CINXE.COM
Search results for: Rafał Rakoczy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Rafał Rakoczy</title> <meta name="description" content="Search results for: Rafał Rakoczy"> <meta name="keywords" content="Rafał Rakoczy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Rafał Rakoczy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Rafał Rakoczy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 23</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Rafał Rakoczy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Mass Transfer in Reactor with Magnetic Field Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20magnetic%20field" title=" oscillating magnetic field"> oscillating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title=" static magnetic field"> static magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/140936/mass-transfer-in-reactor-with-magnetic-field-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Intensification of Heat Transfer in Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=undetermined%20heat%20transfer" title=" undetermined heat transfer"> undetermined heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a> </p> <a href="https://publications.waset.org/abstracts/140931/intensification-of-heat-transfer-in-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20assisted%20reactor" title=" magnetically assisted reactor"> magnetically assisted reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20analysis" title=" dynamical analysis"> dynamical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20function" title=" transient function"> transient function</a> </p> <a href="https://publications.waset.org/abstracts/140933/dynamic-analysis-of-the-heat-transfer-in-the-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Influence of Magnetic Field on the Antibacterial Properties of Pine Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Markowska-Szczupak"> Agata Markowska-Szczupak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Weso%C5%82owska"> Aneta Wesołowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title="rotating magnetic field">rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20oil" title=" pine oil"> pine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/145025/influence-of-magnetic-field-on-the-antibacterial-properties-of-pine-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Family Resemblance in the Handwriting of Painters: Jacek and Rafał Malczewski’s Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Rybak-Karkosz">Olivia Rybak-Karkosz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the results of scientific research on family resemblance in the handwriting of painters. Such a problem is known in handwriting analysis, but it was never a research subject in the scope of painters' signatures on works of art. For this research, the author chose Jacek, and Rafał Malczewski (father and son) as many of their paintings are in museums, and most of them are signed. The aim was to create a catalogue of traits similar to the handwriting of both artists. Such data could be helpful for the expert’s opinion in the decision-making process to establish whether the signature is authentic and, if so, whether it is the artist whose signature is analysed, not the other family member. There are known examples of relatives of the artists who signed their works. Many of them were artists themselves. For instance Andrzej Wróblewski’s mother, Krystyna was a printmaker. To save his legacy, she signed many of her son’s works after his death using his name. This research methodology consisted of completing representative samples of signatures of both artists, which were collected in selected Polish museums. Then a catalogue of traits was created using a forensic handwriting graphic-comparative method (graphic method). The paper contains a concluding statement that it could be one of the elements of research in an expert’s analysis of the authenticity of the signature on paintings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artist%E2%80%99s%20signatures" title="artist’s signatures">artist’s signatures</a>, <a href="https://publications.waset.org/abstracts/search?q=authenticity%20of%20an%20artwork" title=" authenticity of an artwork"> authenticity of an artwork</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20handwriting%20analysis" title=" forensic handwriting analysis"> forensic handwriting analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic-comparative%20method" title=" graphic-comparative method"> graphic-comparative method</a> </p> <a href="https://publications.waset.org/abstracts/152838/the-family-resemblance-in-the-handwriting-of-painters-jacek-and-rafal-malczewskis-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Markowska-Szczupak"> Agata Markowska-Szczupak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Weso%C5%82owska"> Aneta Wesołowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title="rotating magnetic field">rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rosemary" title=" rosemary"> rosemary</a>, <a href="https://publications.waset.org/abstracts/search?q=thyme" title=" thyme"> thyme</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/145024/enhancing-of-antibacterial-activity-of-essential-oil-by-rotating-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Impact of Milk Transport on Its Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Malaga-Tobo%C5%82a">Urszula Malaga-Toboła</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Guga%C5%82a"> Marek Gugała</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kornas"> Rafał Kornas</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz"> Marek Gancarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20milk" title="fresh milk">fresh milk</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20quality" title=" milk quality"> milk quality</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy" title=" dairy"> dairy</a> </p> <a