CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 66 results for author: <span class="mathjax">Leung, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Leung%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Leung, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Leung%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Leung, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03201">arXiv:2407.03201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03201">pdf</a>, <a href="https://arxiv.org/format/2407.03201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44306-024-00035-2">10.1038/s44306-024-00035-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wideband Coherent Microwave Conversion via Magnon Nonlinearity in Hybrid Quantum System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jiahao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+M+Y">Man Yin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+W+K">Wai Kuen Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+K+O">Kin On Ho</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiangrong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03201v1-abstract-short" style="display: inline;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achiev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03201v1-abstract-full" style="display: none;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achieve a conversion bandwidth ranging from 0.1 to 12GHz, presenting an up to $\mathrm{25^{th}}$ order frequency conversion and further display the application of this method for frequency detection and qubits coherent control. Distinct from traditional frequency conversion techniques based on nonlinear electric response, our approach employs nonlinear magnetic response in spintronic devices. The nonlinearity, originating from the symmetry breaking such as domain walls in magnetic films, presents that our method can be adapted to hybrid systems of other spintronic devices and spin qubits, expanding the application scope of spintronic devices and providing a promising on-chip platform for coupling quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'none'; document.getElementById('2407.03201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Spintronics volume 2, Article number: 30 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12021">arXiv:2403.12021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12021">pdf</a>, <a href="https://arxiv.org/format/2403.12021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> A tweezer array with 6100 highly coherent atomic qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manetsch%2C+H+J">Hannah J. Manetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Nomura%2C+G">Gyohei Nomura</a>, <a href="/search/physics?searchtype=author&amp;query=Bataille%2C+E">Elie Bataille</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">Kon H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+X">Xudong Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Endres%2C+M">Manuel Endres</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12021v2-abstract-short" style="display: inline;"> Optical tweezer arrays have had a transformative impact on atomic and molecular physics over the past years, and they now form the backbone for a wide range of leading experiments in quantum computing, simulation, and metrology. Underlying this development is the simplicity of single particle control and detection inherent to the technique. Typical experiments trap tens to hundreds of atomic qubit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12021v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12021v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12021v2-abstract-full" style="display: none;"> Optical tweezer arrays have had a transformative impact on atomic and molecular physics over the past years, and they now form the backbone for a wide range of leading experiments in quantum computing, simulation, and metrology. Underlying this development is the simplicity of single particle control and detection inherent to the technique. Typical experiments trap tens to hundreds of atomic qubits, and very recently systems with around one thousand atoms were realized without defining qubits or demonstrating coherent control. However, scaling to thousands of atomic qubits with long coherence times and low-loss, high-fidelity imaging is an outstanding challenge and critical for progress in quantum computing, simulation, and metrology, in particular, towards applications with quantum error correction. Here, we experimentally realize an array of optical tweezers trapping over 6,100 neutral atoms in around 12,000 sites while simultaneously surpassing state-of-the-art performance for several key metrics associated with fundamental limitations of the platform. Specifically, while scaling to such a large number of atoms, we also demonstrate a coherence time of 12.6(1) seconds, a record for hyperfine qubits in an optical tweezer array. Further, we show trapping lifetimes close to 23 minutes in a room-temperature apparatus, enabling record-high imaging survival of 99.98952(1)% in combination with an imaging fidelity of over 99.99%. Our results, together with other recent developments, indicate that universal quantum computing with ten thousand atomic qubits could be a near-term prospect. Furthermore, our work could pave the way for quantum simulation and metrology experiments with inherent single particle readout and positioning capabilities at a similar scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12021v2-abstract-full').style.display = 'none'; document.getElementById('2403.12021v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">H.J.M., G.N., and E.B. contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02091">arXiv:2402.02091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02091">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yansong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhaoheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+E+K">Edwin