CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 104 results for author: <span class="mathjax">Jones, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Jones%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jones, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jones%2C+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jones, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jones%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14607">arXiv:2411.14607</a> <span> [<a href="https://arxiv.org/pdf/2411.14607">pdf</a>, <a href="https://arxiv.org/format/2411.14607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced LIGO detector performance in the fourth observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Capote%2C+E">E. Capote</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/physics?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+M">M. Nakano</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+V">V. Xu</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">G. Billingsley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">S. Biscans</a>, <a href="/search/physics?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/physics?searchtype=author&query=Bode%2C+N">N. Bode</a>, <a href="/search/physics?searchtype=author&query=Bonilla%2C+E">E. Bonilla</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14607v1-abstract-short" style="display: inline;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14607v1-abstract-full" style="display: none;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'none'; document.getElementById('2411.14607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18842">arXiv:2410.18842</a> <span> [<a href="https://arxiv.org/pdf/2410.18842">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A diffusion MRI model for random walks confined on cylindrical surfaces: Towards non-invasive quantification of myelin sheath radius </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Canales-Rodr%C3%ADguez%2C+E+J">Erick J Canales-Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Tax%2C+C+M+W">Chantal M. W. Tax</a>, <a href="/search/physics?searchtype=author&query=Fischi-Gomez%2C+E">Elda Fischi-Gomez</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Thiran%2C+J">Jean-Philippe Thiran</a>, <a href="/search/physics?searchtype=author&query=Rafael-Pati%C3%B1o%2C+J">Jonathan Rafael-Pati帽o</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18842v1-abstract-short" style="display: inline;"> Quantifying the myelin sheath radius of myelinated axons in vivo is important for understanding, diagnosing, and monitoring various neurological disorders. Despite advancements in diffusion MRI (dMRI) microstructure techniques, models specifically designed to estimate myelin sheath radii remain unavailable. In this proof-of-concept theoretical study, we present two novel dMRI models that character… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18842v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18842v1-abstract-full" style="display: none;"> Quantifying the myelin sheath radius of myelinated axons in vivo is important for understanding, diagnosing, and monitoring various neurological disorders. Despite advancements in diffusion MRI (dMRI) microstructure techniques, models specifically designed to estimate myelin sheath radii remain unavailable. In this proof-of-concept theoretical study, we present two novel dMRI models that characterize the signal from water diffusion confined to cylindrical surfaces, approximating myelin water diffusion. We derive their spherical mean signals, which conveniently eliminate fiber orientation and dispersion effects. These models are further extended to account for multiple concentric cylinders, mimicking the layered structure of myelin. Additionally, we introduce a method to convert histological distributions of axonal inner radii from the literature into myelin sheath radius distributions and derive analytical expressions to estimate the effective myelin sheath radius expected from these distributions. Monte Carlo (MC) simulations conducted in cylindrical and spiral geometries validate the models, demonstrating agreement with analytical predictions across various diffusion regimes and significant correlations between the effective radii estimated from the histological distributions and the effective radius obtained by fitting the resulting dMRI signal to a single-cylinder model. These models may be integrated into existing multi-compartment dMRI techniques, opening the door to non-invasive, in vivo assessments of myelin sheath radii in MRI scanners equipped with strong diffusion gradients that enable measurements with short echo times. Further work is required to validate the technique with real dMRI data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18842v1-abstract-full').style.display = 'none'; document.getElementById('2410.18842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 7 figures, 1 table, manuscript under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17696">arXiv:2409.17696</a> <span> [<a href="https://arxiv.org/pdf/2409.17696">pdf</a>, <a href="https://arxiv.org/ps/2409.17696">ps</a>, <a href="https://arxiv.org/format/2409.17696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic growth of sea ice: assessing the role of salinity using a quasi-static modelling framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D+W+R">David W. Rees Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17696v1-abstract-short" style="display: inline;"> Sea ice is a mushy layer, a porous material whose properties depend on the relative proportions of solid and liquid. The growth of sea ice is governed by heat transfer through the ice together with appropriate boundary conditions at the interfaces with the atmosphere and ocean. The salinity of sea ice has a large effect on its thermal properties so might naively be expected to have a large effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17696v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17696v1-abstract-full" style="display: none;"> Sea ice is a mushy layer, a porous material whose properties depend on the relative proportions of solid and liquid. The growth of sea ice is governed by heat transfer through the ice together with appropriate boundary conditions at the interfaces with the atmosphere and ocean. The salinity of sea ice has a large effect on its thermal properties so might naively be expected to have a large effect on its growth rate. However, previous studies observed a low sensitivity throughout the winter growth season. The goal of this study is to identify the controlling physical mechanisms that explain this observation. We develop a simplified quasi-static framework by applying a similarity transformation to the underlying heat equation and neglecting the explicit time dependence. We find three key processes controlling the sensitivity of growth rate to salinity. First, the trade-off between thermal conductivity and (latent) heat capacity leads to low sensitivity to salinity even at moderately high salinity and brine volume fraction. Second, the feedback on the temperature profile reduces the sensitivity relative to models that assume a linear profile, such as zero-layer Semtner models. Third, thicker ice has the opposite sensitivity of growth rate to salinity compared to thinner ice, sensitivities that counteract each other as the ice grows. Beyond its use in diagnosing these sensitivities, we show that the quasi-static approach offers a valuable sea-ice model of intermediate complexity between zero-layer Semtner models and full partial-differential-equation-based models such as Maykut-Untersteiner/Bitz-Lipscomb and mushy-layer models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17696v1-abstract-full').style.display = 'none'; document.getElementById('2409.17696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to J. Fluid Mech.; 29 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08359">arXiv:2406.08359</a> <span> [<a href="https://arxiv.org/pdf/2406.08359">pdf</a>, <a href="https://arxiv.org/format/2406.08359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Reactor Antineutrino Directionality Measurement with the PROSPECT-I Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andriamirado%2C+M">M. Andriamirado</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+B">B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/physics?searchtype=author&query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/physics?searchtype=author&query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&query=Classen%2C+T">T. Classen</a>, <a href="/search/physics?searchtype=author&query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/physics?searchtype=author&query=Deichert%2C+G">G. Deichert</a>, <a href="/search/physics?searchtype=author&query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/physics?searchtype=author&query=Erickson%2C+A">A. Erickson</a>, <a href="/search/physics?searchtype=author&query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/physics?searchtype=author&query=Gokhale%2C+S">S. Gokhale</a>, <a href="/search/physics?searchtype=author&query=Grant%2C+C">C. Grant</a>, <a href="/search/physics?searchtype=author&query=Hans%2C+S">S. Hans</a>, <a href="/search/physics?searchtype=author&query=Hansell%2C+A+B">A. B. Hansell</a>, <a href="/search/physics?searchtype=author&query=Heeger%2C+K+M">K. M. Heeger</a>, <a href="/search/physics?searchtype=author&query=Heffron%2C+B">B. Heffron</a>, <a href="/search/physics?searchtype=author&query=Jaffe%2C+D+E">D. E. Jaffe</a>, <a href="/search/physics?searchtype=author&query=Jayakumar%2C+S">S. Jayakumar</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+C">D. C. Jones</a>, <a href="/search/physics?searchtype=author&query=Koblanski%2C+J+R">J. R. Koblanski</a>, <a href="/search/physics?searchtype=author&query=Kunkle%2C+P">P. Kunkle</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08359v2-abstract-short" style="display: inline;"> The PROSPECT-I detector has several features that enable measurement of the direction of a compact neutrino source. In this paper, a detailed report on the directional measurements made on electron antineutrinos emitted from the High Flux Isotope Reactor is presented. With an estimated true neutrino (reactor to detector) direction of $蠁= 40.8\unicode{xB0} \pm 0.7\unicode{xB0}$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08359v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08359v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08359v2-abstract-full" style="display: none;"> The PROSPECT-I detector has several features that enable measurement of the direction of a compact neutrino source. In this paper, a detailed report on the directional measurements made on electron antineutrinos emitted from the High Flux Isotope Reactor is presented. With an estimated true neutrino (reactor to detector) direction of $蠁= 40.8\unicode{xB0} \pm 0.7\unicode{xB0}$ and $胃= 98.6\unicode{xB0} \pm 0.4\unicode{xB0}$, the PROSPECT-I detector is able to reconstruct an average neutrino direction of $蠁= 39.4\unicode{xB0} \pm 2.9\unicode{xB0}$ and $胃= 97.6\unicode{xB0} \pm 1.6\unicode{xB0}$. This measurement is made with approximately 48000 Inverse Beta Decay signal events and is the most precise directional reconstruction of reactor antineutrinos to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08359v2-abstract-full').style.display = 'none'; document.getElementById('2406.08359v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02307">arXiv:2405.02307</a> <span> [<a href="https://arxiv.org/pdf/2405.02307">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Helium Detection in Technical Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gillespie%2C+A+K">Andrew K. Gillespie</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+C">Cuikun Lin</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">Django Jones</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+R+V">R. V. Duncan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02307v1-abstract-short" style="display: inline;"> Materials used to study nuclear fusion can retain atmospheric helium unless pretreated before an experiment. Understanding helium outgassing is important for accurate diagnostics in experiments surrounding nuclear fusion. The presence of helium is often cited as the primary evidence that a nuclear reaction has occurred, so it is imperative that known sources of helium are mitigated prior to procee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02307v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02307v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02307v1-abstract-full" style="display: none;"> Materials used to study nuclear fusion can retain atmospheric helium unless pretreated before an experiment. Understanding helium outgassing is important for accurate diagnostics in experiments surrounding nuclear fusion. The presence of helium is often cited as the primary evidence that a nuclear reaction has occurred, so it is imperative that known sources of helium are mitigated prior to proceeding with novel nuclear experiments. It is also necessary to ensure hermiticity when transferring gas aliquots from an experiment to a mass spectrometer. In this article, we present studies of detecting helium leak rates in systems used in novel nuclear experiments. We also present studies of helium retention in materials subjected to various heating profiles and atmospheric concentrations. Without pretreatment, stainless-steel 316 retains between 15 $\unicode{x2013}$ 240 pmol of $^{ 4}$He or an areal outgassing amount of 0.07 $\unicode{x2013}$ 1.20 pmol/$cm^{ 2}$. It also may reabsorb $^{ 4}$He from the atmosphere in time. These studies also demonstrate that it is necessary to pretreat most materials prior to performing experiments where the presence of $^{ 4}$He is being used as an indicator for novel nuclear reactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02307v1-abstract-full').style.display = 'none'; document.getElementById('2405.02307v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11939">arXiv:2404.11939</a> <span> [<a href="https://arxiv.org/pdf/2404.11939">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Regional impacts poorly constrained by climate sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Swaminathan%2C+R">Ranjini Swaminathan</a>, <a href="/search/physics?searchtype=author&query=Schewe%2C+J">Jacob Schewe</a>, <a href="/search/physics?searchtype=author&query=Walton%2C+J">Jeremy Walton</a>, <a href="/search/physics?searchtype=author&query=Zimmermann%2C+K">Klaus Zimmermann</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+C">Colin Jones</a>, <a href="/search/physics?searchtype=author&query=Betts%2C+R+A">Richard A. Betts</a>, <a href="/search/physics?searchtype=author&query=Burton%2C+C">Chantelle Burton</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+C+D">Chris D. Jones</a>, <a href="/search/physics?searchtype=author&query=Mengel%2C+M">Matthias Mengel</a>, <a href="/search/physics?searchtype=author&query=Reyer%2C+C+P+O">Christopher P. O. Reyer</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+A+G">Andrew G. Turner</a>, <a href="/search/physics?searchtype=author&query=Weigel%2C+K">Katja Weigel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11939v1-abstract-short" style="display: inline;"> Climate risk assessments must account for a wide range of possible futures, so scientists often use simulations made by numerous global climate models to explore potential changes in regional climates and their impacts. Some of the latest-generation models have high effective climate sensitivities or EffCS. It has been argued these so-called hot models are unrealistic and should therefore be exclu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11939v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11939v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11939v1-abstract-full" style="display: none;"> Climate risk assessments must account for a wide range of possible futures, so scientists often use simulations made by numerous global climate models to explore potential changes in regional climates and their impacts. Some of the latest-generation models have high effective climate sensitivities or EffCS. It has been argued these so-called hot models are unrealistic and should therefore be excluded from analyses of climate change impacts. Whether this would improve regional impact assessments, or make them worse, is unclear. Here we show there is no universal relationship between EffCS and projected changes in a number of important climatic drivers of regional impacts. Analysing heavy rainfall events, meteorological drought, and fire weather in different regions, we find little or no significant correlation with EffCS for most regions and climatic drivers. Even when a correlation is found, internal variability and processes unrelated to EffCS have similar effects on projected changes in the climatic drivers as EffCS. Model selection based solely on EffCS appears to be unjustified and may neglect realistic impacts, leading to an underestimation of climate risks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11939v1-abstract-full').style.display = 'none'; document.getElementById('2404.11939v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint, 30 pages, 4 figures and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08952">arXiv:2403.08952</a> <span> [<a href="https://arxiv.org/pdf/2403.08952">pdf</a>, <a href="https://arxiv.org/format/2403.08952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterisation of analogue Monolithic Active Pixel Sensor test structures implemented in a 65 nm CMOS imaging process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rinella%2C+G+A">Gianluca Aglieri Rinella</a>, <a href="/search/physics?searchtype=author&query=Alocco%2C+G">Giacomo Alocco</a>, <a href="/search/physics?searchtype=author&query=Antonelli%2C+M">Matias Antonelli</a>, <a href="/search/physics?searchtype=author&query=Baccomi%2C+R">Roberto Baccomi</a>, <a