href="https://publications.waset.org/abstracts/181444/the-impact-of-milk-transport-on-its-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Rafa%C5%82">Krzysztof Rafał</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20Radziszewska"> Weronika Radziszewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Biedka"> Hubert Biedka</a>, <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Grabowski"> Oskar Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mik"> Krzysztof Mik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage" title=" hybrid energy storage"> hybrid energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-benefit%20analysis" title=" cost-benefit analysis"> cost-benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20sizing" title=" battery sizing"> battery sizing</a> </p> <a href="https://publications.waset.org/abstracts/141372/methodology-of-choosing-technology-and-sizing-of-the-hybrid-energy-storage-based-on-cost-benefit-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Searching for Novel Scaffolds of Triazole Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Fr%C4%85czek">Tomasz Frączek</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Paneth"> Agata Paneth</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kami%C5%84ski"> Rafał Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Krakowiak"> Agnieszka Krakowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Paneth"> Piotr Paneth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Azoles are a promising class of the new generation of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. To find novel extensions for this primary scaffold, we explored the 5-position substitution of triazole NNRTIs using molecular docking followed by synthesis of selected compounds. We discovered that heterocyclic substituents in 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with 4-membered thioglycolamide linker. This substitution seems to be viable only for compounds with a shorter 2-membered linker such as in derivatives of 4‐benzyl‐3‐(benzyl-sulfanyl)‐5‐(thiophen‐2‐yl)‐4H‐1,2,4‐triazole reported earlier. A new scaffold of 2‐[(4‐benzyl‐5‐methyl‐4H‐1,2,4‐triazol‐3‐yl)sulfanyl]‐N‐phenylacetamide has been identified in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=docking" title="docking">docking</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title=" drug design"> drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20scaffolds" title=" novel scaffolds"> novel scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/20177/searching-for-novel-scaffolds-of-triazole-non-nucleoside-inhibitors-of-hiv-1-reverse-transcriptase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Icephobic and Hydrophobic Behaviour of Laser Patterned Transparent Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bart%C5%82omiej%20Przybyszewski">Bartłomiej Przybyszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kozera"> Rafał Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Boczkowska"> Anna Boczkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Traczyk"> Maciej Traczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Kozera"> Paulina Kozera</a>, <a href="https://publications.waset.org/abstracts/search?q=Malwina%20Liszewska"> Malwina Liszewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Paku%C5%82a"> Daria Pakuła</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the work was to reduce or completely eliminate the accumulation of dirt, snow and ice build-up on transparent coatings by achieving self-cleaning and icephobic properties. The research involved the use of laser surface texturing technology for chemically modified coatings of the epoxy materials group and their hybrids used to protect glass surfaces. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. An attractive approach to the topic was the development of efficient and, most importantly, durable coatings with self-cleaning and ice-phobic properties that reduced or avoided dirt build-up and adhesion of water, snow and ice. With a view to the future industrial application of the developed technologies, all methods meet the requirements in terms of their practical use on a large scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=icephobic%20coatings" title="icephobic coatings">icephobic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20coatings" title=" hydrophobic coatings"> hydrophobic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20coatings" title=" transparent coatings"> transparent coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20patterning" title=" laser patterning"> laser patterning</a> </p> <a href="https://publications.waset.org/abstracts/151673/icephobic-and-hydrophobic-behaviour-of-laser-patterned-transparent-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Impact of Corn Grain Consolidation on the Emission of Volatile Organic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz">Marek Gancarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Gr%C4%85decka-Jakubowska"> Katarzyna Grądecka-Jakubowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Malaga-Tobo%C5%82a"> Urszula Malaga-Toboła</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kornas"> Rafał Kornas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20%C5%BBytek"> Aleksandra Żytek</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to determine the emission of volatile organic compounds (VOCs) from corn grain depending on the degree of consolidation of the bulk material, imitating the processes occurring in silos during material storage. An electronic nose and a gas chromatograph were used for VOC analysis. Corn grain was densified under pressure of 40 and 80 kPa. Control samples of corn grain were not compacted and had bulk density. The analyzes were carried out at 14% and 17% humidity (w.b. – wet basis). The measurement system enabled quantitative and qualitative analyzes of volatile