K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Bayerlein%2C+R">Reimund Bayerlein</a>, <a href="/search/physics?searchtype=author&amp;query=Omidvari%2C+N">Negar Omidvari</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelhafez%2C+Y+G">Yasser G. Abdelhafez</a>, <a href="/search/physics?searchtype=author&amp;query=Cherry%2C+S+R">Simon R. Cherry</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+J">Jinyi Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Badawi%2C+R+D">Ramsey D. Badawi</a>, <a href="/search/physics?searchtype=author&amp;query=Spencer%2C+B+A">Benjamin A. Spencer</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guobao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02091v3-abstract-short" style="display: inline;"> X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the adde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02091v3-abstract-full').style.display = 'inline'; document.getElementById('2402.02091v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02091v3-abstract-full" style="display: none;"> X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02091v3-abstract-full').style.display = 'none'; document.getElementById('2402.02091v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00538">arXiv:2401.00538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00538">pdf</a>, <a href="https://arxiv.org/format/2401.00538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electric Charging Effects on Insulating Surfaces in Cryogenic Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Korsch%2C+W">Wolfgang Korsch</a>, <a href="/search/physics?searchtype=author&amp;query=Broering%2C+M">Mark Broering</a>, <a href="/search/physics?searchtype=author&amp;query=Timsina%2C+A">Ashok Timsina</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">Kent K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Abney%2C+J">Joshua Abney</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Filippone%2C+B+W">Bradley W. Filippone</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiachen He</a>, <a href="/search/physics?searchtype=author&amp;query=Kandu%2C+S">Suman Kandu</a>, <a href="/search/physics?searchtype=author&amp;query=McCrea%2C+M">Mark McCrea</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+M">Murchhana Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Swank%2C+C">Christopher Swank</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+W">Weijun Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00538v1-abstract-short" style="display: inline;"> This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00538v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00538v1-abstract-full" style="display: none;"> This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacrylate) (PMMA) surface was compared to a PMMA surface coated with a mixture of deuterated polystyrene and deuterated polybutadiene. Ion accumulation and removal on these surfaces were unambiguously observed. Within the precision of the data, both surfaces behave similarly for the physisorbed ions. The setup was also used to measure the (quasi-)static dielectric constant of PMMA at T = 70 K. The impact of the ion adsorption on the search for a neutron permanent electric dipole moment in a cryogenic environment, like the nEDM@SNS experiment, is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00538v1-abstract-full').style.display = 'none'; document.getElementById('2401.00538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05510">arXiv:2309.05510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05510">pdf</a>, <a href="https://arxiv.org/format/2309.05510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> The dotTHz Project: A Standard Data Format for Terahertz Time-Domain Data and Elementary Data Processing Tools </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Jongmin Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+C+K">Chi Ki Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+M">Mingrui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ward-Berry%2C+J">Jasper Ward-Berry</a>, <a href="/search/physics?searchtype=author&amp;query=Santitewagun%2C+S">Supawan Santitewagun</a>, <a href="/search/physics?searchtype=author&amp;query=Zeitler%2C+J+A">J. Axel Zeitler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05510v1-abstract-short" style="display: inline;"> From investigating molecular vibrations to observing galaxies, terahertz technology has found extensive applications in research and development over the past three decades. Terahertz time-domain spectroscopy and imaging have experienced significant growth and now dominate spectral observations ranging from 0.1 to 10 THz. However, the lack of standardised protocols for data processing, disseminati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05510v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05510v1-abstract-full" style="display: none;"> From investigating molecular vibrations to observing galaxies, terahertz technology has found extensive applications in research and development over the past three decades. Terahertz time-domain spectroscopy and imaging have experienced significant growth and now dominate spectral observations ranging from 0.1 to 10 THz. However, the lack of standardised protocols for data processing, dissemination, and archiving poses challenges in collaborating and sharing terahertz data between research groups. To tackle these challenges, we present the dotTHz project, which introduces a standardised terahertz data format and the associated open-source tools for processing and interpretation of dotTHz files. The dotTHz project aims to facilitate seamless data processing and analysis by providing a common framework. All software components are released under the MIT licence through GitHub