CINXE.COM

Search results for: cell surface display

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell surface display</title> <meta name="description" content="Search results for: cell surface display"> <meta name="keywords" content="cell surface display"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell surface display" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell surface display"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10206</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell surface display</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10206</span> Functional Cell Surface Display Using Ice Nucleation Protein from Erwina ananas on Escherischia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei%20Yuin%20Joanne%20Wee">Mei Yuin Joanne Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md.%20Illias"> Rosli Md. Illias </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell surface display is the expression of a protein with an anchoring motif on the surface of the cell. This approach offers advantages when used in bioconversion in terms of easier purification steps and more efficient enzymatic reaction. A surface display system using ice nucleation protein (InaA) from Erwina ananas as an anchoring motif has been constructed to display xylanase (xyl) on the surface of Escherischia coli. The InaA was truncated so that it is made up of the N- and C-terminal domain (INPANC-xyl) and it has successfully directed xylanase to the surface of the cell. A study was also done on xylanase fused to two other ice nucleation proteins, InaK (INPKNC-xyl) and InaZ (INPZNC-xyl) from Pseudomonas syringae KCTC 1832 and Pseudomonas syringae S203 respectively. Surface localization of the fusion protein was verified using SDS-PAGE and Western blot on the cell fractions and all anchoring motifs were successfully displayed on the outer membrane of E. coli. Upon comparison, whole-cell activity of INPANC-xyl was more than six and five times higher than INPKNC-xyl and INPZNC-xyl respectively. Furthermore, the expression of INPANC-xyl on the surface of E. coli did not inhibit the growth of the cell. This is the first report of surface display system using ice nucleation protein, InaA from E. ananas. From this study, this anchoring motif offers an attractive alternative to the current surface display systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title="cell surface display">cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherischia%20coli" title=" Escherischia coli"> Escherischia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20nucleation%20protein" title=" ice nucleation protein"> ice nucleation protein</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/39347/functional-cell-surface-display-using-ice-nucleation-protein-from-erwina-ananas-on-escherischia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10205</span> Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Min%20Yi">Yeng Min Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md%20Illias"> Rosli Md Illias</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehhuddin%20Hamdan"> Salehhuddin Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title=" cell surface display"> cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=TibA%20autotransporter" title=" TibA autotransporter"> TibA autotransporter</a> </p> <a href="https://publications.waset.org/abstracts/39502/cell-surface-display-of-xylanase-on-escherichia-coli-by-tiba-autotransporter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10204</span> Surface Display of Lipase on Yarrowia lipolytica Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniya%20Y.%20Yuzbasheva">Evgeniya Y. Yuzbasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigran%20V.%20Yuzbashev"> Tigran V. Yuzbashev</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20I.%20Perkovskaya"> Natalia I. Perkovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizaveta%20B.%20Mostova"> Elizaveta B. Mostova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-surface%20display" title=" cell-surface display"> cell-surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-cell%20biocatalyst" title=" whole-cell biocatalyst"> whole-cell biocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/22906/surface-display-of-lipase-on-yarrowia-lipolytica-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10203</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhane%20Hamed%20Kamran">Reyhane Hamed Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/154753/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10202</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Salehiyan">Narin Salehiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/170992/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10201</span> Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20Ruta">Lavinia Ruta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Farcasanu"> Ileana Farcasanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=YSD" title="YSD">YSD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobodies" title=" nanobodies"> nanobodies</a>, <a href="https://publications.waset.org/abstracts/search?q=GFP" title=" GFP"> GFP</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/184472/selection-of-green-fluorescent-protein-and-mcherry-nanobodies-using-the-yeast-surface-display-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10200</span> Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanshan%20Guo">Shanshan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoying%20Zhu"> Xiaoying Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Ja%C5%84czewski"> Dominik Jańczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Koon%20Gee%20Neoh"> Koon Gee Neoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer" title=" layer-by-layer"> layer-by-layer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a> </p> <a