compounds and their emission intensity during the 10-day storage period. The study determined the profile of volatile compounds as a function of storage time and grain density level. The test results showed that the highest emission of volatile compounds was recorded in the first four days of storage of corn grain. VOC emissions, as well as grain moisture and volume, can be helpful in determining the quality of material stored in silos and its subsequent suitability for consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a> </p> <a href="https://publications.waset.org/abstracts/181130/the-impact-of-corn-grain-consolidation-on-the-emission-of-volatile-organic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Selecting a Material for an Aircraft Diesel Engine Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska">Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin"> Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Sochaczewski"> Rafał Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting appropriate materials is presently a complex task as material databases cover tens of thousands of different types of materials. Product designing proceeds in numerous stages and in most of them there are open questions with not only one correct solution but better and worse ones. This paper overviews the Diesel engine body construction materials mentioned in the literature and discusses a certain practical method to select materials for a cylinder head and a Diesel engine block as a prototype. The engine body, depending on its purpose, is most frequently iron or aluminum. If it is important to optimize parts to achieve low weight, aluminum alloys are usually applied, especially in the automotive and aviation industries. In the latter case, weight is even more important so new types of magnesium alloys which are even lighter than aluminum ones are developed and used. However, magnesium alloys are, for example, more flammable and not enough strong so, for safety reasons, this type of material is not used solely in engine bodies. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder%20head" title=" cylinder head"> cylinder head</a>, <a href="https://publications.waset.org/abstracts/search?q=Diesel%20engine" title=" Diesel engine"> Diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20selection" title=" materials selection"> materials selection</a> </p> <a href="https://publications.waset.org/abstracts/81595/selecting-a-material-for-an-aircraft-diesel-engine-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Study on Carbon Nanostructures Influence on Changes in Static Friction Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Urbaniak">Rafał Urbaniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20K%C5%82osowiak"> Robert Kłosowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Cia%C5%82kowski"> Michał Ciałkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%20Bartoszewicz"> Jarosław Bartoszewicz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20friction" title=" static friction"> static friction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20friction" title=" dynamic friction"> dynamic friction</a> </p> <a href="https://publications.waset.org/abstracts/26601/study-on-carbon-nanostructures-influence-on-changes-in-static-friction-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%C2%A0Milewski">Jarosław Milewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%C2%A0Bernat"> Rafał Bernat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20separation" title="cryogenic separation">cryogenic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20carbonate%20fuel%20cells" title=" molten carbonate fuel cells"> molten carbonate fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/41874/cryogenic-separation-of-co2-from-molten-carbonate-fuel-cell-anode-outlet-experimental-guidelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Cosmopolitan Democracy and Justice: Analysis of the Supporters and Critics’ Argumentation of the World State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Wonicki">Rafał Wonicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We live in an increasingly unstable world - the 2008 Euro crisis, the 2011-2015 immigration crisis in the EU, the pandemic of COVID-19, China's rivalry with the US, and the war in Ukraine are just some of the phenomena that show that current model of international justice is more and more contested. One of the answers to these challenges - apart from the return to the multipolar world or the growth of populism (Zakaria, Mouffe, etc.) - is the idea of global egalitarianism in the form of cosmopolitan democracy. The work will analyze this project and present the legal and institutional dimensions of the idea of global egalitarianism, which will examine the relationship between the axiological assumptions of this approach and its outcome in the shape of international institutions. In order to examine the project, a historical outline will be presented, which will anchor the idea of cosmopolitan democracy in the background of earlier philosophical ideas about the world state. Next, thanks to this, it will be possible to see to what extent this model is consistent with the postulates of its creators (Archibugi, Held, and others) and to what extent it solves the problems that they diagnose in today's globalized world. At the same time, the inclusion of the model of cosmopolitan democracy in the latest discussion concerning the theoretical and practical advantages and disadvantages of the world state will reveal the axiology behind the idea of state sovereignty and give the audience the possibility to reflect how such philosophical concepts help to better understand contemporary times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmopolitan%20democracy" title="cosmopolitan democracy">cosmopolitan democracy</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20egalitarianism" title=" global