CINXE.COM

Key Engineering Materials Vol. 971 | p. 2 | Scientific.Net

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The special issue contains articles that are dedicated to the analysis of the latest research results and engineering solutions in the area of materials science and materials processing and synthesis technologies. This special edition will be useful to specialists in machinery, chemical production and energy storage." /> <link rel="canonical" href="https://www.scientific.net/KEM.971/2" /> <meta property="og:title" content="Key Engineering Materials Vol. 971 | p. 2 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.971/2" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 971 | p. 2 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.971%2F2" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.971%2F2" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.977" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 977</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.976" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 976</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.975" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 975</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.974" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 974</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.973" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 973</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.972" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 972</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.971" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 971</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.970" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 970</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.969" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 969</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.968" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 968</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.967" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 967</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.966" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 966</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.965" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 965</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 971</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 971</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-Lt79i7">https://doi.org/10.4028/v-Lt79i7</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.971/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.971_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="PagedList-skipToPrevious"><a href="/KEM.971" rel="prev"><</a></li><li><a href="/KEM.971">1</a></li><li class="active"><span>2</span></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.97">Biodiesel Production Using Catalyst Na<sub>2</sub>O/Fly Ash from Waste Cooking Oil (WCO) with Transesterification Process</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Bayu Ajie Ibnu Raharjo, Dika Julian Putra, Fadhil Muhammad Tarmidzi, Riza Alviany </div> </div> <div id="abstractTextBlock594906" class="volume-info volume-info-text volume-info-description"> Abstract: The consumption of fuel oil in all countries in the world is always increasing. Indonesia is one of the countries that are still dependent on fuel oil, especially for transportation and industry. Biodiesel is known as an alternative to diesel fuel that is believed to be able to overcome the problems of world energy needs. One of the raw materials that have the potential to be biodiesel is Waste Cooking Oil (WCO). This research aims to study the Na<sub>2</sub>O/Fly ash catalyst preparation process used for the transesterification reaction of WCO into biodiesel, study of purifying WCO as a raw material in biodiesel, analyze the effect of the methanol molar ratio to oil, catalyst loading and reaction time on the transesterification process in terms of the yield of the reaction, density, viscosity and an acid number of biodiesel product. The research method was begun preparation of Na<sub>2</sub>O/Fly ash catalyst and purification of WCO with despicing and neutralization methods. Afterwards, the transesterification process was running by varying %wt of the catalyst, the molar ratio of methanol to oil, and reaction time. The percentage weight of the catalyst used is 4% and 6% to the WCO weight, the molar ratio of methanol to oil is 6:1 and 8:1, and the transesterification reaction time used is 60, 80, 100 and 120 minutes. The results showed that the Free Fatty Acids (FFA) of WCO raw material was 3.102%, but after the despicing and neutralization processes were carried out, the FFA of WCO decreased to 2.538% and 0.282%, respectively. The optimal condition for the biodiesel production process was obtained when the catalyst weight is 6% with a molar ratio of methanol to oil by 8:1 which runs in 120 minutes. In these conditions, the obtained yield of reaction results are 99,09%, density 882 kg/m<sup>3</sup>, viscosity 11.15 cSt and an acid number of 0.2244 mg KOH/g. The results of XRD analysis on the catalyst Na<sub>2</sub>O/Fly ash is dominant by alumina (Al<sub>2</sub>O<sub>3</sub>), silica (SiO<sub>2</sub>), ferrous oxide (Fe<sub>2</sub>O<sub>3</sub>), calcium oxide (CaO), and natrium oxide (Na<sub>2</sub>O) compositions. Moreover, GCMS analysis on biodiesel showed that the methyl ester content formed was 98.13%. Based on parameters above, density and acid number has met the quality standards of SNI 7182: 2015. