CINXE.COM
Search results for: computational efficiency
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: computational efficiency</title> <meta name="description" content="Search results for: computational efficiency"> <meta name="keywords" content="computational efficiency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="computational efficiency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="computational efficiency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8279</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: computational efficiency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8279</span> Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yosra%20Mefteh%20Rekik">Yosra Mefteh Rekik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20modeling" title="agent-based modeling">agent-based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20stock%20market" title=" artificial stock market"> artificial stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20expectations" title=" heterogeneous expectations"> heterogeneous expectations</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20stylized%20facts" title=" financial stylized facts"> financial stylized facts</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20finance" title=" computational finance"> computational finance</a> </p> <a href="https://publications.waset.org/abstracts/28310/heterogeneous-intelligence-traders-and-market-efficiency-new-evidence-from-computational-approach-in-artificial-stock-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8278</span> Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Mohan%20Ahuja">Sandeep Mohan Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulshan%20Kumar%20Jawa"> Gulshan Kumar Jawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone%20separator" title="cyclone separator">cyclone separator</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20efficiency" title=" enhancing efficiency"> enhancing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase%20model" title=" discrete phase model"> discrete phase model</a> </p> <a href="https://publications.waset.org/abstracts/185877/computational-fluid-dynamics-analysis-of-cyclone-separator-performance-using-discrete-phase-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8277</span> Comprehensive Assessment of Energy Efficiency within the Production Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kreitlein">S. Kreitlein</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Eder"> N. Eder</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Franke"> J. Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20value" title=" energy efficiency value"> energy efficiency value</a>, <a href="https://publications.waset.org/abstracts/search?q=energetic%20process%20efficiency" title=" energetic process efficiency"> energetic process efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a> </p> <a href="https://publications.waset.org/abstracts/23200/comprehensive-assessment-of-energy-efficiency-within-the-production-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">733</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8276</span> Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junting%20Xiang">Junting Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Uwe%20Schl%C3%BCter"> Jörg Uwe Schlüter</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Duan"> Fei Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=miniature%20gas%20turbines" title=" miniature gas turbines"> miniature gas turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/8191/computational-analysis-of-the-scaling-effects-on-the-performance-of-an-axial-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8275</span> Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Chang%20Yen">Shun-Chang Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Lun%20Peng"> You-Lun Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Ching%20San"> Kuo-Ching San</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body%20with%20multiple%20holes" title="bluff body with multiple holes">bluff body with multiple holes</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl-jet%20flow" title=" swirl-jet flow"> swirl-jet flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20efficiency" title=" mixing efficiency"> mixing efficiency</a> </p> <a href="https://publications.waset.org/abstracts/56853/porous-bluff-body-disc-on-improving-the-gas-mixing-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8274</span> The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Saket"> Issa Saket</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Azlin"> Md. Azlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separator%20tanks" title="oil/water separator tanks">oil/water separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20baffles" title=" inlet baffles"> inlet baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/52725/the-effect-of-inlet-baffle-position-in-improving-the-efficiency-of-oil-and-water-gravity-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8273</span> Study of Efficiency of Flying Animal Using Computational Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratih%20Julistina">Ratih Julistina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agoes%20Moelyadi"> M. Agoes Moelyadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristics%20of%20aerodynamic" title="characteristics of aerodynamic">characteristics of aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20frequency" title=" flapping frequency"> flapping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing" title=" flapping wing"> flapping wing</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20simulation" title=" unsteady simulation"> unsteady simulation</a> </p> <a href="https://publications.waset.org/abstracts/80712/study-of-efficiency-of-flying-animal-using-computational-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8272</span> Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saim%20Iftikhar%20Awan">Saim Iftikhar Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Ali"> Farhan Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title="computational analysis">computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20efficiency" title=" power efficiency"> power efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/110867/experimental-and-computational-fluid-dynamics-analysis-of-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8271</span> A Comparison of Design and Off-Design Performances of a Centrifugal Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Ayta%C3%A7">Zeynep Aytaç</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuri%20Y%C3%BCcel"> Nuri Yücel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title="centrifugal compressor">centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20point" title=" design point"> design point</a>, <a href="https://publications.waset.org/abstracts/search?q=off-design%20point" title=" off-design point"> off-design point</a> </p> <a href="https://publications.waset.org/abstracts/147046/a-comparison-of-design-and-off-design-performances-of-a-centrifugal-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8270</span> Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Om%20Viroje">Om Viroje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title="quantum machine learning">quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20encoding" title=" data encoding"> data encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20encoding" title=" amplitude encoding"> amplitude encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20encoding" title=" phase encoding"> phase encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20resilience" title=" noise resilience"> noise resilience</a> </p> <a href="https://publications.waset.org/abstracts/193480/optimizing-quantum-machine-learning-with-amplitude-and-phase-encoding-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8269</span> Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Lahiri">Anirudh Lahiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20science" title="material science">material science</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20engineering" title=" biological engineering"> biological engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20computing" title=" neuromorphic computing"> neuromorphic computing</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20scalability" title=" computational scalability"> computational scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=synaptic%20plasticity." title=" synaptic plasticity."> synaptic plasticity.</a> </p> <a href="https://publications.waset.org/abstracts/186920/exploration-into-bio-inspired-computing-based-on-spintronic-energy-efficiency-principles-and-neuromorphic-speed-pathways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8268</span> Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuzhan%20Hasan%C3%A7ebi">Oğuzhan Hasançebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Kazemzadeh%20Azad"> Saeid Kazemzadeh Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <div>This paper covers application of an elitist selfadaptive</div> <div>step-size search (ESASS) to optimum design of steel</div> <div>skeletal structures. In the ESASS two approaches are considered for</div> <div>improving the convergence accuracy as well as the computational</div> <div>efficiency of the original technique namely the so called selfadaptive</div> <div>step-size search (SASS). Firstly, an additional randomness</div> <div>is incorporated into the sampling step of the technique to preserve</div> <div>exploration capability of the algorithm during the optimization.</div> <div>Moreover, an adaptive sampling scheme is introduced to improve the</div> <div>quality of final solutions. Secondly, computational efficiency of the</div> <div>technique is accelerated via avoiding unnecessary analyses during the</div> <div>optimization process using an upper bound strategy. The numerical</div> <div>results demonstrate the usefulness of the ESASS in the sizing</div> <div>optimization problems of steel truss and frame structures.</div> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20design%20optimization" title="structural design optimization">structural design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sizing" title=" optimal sizing"> optimal sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristics" title=" metaheuristics"> metaheuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive%20step-size%20search" title=" self-adaptive step-size search"> self-adaptive step-size search</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20trusses" title=" steel trusses"> steel trusses</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frames" title=" steel frames"> steel frames</a> </p> <a href="https://publications.waset.org/abstracts/8724/elitist-self-adaptive-step-size-search-in-optimum-sizing-of-steel-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8267</span> Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20T.%20Tsai">Yu T. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20H.%20Huang"> Jin H. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20transmission%20loss" title="sound transmission loss">sound transmission loss</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite%20plate" title=" laminated composite plate"> laminated composite plate</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20approach" title=" transfer matrix approach"> transfer matrix approach</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20plate%20theory" title=" elastic plate theory"> elastic plate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20properties" title=" material properties"> material properties</a> </p> <a href="https://publications.waset.org/abstracts/25937/parameters-optimization-of-the-laminated-composite-plate-for-sound-transmission-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8266</span> An Output Oriented Super-Efficiency Model for Considering Time Lag Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanshuang%20Zhang">Yanshuang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Jeong"> Byungho Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-efficiency" title=" Super-efficiency"> Super-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20Lag" title=" Time Lag"> Time Lag</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20activities" title=" research activities"> research activities</a> </p> <a href="https://publications.waset.org/abstracts/21208/an-output-oriented-super-efficiency-model-for-considering-time-lag-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8265</span> A New Computational Package