egalitarianism"> global egalitarianism</a>, <a href="https://publications.waset.org/abstracts/search?q=held" title=" held"> held</a>, <a href="https://publications.waset.org/abstracts/search?q=Archibugi" title=" Archibugi"> Archibugi</a> </p> <a href="https://publications.waset.org/abstracts/155999/cosmopolitan-democracy-and-justice-analysis-of-the-supporters-and-critics-argumentation-of-the-world-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kami%C5%84ski">Rafał Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Rech"> Joel Rech</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bertrand"> Philippe Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Desrayaud"> Christophe Desrayaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/57947/selective-laser-melting-slm-process-and-its-influence-on-the-machinability-of-ta6v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Factors Contributing to a Career Choice Abroad Among Rwandan Students in Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faucal%20Marie%20Providence%20Idufashe">Faucal Marie Providence Idufashe</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Katamay"> Rafał Katamay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cases of foreign students who do not return to their home countries after their graduation have been reported. Over the past years, More and more young Rwandans choose to study in Poland, appreciating the high level of education in Polish universities. However, the majority of them tend to stay there after their studies or move to other nearby countries. Therefore, this study aims at identifying factors contributing to a career choice abroad among Rwandan students in Poland. Methods: This was a cross-sectional, observational, survey-based study and targeted the Rwandan community living in Poland. All the analyses were done in SPSS. A total of 219 respondents completed the online survey within two months from July to September 2022. Results: The prevalence of migration intention among Rwandan student in Poland was estimated at 79.91%. Only religion was statistically significant, whereas other social demographic factors such as age, residence, education, and marital status did not contribute to the decision of a career choice in Poland among respondents, Rwandans in Poland. Furthermore, perceived connection to co-workers, employment company's culture and respect were the significant socio-economic factors contributed to the decision of a career choice in Poland among those studied. The level of income did not contribute. Conclusion: A high proportion expressed migration intention in our study. These intentions were attracted by opportunities in Poland in addition to the welcoming culture. Going forward, we recommend exploring those factors using in-depth interviews for more insights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=career" title="career">career</a>, <a href="https://publications.waset.org/abstracts/search?q=choice" title=" choice"> choice</a>, <a href="https://publications.waset.org/abstracts/search?q=abroad" title=" abroad"> abroad</a>, <a href="https://publications.waset.org/abstracts/search?q=Poland" title=" Poland"> Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=Rwandan" title=" Rwandan"> Rwandan</a> </p> <a href="https://publications.waset.org/abstracts/169060/factors-contributing-to-a-career-choice-abroad-among-rwandan-students-in-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin">Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Sochaczewski"> Rafał Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=timing" title=" timing "> timing </a> </p> <a href="https://publications.waset.org/abstracts/50252/a-dual-spark-ignition-timing-influence-for-the-high-power-aircraft-radial-engine-using-a-cfd-transient-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kami%C5%84ski">Rafał Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Rech"> Joel Rech</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bertrand"> Philippe Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Desrayaud"> Christophe Desrayaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/59147/ta6v-selective-laser-melting-as-an-innovative-method-produce-complex-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Geometry of the Right Ventricular Outflow Tract - Clinical Significance in Electrocardiological Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Jakiel">Marcin Jakiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kurek"> Maria Kurek</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Gutkowska"> Karolina Gutkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Sanakiewicz"> Sylwia Sanakiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Stolarczyk"> Dominika Stolarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Batko"> Jakub Batko</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Jakiel"> Rafał Jakiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20K.%20Ho%C5%82da"> Mateusz K. Hołda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geometry of RVOT is extremely complicated. It is an irregular block with an ellipsoidal cross-section, whose dimensions decrease toward the pulmonary valve and measure 33.82 (IQR 30,51-39,36), 28.82 (IQR 26,11-32,22), 27.95 ± 4,11 for width [mm] and 33.41 ± 6,14, 26.99 ± 4,41, 26.91 ± 4,00 [mm] for depth, in the basal, middle and subpulmonary parts, respectively. In a sagittal section view, the RVOT heads upward and slightly backward. Its anterior perimeter has an average length of 41.96 mm and inclines to the transverse plane at an angle of 50.77° (IQR 46,53°-58,70°). In the posterior region, the RVOT is shorter (18.17mm) and flexes anteriorly. Therefore, the slope of the upper part of the rear wall to the transverse plane is an acute angle (open toward the rear) of 44,58° (IQR 37,30°-51,25°), while in the lower part it is an angle close to a right angle of 94,30°±15,44°. In addition, the thickness of the RVOT wall in the