href="https://publications.waset.org/abstracts/57245/independent-control-over-surface-charge-and-wettability-using-polyelectrolyte-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10199</span> Investigating the Effect of Adding the Window Layer and the Back Surface Field Layer of InₓGa₍₁₋ₓ₎P Material to GaAs Single Junction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Taghinia">Ahmad Taghinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Gholamishaker"> Negar Gholamishaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaAs (gallium arsenide) solar cells have gained significant attention for their use in space applications. These solar cells have the potential for efficient energy conversion and are being explored as potential power sources for electronic devices, satellites, and telecommunication equipment. In this study, the aim is to investigate the effect of adding a window layer and a back surface field (BSF) layer made of InₓGa₍₁₋ₓ₎P material to a GaAs single junction solar cell. In this paper, we first obtain the important electrical parameters of a single-junction GaAs solar cell by utilizing a two-dimensional simulator software for virtual investigation of the solar cell; then, we analyze the impact of adding a window layer and a back surface field layer made of InₓGa₍₁₋ₓ₎P on the solar cell. The results show that the incorporation of these layers led to enhancements in Jsc, Voc, FF, and the overall efficiency of the solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20surface%20field%20layer" title="back surface field layer">back surface field layer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%93Ga%E2%82%8D%E2%82%81%E2%82%8B%E2%82%93%E2%82%8EP" title=" InₓGa₍₁₋ₓ₎P"> InₓGa₍₁₋ₓ₎P</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20layer" title=" window layer"> window layer</a> </p> <a href="https://publications.waset.org/abstracts/170469/investigating-the-effect-of-adding-the-window-layer-and-the-back-surface-field-layer-of-inga1p-material-to-gaas-single-junction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10198</span> Cell Response on the Ti-15Mo Alloy Surface after Nanotubes Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Rosifini%20Alves%20Claro">Ana Paula Rosifini Alves Claro</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Luiz%20Reis%20Rangel"> André Luiz Reis Rangel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Trujillo"> Nathan Trujillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ketul%20C.%20Popat"> Ketul C. Popat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, in vitro cytotoxicity was evaluated after nanotubes growth on Ti15Mo alloy surface. TiO2 nanotubes were obtained by anodizing technique at room temperature in an electrolyte with 0.25 %NH4F and glycerol at a constant anodic potential of 20 V for 24 hours. The morphology of nanotubes was observed by field emission scanning electron microscopy (FE-SEM; XL 30 FEG, Philips). Crystal structure was analyzed by wide-angle X-ray diffraction. A cell culture model using human fibroblast-like cells was used to study the effect of TiO2 nanotubes growth on the cytotoxicity of the Ti15Mo alloy for 1, 4 and 7 days culture period. The MTT assay was used to evaluate cell viability and cell adhesion was evaluated by scanning electron microscopy. Results show that Ti15Mo alloy with TiO2 nanotubes on surface is nontoxic and exhibit good interaction with surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotubes" title=" TiO2 nanotubes"> TiO2 nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20growth" title=" cell growth"> cell growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-15Mo%20alloy" title=" Ti-15Mo alloy"> Ti-15Mo alloy</a> </p> <a href="https://publications.waset.org/abstracts/17473/cell-response-on-the-ti-15mo-alloy-surface-after-nanotubes-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10197</span> Effect of Environmental Stress Factors on the Degradation of Display Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Choi">Jinyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-A%20Kim"> Hyun-A Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20test" title=" degradation test"> degradation test</a>, <a href="https://publications.waset.org/abstracts/search?q=display%20glass" title=" display glass"> display glass</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20stress%20factor" title=" environmental stress factor"> environmental stress factor</a> </p> <a href="https://publications.waset.org/abstracts/81570/effect-of-environmental-stress-factors-on-the-degradation-of-display-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10196</span> Numerical Simulation of a Single Cell Passing through a Narrow Slit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanlan%20Xiao">Lanlan Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Liu"> Yang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Chen"> Shuo Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingmei%20Fu"> Bingmei Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20particle%20dynamics" title="dissipative particle dynamics">dissipative particle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=deformability" title=" deformability"> deformability</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20area%20increase" title=" surface area increase"> surface area increase</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20migration" title=" cell migration"> cell migration</a> </p> <a href="https://publications.waset.org/abstracts/40189/numerical-simulation-of-a-single-cell-passing-through-a-narrow-slit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10195</span> Voltage Polarity in Electrospinning: Way to Control Surface Properties of Polymer Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Stachewicz">Urszula Stachewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface properties of materials are the key parameter in many applications, especially in the biomedical field, to control cell-material interactions. In our work, we want to achieve the controllability of surface properties of polymer fibers via a single-step electrospinning process by alternating voltage polarities. Voltage polarity defines the charge accumulated on the surface of the liquid jet and the surface of the fibers. Positive polarity attracts negatively charged groups to fibers’ surface, whereas negative polarity moves the negatively charged functional groups away from the surface. This way, we can control the surface chemistry, wettability, and additionally surface potential of electrospun fibers. Within our research, we characterized surface chemistry using X-ray photoelectron microscopy (XPS) and surface potential with Kelvin probe force microscopy (KPFM) on electrospun fibers of commonly used polymers such as PCL, PVDF, and PMMA, often used as biomaterials. We proved the significant effect of fibers' surface potential on cell integration with the scaffolds and further cells development for the regeneration processes based on the osteoblast and fibroblast culture studies. Acknowledgments: The study was conducted within ‘Nanofiber-based sponges for atopic skin treatment’ project, which is carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20attachment" title="cell attachment">cell attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=fibers" title=" fibers"> fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fibroblasts" title=" fibroblasts"> fibroblasts</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title=" osteoblast"> osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20potential" title=" surface potential"> surface potential</a> </p> <a href="https://publications.waset.org/abstracts/112788/voltage-polarity-in-electrospinning-way-to-control-surface-properties-of-polymer-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10194</span> Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfuzur%20Rahman">Mahfuzur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interdigitated" title="interdigitated">interdigitated</a>, <a href="https://publications.waset.org/abstracts/search?q=shading" title=" shading"> shading</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination%20loss" title=" recombination loss"> recombination loss</a>, <a href="https://publications.waset.org/abstracts/search?q=incident-plane" title=" incident-plane"> incident-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=drift-diffusion" title=" drift-diffusion"> drift-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminous" title=" luminous"> luminous</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO" title=" SILVACO"> SILVACO</a> </p> <a href="https://publications.waset.org/abstracts/146112/modelling-and-simulation-of-light-and-temperature-efficient-interdigitated-back-surface-contact-solar-cell-with-2881-efficiency-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10193</span> Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Gandhi">Abhishek Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Bhatnagar"> Naresh Bhatnagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foams" title="foams">foams</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=open-cell%20foams" title=" open-cell foams"> open-cell foams</a> </p> <a href="https://publications.waset.org/abstracts/18675/surface-quenching-induced-cell-opening-technique-in-extrusion-of-thermoplastic-foamed-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10192</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10191</span> Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isobel%20Hambleton">Isobel Hambleton</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Carrington"> Mark Carrington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bloodstream%20expression%20site" title="bloodstream expression site">bloodstream expression site</a>, <a href="https://publications.waset.org/abstracts/search?q=morpholino" title=" morpholino"> morpholino</a>, <a href="https://publications.waset.org/abstracts/search?q=precytokinesis%20cell%20cycle%20arrest" title=" precytokinesis cell cycle arrest"> precytokinesis cell cycle arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=variant%20surface%20glycoprotein" title=" variant surface glycoprotein"> variant surface glycoprotein</a> </p> <a href="https://publications.waset.org/abstracts/99030/inhibition-of-variant-surface-glycoproteins-translation-to-define-the-essential-features-of-the-variant-surface-glycoprotein-in-trypanosoma-brucei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10190</span> Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chris%20Suma">Chris Suma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingcai%20Xiao"> Yingcai Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title="human computer interaction">human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20coordinates" title=" parallel coordinates"> parallel coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20surface" title=" spiral surface"> spiral surface</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/193466/parallel-coordinates-on-a-spiral-surface-for-visualizing-high-dimensional-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10189</span> Supervisory Emotional Display Affects Employee’s Well-Being</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Zhang">Huan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Darius%20K.