for Using in CFD and Other Problems (Third Edition)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Akhavan%20Khaleghi">Mohammad Reza Akhavan Khaleghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20finite%20element%20method" title="reduced finite element method">reduced finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20computational%20package" title=" new computational package"> new computational package</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20finite%20element%20formulation" title=" new finite element formulation"> new finite element formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20higher-order%20form" title=" new higher-order form"> new higher-order form</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20isogeometric%20analysis" title=" new isogeometric analysis"> new isogeometric analysis</a> </p> <a href="https://publications.waset.org/abstracts/169466/a-new-computational-package-for-using-in-cfd-and-other-problems-third-edition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8264</span> Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Huleihil">Mahmoud Huleihil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20generator" title="magnetohydrodynamic generator">magnetohydrodynamic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power" title=" maximum power"> maximum power</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20efficiency" title=" maximum efficiency"> maximum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20engine" title=" heat engine"> heat engine</a> </p> <a href="https://publications.waset.org/abstracts/103498/power-efficiency-characteristics-of-magnetohydrodynamic-thermodynamic-gas-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8263</span> Fin Efficiency of Helical Fin with Fixed Fin Tip Temperature Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20G.%20Carranza">Richard G. Carranza</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Ospina"> Juan Ospina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fin efficiency for a helical fin with a fixed fin tip (or arbitrary) temperature boundary condition is presented. Firstly, the temperature profile throughout the fin is determined via an energy balance around the fin itself. Secondly, the fin efficiency is formulated by integrating across the entire surface of the helical fin. An analytical expression for the fin efficiency is presented and compared with the literature for accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fin" title=" fin"> fin</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a> </p> <a href="https://publications.waset.org/abstracts/24252/fin-efficiency-of-helical-fin-with-fixed-fin-tip-temperature-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8262</span> Investigation of Unconventional Fuels in Co-Axial Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arya%20Pirooz">Arya Pirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of different fuels (DME, RME B100, and SME B100) on barrel engines were studied as a general, single dimensional investigation for characterization of these types of engines. A base computational model was created as reference point to be used as a point of comparison with different cases. The models were computed using the commercial computational fluid dynamics program, Diesel-RK. The base model was created using basic dimensions of the PAMAR-3 engine with inline unit injectors. Four fuel cases were considered. Optimized models were also considered for diesel and DME cases with respect to injection duration, fuel, injection timing, exhaust and intake port opening, CR, angular offset. These factors were optimized for highest BMEP, combined PM and NOx emissions, and highest SFC. Results included mechanical efficiency (eta_m), efficiency and power, emission characteristics, combustion characteristics. DME proved to have the highest performing characteristics in relation to diesel and RME fuels for this type of barrel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DME" title="DME">DME</a>, <a href="https://publications.waset.org/abstracts/search?q=RME" title=" RME"> RME</a>, <a href="https://publications.waset.org/abstracts/search?q=Diesel-RK" title=" Diesel-RK"> Diesel-RK</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=inline%20unit%20injector" title=" inline unit injector"> inline unit injector</a> </p> <a href="https://publications.waset.org/abstracts/7010/investigation-of-unconventional-fuels-in-co-axial-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8261</span> Efficient Chess Board Representation: A Space-Efficient Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghava%20Dhanya">Raghava Dhanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashank%20S."> Shashank S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chess" title="chess">chess</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=encoding" title=" encoding"> encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20manipulation" title=" bit manipulation"> bit manipulation</a> </p> <a href="https://publications.waset.org/abstracts/183301/efficient-chess-board-representation-a-space-efficient-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8260</span> Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20C.%20Filippou"> Filip C. Filippou</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20efficiency" title=" computational efficiency"> computational efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20explicit-implicit%20method" title=" mixed explicit-implicit method"> mixed explicit-implicit method</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioned%20solution%20approach" title=" partitioned solution approach"> partitioned solution approach</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/59056/nonlinear-dynamic-analysis-of-base-isolated-structures-using-a-mixed-integration-method-stability-aspects-and-computational-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8259</span> Experimental and Computational Investigations on the Mitigation of Air Pollutants Using Pulsed Radio Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gangadhara%20Siva%20Naga%20Venkata%20Krishna%20Satya%20Narayana%20Swamy%20Undi">Gangadhara Siva Naga Venkata Krishna Satya Narayana Swamy Undi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particulate matter (PM) pollution in ambient