diastolic phase, at the posterior perimeter at the base, in the middle of the length and subpulmonary measure 3,80 mm ± 0,88 mm, 3,56 mm ± 0,73 mm, 3,56 mm ± 0,65 mm, respectively. In frontal cross-section, the RVOT rises on the interventricular septum, which makes it possible to distinguish the septal and supraseptal parts on its left periphery. The angles (facing the vertices to the right) of the inclination of these parts to the transverse plane are 75.5° (IQR 66,44°-81,11°) and 107.01° (IQR 99,09 – 115,23°), respectively, which allows us to conclude that the direction of the RVOT long axis changes from left to right. The above analysis shows that there is no single RVOT axis. Two axes can be distinguished, the one for the upper RVOT being more backward and leftward. The aforementioned forward deflection of the posterior wall and the RVOT's elevation over the interventricular septum, suggest that access to the subpulmonary region may be difficult. It should be emphasized that this area is often the target for ablation of ventricular arrhythmias. The small thickness of the RVOT posterior wall, with its difficult geometry, may favor its perforation into the pericardium or ascending aorta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle" title="angle">angle</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20access" title=" operation access"> operation access</a>, <a href="https://publications.waset.org/abstracts/search?q=position" title=" position"> position</a>, <a href="https://publications.waset.org/abstracts/search?q=RVOT" title=" RVOT"> RVOT</a>, <a href="https://publications.waset.org/abstracts/search?q=shape" title=" shape"> shape</a> </p> <a href="https://publications.waset.org/abstracts/154244/geometry-of-the-right-ventricular-outflow-tract-clinical-significance-in-electrocardiological-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Study on Control Techniques for Adaptive Impact Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rami%20Faraj">Rami Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Cezary%20Graczykowski"> Cezary Graczykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C5%82a%C5%BCej%20Pop%C5%82awski"> Błażej Popławski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Miku%C5%82owski"> Grzegorz Mikułowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Wiszowaty"> Rafał Wiszowaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20system" title=" adaptive system"> adaptive system</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20mitigation" title=" impact mitigation"> impact mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20system" title=" pneumatic system"> pneumatic system</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-absorber" title=" shock-absorber"> shock-absorber</a> </p> <a href="https://publications.waset.org/abstracts/159469/study-on-control-techniques-for-adaptive-impact-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Interventricular Septum as a Site for Implantation of Electrocardiac Devices - Clinical Implications of Topography and Variation in Position</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Jakiel">Marcin Jakiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kurek"> Maria Kurek</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Gutkowska"> Karolina Gutkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Sanakiewicz"> Sylwia Sanakiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Stolarczyk"> Dominika Stolarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Batko"> Jakub Batko</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Jakiel"> Rafał Jakiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20K.%20Ho%C5%82da"> Mateusz K. Hołda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper imaging of the interventricular septum during endocavital lead implantation is essential for successful procedure. The interventricular septum is located oblique to the 3 main body planes and forms angles of 44.56° ± 7.81°, 45.44° ± 7.81°, 62.49° (IQR 58.84° - 68.39°) with the sagittal, frontal and transverse planes, respectively. The optimal left anterior oblique (LAO) projection is to have the septum aligned along the radiation beam and will be obtained for an angle of 53.24° ± 9,08°, while the best visualization of the septal surface in the right anterior oblique (RAO) projection is obtained by using an angle of 45.44° ± 7.81°. In addition, the RAO angle (p=0.003) and the septal slope to the transverse plane (p=0.002) are larger in the male group, but the LAO angle (p=0.003) and the dihedral angle that the septum forms with the sagittal plane (p=0.003) are smaller, compared to the female group. Analyzing the optimal RAO angle in cross-sections lying at the level of the connections of the septum with the free wall of the right ventricle from the front and back, we obtain slightly smaller angle values, i.e. 41.11° ± 8.51° and 43.94° ± 7.22°, respectively. As the septum is directed leftward in the apical region, the optimal RAO angle for this area decreases (16.49° ± 7,07°) and does not show significant differences between the male and female groups (p=0.23). Within the right ventricular apex, there is a cavity formed by the apical segment of the interventricular septum and the free wall of the right ventricle with a depth of 12.35mm (IQR 11.07mm - 13.51mm). The length of the septum measured in longitudinal section, containing 4 heart cavities, is 73.03mm ± 8.06mm. With the left ventricular septal wall formed by the interventricular septum in the apical region at a length of 10.06mm (IQR 8.86 - 11.07mm) already lies outside the right ventricle. Both mentioned lengths are significantly larger in the male group (p<0.001). For proper imaging of the septum from the right ventricular side, an oblique position of the visualization devices is necessary. Correct determination of the RAO and LAO angle during the procedure allows to improve the procedure performed, and possible modification