CINXE.COM

Search results for: social semantic web

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: social semantic web</title> <meta name="description" content="Search results for: social semantic web"> <meta name="keywords" content="social semantic web"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="social semantic web" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="social semantic web"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9944</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: social semantic web</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9944</span> Ontology-Based Approach for Temporal Semantic Modeling of Social Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sou%C3%A2ad%20Boudebza">Souâad Boudebza</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Nouali"> Omar Nouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Fai%C3%A7al%20Azouaou"> Faiçal Azouaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ontology" title="ontology">ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20modeling" title=" temporal modeling"> temporal modeling</a> </p> <a href="https://publications.waset.org/abstracts/42125/ontology-based-approach-for-temporal-semantic-modeling-of-social-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9943</span> Social Semantic Web-Based Analytics Approach to Support Lifelong Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Halimi">Khaled Halimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassina%20Seridi-Bouchelaghem"> Hassina Seridi-Bouchelaghem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called <em>SoLearn</em> (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connectivism" title="connectivism">connectivism</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20analytics" title=" learning analytics"> learning analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=lifelong%20learning" title=" lifelong learning"> lifelong learning</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web" title=" social semantic web"> social semantic web</a> </p> <a href="https://publications.waset.org/abstracts/100850/social-semantic-web-based-analytics-approach-to-support-lifelong-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9942</span> A Semantic E-Learning and E-Assessment System of Learners </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiem%20Ben%20Khalifa">Wiem Ben Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Souilem"> Dalila Souilem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Neji"> Mahmoud Neji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semantic%20Web" title="Semantic Web">Semantic Web</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20system" title=" semantic system"> semantic system</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a> </p> <a href="https://publications.waset.org/abstracts/72932/a-semantic-e-learning-and-e-assessment-system-of-learners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9941</span> Lexico-Semantic and Contextual Analysis of the Concept of Joy in Modern English Fiction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarine%20Avetisyan">Zarine Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concepts are part and parcel of everyday text and talk. Their ubiquity predetermines the topicality of the given research which aims at the semantic decomposition of concepts in general and the concept of joy in particular, as well as the study of lexico-semantic variants as means of realization of a certain concept in different “semantic settings”, namely in a certain context. To achieve the stated aim, the given research departs from the methods of componential and contextual analysis, studying lexico-semantic variants /LSVs/ of the concept of joy and the semantic signs embedded in those LSVs, such as the semantic sign of intensity, supporting emotions, etc. in the context of Modern English fiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept" title="concept">concept</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=lexico-semantic%20variant" title=" lexico-semantic variant"> lexico-semantic variant</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20sign" title=" semantic sign"> semantic sign</a> </p> <a href="https://publications.waset.org/abstracts/67474/lexico-semantic-and-contextual-analysis-of-the-concept-of-joy-in-modern-english-fiction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9940</span> Fuzzy Semantic Annotation of Web Resources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Ma%C3%A2lej%20Dammak">Sahar Maâlej Dammak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Jedidi"> Anis Jedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Bouaziz"> Rafik Bouaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the great mass of pages managed through the world, and especially with the advent of the Web, their manual annotation is impossible. We focus, in this paper, on the semiautomatic annotation of the web pages. We propose an approach and a framework for semantic annotation of web pages entitled “Querying Web”. Our solution is an enhancement of the first result of annotation done by the “Semantic Radar” Plug-in on the web resources, by annotations using an enriched domain ontology. The concepts of the result of Semantic Radar may be connected to several terms of the ontology, but connections may be uncertain. We represent annotations as possibility distributions. We use the hierarchy defined in the ontology to compute degrees of possibilities. We want to achieve an automation of the fuzzy semantic annotation of web resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20semantic%20annotation" title="fuzzy semantic annotation">fuzzy semantic annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20ontologies" title=" domain ontologies"> domain ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=querying%20web" title=" querying web"> querying web</a> </p> <a href="https://publications.waset.org/abstracts/1854/fuzzy-semantic-annotation-of-web-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9939</span> Social Media, Networks and Related Technology: Business and Governance Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20T.%20AlSudairi">M. A. T. AlSudairi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20K.