%20S%20Chan"> Darius K. S Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite a large number of studies linking emotional labor and its detrimental impact for laborer, research on how emotional labor would influence the receiver is still in its infancy. Especially under the call for “people management”, supervisors inside the organization are more inclined to display happy mood to support their employees, thus endorsing emotional labor. The present study focuses on the employees in the service industry as emotional labor recipients and investigates how they respond to their supervisors’ emotional display, given their sensitivity to emotional cues. Targeted at a sample of 250 survey data from a wide range of customer service professions, this ongoing study examines how perceived supervisory emotional labor would moderate the relationship between employees surface acting and their well-being. Our major hypotheses are that employees’ surface acting predicts well-being level, and that perceived supervisory emotional labor to moderate the surface acting—outcome links. Preliminary findings have provided some support to the hypothesized model. Specifically, supervisors who are perceived to be high in surface acting are also regarded as fake and pseudo, hence the enhancing the detrimental effect of employees’ surface acting is attenuated, resulting in lower job satisfaction, higher physical stress and burnout; whereas perceived high supervisor’s deep acting, as associated with genuine and authenticity, buffers the negative impact and leads to higher job satisfaction, lower physical stress and burnout. This study first confirms the negative impacts of the surface acting on well-being for service industry employees as laborer and then extends the emotional labor studies by considering them as recipients of supervisory emotional labor. The findings provide insights for leaders by pointing out the importance of authentic emotional expression in workplace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perceived%20supervisory%20emotional%20labor" title="perceived supervisory emotional labor">perceived supervisory emotional labor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20acting" title=" surface acting"> surface acting</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a> </p> <a href="https://publications.waset.org/abstracts/24950/supervisory-emotional-display-affects-employees-well-being" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10188</span> Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Hemmani">Abderrahmane Hemmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Khachab"> Hamid Khachab</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennai%20Benmoussa"> Dennai Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Benslimane"> Hassane Benslimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrachid%20Helmaoui"> Abderrachid Helmaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20surface%20field" title="back surface field">back surface field</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20parameters" title=" technological parameters"> technological parameters</a> </p> <a href="https://publications.waset.org/abstracts/20580/analysis-of-bsf-layer-n-gaasp-gaasp-gaas-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10187</span> Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankush%20M.%20Dewle">Ankush M. Dewle</a>, <a href="https://publications.waset.org/abstracts/search?q=Suditi%20Bhattacharya"> Suditi Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prachi%20R.%20Abhang"> Prachi R. Abhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Savita%20Datar"> Savita Datar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20J.%20Jog"> Ajay J. Jog</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupesh%20K.%20Srivastava"> Rupesh K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Tomar"> Geetanjali Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy"> cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a> </p> <a href="https://publications.waset.org/abstracts/81618/ageing-gingiva-a-new-hope-for-autologous-stem-cell-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10186</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10185</span> Invisible Aircraft Using Plasma Display</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Ramamoorthy">C. Ramamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ranga%20Raj"> R. Ranga Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCD%20camera" title="CCD camera">CCD camera</a>, <a href="https://publications.waset.org/abstracts/search?q=chameleon" title=" chameleon"> chameleon</a>, <a href="https://publications.waset.org/abstracts/search?q=invisible" title=" invisible"> invisible</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20display" title=" plasma display"> plasma display</a> </p> <a href="https://publications.waset.org/abstracts/14559/invisible-aircraft-using-plasma-display" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10184</span> On the Thermodynamics of Biological Cell Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler">Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20membrane" title=" cell membrane"> cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor-ligand%20interaction" title=" receptor-ligand interaction"> receptor-ligand interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20diffusion" title=" receptor diffusion"> receptor diffusion</a> </p> <a href="https://publications.waset.org/abstracts/37546/on-the-thermodynamics-of-biological-cell-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10183</span> Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mads%20H.