of the visual field when moving in the anterior, posterior and apical directions of the septum will avoid complications. Overlooking the change in the direction of the interventricular septum in the apical region and a significant decrease in the RAO angle can result in implantation of the lead into the free wall of the right ventricle with less effective pacing and even complications such as wall perforation and cardiac tamponade. The demonstrated gender differences can also be helpful in setting the right projections. A necessary addition to the analysis will be a description of the area of the ventricular septum, which we are currently working on using autopsy material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomical%20variability" title="anatomical variability">anatomical variability</a>, <a href="https://publications.waset.org/abstracts/search?q=angle" title=" angle"> angle</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiological%20procedure" title=" electrocardiological procedure"> electrocardiological procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=intervetricular%20septum" title=" intervetricular septum"> intervetricular septum</a> </p> <a href="https://publications.waset.org/abstracts/154227/the-interventricular-septum-as-a-site-for-implantation-of-electrocardiac-devices-clinical-implications-of-topography-and-variation-in-position" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Robotic Process Automation in Accounting and Finance Processes: An Impact Assessment of Benefits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Szmajser">Rafał Szmajser</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20%C5%9Awietla"> Katarzyna Świetla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Andrzejewski"> Mariusz Andrzejewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotic process automation (RPA) is a technology of repeatable business processes performed using computer programs, robots that simulate the work of a human being. This approach assumes replacing an existing employee with the use of dedicated software (software robots) to support activities, primarily repeated and uncomplicated, characterized by a low number of exceptions. RPA application is widespread in modern business services, particularly in the areas of Finance, Accounting and Human Resources Management. By utilizing this technology, the effectiveness of operations increases while reducing workload, minimizing possible errors in the process, and as a result, bringing measurable decrease in the cost of providing services. Regardless of how the use of modern information technology is assessed, there are also some doubts as to whether we should replace human activities in the implementation of the automation in business processes. After the initial awe for the new technological concept, a reflection arises: to what extent does the implementation of RPA increase the efficiency of operations or is there a Business Case for implementing it? If the business case is beneficial, in which business processes is the greatest potential for RPA? A closer look at these issues was provided by in this research during which the respondents’ view of the perceived advantages resulting from the use of robotization and automation in financial and accounting processes was verified. As a result of an online survey addressed to over 500 respondents from international companies, 162 complete answers were returned from the most important types of organizations in the modern business services industry, i.e. Business or IT Process Outsourcing (BPO/ITO), Shared Service Centers (SSC), Consulting/Advisory and their customers. Answers were provided by representatives of the positions in their organizations: Members of the Board, Directors, Managers and Experts/Specialists. The structure of the survey allowed the respondents to supplement the survey with additional comments and observations. The results formed the basis for the creation of a business case calculating tangible benefits associated with the implementation of automation in the selected financial processes. The results of the statistical analyses carried out with regard to revenue growth confirmed the correctness of the hypothesis that there is a correlation between job position and the perception of the impact of RPA implementation on individual benefits. Second hypothesis (H2) that: There is a relationship between the kind of company in the business services industry and the reception of the impact of RPA on individual benefits was thus not confirmed. Based results of survey authors performed simulation of business case for implementation of RPA in selected Finance and Accounting Processes. Calculated payback period was diametrically different ranging from 2 months for the Account Payables process with 75% savings and in the extreme case for the process Taxes implementation and maintenance costs exceed the savings resulting from the use of the robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=outsourcing" title=" outsourcing"> outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20process%20automation" title=" business process automation"> business process automation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20automation" title=" process automation"> process automation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20process%20automation" title=" robotic process automation"> robotic process automation</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA" title=" RPA"> RPA</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA%20business%20case" title=" RPA business case"> RPA business case</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA%20benefits" title=" RPA benefits"> RPA benefits</a> </p> <a href="https://publications.waset.org/abstracts/121242/robotic-process-automation-in-accounting-and-finance-processes-an-impact-assessment-of-benefits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>