%20Vasista"> T. G. K. Vasista</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRASP%20methodology" title="CRASP methodology">CRASP methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=formative%20assessment" title=" formative assessment"> formative assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20services" title=" semantic web services"> semantic web services</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a> </p> <a href="https://publications.waset.org/abstracts/22103/social-media-networks-and-related-technology-business-and-governance-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9938</span> Optimization Query Image Using Search Relevance Re-Ranking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Asmitha%20Chandini">T. G. Asmitha Chandini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Query" title="Query">Query</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword" title=" keyword"> keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=re-ranking" title=" re-ranking"> re-ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic" title=" semantic"> semantic</a>, <a href="https://publications.waset.org/abstracts/search?q=signature" title=" signature"> signature</a> </p> <a href="https://publications.waset.org/abstracts/28398/optimization-query-image-using-search-relevance-re-ranking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9937</span> Challenges over Two Semantic Repositories - OWLIM and AllegroGraph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paria%20Tajabor">Paria Tajabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Azarbani"> Azin Azarbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OWLIM" title="OWLIM">OWLIM</a>, <a href="https://publications.waset.org/abstracts/search?q=allegrograph" title=" allegrograph"> allegrograph</a>, <a href="https://publications.waset.org/abstracts/search?q=RDF" title=" RDF"> RDF</a>, <a href="https://publications.waset.org/abstracts/search?q=reasoning" title=" reasoning"> reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20repository" title=" semantic repository"> semantic repository</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic-web" title=" semantic-web"> semantic-web</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL" title=" SPARQL"> SPARQL</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a> </p> <a href="https://publications.waset.org/abstracts/41697/challenges-over-two-semantic-repositories-owlim-and-allegrograph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9936</span> Annotation Ontology for Semantic Web Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20Al%20Obaidy">Hadeel Al Obaidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Al%20Heela"> Amani Al Heela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20services" title="semantic web services">semantic web services</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20library" title=" semantic library"> semantic library</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title=" knowledge representation"> knowledge representation</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/103442/annotation-ontology-for-semantic-web-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9935</span> Secure Bio Semantic Computing Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Yamaguchi">Hiroshi Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20C.%20Y.%20Sheu"> Phillip C. Y. Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryo%20Fujita"> Ryo Fujita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Tsujii"> Shigeo Tsujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title="biomedical applications">biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20information%20retrieval%20%28PIR%29" title=" private information retrieval (PIR)"> private information retrieval (PIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20capability%20description%20language%20%28SCDL%29" title=" semantic capability description language (SCDL)"> semantic capability description language (SCDL)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20computing" title=" semantic computing"> semantic computing</a> </p> <a href="https://publications.waset.org/abstracts/27808/secure-bio-semantic-computing-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9934</span> Investigating the Concept of Joy in Modern English Fiction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarine%20Avetisyan">Zarine Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paradigm of Modern Linguistics incorporates disciplines which allow to analyze both language and discourse units and to demonstrate the multi-layeredness of lingo-cultural consciousness. By implementing lingo-cognitive approach to discourse and communication studies, the present paper tries to create the integral linguistic picture of the concept of joy and to analyze the lexico-semantic groups and relevant lexico-semantic variants of its realization in the context of Modern English fiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept%20of%20joy" title="concept of joy">concept of joy</a>, <a href="https://publications.waset.org/abstracts/search?q=lexico-semantic%20variant" title=" lexico-semantic variant"> lexico-semantic variant</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20sign" title=" semantic sign"> semantic sign</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a> </p> <a href="https://publications.waset.org/abstracts/50821/investigating-the-concept-of-joy-in-modern-english-fiction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9933</span> Graph Planning Based Composition for Adaptable Semantic Web Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Ben%20Lamine">Rihab Ben Lamine</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Ben%20Jemaa"> Raoudha Ben Jemaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Amous%20Ben%20Amor"> Ikram Amous Ben Amor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a graph planning technique for semantic adaptable Web Services composition. First, we use an ontology based context model for extending Web Services descriptions with information about the most suitable context for its use. Then, we transform the composition problem into a semantic context aware graph planning problem to build the optimal service composition based on user's context. The construction of the planning graph is based on semantic context aware Web Service discovery that allows for each step to add most suitable Web Services in terms of semantic compatibility between the services parameters and their context similarity with the user's context. In the backward search step, semantic and contextual similarity scores are used to find best composed Web Services list. Finally, in the ranking step, a score is calculated for each best solution and a set of ranked solutions is returned to the user. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20service" title="semantic web service">semantic web service</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20service%20composition" title=" web service composition"> web service composition</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation" title=" adaptation"> adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20planning" title=" graph planning"> graph planning</a> </p> <a href="https://publications.waset.org/abstracts/62455/graph-planning-based-composition-for-adaptable-semantic-web-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9932</span> Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alansary">S. Alansary</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nagi"> M. Nagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis​ tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title="semantic analysis">semantic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20annotation" title=" semantic annotation"> semantic annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic" title=" Arabic"> Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20networking%20language" title=" universal networking language"> universal networking language</a> </p> <a href="https://publications.waset.org/abstracts/17455/towards-a-large-scale-deep-semantically-analyzed-corpus-for-arabic-annotation-and-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9931</span> A Network of Nouns and Their Features :A Neurocomputational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skiker%20Kaoutar">Skiker Kaoutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Maouene"> Mounir Maouene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroimaging studies indicate that a large fronto-parieto-temporal network support nouns and their features, with some areas store semantic knowledge (visual, auditory, olfactory, gustatory,…), other areas store lexical representation and other areas are implicated in general semantic processing. However, it is not well understood how this fronto-parieto-temporal network can be modulated by different semantic tasks and different semantic relations between nouns. In this study, we combine a behavioral semantic network, functional MRI studies involving object’s related nouns and brain network studies to explain how different semantic tasks and different semantic relations between nouns can modulate the activity within the brain network of nouns and their features. We first describe how nouns and their features form a large scale brain network. For this end, we examine the connectivities between areas recruited during the processing of nouns to know which configurations of interaction areas are possible. We can thus identify if, for example, brain areas that store semantic knowledge communicate via functional/structural links with areas that store lexical representations. Second, we examine how this network is modulated by different semantic tasks involving nouns and finally, we examine how category specific activation may result from the semantic relations among nouns. The results indicate that brain network of nouns and their features is highly modulated and flexible by different semantic tasks and semantic relations. At the end, this study can be used as a guide to help neurosientifics to interpret the pattern of fMRI activations detected in the semantic processing of nouns. Specifically; this study can help to interpret the category specific activations observed extensively in a large number of neuroimaging studies and clinical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nouns" title="nouns">nouns</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=category%20specificity" title=" category specificity"> category specificity</a> </p> <a href="https://publications.waset.org/abstracts/18889/a-network-of-nouns-and-their-features-a-neurocomputational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9930</span> Semantic Data Schema Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%C3%AFcha%20Ben%20Salem">Aïcha Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Boufares"> Faouzi Boufares</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastiao%20Correia"> Sebastiao Correia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schema%20recognition" title="schema recognition">schema recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data%20profiling" title=" semantic data profiling"> semantic data profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-categorisation" title=" meta-categorisation"> meta-categorisation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20dependencies%20inter%20columns" title=" semantic dependencies inter columns"> semantic dependencies inter columns</a> </p> <a href="https://publications.waset.org/abstracts/34129/semantic-data-schema-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9929</span> Using Textual Pre-Processing and Text Mining to Create Semantic Links</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Avila">Ricardo Avila</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Lopes"> Gabriel Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vania%20Vidal"> Vania Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Macedo"> Jose Macedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&amp;P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20links" title="semantic links">semantic links</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=SKOS" title=" SKOS"> SKOS</a> </p> <a href="https://publications.waset.org/abstracts/103903/using-textual-pre-processing-and-text-mining-to-create-semantic-links" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9928</span> Hybrid Approximate Structural-Semantic Frequent Subgraph Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montaceur%20Zaghdoud">Montaceur Zaghdoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moussaoui"> Mohamed Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20graph%20matching" title="approximate graph matching">approximate graph matching</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20frequent%20subgraph%20mining" title=" hybrid frequent subgraph mining"> hybrid frequent subgraph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20mining" title=" graph mining"> graph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20theory" title=" possibility theory"> possibility theory</a> </p> <a href="https://publications.waset.org/abstracts/34195/hybrid-approximate-structural-semantic-frequent-subgraph-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9927</span> Network Word Discovery Framework Based on Sentence Semantic Vector Similarity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganfeng%20Yu">Ganfeng Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuefeng%20Ma"> Yuefeng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanliang%20Yang"> Shanliang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20information%20retrieval" title="text information retrieval">text information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20word%20discovery" title=" new word discovery"> new word discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a> </p> <a href="https://publications.waset.org/abstracts/153917/network-word-discovery-framework-based-on-sentence-semantic-vector-similarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9926</span> A Method of the Semantic on Image Auto-Annotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Huo">Lin Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianwei%20Liu"> Xianwei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingxiong%20Zhou"> Jingxiong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20auto-annotation" title="image auto-annotation">image auto-annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20correlograms" title=" color correlograms"> color correlograms</a>, <a href="https://publications.waset.org/abstracts/search?q=Hash%20code" title=" Hash code"> Hash code</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a> </p> <a href="https://publications.waset.org/abstracts/15628/a-method-of-the-semantic-on-image-auto-annotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9925</span> Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Faiza%20Ahmed">Fatima Faiza Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Farrukh%20Hussain"> Syed Farrukh Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptable%20e-learning" title="adaptable e-learning">adaptable e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=HTMLParser" title=" HTMLParser"> HTMLParser</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/77268/using-the-semantic-web-technologies-to-bring-adaptability-in-e-learning-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9924</span> The Influence of Noise on Aerial Image Semantic Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengchao%20Wei">Pengchao Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangzhong%20Fang"> Xiangzhong Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20noise" title=" feature noise"> feature noise</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20semantic%20segmentation" title=" image semantic segmentation"> image semantic segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest-neighbor" title=" k-nearest-neighbor"> k-nearest-neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title=" label noise"> label noise</a> </p> <a href="https://publications.waset.org/abstracts/141479/the-influence-of-noise-on-aerial-image-semantic-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9923</span> A Survey of Semantic Integration Approaches in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimaa%20Messaoudi">Chaimaa Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Fissoune"> Rachida Fissoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Badir"> Hassan Badir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20ontology" title="biological ontology">biological ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data%20integration" title=" semantic data integration"> semantic data integration</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/60697/a-survey-of-semantic-integration-approaches-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9922</span> Semantic Network Analysis of the Saudi Women Driving Decree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dania%20Aljouhi">Dania Aljouhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title="Saudi Arabia">Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20network%20analysis" title=" semantic network analysis"> semantic network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=framing" title=" framing "> framing </a> </p> <a href="https://publications.waset.org/abstracts/112269/semantic-network-analysis-of-the-saudi-women-driving-decree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9921</span> Semantics of the Word “Nas” in the Verse 24 of Surah Al-Baqarah Based on Izutsus’ Semantic Field Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Khadijeh.%20Mirbazel">Seyedeh Khadijeh. Mirbazel</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Arjmandi"> Masoumeh Arjmandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semantics is a linguistic approach and a scientific stream, and like all scientific streams, it is dynamic. The study of meaning is carried out in the broad semantic collections of words that form the discourse. In other words, meaning is not something that can be found in a word; rather, the formation of meaning is a process that takes place in a discourse as a whole. One of the contemporary semantic theories is Izutsu's Semantic Field Theory. According to this theory, the discovery of meaning depends on the function of words and takes place within the context of language. The purpose of this research is to identify the meaning of the word "Nas" in the discourse of verse 24 of Surah Al-Baqarah, which introduces "Nas" as the firewood of hell, but the translators have translated it as "people". The present research has investigated the semantic structure of the word "Nas" using the aforementioned theory through the descriptive-analytical method. In the process of investigation, by matching the semantic fields of the Quranic word "Nas", this research came to the conclusion that "Nas" implies those persons who have forgotten God and His covenant in believing in His Oneness. For this reason, God called them "Nas (the forgetful)" - the imperfect participle of the noun /næsiwoɔn/ in single trinity of Arabic language, which means “to forget”. Therefore, the intended meaning of "Nas" in the verses that have the word "Nas" is not equivalent to "People" which is a general noun. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nas" title="Nas">Nas</a>, <a href="https://publications.waset.org/abstracts/search?q=people" title=" people"> people</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20field%20theory." title=" semantic field theory."> semantic field theory.