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594906', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 97 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.107">Purification of Triglyceride from Used Cooking Oil for Biodiesel Feedstock Using Batchwise Solvent Extraction</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Gading Bagus Mahardika, Francis Sjarifudin, Neza Anizar, Arief Widjaja, Setiyo Gunawan </div> </div> <div id="abstractTextBlock595013" class="volume-info volume-info-text volume-info-description"> Abstract: Green economy and blue economy are essential to applicate. One of the mandatory programs from the Indonesian government is B30, a specification of diesel fuel that has 30 percent of biodiesel content. Based on the biodiesel feedstock specification standard, the free fatty acid content is below 1%. The aim of this research was to produce biodiesel feedstock with high purity of triglyceride from used cooking oil by using batchwise solvent extraction. Batchwise solvent extraction involves the polarity of oil and solvent to separate polar and non-polar lipid fractions. The target of this research was the lowest percentage of free fatty acid and the highest percentage of triglyceride. This method also skipped the general method of refined oil products, such as degumming, neutralization, bleaching, and deodorization. The used cooking oil was mixed with a binary solvent (n-hexane and technical grade ethanol) and a single solvent (food grade ethanol 96% only). Each mixture was stirred at 300 rpm for 15 min and then poured into a separator funnel for 15 min. Polar and non-polar lipid fractions were separated. The non-polar lipid fraction was processed in the same procedure until eight stages. It was found that the batchwise binary solvent extraction produced a non-polar lipid fraction with triglyceride and free fatty acid purities of 88.81% and 2.06%, respectively. Moreover, the batchwise single solvent extraction produced a non-polar lipid fraction with triglyceride and free fatty acid purities of 95.89% and 0.93%, respectively, which is suitable with the standard of biodiesel feedstock below 1%. </div> <div> <a data-readmore="{ block: '#abstractTextBlock595013', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 107 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.115">Synthesis of Sulfonated Carbon Aerogel from Coir Fiber as Solid Acid Catalyst for Esterification</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Ade Sonya Suryandari, Tantular Nurtono, W. Widiyastuti, Heru Setyawan </div> </div> <div id="abstractTextBlock594944" class="volume-info volume-info-text volume-info-description"> Abstract: The increasing human population drives up energy consumption, particularly in the transportation and industrial sectors. Due to the limited and non-renewable availability of fossil fuels encourages various technological developments in the field of renewable energy, including biodiesel. Biodiesel is a biodegradable, non-toxic, and environmentally favorable renewable fuel. One of typical technique of biodiesel production is involving esterification reaction between fatty acids and alcohols by addition acid catalyst to enhance reaction rate. Solid acid catalysts are widely utilized for esterification reaction due to their ability to overcome the drawback of homogeneous catalysts that are difficult to separate. Solid acid catalysts can be produced from cellulose aerogel derived from coir fiber, which is then pyrolyzed into carbon aerogel and sulfonated through grafting process. Although sulfuric acid is a common sulfonic agent used in the catalyst sulfonation process, it has a lengthy grafting time. The addition of 4-aminobenzenesulfonic acid (sulfanilic acid) as a sulfonic agent alternative for sulfuric acid was investigated in this work. This paper reports the methods for preparing cellulose aerogel derived from coir fiber, pyrolysis of cellulose aerogel into carbon aerogel, sulfonation of carbon aerogel into solid acid catalyst, and application of solid acid catalyst for ethyl acetate production. The solid acid catalyst characterization tests include acid density, adsorption-desorption nitrogen analysis, SEM, and FTIR analysis. According to the adsorption-desorption nitrogen analysis results, the sulfonated carbon aerogel catalyst has a specific surface area of 220.29 g/m<sup>2</sup>. Sulfonated carbon aerogel catalyst with acid density value of 2.81 mmol/g can be obtained at the mass ratio of sulfanilic acid to carbon substrates of 1:1 and pyrolysis temperature of 700°C. The esterification reaction was carried out at 80°C and reached a conversion of 31.37% after 4 h. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594944', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 115 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.123">Comparative Analysis on Microwave and Pressure Cooker Pre-Treatment of Lignocellulosic Biomass in Glucose Production via Fungal Treatment</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Sri Rachmania Juliastuti, Erina Mega Ariyanto, Diva Veryna Widiantari, Orchidea Rachmaniah, Nuniek Hendrianie, Raden Darmawan </div> </div> <div id="abstractTextBlock595010" class="volume-info volume-info-text volume-info-description"> Abstract: Oil Palm Empty Fruit Bunch (OPEFB) is lignocellulosic biomass waste generated from palm oil processing industries. Due to its significant compositions of cellulose, hemicellulose, and lignin, OPEFB can be further utilized and converted into value-added chemical products which can be used as alternative energy. Hence, the focus of this research is to analyze the