air is a major environmental health risk factor contributing to disease and mortality worldwide. Current air pollution control methods have limitations in reducing real-world ambient PM levels. This study demonstrates the efficacy of using pulsed radio wave technology as a distinct approach to lower outdoor particulate pollution. Experimental data were compared with computational models to evaluate the efficiency of pulsed waves in coagulating and settling PM. Results showed 50%+ reductions in PM2.5 and PM10 concentrations at the city scale, with particle removal rates exceeding gravity settling by over 3X. Historical air quality data further validated the significant PM reductions achieved in test cases. Computational analyses revealed the underlying coagulation mechanisms induced by the pulsed waves, supporting the feasibility of this strategy for ambient particulate control. The pulsed electromagnetic technology displayed robustness in sustainably managing PM levels across diverse urban and industrial environments. Findings highlight the promise of this advanced approach as a next-generation solution to mitigate particulate air pollution and associated health burdens globally. The technology's scalability and energy efficiency can help address a key gap in current efforts to improve ambient air quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title="particulate matter">particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20technologies" title=" mitigation technologies"> mitigation technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20air" title=" clean air"> clean air</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20air%20pollution" title=" ambient air pollution"> ambient air pollution</a> </p> <a href="https://publications.waset.org/abstracts/183140/experimental-and-computational-investigations-on-the-mitigation-of-air-pollutants-using-pulsed-radio-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8258</span> Performance of Environmental Efficiency of Energy Consumption in OPEC Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Fathi">Bahram Fathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Khodaparast%20Mashhadi"> Mahdi Khodaparast Mashhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masuod%20Homayounifar"> Masuod Homayounifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=OPEC" title=" OPEC"> OPEC</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/40892/performance-of-environmental-efficiency-of-energy-consumption-in-opec-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8257</span> Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roshanak%20Khodabakhsh%20Jolfaei">Roshanak Khodabakhsh Jolfaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Akbari%20Torkestani"> Javad Akbari Torkestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20grid" title="computational grid">computational grid</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20scheduling" title=" job scheduling"> job scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20automata" title=" learning automata"> learning automata</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scheduling" title=" dynamic scheduling"> dynamic scheduling</a> </p> <a href="https://publications.waset.org/abstracts/40508/presenting-a-job-scheduling-algorithm-based-on-learning-automata-in-computational-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8256</span> Maximizing the Efficiency of Knowledge Management Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tori%20Reddy%20Dodla">Tori Reddy Dodla</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ann%20Jones"> Laura Ann Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated eleven best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, Identifying Case Studies, Implementing the KMS, and Promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20efficiency" title=" knowledge management efficiency"> knowledge management efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20systems" title=" knowledge management systems"> knowledge management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20performance" title=" organizational performance"> organizational performance</a> </p> <a href="https://publications.waset.org/abstracts/165236/maximizing-the-efficiency-of-knowledge-management-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8255</span> A Computational Study Concerning the Biological Effects of the Most Commonly Used Phthalates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Craciun">Dana Craciun</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Dascalu"> Daniela Dascalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Isvoran"> Adriana Isvoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalates are a class of plastic additives that are used to enhance the physical properties of plastics and as solvents in paintings and some of them proved to be of particular concern for the human health. There are insufficient data concerning the health risks of phthalates and further research on evaluating their effects in humans is needed. As humans are not volunteers for such experiments, computational analysis may be used to predict the biological effects of phthalates in humans. Within this study we have used some computational approaches (SwissADME, admetSAR, FAFDrugs) for predicting the absorption, distribution, metabolization, excretion and toxicity (ADME-Tox) profiles and pharmacokinetics for the most common used phthalates. These computational tools are based on quantitative structure-activity relationship modeling approach. The predictions are further compared to the known effects of each considered phthalate in humans and correlations between computational results and experimental data are discussed. Our data revealed that phthalates are a class of compounds reflecting high toxicity both when ingested and when inhaled, but by inhalation their toxicity is even greater. The predicted harmful effects of phthalates are: toxicity and irritations of the respiratory and gastrointestinal tracts, dyspnea, skin and eye irritations and disruption of the functions of liver and of the reproductive system. Many of investigated phthalates are predicted to be able to inhibit some of the cytochromes involved in the metabolism of numerous drugs and consequently to affect the efficiency of administrated treatments for