</a> </p> <a href="https://publications.waset.org/abstracts/174261/semantics-of-the-word-nas-in-the-verse-24-of-surah-al-baqarah-based-on-izutsus-semantic-field-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9920</span> Neural Correlates of Arabic Digits Naming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Ojedo">Fernando Ojedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Alvarez"> Alejandro Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Macizo"> Pedro Macizo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20digit%20naming" title="Arabic digit naming">Arabic digit naming</a>, <a href="https://publications.waset.org/abstracts/search?q=event-related%20potentials" title=" event-related potentials"> event-related potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20processing" title=" semantic processing"> semantic processing</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20production" title=" number production"> number production</a> </p> <a href="https://publications.waset.org/abstracts/59269/neural-correlates-of-arabic-digits-naming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9919</span> A Study on Bilingual Semantic Processing: Category Effects and Age Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lai%20Yi-Hsiu">Lai Yi-Hsiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study addressed the nature of bilingual semantic processing in Mandarin Chinese and Southern Min and examined category effects and age effects. Nineteen bilingual adults of Mandarin Chinese and Southern Min, nine monolingual seniors of Mandarin Chinese, and ten monolingual seniors of Southern Min in Taiwan individually completed two semantic tasks: Picture naming and category fluency tasks. The instruments for the naming task were sixty black-and-white pictures, including thirty-five object pictures and twenty-five action pictures. The category fluency task also consisted of two semantic categories &ndash; objects (or nouns) and actions (or verbs). The reaction time for each picture/question was additionally calculated and analyzed. Oral productions in Mandarin Chinese and in Southern Min were compared and discussed to examine the category effects and age effects. The results of the category fluency task indicated that the content of information of these seniors was comparatively deteriorated, and thus they produced a smaller number of semantic-lexical items. Significant group differences were also found in the reaction time results. Category effects were significant for both adults and seniors in the semantic fluency task. The findings of the present study will help characterize the nature of the bilingual semantic processing of adults and seniors, and contribute to the fields of contrastive and corpus linguistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingual%20semantic%20processing" title="bilingual semantic processing">bilingual semantic processing</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandarin%20Chinese" title=" Mandarin Chinese"> Mandarin Chinese</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Min" title=" Southern Min"> Southern Min</a> </p> <a href="https://publications.waset.org/abstracts/43219/a-study-on-bilingual-semantic-processing-category-effects-and-age-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9918</span> A Secure System for Handling Information from Heterogeous Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoohira%20Aftab">Shoohira Aftab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Afzal"> Hammad Afzal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20integration" title="information integration">information integration</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data" title=" semantic data"> semantic data</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20control%20system" title=" access control system"> access control system</a> </p> <a href="https://publications.waset.org/abstracts/15778/a-secure-system-for-handling-information-from-heterogeous-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9917</span> Discovering Semantic Links Between Synonyms, Hyponyms and Hypernyms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Avila">Ricardo Avila</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Lopes"> Gabriel Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vania%20Vidal"> Vania Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Macedo"> Jose Macedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This proposal aims for semantic enrichment between glossaries using the Simple Knowledge Organization System (SKOS) vocabulary to discover synonyms, hyponyms and hyperonyms semiautomatically, in Brazilian Portuguese, generating new semantic relationships based on WordNet. To evaluate the quality of this proposed model, experiments were performed by the use of two sets containing new relations, being one generated automatically and the other manually mapped by the domain expert. The applied evaluation metrics were precision, recall, f-score, and confidence interval. The results obtained demonstrate that the applied method in the field of Oil Production and Extraction (E&amp;P) is effective, which suggests that it can be used to improve the quality of terminological mappings. The procedure, although adding complexity in its elaboration, can be reproduced in others domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ontology%20matching" title="ontology matching">ontology matching</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20enrichment" title=" mapping enrichment"> mapping enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=SKOS" title=" SKOS"> SKOS</a> </p> <a href="https://publications.waset.org/abstracts/103911/discovering-semantic-links-between-synonyms-hyponyms-and-hypernyms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9916</span> Analysis of Expert Information in Linguistic Terms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Poleshchuk">O. Poleshchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Komarov"> E. Komarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expert%20evaluation" title="expert evaluation">expert evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20cluster%20analysis" title=" fuzzy cluster analysis"> fuzzy cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20and%20practical%20studies" title=" theoretical and practical studies"> theoretical and practical studies</a> </p> <a href="https://publications.waset.org/abstracts/18594/analysis-of-expert-information-in-linguistic-terms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9915</span> The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hassan%20Alshaikhi">Mohammed Hassan Alshaikhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=English%20language" title="English language">English language</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20vocabulary" title=" learning vocabulary"> learning vocabulary</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20teachers" title=" Saudi teachers"> Saudi teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20mapping" title=" semantic mapping"> semantic mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20vocabulary%20strategies" title=" teaching vocabulary strategies"> teaching vocabulary strategies</a> </p> <a href="https://publications.waset.org/abstracts/75154/the-use-of-semantic-mapping-technique-when-teaching-english-vocabulary-at-saudi-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=331">331</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=332">332</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=social%20semantic%20web&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10