repositories to encourage widespread adoption, modification, and collaboration. We invite the terahertz community to actively contribute to the dotTHz project, fostering the development of additional tools that encompass a greater breadth and depth of functionality. By working together, we can establish a comprehensive suite of resources that benefit the entire terahertz community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05510v1-abstract-full').style.display = 'none'; document.getElementById('2309.05510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06665">arXiv:2212.06665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1146/annurev-physchem-083022-030802">10.1146/annurev-physchem-083022-030802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adsorption at Nanoconfined Solid-Water Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ilgen%2C+A+G">Anastasia G. Ilgen</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Criscenti%2C+L+J">Louise J. Criscenti</a>, <a href="/search/physics?searchtype=author&amp;query=Greathouse%2C+J+A">Jeffery A. Greathouse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06665v1-abstract-short" style="display: inline;"> Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06665v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06665v1-abstract-full" style="display: none;"> Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores/cages (3-D confinement), channels (2-D confinement) and slits (1-D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. The implications of these findings and future research directions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06665v1-abstract-full').style.display = 'none'; document.getElementById('2212.06665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript accepted for publication Annu. Rev. Phys. Chem (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10864">arXiv:2209.10864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10864">pdf</a>, <a href="https://arxiv.org/format/2209.10864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011047">10.1103/PhysRevX.13.011047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A terahertz vibrational molecular clock with systematic uncertainty at the $10^{-14}$ level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Iritani%2C+B">B. Iritani</a>, <a href="/search/physics?searchtype=author&amp;query=Tiberi%2C+E">E. Tiberi</a>, <a href="/search/physics?searchtype=author&amp;query=Majewska%2C+I">I. Majewska</a>, <a href="/search/physics?searchtype=author&amp;query=Borkowski%2C+M">M. Borkowski</a>, <a href="/search/physics?searchtype=author&amp;query=Moszynski%2C+R">R. Moszynski</a>, <a href="/search/physics?searchtype=author&amp;query=Zelevinsky%2C+T">T. Zelevinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10864v4-abstract-short" style="display: inline;"> Neutral quantum absorbers in optical lattices have emerged as a leading platform for achieving clocks with exquisite spectroscopic resolution. However, the studies of these clocks and their systematic shifts have so far been limited to atoms. Here, we extend this architecture to an ensemble of diatomic molecules and experimentally realize an accurate lattice clock based on pure molecular vibration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10864v4-abstract-full').style.display = 'inline'; document.getElementById('2209.10864v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10864v4-abstract-full" style="display: none;"> Neutral quantum absorbers in optical lattices have emerged as a leading platform for achieving clocks with exquisite spectroscopic resolution. However, the studies of these clocks and their systematic shifts have so far been limited to atoms. Here, we extend this architecture to an ensemble of diatomic molecules and experimentally realize an accurate lattice clock based on pure molecular vibration. We evaluate the leading systematics, including the characterization of nonlinear trap-induced light shifts, achieving a total systematic uncertainty of $4.6\times10^{-14}$. The absolute frequency of the vibrational splitting is measured to be 31 825 183 207 592.8(5.1) Hz, enabling the dissociation energy of our molecule to be determined with record accuracy. Our results represent an important milestone in molecular spectroscopy and THz-frequency standards, and may be generalized to other neutral molecular species with applications for fundamental physics, including tests of molecular quantum electrodynamics and the search for new interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10864v4-abstract-full').style.display = 'none'; document.getElementById('2209.10864v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11723">arXiv:2205.11723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.11723">pdf</a>, <a href="https://arxiv.org/ps/2205.11723">ps</a>, <a href="https://arxiv.org/format/2205.11723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.1c10602">10.1021/acs.jpcc.1c10602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galvanic Corrosion and Electric Field in Lithium Anode Passivation Films: Effects on Self-Discharge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Merrill%2C+L+C">Laura C. Merrill</a>, <a href="/search/physics?searchtype=author&amp;query=Harrison%2C+K+L">Katharine L. Harrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11723v1-abstract-short" style="display: inline;"> Battery interfaces help govern rate capability, safety/stability, cycle life, and self-discharge, but significant gaps remain in our understanding at atomic length scales that can be exploited to improve interfacial properties. In particular, Li partially plated on copper current collectors, relevant to the anodeless, lithium metal cell which is a holy grail of high density energy battery research&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11723v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11723v1-abstract-full" style="display: none;"> Battery interfaces help govern rate capability, safety/stability, cycle life, and self-discharge, but significant gaps remain in our understanding at atomic length scales that can be exploited to improve interfacial properties. In particular, Li partially plated on copper current collectors, relevant to the anodeless, lithium metal cell which is a holy grail of high density energy battery research, has recently been reported to undergo galvanic corrosion and exhibit short shelf lives. We apply large scale Density Functional Theory (DFT) calculations and X-ray photoelectron spectroscopy to examine the reaction between the electrolyte and Li|Cu junctions coated with thin, uniform electrolyte interphase (SEI) passivating films at two applied voltages. These novel DFT galvanic corrosion simulations show that electrolyte degradation preferentially occurs on Li-plated regions and should lead to thicker SEI films. Our simulations reveal similarities but also fundamental differences between traditional metal localized pitting and Li-corrosion mechanisms. Furthermore, using the recently proposed, highly reactive lithium hydride (LiH) component SEI as example, we distinguish between electrochemical and chemical degradation pathways which are partially responsible for self-discharge, with the chemical pathway found to exhibit slow kinetics. We also predict that electric fields should in general exist across natural SEI components like LiH, and across artificial SEI films like LiI and LiAlO(2) often applied to improve battery cycling. Underlying and unifying these predictions is a framework of DFT voltage/overpotential definitions which we have derived from electrochemistry disciplines like structural metal corrosion studies; our analysis can only be made using the correct electronic voltage definitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11723v1-abstract-full').style.display = 'none'; document.getElementById('2205.11723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages. 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physical Chemistry C (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.12373">arXiv:2204.12373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.12373">pdf</a>, <a href="https://arxiv.org/format/2204.12373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.040101">10.1103/PhysRevA.105.040101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum control of molecules for fundamental physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mitra%2C+D">D. Mitra</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Zelevinsky%2C+T">T. Zelevinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.12373v1-abstract-short" style="display: inline;"> The extraordinary success in laser cooling, trapping, and coherent manipulation of atoms has energized the efforts in extending this exquisite control to molecules. Not only are molecules ubiquitous in nature, but the control of their quantum states offers unparalleled access to fundamental constants and possible physics beyond the Standard Model. Quantum state manipulation of molecules can enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12373v1-abstract-full').style.display = 'inline'; document.getElementById('2204.12373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.12373v1-abstract-full" style="display: none;"> The extraordinary success in laser cooling, trapping, and coherent manipulation of atoms has energized the efforts in extending this exquisite control to molecules. Not only are molecules ubiquitous in nature, but the control of their quantum states offers unparalleled access to fundamental constants and possible physics beyond the Standard Model. Quantum state manipulation of molecules can enable high-precision measurements including tests of fundamental symmetries and searches for new particles and fields. At the same time, their complex internal structure presents experimental challenges to overcome in order to gain sensitivity to new physics. In this Perspective, we review recent developments in this thriving new field. Moreover, throughout the text we discuss many current and future research directions that have the potential to place molecules at the forefront of fundamental science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12373v1-abstract-full').style.display = 'none'; document.getElementById('2204.12373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Perspective article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 040101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12863">arXiv:2112.12863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12863">pdf</a>, <a href="https://arxiv.org/ps/2112.12863">ps</a>, <a href="https://arxiv.org/format/2112.12863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/atoms10010011">10.3390/atoms10010011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-center basis generator method calculations for Li$^{3+}$, C$^{3+}$ and O$^{3+}$ ion impact on ground state hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+A+C+K">Anthony C. K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Kirchner%2C+T">Tom Kirchner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12863v2-abstract-short" style="display: inline;"> The two-center basis generator method is used to obtain cross sections for excitation, capture, and ionization in Li$^{3+}$, C$^{3+}$, and O$^{3+}$ collisions with ground-state hydrogen at projectile energies from 1 to 100 keV/u. The interaction of the C$^{3+}$ and O$^{3+}$ projectiles with the active electron is represented by a model potential. Comparisons of cross sections with previously repor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12863v2-abstract-full').style.display = 'inline'; document.getElementById('2112.12863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12863v2-abstract-full" style="display: none;"> The two-center basis generator method is used to obtain cross sections for excitation, capture, and ionization in Li$^{3+}$, C$^{3+}$, and O$^{3+}$ collisions with ground-state hydrogen at projectile energies from 1 to 100 keV/u. The interaction of the C$^{3+}$ and O$^{3+}$ projectiles with the active electron is represented by a model potential. Comparisons of cross sections with previously reported data show overall good agreement while discrepancies in capture for C$^{3+}$ collisions at low energies are noted. The present results show that excitation and ionization are similar across the three collision systems, which indicates that these cross sections are mostly dependent on the net charge of the projectile only. The situation is different for the capture channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12863v2-abstract-full').style.display = 'none'; document.getElementById('2112.12863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05996">arXiv:2108.05996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05996">pdf</a>, <a href="https://arxiv.org/format/2108.05996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac2dac">10.1088/1367-2630/ac2dac <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultracold $^{88}\rm{Sr}_2$ molecules in the absolute ground state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Tiberi%2C+E">E. Tiberi</a>, <a href="/search/physics?searchtype=author&amp;query=Iritani%2C+B">B. Iritani</a>, <a href="/search/physics?searchtype=author&amp;query=Majewska%2C+I">I. Majewska</a>, <a href="/search/physics?searchtype=author&amp;query=Moszynski%2C+R">R. Moszynski</a>, <a href="/search/physics?searchtype=author&amp;query=Zelevinsky%2C+T">T. Zelevinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05996v1-abstract-short" style="display: inline;"> We report efficient all-optical creation of an ultracold gas of alkaline-earth-metal dimers, $^{88}\rm{Sr}_2$, in their absolute ground state. Starting with weakly bound singlet molecules formed by narrow-line photoassociation in an optical lattice, followed by stimulated Raman adiabatic passage (STIRAP) via a singlet-dominant channel in the $(1)0_u^+$ excited potential, we prepare pure samples of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05996v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05996v1-abstract-full" style="display: none;"> We report efficient all-optical creation of an ultracold gas of alkaline-earth-metal dimers, $^{88}\rm{Sr}_2$, in their absolute ground state. Starting with weakly bound singlet molecules formed by narrow-line photoassociation in an optical lattice, followed by stimulated Raman adiabatic passage (STIRAP) via a singlet-dominant channel in the $(1)0_u^+$ excited potential, we prepare pure samples of more than 5500 molecules in $X^1危_g^+(v=0,J=0)$. We observe two-body collisional loss rates close to the universal limit for both the least bound and most bound vibrational states in $X^1危_g^+$. We demonstrate the enhancement of STIRAP efficiency in a magic-wavelength optical lattice where thermal decoherence is eliminated. Our results pave the way for the use of alkaline-earth-metal dimers for high-precision spectroscopy, and indicate favorable prospects for robust quantum state preparation of ultracold molecules involving closed-shell atoms, as well as molecule assembly in deep optical traps tuned to a magic wavelength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05996v1-abstract-full').style.display = 'none'; document.getElementById('2108.05996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01289">arXiv:2107.01289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.01289">pdf</a>, <a href="https://arxiv.org/ps/2107.01289">ps</a>, <a href="https://arxiv.org/format/2107.01289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.0c04676">10.1021/acs.chemmater.0c04676 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Edge-Propagation Discharge Mechanism in CFx Batteries -- a First Principles and Experimental Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Schorr%2C+N+B">Noah B. Schorr</a>, <a href="/search/physics?searchtype=author&amp;query=Mayer%2C+M">Matthew Mayer</a>, <a href="/search/physics?searchtype=author&amp;query=Lambert%2C+T+N">Timothy N. Lambert</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y+S">Y. Shirley Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Harrison%2C+K+L">K. L. Harrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01289v1-abstract-short" style="display: inline;"> Graphite fluoride (CFx) cathodes coupled with lithium anodes yield one of the highest theoretical energy densities (&gt;860 Wh/g) among primary batteries. In practice, the observed discharge voltage (~2.5 V) is significantly lower than thermodynamic limits (&gt;4.5 V), the discharge rate is low, and so far Li/CFx has only been used in primary batteries. Understanding the discharge mechanism at atomic le&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01289v1-abstract-full').style.display = 'inline'; document.getElementById('2107.01289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01289v1-abstract-full" style="display: none;"> Graphite fluoride (CFx) cathodes coupled with lithium anodes yield one of the highest theoretical energy densities (&gt;860 Wh/g) among primary batteries. In practice, the observed discharge voltage (~2.5 V) is significantly lower than thermodynamic limits (&gt;4.5 V), the discharge rate is low, and so far Li/CFx has only been used in primary batteries. Understanding the discharge mechanism at atomic length scales will improve practical CFx energy density, rate capability, and rechargeability. So far, purely experimental techniques have not identified the correct discharge mechanism or explained the discharge voltage. We apply Density Functional Theory calculations to demonstrate that a CFx-edge propagation discharge mechanism based on