetherian; artinian rings are intuitively much smaller than generic noetherian rings.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Noetherian+module">Noetherian module</a>, <a class="existingWikiWord" href="/nlab/show/Noetherian+bimodule">Noetherian bimodule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/noetherian+object">noetherian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Noetherian+poset">Noetherian poset</a></p> </li> <li> <p><span class="newWikiWord">Noetherian E-∞ ring<a href="/nlab/new/Noetherian+E-%E2%88%9E+ring">?</a></span></p> </li> </ul> <h2 id="references">References</h2> <p>Introduced by <a class="existingWikiWord" href="/nlab/show/Emmy+Noether">Emmy Noether</a> in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Emmy+Noether">Emmy Noether</a>, <em>Idealtheorie in Ringbereichen</em>, Mathematische Annalen 83:1 (1921), 24–66. <a href="https://doi.org/10.1007/bf01464225">doi:10.1007/bf01464225</a>.</p> </li> <li> <p><a href="https://en.wikipedia.org/wiki/Noetherian_ring">wikipedia</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K.+R.+Goodearl">K. R. Goodearl</a>, R. B. Warfield, <em>An introduction to noncommutative Noetherian rings</em>, London Math. Society Student Texts <strong>16</strong> (1st ed,), 1989, xviii+303 pp.; or 61 (2nd ed.), 2004, xxiv+344 pp.</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 12, 2024 at 17:51:19. See the <a href="/nlab/history/noetherian+ring" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/noetherian+ring" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/7043/#Item_4">Discuss</a><span class="backintime"><a href="/nlab/revision/noetherian+ring/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/noetherian+ring" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/noetherian+ring" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/noetherian+ring/cite" style="color: black">Cite</a> <a href="/nlab/print/noetherian+ring" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/noetherian+ring" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>