href="/search/physics?searchtype=author&query=Beole%2C+S+M">Stefania Maria Beole</a>, <a href="/search/physics?searchtype=author&query=Blidaru%2C+M+B">Mihail Bogdan Blidaru</a>, <a href="/search/physics?searchtype=author&query=Buttwill%2C+B+B">Bent Benedikt Buttwill</a>, <a href="/search/physics?searchtype=author&query=Buschmann%2C+E">Eric Buschmann</a>, <a href="/search/physics?searchtype=author&query=Camerini%2C+P">Paolo Camerini</a>, <a href="/search/physics?searchtype=author&query=Carnesecchi%2C+F">Francesca Carnesecchi</a>, <a href="/search/physics?searchtype=author&query=Chartier%2C+M">Marielle Chartier</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+Y">Yongjun Choi</a>, <a href="/search/physics?searchtype=author&query=Colocci%2C+M">Manuel Colocci</a>, <a href="/search/physics?searchtype=author&query=Contin%2C+G">Giacomo Contin</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">Dominik Dannheim</a>, <a href="/search/physics?searchtype=author&query=De+Gruttola%2C+D">Daniele De Gruttola</a>, <a href="/search/physics?searchtype=author&query=Viera%2C+M+D+R">Manuel Del Rio Viera</a>, <a href="/search/physics?searchtype=author&query=Dubla%2C+A">Andrea Dubla</a>, <a href="/search/physics?searchtype=author&query=di+Mauro%2C+A">Antonello di Mauro</a>, <a href="/search/physics?searchtype=author&query=Donner%2C+M+C">Maurice Calvin Donner</a>, <a href="/search/physics?searchtype=author&query=Eberwein%2C+G+H">Gregor Hieronymus Eberwein</a>, <a href="/search/physics?searchtype=author&query=Egger%2C+J">Jan Egger</a>, <a href="/search/physics?searchtype=author&query=Fabbietti%2C+L">Laura Fabbietti</a>, <a href="/search/physics?searchtype=author&query=Feindt%2C+F">Finn Feindt</a>, <a href="/search/physics?searchtype=author&query=Gautam%2C+K">Kunal Gautam</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08952v1-abstract-short" style="display: inline;"> Analogue test structures were fabricated using the Tower Partners Semiconductor Co. CMOS 65 nm ISC process. The purpose was to characterise and qualify this process and to optimise the sensor for the next generation of Monolithic Active Pixels Sensors for high-energy physics. The technology was explored in several variants which differed by: doping levels, pixel geometries and pixel pitches (10-25… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08952v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08952v1-abstract-full" style="display: none;"> Analogue test structures were fabricated using the Tower Partners Semiconductor Co. CMOS 65 nm ISC process. The purpose was to characterise and qualify this process and to optimise the sensor for the next generation of Monolithic Active Pixels Sensors for high-energy physics. The technology was explored in several variants which differed by: doping levels, pixel geometries and pixel pitches (10-25 $渭$m). These variants have been tested following exposure to varying levels of irradiation up to 3 MGy and $10^{16}$ 1 MeV n$_\text{eq}$ cm$^{-2}$. Here the results from prototypes that feature direct analogue output of a 4$\times$4 pixel matrix are reported, allowing the systematic and detailed study of charge collection properties. Measurements were taken both using $^{55}$Fe X-ray sources and in beam tests using minimum ionizing particles. The results not only demonstrate the feasibility of using this technology for particle detection but also serve as a reference for future applications and optimisations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08952v1-abstract-full').style.display = 'none'; document.getElementById('2403.08952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05671">arXiv:2402.05671</a> <span> [<a href="https://arxiv.org/pdf/2402.05671">pdf</a>, <a href="https://arxiv.org/format/2402.05671">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Representation of the Terrestrial Carbon Cycle in CMIP6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gier%2C+B+K">Bettina K. Gier</a>, <a href="/search/physics?searchtype=author&query=Schlund%2C+M">Manuel Schlund</a>, <a href="/search/physics?searchtype=author&query=Friedlingstein%2C+P">Pierre Friedlingstein</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+C+D">Chris D. Jones</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+C">Colin Jones</a>, <a href="/search/physics?searchtype=author&query=Zaehle%2C+S">S枚nke Zaehle</a>, <a href="/search/physics?searchtype=author&query=Eyring%2C+V">Veronika Eyring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05671v1-abstract-short" style="display: inline;"> Improvements in the representation of the land carbon cycle in Earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) include interactive treatment of both the carbon and nitrogen cycles, improved photosynthesis, and soil hydrology. To assess the impact of these model developments on aspects of the global carbon cycle, the Earth System Model Evaluation Tool… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05671v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05671v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05671v1-abstract-full" style="display: none;"> Improvements in the representation of the land carbon cycle in Earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) include interactive treatment of both the carbon and nitrogen cycles, improved photosynthesis, and soil hydrology. To assess the impact of these model developments on aspects of the global carbon cycle, the Earth System Model Evaluation Tool is expanded to compare CO2 concentration and emission-driven historical simulations from CMIP5 and CMIP6 to observational data sets. Overestimations of photosynthesis (GPP) in CMIP5 were largely resolved in CMIP6 for participating models with an interactive nitrogen cycle, but remaining for models without one. This points to the importance of including nutrient limitation. Simulating the leaf area index (LAI) remains challenging with a large model spread in both CMIP5 and CMIP6. In ESMs, global mean land carbon uptake (NBP) is well reproduced in the CMIP5 and CMIP6 multi-model means. However, this is the result of an underestimation of NBP in the northern hemisphere, which is compensated by an overestimation in the southern hemisphere and the tropics. Overall, a slight improvement in the simulation of land carbon cycle parameters is found in CMIP6 compared to CMIP5, but with many biases remaining, further improvements of models in particular for LAI and NBP is required. Emission-driven simulations perform just as well as concentration driven models despite the added process-realism. Due to this we recommend ESMs in future CMIP phases to perform emission-driven simulations as the standard so that climate-carbon cycle feedbacks are fully active. The inclusion of nitrogen limitation led to a large improvement in photosynthesis compared to models not including this process, suggesting the need to view the nitrogen cycle as a necessary part of all future carbon cycle models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05671v1-abstract-full').style.display = 'none'; document.getElementById('2402.05671v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Biogeosciences, 82 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02688">arXiv:2311.02688</a> <span> [<a href="https://arxiv.org/pdf/2311.02688">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Pore size estimation in axon-mimicking microfibres with diffusion-relaxation MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Canales-Rodr%C3%ADguez%2C+E+J">Erick J. Canales-Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Pizzolato%2C+M">Marco Pizzolato</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+F">Feng-Lei Zhou</a>, <a href="/search/physics?searchtype=author&query=Barakovic%2C+M">Muhamed Barakovic</a>, <a href="/search/physics?searchtype=author&query=Thiran%2C+J">Jean-Philippe Thiran</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Parker%2C+G+J+M">Geoffrey J. M. Parker</a>, <a href="/search/physics?searchtype=author&query=Dyrby%2C+T+B">Tim B. Dyrby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02688v2-abstract-short" style="display: inline;"> Purpose: This study aims to evaluate two distinct approaches for fibre radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfibre phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. Theory and Methods: A general diffusion-relaxation theoretical model for the spherical mean sig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02688v2-abstract-full').style.display = 'inline'; document.getElementById('2311.02688v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02688v2-abstract-full" style="display: none;"> Purpose: This study aims to evaluate two distinct approaches for fibre radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfibre phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. Theory and Methods: A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from Scanning Electron Microscope images. Results: Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, though some discrepancies were observed. The spherical mean power-law method overestimated fibre radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fibre radii but faced limitations in accurately estimating the radius in one particular phantom, possibly due to material-specific relaxation changes. Conclusion: The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibres. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fibre radius estimation, highlights the advantages and limitations of both methods and provides datasets for reproducible research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02688v2-abstract-full').style.display = 'none'; document.getElementById('2311.02688v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 8 figures. Accepted in Magnetic Resonance in Medicine, Dec, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15678">arXiv:2310.15678</a> <span> [<a href="https://arxiv.org/pdf/2310.15678">pdf</a>, <a href="https://arxiv.org/format/2310.15678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Singlet fission spin dynamics from molecular structure: a modular computational pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D">Dominic Jones</a>, <a href="/search/physics?searchtype=author&query=MacDonald%2C+T">Thomas MacDonald</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+T+W">Timothy W. Schmidt</a>, <a href="/search/physics?searchtype=author&query=McCamey%2C+D+R">Dane R. McCamey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15678v1-abstract-short" style="display: inline;"> Singlet fission, which has applications in areas ranging form solar energy to quantum information, relies critically on transitions within a multi-spin manifold. These transitions are driven by fluctuations in the spin-spin exchange interaction, which have been linked to changes in nuclear geometry or exciton migration. Whilst simple calculations have supported this mechanism, to date little effor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15678v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15678v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15678v1-abstract-full" style="display: none;"> Singlet fission, which has applications in areas ranging form solar energy to quantum information, relies critically on transitions within a multi-spin manifold. These transitions are driven by fluctuations in the spin-spin exchange interaction, which have been linked to changes in nuclear geometry or exciton migration. Whilst simple calculations have supported this mechanism, to date little effort has been made to model realistic fluctuations which are informed by the actual structure and properties of physical materials. In this paper, we develop a modular computational pipeline for calculating singlet fission spin dynamics by way of electronic structural calculations, molecular dynamics, and numerical models of spin dynamics. The outputs of this pipeline aid in the interpretation of measured spin dynamics and allow us to place constraints on geometric fluctuations which are consistent with these observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15678v1-abstract-full').style.display = 'none'; document.getElementById('2310.15678v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages (including SI), 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09269">arXiv:2310.09269</a> <span> [<a href="https://arxiv.org/pdf/2310.09269">pdf</a>, <a href="https://arxiv.org/ps/2310.09269">ps</a>, <a href="https://arxiv.org/format/2310.09269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0181318">10.1063/5.0181318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> `Maser-in-a-Shoebox': a portable plug-and-play maser device at room-temperature and zero magnetic-field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ng%2C+W">Wern Ng</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+Y">Yongqiang Wen</a>, <a href="/search/physics?searchtype=author&query=Attwood%2C+M">Max Attwood</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+C">Daniel C Jones</a>, <a href="/search/physics?searchtype=author&query=Oxborrow%2C+M">Mark Oxborrow</a>, <a href="/search/physics?searchtype=author&query=Alford%2C+N+M">Neil McN. Alford</a>, <a href="/search/physics?searchtype=author&query=Arroo%2C+D+M">Daan M. Arroo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09269v1-abstract-short" style="display: inline;"> Masers, the microwave analogues of lasers, have seen a renaissance owing to the discovery of gain media that mase at room-temperature and zero-applied magnetic field. However, despite the ease with which the devices can be demonstrated under ambient conditions, achieving the ubiquity and portability which lasers enjoy has to date remained challenging. We present a maser device with a miniaturized… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09269v1-abstract-full').style.display = 'inline'; document.getElementById('2310.09269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09269v1-abstract-full" style="display: none;"> Masers, the microwave analogues of lasers, have seen a renaissance owing to the discovery of gain media that mase at room-temperature and zero-applied magnetic field. However, despite the ease with which the devices can be demonstrated under ambient conditions, achieving the ubiquity and portability which lasers enjoy has to date remained challenging. We present a maser device with a miniaturized maser cavity, gain material and laser pump source that fits within the size of a shoebox. The gain medium used is pentacene-doped in para-terphenyl and it is shown to give a strong masing signal with a peak power of -5 dBm even within a smaller form factor. The device is also shown to mase at different frequencies within a small range of 1.5 MHz away from the resonant frequency. The portability and simplicity of the device, which weighs under 5 kg, paves the way for demonstrators particularly in the areas of low-noise amplifiers, quantum sensors, cavity quantum electrodynamics and long-range communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09269v1-abstract-full').style.display = 'none'; document.getElementById('2310.09269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 124, 044004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11520">arXiv:2309.11520</a> <span> [<a href="https://arxiv.org/pdf/2309.11520">pdf</a>, <a href="https://arxiv.org/format/2309.11520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2023.09.005">10.1016/j.physrep.2023.09.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advancing time- and angle-resolved photoemission spectroscopy: The role of ultrafast laser development </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Na%2C+M">MengXing Na</a>, <a href="/search/physics?searchtype=author&query=Mills%2C+A+K">Arthur K. Mills</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+J">David J. Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11520v2-abstract-short" style="display: inline;"> In the last decade, there has been a proliferation of laser sources for time- and angle-resolved photoemission spectroscopy (TR-ARPES), building on the proven capability of this technique to tackle important scientific questions. In this review, we aim to identify the key motivations and technologies that spurred the development of various laser sources, from frequency up-conversion in nonlinear c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11520v2-abstract-full').style.display = 'inline'; document.getElementById('2309.11520v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11520v2-abstract-full" style="display: none;"> In the last decade, there has been a proliferation of laser sources for time- and angle-resolved photoemission spectroscopy (TR-ARPES), building on the proven capability of this technique to tackle important scientific questions. In this review, we aim to identify the key motivations and technologies that spurred the development of various laser sources, from frequency up-conversion in nonlinear crystals to high-harmonic generation in gases. We begin with a historical overview of the field in Sec.1, framed by advancements in light source and electron spectrometer technology. An introduction to the fundamental aspects of the photoemission process and the observables that can be studied is given in Sec.2, along with its dependencies on the pump and probe pulse parameters. The technical aspects of TR-ARPES are discussed in Sec.3. Here, experimental limitations such as space charge and resultant trade-offs in source parameters are discussed. Details of various systems and their approach to these trade-offs are given in Sec.4. Within this discussion, we present a survey of TR-ARPES laser sources; a meta-analysis of these source parameters showcases the advancements and trends in modern systems. Lastly, we conclude with a brief discussion of future directions for TR-ARPES and its capabilities in elucidating equilibrium and non-equilibrium observables, as well as its integration with micro-ARPES and spin-resolved ARPES (Sec.5). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11520v2-abstract-full').style.display = 'none'; document.getElementById('2309.11520v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">104 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports, 1036, 1-47 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09492">arXiv:2307.09492</a> <span> [<a href="https://arxiv.org/pdf/2307.09492">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1162/imag_a_00104">10.1162/imag_a_00104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying human gray matter microstructure using NEXI and 300 mT/m gradients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Uhl%2C+Q">Quentin Uhl</a>, <a href="/search/physics?searchtype=author&query=Pavan%2C+T">Tommaso Pavan</a>, <a href="/search/physics?searchtype=author&query=Molendowska%2C+M">Malwina Molendowska</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Palombo%2C+M">Marco Palombo</a>, <a href="/search/physics?searchtype=author&query=Jelescu%2C+I">Ileana Jelescu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09492v1-abstract-short" style="display: inline;"> Biophysical models of diffusion tailored to quantify gray matter microstructure are gathering increasing interest. The two-compartment Neurite EXchange Imaging ($NEXI$) model has been proposed recently to account for neurites, extra-cellular space and exchange across the cell membrane. $NEXI$ parameter estimation requires multi-shell multi-diffusion time data and has so far only been implemented e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09492v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09492v1-abstract-full" style="display: none;"> Biophysical models of diffusion tailored to quantify gray matter microstructure are gathering increasing interest. The two-compartment Neurite EXchange Imaging ($NEXI$) model has been proposed recently to account for neurites, extra-cellular space and exchange across the cell membrane. $NEXI$ parameter estimation requires multi-shell multi-diffusion time data and has so far only been implemented experimentally on animal data collected on a preclinical MRI set-up. In this work, the first ever translation of $NEXI$ to the human cortex in vivo was achieved using a 3T Connectom MRI system with 300 mT/m gradients, that enables the acquisition of a broad range of b-values (0 - 7.5 ms/$渭m^{2}$) with a window of diffusion times (20 - 49 ms) suitable for the expected characteristic exchange times (10 - 50 ms). Microstructure estimates of four model variants: $NEXI$, $NEXI_{dot}$ (its extension with the addition of a dot compartment) and their respective versions that correct for the Rician noise floor ($NEXI_{RM}$ and $NEXI_{dot,RM}$) that particularly impacts high b-value signal, were compared. The reliability of estimates in each model variant was evaluated in synthetic and human in vivo data. In the latter, the intra-subject (scan-rescan) vs between-subjects variability of microstructure estimates were compared in the cortex. The better performance of $NEXI_{RM}$ highlights the importance of correcting for Rician bias in the $NEXI$ model to obtain accurate estimates of microstructure parameters in the human cortex, and the sensitivity of the $NEXI$ framework to individual differences in cortical microstructure. This groundbreaking application of $NEXI$ in humans marks a pivotal moment, unlocking new avenues for studying neurodevelopment, ageing, and various neurodegenerative disorders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09492v1-abstract-full').style.display = 'none'; document.getElementById('2307.09492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article: 24 pages, 9 figures, 3 tables. Supplementary material: 11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09275">arXiv:2304.09275</a> <span> [<a href="https://arxiv.org/pdf/2304.09275">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fnins.2023.1209521">10.3389/fnins.2023.1209521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barakovic%2C+M">Muhamed Barakovic</a>, <a href="/search/physics?searchtype=author&query=Pizzolato%2C+M">Marco Pizzolato</a>, <a href="/search/physics?searchtype=author&query=Tax%2C+C+M+W">Chantal M. W. Tax</a>, <a href="/search/physics?searchtype=author&query=Rudrapatna%2C+U">Umesh Rudrapatna</a>, <a href="/search/physics?searchtype=author&query=Magon%2C+S">Stefano Magon</a>, <a href="/search/physics?searchtype=author&query=Dyrby%2C+T+B">Tim B. Dyrby</a>, <a href="/search/physics?searchtype=author&query=Granziera%2C+C">Cristina Granziera</a>, <a href="/search/physics?searchtype=author&query=Thiran%2C+J">Jean-Philippe Thiran</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Canales-Rodr%C3%ADguez%2C+E+J">Erick J. Canales-Rodr铆guez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09275v2-abstract-short" style="display: inline;"> Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09275v2-abstract-full').style.display = 'inline'; document.getElementById('2304.09275v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09275v2-abstract-full" style="display: none;"> Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm$^2$) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09275v2-abstract-full').style.display = 'none'; document.getElementById('2304.09275v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Frontiers in Neuroscience, Vol 17, 2023. https://www.frontiersin.org/articles/10.3389/fnins.2023.1209521 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08421">arXiv:2303.08421</a> <span> [<a href="https://arxiv.org/pdf/2303.08421">pdf</a>, <a href="https://arxiv.org/format/2303.08421">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.488653">10.1364/AO.488653 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intercombination line frequencies in $^{171}$Yb validated with the clock transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D+M">Daniel M. Jones</a>, <a href="/search/physics?searchtype=author&query=van+Kann%2C+F">Frank van Kann</a>, <a href="/search/physics?searchtype=author&query=McFerran%2C+J+J">John J. McFerran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08421v1-abstract-short" style="display: inline;"> We have carried absolute frequency measurements of the $(6s^{2})\,^{1}S_{0}$ $-$ $(6s6p)\,^{3}P_{1}$ transition in $^{171}$Yb (the intercombination line), where the spin-1/2 isotope yields two hyperfine lines. The measurements rely on sub-Doppler spectroscopy to yield a discriminator to which a 556 nm laser is locked. The frequency reference for the optical frequency measurements is a high-quality… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08421v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08421v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08421v1-abstract-full" style="display: none;"> We have carried absolute frequency measurements of the $(6s^{2})\,^{1}S_{0}$ $-$ $(6s6p)\,^{3}P_{1}$ transition in $^{171}$Yb (the intercombination line), where the spin-1/2 isotope yields two hyperfine lines. The measurements rely on sub-Doppler spectroscopy to yield a discriminator to which a 556 nm laser is locked. The frequency reference for the optical frequency measurements is a high-quality quartz oscillator steered to the GNSS timescale that is bridged with a frequency comb. The reference is validated to $\sim3\times10^{-12}$ by spectroscopy on the $^{1}S_{0}-\,^{3}P_{0}$ (clock) line in laser cooled and trapped $^{171}$Yb atoms. From the hyperfine separation between the $F=1/2$ and $F=3/2$ levels of $^{3}P_{1}$ we determine the hyperfine constant to be $A(^3P_1)= 3\,957\,833\,(28)$ kHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08421v1-abstract-full').style.display = 'none'; document.getElementById('2303.08421v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 62(15), 3932-3940 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09582">arXiv:2211.09582</a> <span> [<a href="https://arxiv.org/pdf/2211.09582">pdf</a>, <a href="https://arxiv.org/format/2211.09582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06010">10.1088/1748-0221/18/06/P06010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration strategy of the PROSPECT-II detector with external and intrinsic sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andriamirado%2C+M">M. Andriamirado</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/physics?searchtype=author&query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/physics?searchtype=author&query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/physics?searchtype=author&query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&query=Classen%2C+T">T. Classen</a>, <a href="/search/physics?searchtype=author&query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/physics?searchtype=author&query=Delgado%2C+A">A. Delgado</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/physics?searchtype=author&query=Erickson%2C+A">A. Erickson</a>, <a href="/search/physics?searchtype=author&query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/physics?searchtype=author&query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/physics?searchtype=author&query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/physics?searchtype=author&query=Gilbert%2C+C+E">C. E. Gilbert</a>, <a href="/search/physics?searchtype=author&query=Gokhale%2C+S">S. Gokhale</a>, <a href="/search/physics?searchtype=author&query=Grant%2C+C">C. Grant</a>, <a href="/search/physics?searchtype=author&query=Hans%2C+S">S. Hans</a>, <a href="/search/physics?searchtype=author&query=Hansell%2C+A+B">A. B. Hansell</a>, <a href="/search/physics?searchtype=author&query=Heeger%2C+K+M">K. M. Heeger</a>, <a href="/search/physics?searchtype=author&query=Heffron%2C+B">B. Heffron</a>, <a href="/search/physics?searchtype=author&query=Jaffe%2C+D+E">D. E. Jaffe</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09582v3-abstract-short" style="display: inline;"> This paper presents an energy calibration scheme for an upgraded reactor antineutrino detector for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). The PROSPECT collaboration is preparing an upgraded detector, PROSPECT-II (P-II), to advance capabilities for the investigation of fundamental neutrino physics, fission processes and associated reactor neutrino flux, and nuclear se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09582v3-abstract-full').style.display = 'inline'; document.getElementById('2211.09582v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09582v3-abstract-full" style="display: none;"> This paper presents an energy calibration scheme for an upgraded reactor antineutrino detector for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). The PROSPECT collaboration is preparing an upgraded detector, PROSPECT-II (P-II), to advance capabilities for the investigation of fundamental neutrino physics, fission processes and associated reactor neutrino flux, and nuclear security applications. P-II will expand the statistical power of the original PROSPECT (P-I) dataset by at least an order of magnitude. The new design builds upon previous P-I design and focuses on improving the detector robustness and long-term stability to enable multi-year operation at one or more sites. The new design optimizes the fiducial volume by elimination of dead space previously occupied by internal calibration channels, which in turn necessitates the external deployment. In this paper, we describe a calibration strategy for P-II. The expected performance of externally deployed calibration sources is evaluated using P-I data and a well-benchmarked simulation package by varying detector segmentation configurations in the analysis. The proposed external calibration scheme delivers a compatible energy scale model and achieves comparable performance with the inclusion of an additional AmBe neutron source, in comparison to the previous internal arrangement. Most importantly, the estimated uncertainty contribution from the external energy scale calibration model meets the precision requirements of the P-II experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09582v3-abstract-full').style.display = 'none'; document.getElementById('2211.09582v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07574">arXiv:2211.07574</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> An Introduction to PM2.5s, their Importance, and a Cluster Methodology to Analyze their Meteorological Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xian%2C+R">Rickie Xian</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">Dylan Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07574v3-abstract-short" style="display: inline;"> The influence of human activity own the earth's atmospheric composition has never been more pronounced. Anthropogenic pollution is in fact the largest effector of the observed evolving atmospheric composition (Wallace, 2006). PM2.5 is a class of particulate matter pollutants of notable interest due to their significant driving of chemical, atmospheric change, their wide-scale, global circulations,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07574v3-abstract-full').style.display = 'inline'; document.getElementById('2211.07574v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07574v3-abstract-full" style="display: none;"> The influence of human activity own the earth's atmospheric composition has never been more pronounced. Anthropogenic pollution is in fact the largest effector of the observed evolving atmospheric composition (Wallace, 2006). PM2.5 is a class of particulate matter pollutants of notable interest due to their significant driving of chemical, atmospheric change, their wide-scale, global circulations, and their malignant effects on human health; with a diameter of less than 2.5 microns; PM2.5s derive from combustion of organic materials, including fossil fuel combustion (Wallace, 2006) and forest fires (Newman, 2007). The gases released in these combustion reactions then condense in the atmosphere, undergoing gas to particle conversion, resulting in the atmospheric presence of PM2.5s. Particulate matter (PM) pollutants are harmful to human health in all diameter scales; increasing in recent years global morbidity and mortality (Araujo, 2011). The health risks of PM2.5 in particular are troubling due to their small size, which facilities their permeability in the respiratory system and ready diffusion into the bloodstream, inducing pathologies like ischaemic heart disease, respiratory infections, and lung cancers to name a few (Araujo, 2011). Once PM2.5 manifest in the atmosphere, they circulate on a larger scale due to atmospheric circulation patterns. Though government-enacted air quality measures have reduced the average PM2.5 levels in North America, pollution episodes still cause localized, acute PM2.5 exposure. The purpose of this project was to analyze PM2.5 mean concentration across America to identify and quantify any pollution episodes, as well as try to explain their dynamics using large scale, meteorological processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07574v3-abstract-full').style.display = 'none'; document.getElementById('2211.07574v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Withdrawn because it was submitted without consent of the co-author</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> I.2.7 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> A.1.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02488">arXiv:2209.02488</a> <span> [<a href="https://arxiv.org/pdf/2209.02488">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Operation of the H- Linac at FNAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seiya%2C+K">K. Seiya</a>, <a href="/search/physics?searchtype=author&query=Butler%2C+T">T. Butler</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&query=Kapin%2C+V">V. Kapin</a>, <a href="/search/physics?searchtype=author&query=Hartman%2C+K">K. Hartman</a>, <a href="/search/physics?searchtype=author&query=Moua%2C+S">S. Moua</a>, <a href="/search/physics?searchtype=author&query=Ostiguy%2C+J+-">J. -F. Ostiguy</a>, <a href="/search/physics?searchtype=author&query=Ridgway%2C+R">R. Ridgway</a>, <a href="/search/physics?searchtype=author&query=Sharankova%2C+R">R. Sharankova</a>, <a href="/search/physics?searchtype=author&query=Stanzil%2C+B">B. Stanzil</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+C+Y">C. Y. Tan</a>, <a href="/search/physics?searchtype=author&query=Walters%2C+J">J. Walters</a>, <a href="/search/physics?searchtype=author&query=Wesley%2C+M">M. Wesley</a>, <a href="/search/physics?searchtype=author&query=Mwaniki%2C+M">M. Mwaniki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02488v1-abstract-short" style="display: inline;"> The Fermi National Accelerator Laboratory (FNAL) Linac has been in operation for 52 years. In approximately four years, it will be replaced by a new 800 MeV superconducting machine, the PIP-II SRF Linac. In the current configuration, the Linac delivers H- ions at 400 MeV and injects protons by charge exchange into the Booster synchrotron. Despite its age, the Linac is the most stable accelerator i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02488v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02488v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02488v1-abstract-full" style="display: none;"> The Fermi National Accelerator Laboratory (FNAL) Linac has been in operation for 52 years. In approximately four years, it will be replaced by a new 800 MeV superconducting machine, the PIP-II SRF Linac. In the current configuration, the Linac delivers H- ions at 400 MeV and injects protons by charge exchange into the Booster synchrotron. Despite its age, the Linac is the most stable accelerator in the FNAL complex, reliably sending 22 mA in daily operations. We will discuss the status of the operation, beam studies, and plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02488v1-abstract-full').style.display = 'none'; document.getElementById('2209.02488v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-634-AD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11831">arXiv:2208.11831</a> <span> [<a