lithium insertion at the CF/C boundary in partially discharged CFx exhibits a voltage range of 2.5 to 2.9 V -- depending on whether solvent molecules are involved. The voltages and solvent dependence agrees with our discharge and galvanostatic intermittent titration technique measurements. The predicted discharge kinetics are consistent with CFx operations. Finally, we predict Li/CFx rechargeability under the application of high potentials, along a charging pathway different from that of discharge. Our work represents a general, quasi-kinetic framework to understand the discharge of conversion cathodes, circumventing the widely used phase diagram approach which most likely does not apply to Li/CFx because equilibrium conditions are not attained in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01289v1-abstract-full').style.display = 'none'; document.getElementById('2107.01289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials vol. 33, pp. 1760-1770 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01265">arXiv:2107.01265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.01265">pdf</a>, <a href="https://arxiv.org/ps/2107.01265">ps</a>, <a href="https://arxiv.org/format/2107.01265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1CP00031D">10.1039/D1CP00031D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of Physically Different Properties Leading to Challenges in Separating Lanthanide Cations -- an Ab Initio Molecular Dynamics and Experimental Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ilgen%2C+A+G">Anastasia G. Ilgen</a>, <a href="/search/physics?searchtype=author&amp;query=Criscenti%2C+L+J">Louise J. Criscenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01265v1-abstract-short" style="display: inline;"> The lanthanide elements have well-documented similarities in their chemical behavior, which makes the valuable trivalent lanthanide cations (Ln(III)) particularly difficult to separate from each other in water. In this work, we apply ab initio molecular dynamics simulations to compare the free energies (Delta G(ads)) associated with the adsorption of lanthanide cations to silica surfaces at a pH c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01265v1-abstract-full').style.display = 'inline'; document.getElementById('2107.01265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01265v1-abstract-full" style="display: none;"> The lanthanide elements have well-documented similarities in their chemical behavior, which makes the valuable trivalent lanthanide cations (Ln(III)) particularly difficult to separate from each other in water. In this work, we apply ab initio molecular dynamics simulations to compare the free energies (Delta G(ads)) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO- groups are present. The predicted Delta G(ads) for lutetium (Lu(III)) and europium (Eu(III)) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica. This finding is remarkable because the two cations exhibit hydration free energies (Delta G(hyd}) that differ by &gt;2 eV, different hydration numbers, and different hydrolysis behavior far from silica surfaces. We observe that the similarity in Lu(III) and Eu(III) Delta G(ads) is the result of a delicate cancellation between the difference in Eu(III) and Lu(III) hydration (Delta G(hyd})), and their difference in binding energies to silica. We propose that disrupting this cancellation at the two end points, either for adsorbed or completely desorbed lanthanides (e.g., via nanoconfinment or mixed solvents), will lead to effective Ln separation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01265v1-abstract-full').style.display = 'none'; document.getElementById('2107.01265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Chemistry Chemical Physics vol 23, pp. 5750-5759 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07610">arXiv:2106.07610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07610">pdf</a>, <a href="https://arxiv.org/format/2106.07610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pcbi.1009867">10.1371/journal.pcbi.1009867 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the repertoire of age-related behavioral changes in Drosophila melanogaster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Overman%2C+K+E">Katherine E. Overman</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D+M">Daniel M. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kawai Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Shaevitz%2C+J+W">Joshua W. Shaevitz</a>, <a href="/search/physics?searchtype=author&amp;query=Berman%2C+G+J">Gordon J. Berman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07610v2-abstract-short" style="display: inline;"> Aging affects almost all aspects of an organism -- its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the full repertoire of an animal&#39;s behavior across the lifespan. Using data from fruit flies (D. melanogaster) we measure the full repertoire of behaviors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07610v2-abstract-full').style.display = 'inline'; document.getElementById('2106.07610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07610v2-abstract-full" style="display: none;"> Aging affects almost all aspects of an organism -- its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the full repertoire of an animal&#39;s behavior across the lifespan. Using data from fruit flies (D. melanogaster) we measure the full repertoire of behaviors as a function of age. We observe a sexually dimorphic pattern of changes in the behavioral repertoire during aging. Although the stereotypy of the behaviors and the complexity of the repertoire overall remains relatively unchanged, we find evidence that the observed alterations in behavior can be explained by changing the fly&#39;s overall energy budget, suggesting potential connections between metabolism, aging, and behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07610v2-abstract-full').style.display = 'none'; document.getElementById('2106.07610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15386">arXiv:2006.15386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15386">pdf</a>, <a href="https://arxiv.org/format/2006.15386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abe84b">10.1088/1674-1137/abe84b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dalager%2C+O">O. Dalager</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dohnal%2C+T">T. Dohnal</a>, <a href="/search/physics?searchtype=author&amp;query=Dove%2C+J">J. Dove</a>, <a href="/search/physics?searchtype=author&amp;query=Dvorak%2C+M">M. Dvorak</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15386v4-abstract-short" style="display: inline;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'inline'; document.getElementById('2006.15386v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15386v4-abstract-full" style="display: none;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'none'; document.getElementById('2006.15386v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12400">arXiv:2005.12400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.12400">pdf</a>, <a href="https://arxiv.org/format/2005.12400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.153001">10.1103/PhysRevLett.125.153001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition strength measurements to guide magic wavelength selection in optically trapped molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Majewska%2C+I">I. Majewska</a>, <a href="/search/physics?searchtype=author&amp;query=Bekker%2C+H">H. Bekker</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+C+-">C. -H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Tiberi%2C+E">E. Tiberi</a>, <a href="/search/physics?searchtype=author&amp;query=Kondov%2C+S+S">S. S. Kondov</a>, <a href="/search/physics?searchtype=author&amp;query=Moszynski%2C+R">R. Moszynski</a>, <a href="/search/physics?searchtype=author&amp;query=Zelevinsky%2C+T">T. Zelevinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12400v1-abstract-short" style="display: inline;"> Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound $^{88}$Sr$_2$ molecules, combin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12400v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12400v1-abstract-full" style="display: none;"> Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound $^{88}$Sr$_2$ molecules, combined with \textit{ab initio} calculations, allow for unambiguous identification of vibrational quantum numbers. This, in turn, enables the construction of refined excited potential energy curves that inform the selection of magic wavelengths which facilitate long vibrational coherence. We demonstrate Rabi oscillations between far-separated vibrational states that persist for nearly 100 ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12400v1-abstract-full').style.display = 'none'; document.getElementById('2005.12400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 153001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03443">arXiv:2003.03443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03443">pdf</a>, <a href="https://arxiv.org/ps/2003.03443">ps</a>, <a href="https://arxiv.org/format/2003.03443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5131447">10.1063/1.5131447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anodic Decomposition of Surface Films on High Voltage Spinel Surfaces -- Density Function Theory and Experimental Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Rosy"> Rosy</a>, <a href="/search/physics?searchtype=author&amp;query=Noked%2C+M">Malachi Noked</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03443v1-abstract-short" style="display: inline;"> Oxidative decomposition of organic-solvent-based liquid electrolytes at cathode material interfaces has been identified as a main reason for rapid capacity fade in high-voltage lithium ion batteries. The evolution of &#34;cathode electrolyte interphase: (CEI) films, partly or completely consisting of electrolyte decomposition products, has also recently been demonstrated to be correlated with battery&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03443v1-abstract-full').style.display = 'inline'; document.getElementById('2003.03443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03443v1-abstract-full" style="display: none;"> Oxidative decomposition of organic-solvent-based liquid electrolytes at cathode material interfaces has been identified as a main reason for rapid capacity fade in high-voltage lithium ion batteries. The evolution of &#34;cathode electrolyte interphase: (CEI) films, partly or completely consisting of electrolyte decomposition products, has also recently been demonstrated to be correlated with battery cycling behavior at high potentials. Using Density Functional Theory (DFT) calculations, the hybrid PBE0 functional, and the (001) surfaces of spinel oxides as models, we examine these two interrelated processes. Consistent with previous calculations, ethylene carbonate (EC) solvent molecules are predicted to be readily oxidized on the Li(x)Mn(2)O(4) (001) surface at modest operational voltages, forming adsorbed organic fragments. Further oxidative decompostion of such CEI fragments to release CO2 gas is however predicted to require higher voltages consistent with Li(x)Ni(0.5)Mn(1.5)O(4) (LNMO) at smaller x values. We argue that multi-step reactions, involving first formation of CEI films and then further oxidization of CEI at higher potentials, are most relevant to capacity fade. Mechanisms associated with dissolution or oxidation of native Li2CO3 films, which is removed before the electrolyte is in contact with oxide surfaces, are also explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03443v1-abstract-full').style.display = 