effect of microwave pre-treatment (MP) and pressure cooker pre-treatment (PCP) parameters on OPEFB lignin reduction. The treated OPEFB was directly processed using two serial fungal treatment processes. The first fungal treatment process (FT-1) was to maximize the OPEFB lignin removal while the second fungal treatment process (FT-2) was to maximize the glucose production. Combination of microbes such as <i>Phanerochaete chrysosporium, Trichoderma harzianum, Aspergillus niger</i>, and <i>Tricodherma viride</i> was used for both fungal treatment processes. The OPEFB passing 25-mesh screening was used as raw materials. The raw materials mixed with 0.05 w/w NaOH pellets and water to achieve a concentration ratio of 3/50 (w/v) were pre-treated with either MP or PCP. Subsequently, the slurry produced from the pre-treatment process was introduced to FT-1 (<i>P. chrysosporium</i> for 5 days) and finally to FT-2 (<i>T. harzianum, A. niger and T. viride</i> for 4 days). The compositions of lignin, cellulose, hemicellulose, and glucose were analyzed at each process transition and the end of the whole process. It was observed that PCP (60 mins) was the best pre-treatment process with 39.23%-w of lignin removed. On the other hand, combination of MP (150 watts, 60 mins) was followed with FT-1 removed 66.67%-w of lignin. Only around 38.37%-w of lignin was removed when using the whole process, e.g., MP (150 watts, 60 mins), FT-1, and FT-2. The highest composition of glucose, ca. 131.02%-w, was obtained when 40-min PCP followed with FT-1 and FT-2 was applied. The obtained results exhibited that large lignin removal did not necessarily promote high glucose yield in the final product as observed in the 60-min PCP, e.g., <i>P. chrysosporium</i> consumed not only lignin but also presumably hemicellulose and cellulose. </div> <div> <a data-readmore="{ block: '#abstractTextBlock595010', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 123 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.135">Mill Scale - Biomass Pellet as a Charged Material for EAF Steelmaking</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Jintana Kumpa, Somyote Kongkarat </div> </div> <div id="abstractTextBlock602775" class="volume-info volume-info-text volume-info-description"> Abstract: With an aim to utilize the local-based waste materials, this research investigated the production of mill scale - biomass pellet (MBP) as an alternative charged material for EAF steelmaking. Rubber tree bark (RTB) is one of the major biomasses in Thailand, consisting of carbon and hydrogen as the main compositions. The carbon derived from RTB was mixed with coal into five different ratios. Pure coal and RTB were employed for comparison. Seven carbonaceous samples were blended with mill scale at a C/O molar ratio of 1:1 to produce MBP, namely Coal, blend#1 – blend#5 and RTB. The reduction of MBP was investigated in a horizontal tube furnace under argon atmosphere at 1550°C for 15 and 30 minutes. The obtained products were iron droplets and residual black powder of unreacted oxides. Quantities of reduced iron from the MBP of blend#1 – blend#5 was about 58 – 61 wt% after 30 minutes, while it was 62 wt% and 57 wt% for coal and RTB, respectively. Degree of metallization (DOM) for blend#1 – blend#5 was between 78.1 – 81.7%, while it was 82.7% and 83.3% for coal and RTB. This research offers the possible method to utilize mill scale and RTB biomass toward circular economy. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602775', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 135 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.145">Nanofluid Heat Transfer Coefficient Enhancement Using Connectors</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Gabriel Herrera, Zach Hamel, Jake Wohld, Michael Palmer, Saeid Vafaei, Cristian Gaytan </div> </div> <div id="abstractTextBlock603142" class="volume-info volume-info-text volume-info-description"> Abstract: The requirement for effective cooling of modern electrical and mechanical components has increased due to the desire for more compact and efficient designs. Thermal systems have used working fluids as a method for cooling systems for many years. However, technological improvements have dictated that working fluids must be more efficient for their applications. Researchers presented nanofluids as a possible solution for this issue, and they have gained a lot of attention due to their capability to enhance the heat transfer coefficient in miniaturized cooling or heating systems. The main purpose of this paper is to enhance the heat transfer coefficient in micro scales by encouraging the random motion of the particles in the nanofluid. This is accomplished by placing a nozzle between two micro-channels. The random motion of the particles is enhanced within the nozzle, increasing the heat transfer coefficient in the microchannel downstream as a result. In addition, the effects of characteristics of nanofluid are discussed briefly. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603142', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 145 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.151">Stability Evaluation of Nanofluids Suitable for Enhanced Oil Recovery</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Lengu Peter Tuok, Marwa F. El Kady, Tsuyoshi Yoshitake, Usama Nour Eldemerdash </div> </div> <div id="abstractTextBlock603148" class="volume-info volume-info-text volume-info-description"> Abstract: The evaluation of metal oxides nanoparticles stability in the base fluids has become a major aspect in enhanced oil recovery process in recent years. Physical and chemical properties of ZnO nanofluids have caught attention of many researchers because they are easily dispersed in the base fluids, better convective coefficient of heat transfer, and wider bandgap which make them remarkable nanofluids candidate compared to other metal oxides. In this study, the stability of nanofluid of zinc oxide nanoparticles was evaluated using different stability tests and analysis. However, ZnO nanoparticles were synthesized using sol-gel method and nanofluids of different concentrations were prepared. The prepared nanoparticles were characterized using various characterization techniques such as XRD, FTIR, TEM, and Zeta sizer. The stability of prepared nanofluids was investigated using sedimentation test, UV-vis spectrophotometer, and zeta analyzer. Based on physical investigation and UV-vis spectra observations, ZnO nanoparticles in base fluids have shown a good colloidal stability in addition to their high zeta potential values of-43.7 (mV) after seven days which makes it a successful potential candidate for enhanced oil recovery applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603148', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 151 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.159">A New Artificial Staggered-Grid Central Difference Solution for Checkerboard Problem in Incompressible, Steady, Inviscid, and Quasi-One-Dimensional Flow through Convergent Nozzle</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Prapol Chivapornthip </div> </div> <div id="abstractTextBlock603390" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, a novel artificial staggered grid points and under-relaxation free solution for a checkerboard pattern problem in a quasi-one-dimensional, incompressible, steady, and inviscid flow is introduced. The purpose of this numerical development is to obtain a new numerical solution, which is under-relaxation factor free scheme, more accurate, and easier to implement than a conventional staggered grid scheme. The proposed numerical solution can be described as the non-staggered grid/collocated grid central difference scheme which is free of pressure checkerboard pattern or spurious oscillation. The accuracy and convergence speed of the proposed numerical scheme is benchmarked against a conventional SIMPLE-based finite volume scheme and the exact solution for the flow problem in a convergent nozzle. The numerical analysis shows that the proposed numerical scheme outperforms the SIMPLE-based finite volume scheme in terms of accuracy, computational resource, and convergence speed. Also, the proposed numerical scheme has consistent numbers of iteration over the different grid sizes in contrast to the SIMPLE-based scheme which is iteration-grid size dependent. The proposed numerical scheme can be implemented with both uniform and non-uniform grid points and shows good agreement with the exact solution for every grid size. However, the uniform grid approach produces significantly more accurate results than the non-uniform grid approach. Hence, the choice of grid distribution is still an important factor affecting the accuracy of the proposed numerical solution. The proposed numerical technique can be further extended to solve incompressible flow problem in the complex 2D-3D domain with unstructural grids. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603390', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 159 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.971.169">Heat Transfer of Air-Water Flow in Wavy Microchannels</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Polrat Klindee, Mawin Khanabut, Suppakit Ruenrom, Maturose Suchatawat </div> </div> <div id="abstractTextBlock603317" class="volume-info volume-info-text volume-info-description"> Abstract: Effective cooling of the electronic devices is of great importance to their performance. Of particular interest is when the size of the equipment has scaled down to micro level. Despite a continuous improvement over the years, there is only a handful information on gas-liquid flow in wavy microchannels. This paper presents an experimental study of the air-water two-phase flow in a wavy microchannels heatsink typically used for cooling of electronic devices. The heatsink was made from copper with 26 wavy channels. The width and the depth of each channel were 800 and 500 μm, respectively. Two cartridge heaters were used to generate a constant heat flux. Pressure and temperatures of the working fluid at the inlet and outlet of the test section were measured using a pressure transducer and thermocouples. To evaluate the benefit of using the wavy microchannels, experiment was performed using water as the working fluid. The results showed that the wavy microchannels could elevate the Nusselt number by up to 112% compared to that obtained from the straight microchannels. Experiments at various air and water flowrates in the wavy microchannels suggested that the advantages of using the air-water flow would be obvious at the liquid Reynolds number above 379. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603317', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 169 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 11 to 19 of 19 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="PagedList-skipToPrevious"><a href="/KEM.971" rel="prev"><</a></li><li><a href="/KEM.971">1</a></li><li class="active"><span>2</span></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read &amp; Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=971&volumeEnd=971', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10