href="https://arxiv.org/pdf/2208.11831">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Large discrepancy between observations and simulations: Implications for urban air quality in China </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaokang Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Min Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhe Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuqiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jane Liu</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+H">Hong Liao</a>, <a href="/search/physics?searchtype=author&query=Worden%2C+H">Helen Worden</a>, <a href="/search/physics?searchtype=author&query=He%2C+T">TaiLong He</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">Dylan Jones</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dongyang Chen</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Q">Qinwen Tan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yanan Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11831v1-abstract-short" style="display: inline;"> Chemical transport models (CTMs) have been widely used to provide instructions for the control of ozone (O3) pollution. However, we find large discrepancies between observation- and model-based urban O3 chemical regimes: volatile organic compound (VOC)-limited regimes over N. China and weak nitrogen oxides (NOx)-limited regimes over S. China in observations, in contrast to simulations with widespr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11831v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11831v1-abstract-full" style="display: none;"> Chemical transport models (CTMs) have been widely used to provide instructions for the control of ozone (O3) pollution. However, we find large discrepancies between observation- and model-based urban O3 chemical regimes: volatile organic compound (VOC)-limited regimes over N. China and weak nitrogen oxides (NOx)-limited regimes over S. China in observations, in contrast to simulations with widespread distributions of strong NOx-limited regimes. The conflicting O3 evolutions are caused by underestimated urban NOx concentrations and the possible overestimation of biogenic VOC emissions. Reductions in NOx emissions, in response to regulations, have thus led to an unintended deterioration of O3 pollution over N. China provinces, for example, an increase in surface O3 by approximately 7 ppb over the Sichuan Basin (SCB) in 2014-2020. The NOx-induced urban O3 changes resulted in an increase in premature mortality by approximately 3000 cases in 2015-2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11831v1-abstract-full').style.display = 'none'; document.getElementById('2208.11831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01602">arXiv:2208.01602</a> <span> [<a href="https://arxiv.org/pdf/2208.01602">pdf</a>, <a href="https://arxiv.org/ps/2208.01602">ps</a>, <a href="https://arxiv.org/format/2208.01602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Lossy compression of multidimensional medical images using sinusoidal activation networks: an evaluation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mancini%2C+M">Matteo Mancini</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Palombo%2C+M">Marco Palombo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01602v2-abstract-short" style="display: inline;"> In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01602v2-abstract-full').style.display = 'inline'; document.getElementById('2208.01602v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01602v2-abstract-full" style="display: none;"> In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying tissue microstructure. However, the high-dimensional nature of these data poses a challenge in terms of both storage and sharing capabilities and associated costs, requiring appropriate algorithms able to represent the information in a low-dimensional space. Recent theoretical developments in deep learning have shown how periodic activation functions are a powerful tool for implicit neural representation of images and can be used for compression of 2D images. Here we extend this approach to 4D images and show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network, achieving a data compression rate about 10 times higher than the standard DEFLATE algorithm. Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index. Subsequent analyses using the tensor and spherical harmonics representations demonstrate that the proposed lossy compression reproduces accurately the characteristics of the original data, leading to relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy compression and similar to standard pre-processing steps such as MP-PCA denosing, suggesting a loss of information within the currently accepted levels for clinical application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01602v2-abstract-full').style.display = 'none'; document.getElementById('2208.01602v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02150">arXiv:2207.02150</a> <span> [<a href="https://arxiv.org/pdf/2207.02150">pdf</a>, <a href="https://arxiv.org/format/2207.02150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167506">10.1016/j.nima.2022.167506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision M酶ller Polarimetry for PREX and CREX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=King%2C+D+E">D. E. King</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+C">D. C. Jones</a>, <a href="/search/physics?searchtype=author&query=Gal%2C+C">C. Gal</a>, <a href="/search/physics?searchtype=author&query=Gaskell%2C+D">D. Gaskell</a>, <a href="/search/physics?searchtype=author&query=Henry%2C+W">W. Henry</a>, <a href="/search/physics?searchtype=author&query=Kaplan%2C+A+D">A. D. Kaplan</a>, <a href="/search/physics?searchtype=author&query=Napolitano%2C+J">J. Napolitano</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">S. Park</a>, <a href="/search/physics?searchtype=author&query=Paschke%2C+K+D">K. D. Paschke</a>, <a href="/search/physics?searchtype=author&query=Pomatsalyuk%2C+R">R. Pomatsalyuk</a>, <a href="/search/physics?searchtype=author&query=Souder%2C+P+A">P. A. Souder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02150v1-abstract-short" style="display: inline;"> The PREX-2 and CREX experiments in Hall A at Jefferson Lab are precision measurements of parity violating elastic electron scattering from complex nuclei. One requirement was that the incident electron beam polarization, typically $\approx$90\%, be known with 1\% precision. We commissioned and operated a M酶ller polarimeter on the beam line that exceeds this requirement, achieving a precision of 0.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02150v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02150v1-abstract-full" style="display: none;"> The PREX-2 and CREX experiments in Hall A at Jefferson Lab are precision measurements of parity violating elastic electron scattering from complex nuclei. One requirement was that the incident electron beam polarization, typically $\approx$90\%, be known with 1\% precision. We commissioned and operated a M酶ller polarimeter on the beam line that exceeds this requirement, achieving a precision of 0.89\% for PREX-2, and 0.85\% for CREX. The uncertainty is purely systematic, accumulated from several different sources, but dominated by our knowledge of the target polarization. Our analysis also demonstrates the need for accurate atomic wave functions in order to correct for the Levchuk Effect. We describe the details of the polarimeter operation and analysis, as well as (for CREX) a comparison to results from a different polarimeter based on Compton scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02150v1-abstract-full').style.display = 'none'; document.getElementById('2207.02150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14345">arXiv:2203.14345</a> <span> [<a href="https://arxiv.org/pdf/2203.14345">pdf</a>, <a href="https://arxiv.org/format/2203.14345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Evolution of HEP Processing Frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+C+D">Christopher D. Jones</a>, <a href="/search/physics?searchtype=author&query=Knoepfel%2C+K">Kyle Knoepfel</a>, <a href="/search/physics?searchtype=author&query=Calafiura%2C+P">Paolo Calafiura</a>, <a href="/search/physics?searchtype=author&query=Leggett%2C+C">Charles Leggett</a>, <a href="/search/physics?searchtype=author&query=Tsulaia%2C+V">Vakhtang Tsulaia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14345v1-abstract-short" style="display: inline;"> HEP data-processing software must support the disparate physics needs of many experiments. For both collider and neutrino environments, HEP experiments typically use data-processing frameworks to manage the computational complexities of their large-scale data processing needs. Data-processing frameworks are being faced with new challenges this decade. The computing landscape has changed from the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14345v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14345v1-abstract-full" style="display: none;"> HEP data-processing software must support the disparate physics needs of many experiments. For both collider and neutrino environments, HEP experiments typically use data-processing frameworks to manage the computational complexities of their large-scale data processing needs. Data-processing frameworks are being faced with new challenges this decade. The computing landscape has changed from the past three decades of homogeneous single-core x86 batch jobs running on grid sites. Frameworks must now work on a heterogeneous mixture of different platforms: multi-core machines, different CPU architectures, and computational accelerators; and different computing sites: grid, cloud, and high-performance computing. We describe these challenges in more detail and how frameworks may confront them. Given their historic success, frameworks will continue to be critical software systems that enable HEP experiments to meet their computing needs. Frameworks have weathered computing revolutions in the past; they will do so again with support from the HEP community <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14345v1-abstract-full').style.display = 'none'; document.getElementById('2203.14345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11238">arXiv:2203.11238</a> <span> [<a href="https://arxiv.org/pdf/2203.11238">pdf</a>, <a href="https://arxiv.org/format/2203.11238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Accurate Determination of the Electron Spin Polarization In Magnetized Iron and Nickel Foils for M酶ller Polarimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D+C">D. C. Jones</a>, <a href="/search/physics?searchtype=author&query=Napolitano%2C+J">J. Napolitano</a>, <a href="/search/physics?searchtype=author&query=Souder%2C+P+A">P. A. Souder</a>, <a href="/search/physics?searchtype=author&query=King%2C+D+E">D. E. King</a>, <a href="/search/physics?searchtype=author&query=Henry%2C+W">W. Henry</a>, <a href="/search/physics?searchtype=author&query=Gaskell%2C+D">D. Gaskell</a>, <a href="/search/physics?searchtype=author&query=Paschke%2C+K">K. Paschke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11238v2-abstract-short" style="display: inline;"> The M酶ller polarimeter in Hall A at Jefferson Lab in Newport News, VA, has provided reliable measurements of electron beam polarization for the past two decades reaching the typically required $\pm$1\% level of absolute uncertainty. However, the upcoming proposed experimental program including MOLLER and SoLID have stringent requirements on beam polarimetry precision at the level of 0.4\% \cite{MO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11238v2-abstract-full').style.display = 'inline'; document.getElementById('2203.11238v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11238v2-abstract-full" style="display: none;"> The M酶ller polarimeter in Hall A at Jefferson Lab in Newport News, VA, has provided reliable measurements of electron beam polarization for the past two decades reaching the typically required $\pm$1\% level of absolute uncertainty. However, the upcoming proposed experimental program including MOLLER and SoLID have stringent requirements on beam polarimetry precision at the level of 0.4\% \cite{MOLLER2014, SoLID2019}, requiring a systematic re-examination of all the contributing uncertainties. M酶ller polarimetry uses the double polarized scattering asymmetry of a polarized electron beam on a target with polarized atomic electrons. The target is a ferromagnetic material magnetized to align the spins in a given direction. In Hall A, the target is a pure iron foil aligned perpendicular to the beam and magnetized out of plane parallel or antiparallel to the beam direction. The acceptance of the detector is engineered to collect scattered electrons close to 90$^{\circ}$ in the center of mass frame where the analyzing power is a maximum (-7/9). One of the leading systematic errors comes from determination of the target foil polarization. Polarization of a magnetically saturated target foil requires knowledge of both the saturation magnetization and $g^\prime$, the electron $g$-factor which includes components from both spin and orbital angular momentum from which the spin fraction of magnetization is determined. This paper utilizes the existing world data to provide a best estimate for target polarization for both nickel and iron foils including uncertainties in magnetization, high-field and temperature dependence, and fractional contribution to magnetization from orbital effects. We determine the foil electron spin polarization at 294~K to be 0.08020$\pm$0.00018 (@4~T applied field) for iron and 0.018845$\pm0.000053$ (@2~T applied field) for nickel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11238v2-abstract-full').style.display = 'none'; document.getElementById('2203.11238v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08743">arXiv:2109.08743</a> <span> [<a href="https://arxiv.org/pdf/2109.08743">pdf</a>, <a href="https://arxiv.org/format/2109.08743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.241102">10.1103/PhysRevLett.127.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point Absorber Limits to Future Gravitational-Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Kuns%2C+K">K. Kuns</a>, <a href="/search/physics?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/physics?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">J. S. Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Y. Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">C. Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">A. M. Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">S. Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08743v1-abstract-short" style="display: inline;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08743v1-abstract-full" style="display: none;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in-situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational wave detectors that support high optical power, and thus reduce quantum noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'none'; document.getElementById('2109.08743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100331 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03934">arXiv:2107.03934</a> <span> [<a href="https://arxiv.org/pdf/2107.03934">pdf</a>, <a href="https://arxiv.org/format/2107.03934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac48a4">10.1088/1361-6471/ac48a4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PROSPECT-II Physics Opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andriamirado%2C+M">M. Andriamirado</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/physics?searchtype=author&query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/physics?searchtype=author&query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/physics?searchtype=author&query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/physics?searchtype=author&query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&query=Classen%2C+T">T. Classen</a>, <a href="/search/physics?searchtype=author&query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/physics?searchtype=author&query=Deichert%2C+G">G. Deichert</a>, <a href="/search/physics?searchtype=author&query=Delgado%2C+A">A. Delgado</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/physics?searchtype=author&query=Erickson%2C+A">A. Erickson</a>, <a href="/search/physics?searchtype=author&query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/physics?searchtype=author&query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/physics?searchtype=author&query=Galindo-Uribari%2C+A">A. Galindo-Uribari</a>, <a href="/search/physics?searchtype=author&query=Gilbert%2C+C+E">C. E. Gilbert</a>, <a href="/search/physics?searchtype=author&query=Grant%2C+C">C. Grant</a>, <a href="/search/physics?searchtype=author&query=Hans%2C+S">S. Hans</a>, <a href="/search/physics?searchtype=author&query=Hansell%2C+A+B">A. B. Hansell</a>, <a href="/search/physics?searchtype=author&query=Heeger%2C+K+M">K. M. Heeger</a>, <a href="/search/physics?searchtype=author&query=Heffron%2C+B">B. Heffron</a>, <a href="/search/physics?searchtype=author&query=Jaffe%2C+D+E">D. E. Jaffe</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03934v2-abstract-short" style="display: inline;"> The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, has made world-leading measurements of reactor antineutrinos at short baselines. In its first phase, conducted at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, PROSPECT produced some of the strongest limits on eV-scale sterile neutrinos, made a precision measurement of the reactor antineutrino spectrum fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03934v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03934v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03934v2-abstract-full" style="display: none;"> The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, has made world-leading measurements of reactor antineutrinos at short baselines. In its first phase, conducted at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, PROSPECT produced some of the strongest limits on eV-scale sterile neutrinos, made a precision measurement of the reactor antineutrino spectrum from $^{235}$U, and demonstrated the observation of reactor antineutrinos in an aboveground detector with good energy resolution and well-controlled backgrounds. The PROSPECT collaboration is now preparing an upgraded detector, PROSPECT-II, to probe yet unexplored parameter space for sterile neutrinos and contribute to a full resolution of the Reactor Antineutrino Anomaly, a longstanding puzzle in neutrino physics. By pressing forward on the world's most precise measurement of the $^{235}$U antineutrino spectrum and measuring the absolute flux of antineutrinos from $^{235}$U, PROSPECT-II will sharpen a tool with potential value for basic neutrino science, nuclear data validation, and nuclear security applications. Following a two-year deployment at HFIR, an additional PROSPECT-II deployment at a low enriched uranium reactor could make complementary measurements of the neutrino yield from other fission isotopes. PROSPECT-II provides a unique opportunity to continue the study of reactor antineutrinos at short baselines, taking advantage of demonstrated elements of the original PROSPECT design and close access to a highly enriched uranium reactor core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03934v2-abstract-full').style.display = 'none'; document.getElementById('2107.03934v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 49, 070501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.12052">arXiv:2105.12052</a> <span> [<a href="https://arxiv.org/pdf/2105.12052">pdf</a>, <a href="https://arxiv.org/format/2105.12052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.062006">10.1103/PhysRevD.104.062006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LIGOs Quantum Response to Squeezed States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=McCuller%2C+L">L. McCuller</a>, <a href="/search/physics?searchtype=author&query=Dwyer%2C+S+E">S. E. Dwyer</a>, <a href="/search/physics?searchtype=author&query=Green%2C+A+C">A. C. Green</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haocun Yu</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+D+D">D. D. Brown</a>, <a href="/search/physics?