%20Clausen">Mads H. Clausen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oligosaccharides" title="oligosaccharides">oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate%20chemistry" title=" carbohydrate chemistry"> carbohydrate chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cell%20walls" title=" plant cell walls"> plant cell walls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate-acting%20enzymes" title=" carbohydrate-acting enzymes"> carbohydrate-acting enzymes</a> </p> <a href="https://publications.waset.org/abstracts/13547/synthesis-and-application-of-oligosaccharides-representing-plant-cell-wall-polysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10182</span> Structural Evaluation of Cell-Filled Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Roy">Subrat Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-filled%20pavement" title="cell-filled pavement">cell-filled pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD" title=" FWD"> FWD</a>, <a href="https://publications.waset.org/abstracts/search?q=Moorum" title=" Moorum"> Moorum</a> </p> <a href="https://publications.waset.org/abstracts/19215/structural-evaluation-of-cell-filled-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10181</span> Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerman%20Madonsela">Jerman Madonsela</a>, <a href="https://publications.waset.org/abstracts/search?q=Wallace%20%20Matizamhuka"> Wallace Matizamhuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Akiko%20%20Yamamoto"> Akiko Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Machaka"> Ronald Machaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendon%20Shongwe"> Brendon Shongwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title=" osteoblast"> osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20adsorption" title=" protein adsorption"> protein adsorption</a> </p> <a href="https://publications.waset.org/abstracts/93233/biocompatibility-and-electrochemical-assessment-of-biomedical-ti-24nb-4zr-8sn-produced-by-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10180</span> Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Li%20Liu">Xiao-Li Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling-Yun%20Zhao"> Ling-Yun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing-Jie%20Liang"> Xing-Jie Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Ming%20Fan"> Hai-Ming Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20hyperthermia" title=" magnetic hyperthermia"> magnetic hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/73963/optimization-of-surface-coating-on-magnetic-nanoparticles-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10179</span> Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Un%20Shin">Ji Un Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Mao"> Wei Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Sang%20Yoo"> Hyuk Sang Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano" title="nano">nano</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=cell" title=" cell"> cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a> </p> <a href="https://publications.waset.org/abstracts/86571/multilayered-assembly-of-gelatin-on-nanofibrous-matrix-for-3-d-cell-cultivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10178</span> Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Jung%20Wu">Pei-Jung Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ying%20Huang"> Ching-Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chia%20Lin"> Chih-Chia Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Han%20Li"> Chun-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Yuan%20Wang"> Chien-Yuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title="contact resistance">contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20fuel%20cell" title=" proton exchange membrane fuel cell"> proton exchange membrane fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=SS%20bipolar%20plate" title=" SS bipolar plate"> SS bipolar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20coating%20process" title=" spray coating process"> spray coating process</a> </p> <a href="https://publications.waset.org/abstracts/125941/study-on-properties-of-carbon-based-layer-for-proton-exchange-membrane-fuel-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10177</span> Research on Ice Fixed-Abrasive Polishing Mechanism and Technology for High-Definition Display Panel Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Sun">Y. L. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Shao"> L. Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhao"> Y. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20X.%20Zhou"> H. X. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Lu"> W. Z. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Li"> J. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Zuo"> D. W. Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces an ice fixed-abrasive polishing (IFAP) technology. Using silica solution IFAP pad and Al2O3 IFAP pad, orthogonal tests were performed on polishing high-definition display panel glass, respectively. The results show that the polishing efficiency and effect polished with silica solution IFAP pad are better than those polished with Al2O3 IFAP pad. The optimized silica solution IFAP parameters are: polishing pressure 0.1MPa, polishing time 40min, table velocity 80r/min, and the ratio of accelerator and slurry 1:10. Finally, the IFAP mechanism was studied and it suggests by complicated analysis that IFAP is comprehensive effect of mechanical removal and microchemical reaction, combined with fixed abrasive polishing and free abrasive polishing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20fixed-abrasive%20polishing" title="ice fixed-abrasive polishing">ice fixed-abrasive polishing</a>, <a href="https://publications.waset.org/abstracts/search?q=high-definition%20display%20panel%20glass" title=" high-definition display panel glass"> high-definition display panel glass</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20removal%20rate" title=" material removal rate"> material removal rate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/20185/research-on-ice-fixed-abrasive-polishing-mechanism-and-technology-for-high-definition-display-panel-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=340">340</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=341">341</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10