many diseases and to intensify the adverse drugs reactions. The obtained predictions are in good agreement with clinical data concerning the observed effects of some phthalates in cases of acute exposures. Our study emphasizes the possible health effects of numerous phthalates and underlines the applicability of computational methods for predicting the biological effects of xenobiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalates" title="phthalates">phthalates</a>, <a href="https://publications.waset.org/abstracts/search?q=ADME-Tox" title=" ADME-Tox"> ADME-Tox</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title=" pharmacokinetics"> pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20effects" title=" biological effects"> biological effects</a> </p> <a href="https://publications.waset.org/abstracts/94596/a-computational-study-concerning-the-biological-effects-of-the-most-commonly-used-phthalates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8254</span> Experimental and Computational Investigations of Baffle Position Effects on the Performance of Oil and Water Separator Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah%E2%80%8F%E2%80%8E"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Azlin%20Md%20Said%20%E2%80%8E"> Md Azlin Md Said </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The measurements were compared with the result of the computational model. The results of the experimental and computational simulations indicate that the best location of a baffle structure is achieved when the standard deviation of the velocity profile and the volume of the circulation zone inside the tank are minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20separator%20tanks" title="gravity separator tanks">gravity separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20position" title=" baffle position"> baffle position</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20droplet" title=" oil droplet"> oil droplet</a> </p> <a href="https://publications.waset.org/abstracts/13318/experimental-and-computational-investigations-of-baffle-position-effects-on-the-performance-of-oil-and-water-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8253</span> Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Haider">Kamal Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing%20gear" title="landing gear">landing gear</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aerodynamics" title=" computational aerodynamics"> computational aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20eddy%20simulation" title=" detached eddy simulation"> detached eddy simulation</a> </p> <a href="https://publications.waset.org/abstracts/59488/computational-aerodynamics-and-aeroacoustics-of-a-nose-landing-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8252</span> A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanshuang%20Zhang">Yanshuang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Jeong"> Byungho Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=super-efficiency" title=" super-efficiency"> super-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20lag" title=" time lag"> time lag</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-periods%20input" title=" multi-periods input"> multi-periods input</a> </p> <a href="https://publications.waset.org/abstracts/13008/a-super-efficiency-model-for-evaluating-efficiency-in-the-presence-of-time-lag-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8251</span> Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smaran%20Manchala">Smaran Manchala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CKKS%20scheme" title="CKKS scheme">CKKS scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=runtime%20efficiency" title=" runtime efficiency"> runtime efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20homomorphic%20encryption%20%28FHE%29" title=" fully homomorphic encryption (FHE)"> fully homomorphic encryption (FHE)</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20acceleration" title=" GPU acceleration"> GPU acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20parallelization" title=" vector parallelization"> vector parallelization</a> </p> <a href="https://publications.waset.org/abstracts/192456/improving-cheon-kim-kim-song-ckks-performance-with-vector-computation-and-gpu-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8250</span> Architecture of a Preliminary Course on Computational Thinking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintu%20Philip">Mintu Philip</a>, <a href="https://publications.waset.org/abstracts/search?q=Renumol%20V.%20G."> Renumol V. G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An introductory programming course is a major challenge faced in Computing Education. Many of the introductory programming courses fail because student concentrate mainly on writing programs using a programming language rather than involving in problem solving. Computational thinking is a general approach to solve problems. This paper proposes a new preliminary course that aims to develop computational thinking skills in students, which may help them to become good programmers. The proposed course is designed based on the four basic components of computational thinking - abstract thinking, logical thinking, modeling thinking and constructive thinking. In this course, students are engaged in hands-on problem solving activities using a new problem solving model proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title="computational thinking">computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=computing%20education" title=" computing education"> computing education</a>, <a href="https://publications.waset.org/abstracts/search?q=abstraction" title=" abstraction"> abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=constructive%20thinking" title=" constructive thinking"> constructive thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20thinking" title=" modelling thinking "> modelling thinking </a> </p> <a href="https://publications.waset.org/abstracts/17479/architecture-of-a-preliminary-course-on-computational-thinking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=275">275</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=276">276</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20efficiency&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>