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/physics?searchtype=author&query=Fernandez-Galiana%2C+A">A. Fernandez-Galiana</a>, <a href="/search/physics?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/physics?searchtype=author&query=Frolov%2C+V+V">V. V. Frolov</a>, <a href="/search/physics?searchtype=author&query=Kijbunchoo%2C+N">N. Kijbunchoo</a>, <a href="/search/physics?searchtype=author&query=Mansell%2C+G+L">G. L. Mansell</a>, <a href="/search/physics?searchtype=author&query=Matichard%2C+F">F. Matichard</a>, <a href="/search/physics?searchtype=author&query=Mavalvala%2C+N">N. Mavalvala</a>, <a href="/search/physics?searchtype=author&query=McClelland%2C+D+E">D. E. McClelland</a>, <a href="/search/physics?searchtype=author&query=McRae%2C+T">T. McRae</a>, <a href="/search/physics?searchtype=author&query=Mullavey%2C+A">A. Mullavey</a>, <a href="/search/physics?searchtype=author&query=Sigg%2C+D">D. Sigg</a>, <a href="/search/physics?searchtype=author&query=Slagmolen%2C+B+J+J">B. J. J. Slagmolen</a>, <a href="/search/physics?searchtype=author&query=Tse%2C+M">M. Tse</a>, <a href="/search/physics?searchtype=author&query=Vo%2C+T">T. Vo</a>, <a href="/search/physics?searchtype=author&query=Ward%2C+R+L">R. L. Ward</a>, <a href="/search/physics?searchtype=author&query=Whittle%2C+C">C. Whittle</a> , et al. (172 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.12052v1-abstract-short" style="display: inline;"> Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to furth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12052v1-abstract-full').style.display = 'inline'; document.getElementById('2105.12052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.12052v1-abstract-full" style="display: none;"> Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and -- for the first time -- give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12052v1-abstract-full').style.display = 'none'; document.getElementById('2105.12052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100050 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 062006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.12506">arXiv:2104.12506</a> <span> [<a href="https://arxiv.org/pdf/2104.12506">pdf</a>, <a href="https://arxiv.org/format/2104.12506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-9326/ac0eb0">10.1088/1748-9326/ac0eb0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bridging observation, theory and numerical simulation of the ocean using Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sonnewald%2C+M">Maike Sonnewald</a>, <a href="/search/physics?searchtype=author&query=Lguensat%2C+R">Redouane Lguensat</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+C">Daniel C. Jones</a>, <a href="/search/physics?searchtype=author&query=Dueben%2C+P+D">Peter D. Dueben</a>, <a href="/search/physics?searchtype=author&query=Brajard%2C+J">Julien Brajard</a>, <a href="/search/physics?searchtype=author&query=Balaji%2C+V">Venkatramani Balaji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.12506v2-abstract-short" style="display: inline;"> Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12506v2-abstract-full').style.display = 'inline'; document.getElementById('2104.12506v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.12506v2-abstract-full" style="display: none;"> Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.12506v2-abstract-full').style.display = 'none'; document.getElementById('2104.12506v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Topical review submitted to Environmental Research Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.14485">arXiv:2103.14485</a> <span> [<a href="https://arxiv.org/pdf/2103.14485">pdf</a>, <a href="https://arxiv.org/format/2103.14485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> aDWI-BIDS: an extension to the brain imaging data structure for advanced diffusion weighted imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gholam%2C+J">James Gholam</a>, <a href="/search/physics?searchtype=author&query=Szczepankiewicz%2C+F">Filip Szczepankiewicz</a>, <a href="/search/physics?searchtype=author&query=Tax%2C+C+M+W">Chantal M. W. Tax</a>, <a href="/search/physics?searchtype=author&query=Mueller%2C+L">Lars Mueller</a>, <a href="/search/physics?searchtype=author&query=Kopanoglu%2C+E">Emre Kopanoglu</a>, <a href="/search/physics?searchtype=author&query=Nilsson%2C+M">Markus Nilsson</a>, <a href="/search/physics?searchtype=author&query=Aja-Fernandez%2C+S">Santiago Aja-Fernandez</a>, <a href="/search/physics?searchtype=author&query=Griffin%2C+M">Matt Griffin</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Beltrachini%2C+L">Leandro Beltrachini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.14485v2-abstract-short" style="display: inline;"> Diffusion weighted imaging techniques permit us to infer microstructural detail in biological tissue in vivo and noninvasively. Modern sequences are based on advanced diffusion encoding schemes, allowing probing of more revealing measures of tissue microstructure than the standard apparent diffusion coefficient or fractional anisotropy. Though these methods may result in faster or more revealing a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14485v2-abstract-full').style.display = 'inline'; document.getElementById('2103.14485v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.14485v2-abstract-full" style="display: none;"> Diffusion weighted imaging techniques permit us to infer microstructural detail in biological tissue in vivo and noninvasively. Modern sequences are based on advanced diffusion encoding schemes, allowing probing of more revealing measures of tissue microstructure than the standard apparent diffusion coefficient or fractional anisotropy. Though these methods may result in faster or more revealing acquisitions, they generally demand prior knowledge of sequence-specific parameters for which there is no accepted sharing standard. Here, we present a metadata labelling scheme suitable for the needs of developers and users within the diffusion neuroimaging community alike: a lightweight, unambiguous parametric map relaying acqusition parameters. This extensible scheme supports a wide spectrum of diffusion encoding methods, from single diffusion encoding to highly complex sequences involving arbitrary gradient waveforms. Built under the brain imaging data structure (BIDS), it allows storage of advanced diffusion MRI data comprehensively alongside any other neuroimaging information, facilitating processing pipelines and multimodal analyses. We illustrate the usefulness of this BIDS-extension with a range of example data, and discuss the extension's impact on pre- and post-processing software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14485v2-abstract-full').style.display = 'none'; document.getElementById('2103.14485v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07177">arXiv:2101.07177</a> <span> [<a href="https://arxiv.org/pdf/2101.07177">pdf</a>, <a href="https://arxiv.org/format/2101.07177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abf0a9">10.3847/1538-4357/abf0a9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fuzzy Dark Matter and the 21cm Power Spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D">Dana Jones</a>, <a href="/search/physics?searchtype=author&query=Palatnick%2C+S">Skyler Palatnick</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Richard Chen</a>, <a href="/search/physics?searchtype=author&query=Beane%2C+A">Angus Beane</a>, <a href="/search/physics?searchtype=author&query=Lidz%2C+A">Adam Lidz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07177v2-abstract-short" style="display: inline;"> We model the 21cm power spectrum across the Cosmic Dawn and the Epoch of Reionization (EoR) in fuzzy dark matter (FDM) cosmologies. The suppression of small mass halos in FDM models leads to a delay in the onset redshift of these epochs relative to cold dark matter (CDM) scenarios. This strongly impacts the 21cm power spectrum and its redshift evolution. The 21cm power spectrum at a given stage of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07177v2-abstract-full').style.display = 'inline'; document.getElementById('2101.07177v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07177v2-abstract-full" style="display: none;"> We model the 21cm power spectrum across the Cosmic Dawn and the Epoch of Reionization (EoR) in fuzzy dark matter (FDM) cosmologies. The suppression of small mass halos in FDM models leads to a delay in the onset redshift of these epochs relative to cold dark matter (CDM) scenarios. This strongly impacts the 21cm power spectrum and its redshift evolution. The 21cm power spectrum at a given stage of the EoR/Cosmic Dawn process is also modified: in general, the amplitude of 21cm fluctuations is boosted by the enhanced bias factor of galaxy hosting halos in FDM. We forecast the prospects for discriminating between CDM and FDM with upcoming power spectrum measurements from HERA, accounting for degeneracies between astrophysical parameters and dark matter properties. If FDM constitutes the entirety of the dark matter and the FDM particle mass is 10-21eV, HERA can determine the mass to within 20 percent at 2-sigma confidence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07177v2-abstract-full').style.display = 'none'; document.getElementById('2101.07177v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, Accepted for publication to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05828">arXiv:2101.05828</a> <span> [<a href="https://arxiv.org/pdf/2101.05828">pdf</a>, <a href="https://arxiv.org/format/2101.05828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.419689">10.1364/AO.419689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point absorbers in Advanced LIGO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brooks%2C+A+F">Aidan F. Brooks</a>, <a href="/search/physics?searchtype=author&query=Vajente%2C+G">Gabriele Vajente</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">Hiro Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">Carl Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">Stephen Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">Joseph S. Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Yasmeen Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">Stuart M. Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">Corey Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">Anne M. Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">Matthew Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">Sharan Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">David Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/physics?searchtype=author&query=Bartlett%2C+J">Jeffrey Bartlett</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">Beverly K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">Sebastien Biscans</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05828v2-abstract-short" style="display: inline;"> Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback contro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05828v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05828v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05828v2-abstract-full" style="display: none;"> Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05828v2-abstract-full').style.display = 'none'; document.getElementById('2101.05828v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 16 figures. -V2: typographical errors in equations B9 and B10 were corrected (stray exponent of "h" was removed). Caption of Figure 9 was corrected to indicate that 40mW was used for absorption in the model, not 10mW as incorrectly indicated in V1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Report-no: P1900287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08755">arXiv:2012.08755</a> <span> [<a href="https://arxiv.org/pdf/2012.08755">pdf</a>, <a href="https://arxiv.org/format/2012.08755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Simple control for complex pandemics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fay%2C+S+C">Sarah C. Fay</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+J">Dalton J. Jones</a>, <a href="/search/physics?searchtype=author&query=Dahleh%2C+M+A">Munther A. Dahleh</a>, <a href="/search/physics?searchtype=author&query=Hosoi%2C+A+E">A. E. Hosoi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08755v3-abstract-short" style="display: inline;"> The COVID-19 pandemic began over two years ago, yet schools, businesses, and other organizations are still struggling to keep the risk of disease outbreak low while returning to (near) normal functionality. Observations from these past years suggest that this goal can be achieved through the right balance of mitigation strategies, which may include some combination of mask use, vaccinations, viral… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08755v3-abstract-full').style.display = 'inline'; document.getElementById('2012.08755v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08755v3-abstract-full" style="display: none;"> The COVID-19 pandemic began over two years ago, yet schools, businesses, and other organizations are still struggling to keep the risk of disease outbreak low while returning to (near) normal functionality. Observations from these past years suggest that this goal can be achieved through the right balance of mitigation strategies, which may include some combination of mask use, vaccinations, viral testing, and contact tracing. The choice of mitigation measures will be uniquely based on the needs and available resources of each organization. This article presents practical guidance for creating these policies based on an analytical model of disease spread that captures the combined effects of each of these interventions. The resulting guidance is tested through simulation across a wide range of parameters and used to discuss the spread of disease on college campuses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08755v3-abstract-full').style.display = 'none'; document.getElementById('2012.08755v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13674">arXiv:2008.13674</a> <span> [<a href="https://arxiv.org/pdf/2008.13674">pdf</a>, <a href="https://arxiv.org/format/2008.13674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/gji/ggab112">10.1093/gji/ggab112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magmatic channelisation by reactive and shear-driven instabilities at mid-ocean ridges: a combined analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D+W+R">David W. Rees Jones</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hanwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Katz%2C+R+F">Richard F. Katz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13674v2-abstract-short" style="display: inline;"> It is generally accepted that melt extraction from the mantle at mid-ocean ridges (MORs) is concentrated in narrow regions of elevated melt fraction called channels. Two feedback mechanisms have been proposed to explain why these channels grow by linear instability: shear flow of partially molten mantle and reactive flow of the ascending magma. These two mechanisms have been studied extensively, i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13674v2-abstract-full').style.display = 'inline'; document.getElementById('2008.13674v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13674v2-abstract-full" style="display: none;"> It is generally accepted that melt extraction from the mantle at mid-ocean ridges (MORs) is concentrated in narrow regions of elevated melt fraction called channels. Two feedback mechanisms have been proposed to explain why these channels grow by linear instability: shear flow of partially molten mantle and reactive flow of the ascending magma. These two mechanisms have been studied extensively, in isolation from each other, through theory and laboratory experiments as well as field and geophysical observations. Here, we develop a consistent theory that accounts for both proposed mechanisms and allows us to weigh their relative contributions. We show that interaction of the two feedback mechanisms is insignificant and that the total linear growth rate of channels is well-approximated by summing their independent growth rates. Furthermore, we explain how their competition is governed by the orientation of channels with respect to gravity and mantle shear. By itself, analysis of the reaction-infiltration instability predicts the formation of tube-shaped channels. We show that with the addition of even a small amount of extension in the horizontal, the combined instability favours tabular channels, consistent with the observed morphology of dunite bodies in ophiolites. We apply the new theory to MORs by calculating the accumulated growth and rotation of channels along streamlines of the solid flow. We show that reactive flow is the dominant mechanism deep beneath the ridge axis, where the most unstable orientation of high-porosity channels is sub-vertical. Channels are then rotated by the solid flow away from the vertical. The contribution of the shear-driven instability is confined to the margins of the melting region. Within the limitations of our study, the shear-driven feedback is not responsible for significant melt focusing or for shallowly dipping seismic anisotropy [abridged]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13674v2-abstract-full').style.display = 'none'; document.getElementById('2008.13674v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">[32 pages, 17 figures.] This is a pre-copyedited, author-produced PDF of an article accepted for publication in Geophysical Journal International following peer review. The version of record is available online at https://doi.org/10.1093/gji/ggab112</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophysical Journal International, Volume 226, Issue 1, July 2021, Pages 582-609 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10530">arXiv:2008.10530</a> <span> [<a href="https://arxiv.org/pdf/2008.10530">pdf</a>, <a href="https://arxiv.org/format/2008.10530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> A New Mathematical Model for Controlled Pandemics Like COVID-19 : AI Implemented Predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+L+D">Liam Dowling Jones</a>, <a href="/search/physics?searchtype=author&query=Magdon-Ismail%2C+M">Malik Magdon-Ismail</a>, <a href="/search/physics?searchtype=author&query=Mersini-Houghton%2C+L">Laura Mersini-Houghton</a>, <a href="/search/physics?searchtype=author&query=Meshnick%2C+S">Steven Meshnick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10530v1-abstract-short" style="display: inline;"> We present a new mathematical model to explicitly capture the effects that the three restriction measures: the lockdown date and duration, social distancing and masks, and, schools and border closing, have in controlling the spread of COVID-19 infections $i(r, t)$. Before restrictions were introduced, the random spread of infections as described by the SEIR model grew exponentially. The addition o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10530v1-abstract-full').style.display = 'inline'; document.getElementById('2008.10530v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10530v1-abstract-full" style="display: none;"> We present a new mathematical model to explicitly capture the effects that the three restriction measures: the lockdown date and duration, social distancing and masks, and, schools and border closing, have in controlling the spread of COVID-19 infections $i(r, t)$. Before restrictions were introduced, the random spread of infections as described by the SEIR model grew exponentially. The addition of control measures introduces a mixing of order and disorder in the system's evolution which fall under a different mathematical class of models that can eventually lead to critical phenomena. A generic analytical solution is hard to obtain. We use machine learning to solve the new equations for $i(r,t)$, the infections $i$ in any region $r$ at time $t$ and derive predictions for the spread of infections over time as a function of the strength of the specific measure taken and their duration. The machine is trained in all of the COVID-19 published data for each region, county, state, and country in the world. It utilizes optimization to learn the best-fit values of the model's parameters from past data in each region in the world, and it updates the predicted infections curves for any future restrictions that may be added or relaxed anywhere. We hope this interdisciplinary effort, a new mathematical model that predicts the impact of each measure in slowing down infection spread combined with the solving power of machine learning, is a useful tool in the fight against the current pandemic and potentially future ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10530v1-abstract-full').style.display = 'none'; document.getElementById('2008.10530v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00893">arXiv:2008.00893</a> <span> [<a href="https://arxiv.org/pdf/2008.00893">pdf</a>, <a href="https://arxiv.org/format/2008.00893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/EEM49802.2020.9221928">10.1109/EEM49802.2020.9221928 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracing carbon dioxide emissions in the European electricity markets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sch%C3%A4fer%2C+M">Mirko Sch盲fer</a>, <a href="/search/physics?searchtype=author&query=Tranberg%2C+B">Bo Tranberg</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">Dave Jones</a>, <a href="/search/physics?searchtype=author&query=Weidlich%2C+A">Anke Weidlich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00893v1-abstract-short" style="display: inline;"> Consumption-based carbon emission measures aim to account for emissions associated with power transmission from distant regions, as opposed to measures which only consider local power generation. Outlining key differences between two different methodological variants of this approach, we report results on consumption-based emission intensities of power generation for European countries from 2016 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00893v1-abstract-full').style.display = 'inline'; document.getElementById('2008.00893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00893v1-abstract-full" style="display: none;"> Consumption-based carbon emission measures aim to account for emissions associated with power transmission from distant regions, as opposed to measures which only consider local power generation. Outlining key differences between two different methodological variants of this approach, we report results on consumption-based emission intensities of power generation for European countries from 2016 to 2019. We find that in particular for well connected smaller countries, the consideration of imports has a significant impact on the attributed emissions. For these countries, implicit methodological choices in the input-output model are reflected in both hourly and average yearly emission measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00893v1-abstract-full').style.display = 'none'; document.getElementById('2008.00893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted conference proceedings paper for the EEM 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12847">arXiv:2007.12847</a> <span> [<a href="https://arxiv.org/pdf/2007.12847">pdf</a>, <a href="https://arxiv.org/format/2007.12847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/abbc8c">10.1088/1361-6382/abbc8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving the Robustness of the Advanced LIGO Detectors to Earthquakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwartz%2C+E">Eyal Schwartz</a>, <a href="/search/physics?searchtype=author&query=Pele%2C+A">A Pele</a>, <a href="/search/physics?searchtype=author&query=Warner%2C+J">J Warner</a>, <a href="/search/physics?searchtype=author&query=Lantz%2C+B">B Lantz</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Dooley%2C+K+L">K L Dooley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">S Biscans</a>, <a href="/search/physics?searchtype=author&query=Coughlin%2C+M">M Coughlin</a>, <a href="/search/physics?searchtype=author&query=Mukund%2C+N">N Mukund</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R X Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">J S Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Y Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S M Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">C Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">A M Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S W Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">S Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L Barsotti</a> , et al. (174 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12847v1-abstract-short" style="display: inline;"> Teleseismic, or distant, earthquakes regularly disrupt the operation of ground--based gravitational wave detectors such as Advanced LIGO. Here, we present \emph{EQ mode}, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differenti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12847v1-abstract-full').style.display = 'inline'; document.getElementById('2007.12847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12847v1-abstract-full" style="display: none;"> Teleseismic, or distant, earthquakes regularly disrupt the operation of ground--based gravitational wave detectors such as Advanced LIGO. Here, we present \emph{EQ mode}, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100\,mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9\,$渭\mbox{m/s}$ rms in the beam direction, setting a new record for both detectors. This sets a milestone in seismic controls of the Advanced LIGO detectors' ability to manage high ground motion induced by earthquakes, opening a path for further robust operation in other extreme environmental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12847v1-abstract-full').style.display = 'none'; document.getElementById('2007.12847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00314">arXiv:2007.00314</a> <span> [<a href="https://arxiv.org/pdf/2007.00314">pdf</a>, <a href="https://arxiv.org/format/2007.00314">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bay%2C+D">Daya Bay</a>, <a href="/search/physics?searchtype=author&query=collaborations%2C+J">JUNO collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+S">S. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&query=Akram%2C+M">M. Akram</a>, <a href="/search/physics?searchtype=author&query=Ali%2C+N">N. Ali</a>, <a href="/search/physics?searchtype=author&query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&query=An%2C+G+P">G. P. An</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Andronico%2C+G">G. Andronico</a>, <a href="/search/physics?searchtype=author&query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&query=Antoshkina%2C+T">T. Antoshkina</a>, <a href="/search/physics?searchtype=author&query=Asavapibhop%2C+B">B. Asavapibhop</a>, <a href="/search/physics?searchtype=author&query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&query=Babic%2C+A">A. Babic</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baussan%2C+E">E. Baussan</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00314v1-abstract-short" style="display: inline;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00314v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00314v1-abstract-full" style="display: none;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'none'; document.getElementById('2007.00314v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15386">arXiv:2006.15386</a> <span> [<a href="https://arxiv.org/pdf/2006.15386">pdf</a>, <a href="https://arxiv.org/format/2006.15386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abe84b">10.1088/1674-1137/abe84b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&query=Dalager%2C+O">O. Dalager</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Dohnal%2C+T">T. Dohnal</a>, <a href="/search/physics?searchtype=author&query=Dove%2C+J">J. Dove</a>, <a href="/search/physics?searchtype=author&query=Dvorak%2C+M">M. Dvorak</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15386v4-abstract-short" style="display: inline;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW1… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'inline'; document.getElementById('2006.15386v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15386v4-abstract-full" style="display: none;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'none'; document.getElementById('2006.15386v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12858">arXiv:2006.12858</a> <span> [<a href="https://arxiv.org/pdf/2006.12858">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Impacts of COVID-19 control measures on tropospheric NO$_2$ over China, South Korea and Italy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiaqi Chen</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhe Jiang</a>, <a href="/search/physics?searchtype=author&query=Miyazaki%2C+K">Kazuyuki Miyazaki</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+R">Rui Zhu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaokang Chen</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+C">Chenggong Liao</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+B+A">Dylan B. A. Jones</a>, <a href="/search/physics?searchtype=author&query=Bowman%2C+K">Kevin Bowman</a>, <a href="/search/physics?searchtype=author&query=Sekiya%2C+T">Takashi Sekiya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12858v1-abstract-short" style="display: inline;"> Tropospheric nitrogen dioxide (NO$_2$) concentrations are strongly affected by anthropogenic activities. Using space-based measurements of tropospheric NO$_2$, here we investigate the responses of tropospheric NO$_2$ to the 2019 novel coronavirus (COVID-19) over China, South Korea, and Italy. We find noticeable reductions of tropospheric NO$_2$ columns due to the COVID-19 controls by more than 40%… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12858v1-abstract-full').style.display = 'inline'; document.getElementById('2006.12858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12858v1-abstract-full" style="display: none;"> Tropospheric nitrogen dioxide (NO$_2$) concentrations are strongly affected by anthropogenic activities. Using space-based measurements of tropospheric NO$_2$, here we investigate the responses of tropospheric NO$_2$ to the 2019 novel coronavirus (COVID-19) over China, South Korea, and Italy. We find noticeable reductions of tropospheric NO$_2$ columns due to the COVID-19 controls by more than 40% over E. China, South Korea, and N. Italy. The 40% reductions of tropospheric NO$_2$ are coincident with intensive lockdown events as well as up to 20% reductions in anthropogenic nitrogen oxides (NO$_x$) emissions. The perturbations in tropospheric NO$_2$ diminished accompanied with the mitigation of COVID-19 pandemic, and finally disappeared within around 50-70 days after the starts of control measures over all three nations, providing indications for the start, maximum, and mitigation of intensive controls. This work exhibits significant influences of lockdown measures on atmospheric environment, highlighting the importance of satellite observations to monitor anthropogenic activity changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12858v1-abstract-full').style.display = 'none'; document.getElementById('2006.12858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02020">arXiv:2005.02020</a> <span> [<a href="https://arxiv.org/pdf/2005.02020">pdf</a>, <a href="https://arxiv.org/format/2005.02020">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pirkl%2C+C+M">Carolin M. Pirkl</a>, <a href="/search/physics?searchtype=author&query=G%C3%B3mez%2C+P+A">Pedro A. G贸mez</a>, <a href="/search/physics?searchtype=author&query=Lipp%2C+I">Ilona Lipp</a>, <a href="/search/physics?searchtype=author&query=Buonincontri%2C+G">Guido Buonincontri</a>, <a href="/search/physics?searchtype=author&query=Molina-Romero%2C+M">Miguel Molina-Romero</a>, <a href="/search/physics?searchtype=author&query=Sekuboyina%2C+A">Anjany Sekuboyina</a>, <a href="/search/physics?searchtype=author&query=Waldmannstetter%2C+D">Diana Waldmannstetter</a>, <a href="/search/physics?searchtype=author&query=Dannenberg%2C+J">Jonathan Dannenberg</a>, <a href="/search/physics?searchtype=author&query=Endt%2C+S">Sebastian Endt</a>, <a href="/search/physics?searchtype=author&query=Merola%2C+A">Alberto Merola</a>, <a href="/search/physics?searchtype=author&query=Whittaker%2C+J+R">Joseph R. Whittaker</a>, <a href="/search/physics?searchtype=author&query=Tomassini%2C+V">Valentina Tomassini</a>, <a href="/search/physics?searchtype=author&query=Tosetti%2C+M">Michela Tosetti</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">Derek K. Jones</a>, <a href="/search/physics?searchtype=author&query=Menze%2C+B+H">Bjoern H. Menze</a>, <a href="/search/physics?searchtype=author&query=Menzel%2C+M+I">Marion I. Menzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02020v1-abstract-short" style="display: inline;"> Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However, the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02020v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02020v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02020v1-abstract-full" style="display: none;"> Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However, the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton density, T1 and T2 in general). Inspired by diffusion-weighted SSFP imaging, we present a proof-of-concept of a novel MRF sequence with embedded diffusion-encoding gradients along all three axes to efficiently encode orientational diffusion and T1 and T2 relaxation. We take advantage of a convolutional neural network (CNN) to reconstruct multiple quantitative maps from this single, highly undersampled acquisition. We bypass expensive dictionary matching by learning the implicit physical relationships between the spatiotemporal MRF data and the T1, T2 and diffusion tensor parameters. The predicted parameter maps and the derived scalar diffusion metrics agree well with state-of-the-art reference protocols. Orientational diffusion information is captured as seen from the estimated primary diffusion directions. In addition to this, the joint acquisition and reconstruction framework proves capable of preserving tissue abnormalities in multiple sclerosis lesions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02020v1-abstract-full').style.display = 'none'; document.getElementById('2005.02020v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08626">arXiv:2004.08626</a> <span> [<a href="https://arxiv.org/pdf/2004.08626">pdf</a>, <a href="https://arxiv.org/format/2004.08626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Resolving orientation-specific diffusion-relaxation features via Monte-Carlo density-peak clustering in heterogeneous brain tissue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Reymbaut%2C+A">A. Reymbaut</a>, <a href="/search/physics?searchtype=author&query=Martins%2C+J+P+d+A">J. P. de Almeida Martins</a>, <a href="/search/physics?searchtype=author&query=Tax%2C+C+M+W">C. M. W. Tax</a>, <a href="/search/physics?searchtype=author&query=Szczepankiewicz%2C+F">F. Szczepankiewicz</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+K">D. K. Jones</a>, <a href="/search/physics?searchtype=author&query=Topgaard%2C+D">D. Topgaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08626v3-abstract-short" style="display: inline;"> Characterizing the properties and orientations of sub-voxel fiber populations, although essential to study white-matter architecture, microstructure and connectivity, remains one of the main challenges faced by the MRI microstructure community. While some progress has been made in overcoming this challenge using models, signal representations and tractography algorithms, these approaches are ultim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08626v3-abstract-full').style.display = 'inline'; document.getElementById('2004.08626v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08626v3-abstract-full" style="display: none;"> Characterizing the properties and orientations of sub-voxel fiber populations, although essential to study white-matter architecture, microstructure and connectivity, remains one of the main challenges faced by the MRI microstructure community. While some progress has been made in overcoming this challenge using models, signal representations and tractography algorithms, these approaches are ultimately limited by their key assumptions or by the lack of specificity of the diffusion signal alone. In order to alleviate these limitations, we combine diffusion-relaxation MR acquisitions incorporating tensor-valued diffusion encoding, Monte-Carlo signal inversions that extract non-parametric intra-voxel distributions of diffusion tensors and relaxation rates, and density-based clustering techniques. This new approach, called "Monte-Carlo density-peak clustering" (MC-DPC), first delineates clusters in the diffusion-orientation subspace of the fiber-like diffusion-relaxation components output by Monte-Carlo signal inversions and then draws from the statistical aspect of these inversion algorithms to compute the median and interquartile range of orientation-resolved means of diffusivities and relaxation rates. Evaluating MC-DPC on tensor-valued diffusion-encoded and T2-weighted correlated datasets in silico and in vivo, we demonstrate its ability to simultaneously capture sub-voxel fiber orientations and cones of uncertainty, and measure fiber-specific diffusion-relaxation properties that are consistent with the known anatomy and existing literature. Straightforwardly translatable to other diffusion-relaxation correlation experiments probing $T_1$ and $T_2^*$, MC-DPC shows potential in tracking bundle-specific patient-control group differences and longitudinal microstructural changes, enabling new tools for microstructure-informed tractography, and mapping tract-specific myelination states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08626v3-abstract-full').style.display = 'none'; document.getElementById('2004.08626v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04661">arXiv:2004.04661</a> <span> [<a href="https://arxiv.org/pdf/2004.04661">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.399978">10.1364/OE.399978 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupling between waveguides and microresonators: the local approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vitullo%2C+D+L+P">Dashiell L. P. Vitullo</a>, <a href="/search/physics?searchtype=author&query=Zaki%2C+S">Sajid Zaki</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+E">D. E. Jones</a>, <a href="/search/physics?searchtype=author&query=Sumetsky%2C+M">M. Sumetsky</a>, <a href="/search/physics?searchtype=author&query=Brodsky%2C+M">Michael Brodsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04661v3-abstract-short" style="display: inline;"> Coupling between optical microresonators and waveguides is a critical characteristic of resonant photonic devices with complex behavior that is not well understood. When the characteristic variation length of the microresonator modes is much larger than the waveguide width, local coupling parameters emerge that are independent of the resonator mode distributions and offer a simplified description… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04661v3-abstract-full').style.display = 'inline'; document.getElementById('2004.04661v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04661v3-abstract-full" style="display: none;"> Coupling between optical microresonators and waveguides is a critical characteristic of resonant photonic devices with complex behavior that is not well understood. When the characteristic variation length of the microresonator modes is much larger than the waveguide width, local coupling parameters emerge that are independent of the resonator mode distributions and offer a simplified description of coupling behavior. We develop a robust numerical-fitting-based methodology for experimental determination of the local coupling parameters in all coupling regimes and demonstrate their characterization along a microfiber waveguide coupled to an elongated bottle microresonator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04661v3-abstract-full').style.display = 'none'; document.getElementById('2004.04661v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 3 figures. Version 3 is substantially revised and reformatted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.11515">arXiv:2002.11515</a> <span> [<a href="https://arxiv.org/pdf/2002.11515">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jvolgeores.2020.106820">10.1016/j.jvolgeores.2020.106820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magmatic volatiles to assess permeable volcano-tectonic structures in the Los Humeros geothermal field, Mexico </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jentsch%2C+A">Anna Jentsch</a>, <a href="/search/physics?searchtype=author&query=Jolie%2C+E">Egbert Jolie</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+G">David G Jones</a>, <a href="/search/physics?searchtype=author&query=Taylor-Curran%2C+H">Helen Taylor-Curran</a>, <a href="/search/physics?searchtype=author&query=Peiffer%2C+L">Loic Peiffer</a>, <a href="/search/physics?searchtype=author&query=Zimmer%2C+M">Martin Zimmer</a>, <a href="/search/physics?searchtype=author&query=Lister%2C+B">Bob Lister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.11515v1-abstract-short" style="display: inline;"> Magmatic volatiles can be considered as the surface fingerprint of active volcanic systems, both during periods of quiescent and eruptive volcanic activity. The spatial variability of gas emissions at Earths surface is a proxy for structural discontinuities in the subsurface of volcanic systems. We conducted extensive and regular spaced soil gas surveys within the Los Humeros geothermal field to i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11515v1-abstract-full').style.display = 'inline'; document.getElementById('2002.11515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.11515v1-abstract-full" style="display: none;"> Magmatic volatiles can be considered as the surface fingerprint of active volcanic systems, both during periods of quiescent and eruptive volcanic activity. The spatial variability of gas emissions at Earths surface is a proxy for structural discontinuities in the subsurface of volcanic systems. We conducted extensive and regular spaced soil gas surveys within the Los Humeros geothermal field to improve the understanding of the structural control on fluid flow. Surveys at different scales were performed with the aim to identify areas of increased gas emissions on reservoir scale, their relation to unknown/knows volcano-tectonic structures on fault scale favoring fluid flow, and determine the origin of gas emissions. Herein, we show results from a carbon dioxide efflux scouting survey, which was performed across the main geothermal production zone together with soil temperature measurements. We identified five areas with increased carbon dioxide emissions, where further sampling was performed with denser sampling grids to understand the fault zone architecture and local variations in gas emissions. We show that a systematic sampling approach on reservoir scale is necessary for the identification and assessment of major permeable fault segments. The combined processing of CO2 efflux and carbon/helium isotopes facilitated the detection of permeable structural segments with a connection to the deep, high-temperature geothermal reservoir, also in areas with low to intermediate carbon dioxide emissions. The results of this study complement existing geophysical datasets and define further promising areas for future exploration activities in the north- and southwestern sector of the production field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11515v1-abstract-full').style.display = 'none'; document.getElementById('2002.11515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures, 5 tables Supplementary material includes 3 figures and the doi for the full dataset</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08318">arXiv:1910.08318</a> <span> [<a href="https://arxiv.org/pdf/1910.08318">pdf</a>, <a href="https://arxiv.org/format/1910.08318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.epsl.2020.116324">10.1016/j.epsl.2020.116324 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast magma ascent, revised estimates from the deglaciation of Iceland </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+D+W+R">David W. Rees Jones</a>, <a href="/search/physics?searchtype=author&query=Rudge%2C+J+F">John F. Rudge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08318v2-abstract-short" style="display: inline;"> Partial melting of asthenospheric mantle generates magma that supplies volcanic systems. The timescale of melt extraction from the mantle has been hotly debated. Microstructural measurements of permeability typically suggest relatively slow melt extraction (1 m/yr) whereas geochemical (Uranium-decay series) and geophysical observations suggest much faster melt extraction (100 m/yr). The deglaciati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08318v2-abstract-full').style.display = 'inline'; document.getElementById('1910.08318v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08318v2-abstract-full" style="display: none;"> Partial melting of asthenospheric mantle generates magma that supplies volcanic systems. The timescale of melt extraction from the mantle has been hotly debated. Microstructural measurements of permeability typically suggest relatively slow melt extraction (1 m/yr) whereas geochemical (Uranium-decay series) and geophysical observations suggest much faster melt extraction (100 m/yr). The deglaciation of Iceland triggered additional mantle melting and magma flux at the surface. The rapid response has been used to argue for relatively rapid melt extraction. However, this episode must, at least to some extent, be unrepresentative, because the rates of magma eruption at the surface increased about thirty-fold relative to the steady state. Our goal is to quantify this unrepresentativeness. We develop a one-dimensional, time-dependent and nonlinear (far from steady-state), model forced by the most recent, and best mapped, Icelandic deglaciation. We find that 30 m/yr is the best estimate of the steady-state maximum melt velocity. This is a factor of about 3 smaller than previously claimed, but still relatively fast. We translate these estimates to other mid-ocean ridges accounting for differences in passive and active upwelling and degree of melting. We find that fast melt extraction greater than about 10 m/yr prevails globally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08318v2-abstract-full').style.display = 'none'; document.getElementById('1910.08318v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Earth and Planetary Science Letters (2020). Total 17 pages and 5 figures (including Supplementary Material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Earth and Planetary Science Letters, 2020, Volume 542, 116324 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01017">arXiv:1910.01017</a> <span> [<a href="https://arxiv.org/pdf/1910.01017">pdf</a>, <a href="https://arxiv.org/format/1910.01017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Modernizing Titan2D, a Parallel AMR Geophysical Flow Code to Support Multiple Rheologies and Extendability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Simakov%2C+N+A">Nikolay A. Simakov</a>, <a href="/search/physics?searchtype=author&query=Jones-Ivey%2C+R+L">Renette L. Jones-Ivey</a>, <a href="/search/physics?searchtype=author&query=Akhavan-Safaei%2C+A">Ali Akhavan-Safaei</a>, <a href="/search/physics?searchtype=author&query=Aghakhani%2C+H">Hossein Aghakhani</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+M+D">Matthew D. Jones</a>, <a href="/search/physics?searchtype=author&query=Patra%2C+A+K">Abani K. Patra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01017v1-abstract-short" style="display: inline;"> In this work, we report on strategies and results of our initial approach for modernization of Titan2D code. Titan2D is a geophysical mass flow simulation code designed for modeling of volcanic flows, debris avalanches and landslides over a realistic terrain model. It solves an underlying hyperbolic system of partial differential equations using parallel adaptive mesh Godunov scheme. The following… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01017v1-abstract-full').style.display = 'inline'; document.getElementById('1910.01017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01017v1-abstract-full" style="display: none;"> In this work, we report on strategies and results of our initial approach for modernization of Titan2D code. Titan2D is a geophysical mass flow simulation code designed for modeling of volcanic flows, debris avalanches and landslides over a realistic terrain model. It solves an underlying hyperbolic system of partial differential equations using parallel adaptive mesh Godunov scheme. The following work was done during code refactoring and modernization. To facilitate user input two level python interface was developed. Such design permits large changes in C++ and Python low-level while maintaining stable high-level interface exposed to the end user. Multiple diverged forks implementing different material models were merged back together. Data storage layout was changed from a linked list of structures to a structure of arrays representation for better memory access and in preparation for further work on better utilization of vectorized instruction. Existing MPI parallelization was augmented with OpenMP parallelization. The performance of a hash table used to store mesh elements and nodes references was improved by switching from a linked list for overflow entries to dynamic arrays allowing the implementation of the binary search algorithm. The introduction of the new data layout made possible to reduce the number of hash table look-ups by replacing them with direct use of indexes from the storage class. The modifications lead to 8-9 times performance improvement for serial execution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01017v1-abstract-full').style.display = 'none'; document.getElementById('1910.01017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">First International Workshop on Legacy Software Refactoring for Performance (REFAC'19) in conjunction with ISC'19</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.08852">arXiv:1908.08852</a> <span> [<a href="https://arxiv.org/pdf/1908.08852">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Self-Contained, Cooled SiPM Array for Scintillation Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ponento%2C+A">A. Ponento</a>, <a href="/search/physics?searchtype=author&query=Martoff%2C+C+J">C. J. Martoff</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&query=Kaczanowicz%2C+E">E. Kaczanowicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.08852v1-abstract-short" style="display: inline;"> A simple, self-contained, thermo-electrically cooled SiPM system is presented which cools a SiPM array to -20 C. The array views a NaI scintillator through a 75 mm diameter glass window. Waste heat is removed with a large heat sink and AC fans. Above 40 keV in an air-coupled 2" x 2" NaI scintillator, the SiPM dark count rate was reduced by a factor of about 1000 when cooled. Spectroscopic performa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08852v1-abstract-full').style.display = 'inline'; document.getElementById('1908.08852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.08852v1-abstract-full" style="display: none;"> A simple, self-contained, thermo-electrically cooled SiPM system is presented which cools a SiPM array to -20 C. The array views a NaI scintillator through a 75 mm diameter glass window. Waste heat is removed with a large heat sink and AC fans. Above 40 keV in an air-coupled 2" x 2" NaI scintillator, the SiPM dark count rate was reduced by a factor of about 1000 when cooled. Spectroscopic performance when cooled was very similar to a PMT tested in the same setup, and adequate for nuclear spectrsocopy above 25 keV. Originally, water cooling was used but it was replaced by air cooling which is more suitable for a self-contained system, giving the advantage of portability without degrading performance. Straightforward improvements would allow cooling the SiPM to -30 C or below, which would further reduce the dark count rate and extend the spectroscopically useful range to even lower energies. Such a system would be rugged and suitable for field use, for instance for inspection of cargo for gamma ray emissions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08852v1-abstract-full').style.display = 'none'; document.getElementById('1908.08852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05841">arXiv:1908.05841</a> <span> [<a href="https://arxiv.org/pdf/1908.05841">pdf</a>, <a href="https://arxiv.org/format/1908.05841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Recurrent U-net: Deep learning to predict daily summertime ozone in the United States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+T">Tai-Long He</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+B+A">Dylan B. A. Jones</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+B">Binxuan Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuyang Liu</a>, <a href="/search/physics?searchtype=author&query=Miyazaki%2C+K">Kazuyuki Miyazaki</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhe Jiang</a>, <a href="/search/physics?searchtype=author&query=White%2C+E+C">E. Charlie White</a>, <a href="/search/physics?searchtype=author&query=Worden%2C+H+M">Helen M. Worden</a>, <a href="/search/physics?searchtype=author&query=Worden%2C+J+R">John R. Worden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05841v1-abstract-short" style="display: inline;"> We use a hybrid deep learning model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) surface ozone concentrations in the US. A set of meteorological fields from the ERA-Interim reanalysis as well as monthly mean NO$_x$ emissions from the Community Emissions Data System (CEDS) inventory are selected as predictors. Ozone measurements from the US Environmental Protection Agency (EPA… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05841v1-abstract-full').style.display = 'inline'; document.getElementById('1908.05841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05841v1-abstract-full" style="display: none;"> We use a hybrid deep learning model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) surface ozone concentrations in the US. A set of meteorological fields from the ERA-Interim reanalysis as well as monthly mean NO$_x$ emissions from the Community Emissions Data System (CEDS) inventory are selected as predictors. Ozone measurements from the US Environmental Protection Agency (EPA) Air Quality System (AQS) from 1980 to 2009 are used to train the model, whereas data from 2010 to 2014 are used to evaluate the performance of the model. The model captures well daily, seasonal and interannual variability in MDA8 ozone across the US. Feature maps show that the model captures teleconnections between MDA8 ozone and the meteorological fields, which are responsible for driving the ozone dynamics. We used the model to evaluate recent trends in NO$_x$ emissions in the US and found that the trend in the EPA emission inventory produced the largest negative bias in MDA8 ozone between 2010-2016. The top-down emission trends from the Tropospheric Chemistry Reanalysis (TCR-2), which is based on satellite observations, produced predictions in best agreement with observations. In urban regions, the trend in AQS NO$_2$ observations provided ozone predictions in agreement with observations, whereas in rural regions the satellite-derived trends produced the best agreement. In both rural and urban regions the EPA trend resulted in the largest negative bias in predicted ozone. Our results suggest that the EPA inventory is overestimating the reductions in NO$_x$ emissions and that the satellite-derived trend reflects the influence of reductions in NO$_x$ emissions as well as changes in background NO$_x$. Our results demonstrate the significantly greater predictive capability that the deep learning model provides over conventional atmospheric chemical transport models for air quality analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05841v1-abstract-full').style.display = 'none'; document.getElementById('1908.05841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07244">arXiv:1906.07244</a> <span> [<a href="https://arxiv.org/pdf/1906.07244">pdf</a>, <a href="https://arxiv.org/format/1906.07244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.162465">10.1016/j.nima.2019.162465 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Radioactive Source Calibration System of the PROSPECT Reactor Antineutrino Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=PROSPECT+Collaboration"> PROSPECT Collaboration</a>, <a href="/search/physics?searchtype=author&query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/physics?searchtype=author&query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/physics?searchtype=author&query=Berish%2C+D">D. Berish</a>, <a href="/search/physics?searchtype=author&query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/physics?searchtype=author&query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/physics?searchtype=author&query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&query=Classen%2C+T">T. Classen</a>, <a href="/search/physics?searchtype=author&query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/physics?searchtype=author&query=Dean%2C+D">D. Dean</a>, <a href="/search/physics?searchtype=author&query=Deichert%2C+G">G. Deichert</a>, <a href="/search/physics?searchtype=author&query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/physics?searchtype=author&query=Erickson%2C+A">A. Erickson</a>, <a href="/search/physics?searchtype=author&query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/physics?searchtype=author&query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/physics?searchtype=author&query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/physics?searchtype=author&query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/physics?searchtype=author&query=Gilbert%2C+C+E">C. E. Gilbert</a>, <a href="/search/physics?searchtype=author&query=Hackett%2C+B+T">B. T. Hackett</a>, <a href="/search/physics?searchtype=author&query=Hans%2C+S">S. Hans</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07244v2-abstract-short" style="display: inline;"> The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07244v2-abstract-full').style.display = 'inline'; document.getElementById('1906.07244v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07244v2-abstract-full" style="display: none;"> The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at the High Flux Isotope Reactor in Oak Ridge National Laboratory. Antineutrino events are identified via inverse beta decay and read out by photomultiplier tubes located at the ends of each segment. The detector response is characterized using a radioactive source calibration system. This paper describes the design, operation, and performance of the PROSPECT source calibration system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07244v2-abstract-full').style.display = 'none'; document.getElementById('1906.07244v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods A, Vol. 944, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03473">arXiv:1906.03473</a> <span> [<a href="https://arxiv.org/pdf/1906.03473">pdf</a>, <a href="https://arxiv.org/format/1906.03473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019GC008489">10.1029/2019GC008489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Devolatilization of Subducting Slabs, Part II: Volatile Fluxes and Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+M">Meng Tian</a>, <a href="/search/physics?searchtype=author&query=Katz%2C+R">Richard Katz</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+R">David Rees Jones</a>, <a href="/search/physics?searchtype=author&query=May%2C+D">Dave May</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03473v2-abstract-short" style="display: inline;"> Subduction is a crucial part of the long-term water and carbon cycling between Earth's exosphere and interior. However, there is broad disagreement over how much water and carbon is liberated from subducting slabs to the mantle wedge and transported to island-arc volcanoes. In the companion paper Part I, we parameterize the metamorphic reactions involving H$_2$O and CO$_2$ for representative subdu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03473v2-abstract-full').style.display = 'inline'; document.getElementById('1906.03473v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03473v2-abstract-full" style="display: none;"> Subduction is a crucial part of the long-term water and carbon cycling between Earth's exosphere and interior. However, there is broad disagreement over how much water and carbon is liberated from subducting slabs to the mantle wedge and transported to island-arc volcanoes. In the companion paper Part I, we parameterize the metamorphic reactions involving H$_2$O and CO$_2$ for representative subducting lithologies. On this basis, a two-dimensional reactive transport model is constructed in this Part II. We assess the various controlling factors of CO$_2$ and H$_2$O release from subducting slabs. Model results show that up-slab fluid flow directions produce a flux peak of CO$_2$ and H$_2$O at subarc depths. Moreover, infiltration of H$_2$O-rich fluids sourced from hydrated slab mantle enhances decarbonation or carbonation at lithological interfaces, increases slab surface fluxes, and redistributes CO$_2$ from basalt and gabbro layers to the overlying sedimentary layer. As a result, removal of the cap sediments (by diapirism or off-scraping) leads to elevated slab surface CO$_2$ and H$_2$O fluxes. The modelled subduction efficiency (the percentage of initially subducted volatiles retained until $\sim$200 km deep) of H$_2$O and CO$_2$ is increased by open-system effects due to fractionation within the interior of lithological layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03473v2-abstract-full').style.display = 'none'; document.getElementById('1906.03473v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version in Geochemistry, Geophysics, Geosystems, but re-typeset</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geochemistry, Geophysics, Geosystems, 20 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02819">arXiv:1906.02819</a> <span> [<a href="https://arxiv.org/pdf/1906.02819">pdf</a>, <a href="https://arxiv.org/format/1906.02819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019GC008488">10.1029/2019GC008488 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Devolatilization of Subducting Slabs, Part I: Thermodynamic Parameterization and Open System Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+M">Meng Tian</a>, <a href="/search/physics?searchtype=author&query=Katz%2C+R">Richard Katz</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D+R">David Rees Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02819v2-abstract-short" style="display: inline;"> The amount of H$_2$O and CO$_2$ that is carried into deep mantle by subduction beyond subarc depths is of fundamental importance to the deep volatile cycle but remains debated. Given the large uncertainties surrounding the spatio-temporal pattern of fluid flow and the equilibrium state within subducting slabs, a model of H$_2$O and CO$_2$ transport in slabs should be balanced between model simplic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02819v2-abstract-full').style.display = 'inline'; document.getElementById('1906.02819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02819v2-abstract-full" style="display: none;"> The amount of H$_2$O and CO$_2$ that is carried into deep mantle by subduction beyond subarc depths is of fundamental importance to the deep volatile cycle but remains debated. Given the large uncertainties surrounding the spatio-temporal pattern of fluid flow and the equilibrium state within subducting slabs, a model of H$_2$O and CO$_2$ transport in slabs should be balanced between model simplicity and capability. We construct such a model in a two-part contribution. In this Part I of our contribution, thermodynamic parameterization is performed for the devolatilization of representative subducting materials---sediments, basalts, gabbros, peridotites. The parameterization avoids reproducing the details of specific devolatilization reactions, but instead captures the overall behaviors of coupled (de)hydration and (de)carbonation. Two general, leading-order features of devolatilization are captured: (1) the released volatiles are H$_2$O-rich near the onset of devolatilization; (2) increase of the ratio of bulk CO$_2$ over H$_2$O inhibits overall devolatilization and thus lessens decarbonation. These two features play an important role in simulation of volatile fractionation and infiltration in thermodynamically open systems. When constructing the reactive fluid flow model of slab H$_2$O and CO$_2$ transport in the companion paper Part II, this parameterization can be incorporated to efficiently account for the open-system effects of H$_2$O and CO$_2$ transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02819v2-abstract-full').style.display = 'none'; document.getElementById('1906.02819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version in Geochemistry, Geophysics, Geosystems, but re-typeset</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geochemistry, Geophysics,Geosystems, 20 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08857">arXiv:1905.08857</a> <span> [<a href="https://arxiv.org/pdf/1905.08857">pdf</a>, <a href="https://arxiv.org/format/1905.08857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.22.102401">10.1103/PhysRevAccelBeams.22.102401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A fast-switching magnet serving a spallation-driven ultracold neutron source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Altiere%2C+E">E. Altiere</a>, <a href="/search/physics?searchtype=author&query=Andalib%2C+T">T. Andalib</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+M+J">M. J. Barnes</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+B">B. Bell</a>, <a href="/search/physics?searchtype=author&query=Bidinosti%2C+C+P">C. P. Bidinosti</a>, <a href="/search/physics?searchtype=author&query=Bylinsky%2C+Y">Y. Bylinsky</a>, <a href="/search/physics?searchtype=author&query=Chak%2C+J">J. Chak</a>, <a href="/search/physics?searchtype=author&query=Das%2C+M">M. Das</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+C+A">C. A. Davis</a>, <a href="/search/physics?searchtype=author&query=Fischer%2C+F">F. Fischer</a>, <a href="/search/physics?searchtype=author&query=Franke%2C+B">B. Franke</a>, <a href="/search/physics?searchtype=author&query=Gericke%2C+M+T+W">M. T. W. Gericke</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+M">M. Hahn</a>, <a href="/search/physics?searchtype=author&query=Hansen-Romu%2C+S">S. Hansen-Romu</a>, <a href="/search/physics?searchtype=author&query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&query=Hayamizu%2C+T">T. Hayamizu</a>, <a href="/search/physics?searchtype=author&query=Jamieson%2C+B">B. Jamieson</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+D">D. Jones</a>, <a href="/search/physics?searchtype=author&query=Katsika%2C+K">K. Katsika</a>, <a href="/search/physics?searchtype=author&query=Kawasaki%2C+S">S. Kawasaki</a>, <a href="/search/physics?searchtype=author&query=Kikawa%2C+T">T. Kikawa</a>, <a href="/search/physics?searchtype=author&query=Klassen%2C+W">W. Klassen</a>, <a href="/search/physics?searchtype=author&query=Konaka%2C+A">A. Konaka</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08857v2-abstract-short" style="display: inline;"> A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40~$渭$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical oper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08857v2-abstract-full').style.display = 'inline'; document.getElementById('1905.08857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08857v2-abstract-full" style="display: none;"> A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40~$渭$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet which is ramped in 50~$渭$s to a current of 193~A, held there for approximately 1~ms, then ramped down in the same short period of time. This achieves a 12~mrad deflection which is sufficient to switch the proton beam between the two facilities. The kicker magnet relies on a high-current, low-inductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar transistors (IGBTs). The design and performance of the kicker magnet system and initial beam delivery results are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08857v2-abstract-full').style.display = 'none'; document.getElementById('1905.08857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 21 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jones%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Jones%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>