'none'; document.getElementById('2003.03443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Chemical Physics volume 151, article 234713 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07969">arXiv:2002.07969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.07969">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6560/ab8535">10.1088/1361-6560/ab8535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Physics-Guided Modular Deep-Learning Based Automated Framework for Tumor Segmentation in PET Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">Kevin H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Marashdeh%2C+W">Wael Marashdeh</a>, <a href="/search/physics?searchtype=author&amp;query=Wray%2C+R">Rick Wray</a>, <a href="/search/physics?searchtype=author&amp;query=Ashrafinia%2C+S">Saeed Ashrafinia</a>, <a href="/search/physics?searchtype=author&amp;query=Pomper%2C+M+G">Martin G. Pomper</a>, <a href="/search/physics?searchtype=author&amp;query=Rahmim%2C+A">Arman Rahmim</a>, <a href="/search/physics?searchtype=author&amp;query=Jha%2C+A+K">Abhinav K. Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07969v1-abstract-short" style="display: inline;"> The objective of this study was to develop a PET tumor-segmentation framework that addresses the challenges of limited spatial resolution, high image noise, and lack of clinical training data with ground-truth tumor boundaries in PET imaging. We propose a three-module PET-segmentation framework in the context of segmenting primary tumors in 3D FDG-PET images of patients with lung cancer on a per-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07969v1-abstract-full').style.display = 'inline'; document.getElementById('2002.07969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07969v1-abstract-full" style="display: none;"> The objective of this study was to develop a PET tumor-segmentation framework that addresses the challenges of limited spatial resolution, high image noise, and lack of clinical training data with ground-truth tumor boundaries in PET imaging. We propose a three-module PET-segmentation framework in the context of segmenting primary tumors in 3D FDG-PET images of patients with lung cancer on a per-slice basis. The first module generates PET images containing highly realistic tumors with known ground-truth using a new stochastic and physics-based approach, addressing lack of training data. The second module trains a modified U-net using these images, helping it learn the tumor-segmentation task. The third module fine-tunes this network using a small-sized clinical dataset with radiologist-defined delineations as surrogate ground-truth, helping the framework learn features potentially missed in simulated tumors. The framework&#39;s accuracy, generalizability to different scanners, sensitivity to partial volume effects (PVEs) and efficacy in reducing the number of training images were quantitatively evaluated using Dice similarity coefficient (DSC) and several other metrics. The framework yielded reliable performance in both simulated (DSC: 0.87 (95% CI: 0.86, 0.88)) and patient images (DSC: 0.73 (95% CI: 0.71, 0.76)), outperformed several widely used semi-automated approaches, accurately segmented relatively small tumors (smallest segmented cross-section was 1.83 cm2), generalized across five PET scanners (DSC: 0.74), was relatively unaffected by PVEs, and required low training data (training with data from even 30 patients yielded DSC of 0.70). In conclusion, the proposed framework demonstrated the ability for reliable automated tumor delineation in FDG-PET images of patients with lung cancer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07969v1-abstract-full').style.display = 'none'; document.getElementById('2002.07969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09937">arXiv:1908.09937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.09937">pdf</a>, <a href="https://arxiv.org/format/1908.09937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/11/P11017">10.1088/1748-0221/14/11/P11017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Cryogenic Apparatus to Search for the Neutron Electric Dipole Moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+M+W">M. W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alarcon%2C+R">R. Alarcon</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrova%2C+A">A. Aleksandrova</a>, <a href="/search/physics?searchtype=author&amp;query=Baessler%2C+S">S. Baessler</a>, <a href="/search/physics?searchtype=author&amp;query=Barron-Palos%2C+L">L. Barron-Palos</a>, <a href="/search/physics?searchtype=author&amp;query=Bartoszek%2C+L+M">L. M. Bartoszek</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D+H">D. H. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Behzadipour%2C+M">M. Behzadipour</a>, <a href="/search/physics?searchtype=author&amp;query=Berkutov%2C+I">I. Berkutov</a>, <a href="/search/physics?searchtype=author&amp;query=Bessuille%2C+J">J. Bessuille</a>, <a href="/search/physics?searchtype=author&amp;query=Blatnik%2C+M">M. Blatnik</a>, <a href="/search/physics?searchtype=author&amp;query=Broering%2C+M">M. Broering</a>, <a href="/search/physics?searchtype=author&amp;query=Broussard%2C+L+J">L. J. Broussard</a>, <a href="/search/physics?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Cianciolo%2C+V">V. Cianciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Clayton%2C+S+M">S. M. Clayton</a>, <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+M+D">M. D. Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Crawford%2C+C">C. Crawford</a>, <a href="/search/physics?searchtype=author&amp;query=Currie%2C+S+A">S. A. Currie</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+C">C. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=Dipert%2C+R">R. Dipert</a>, <a href="/search/physics?searchtype=author&amp;query=Dow%2C+K">K. Dow</a>, <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+D">D. Dutta</a>, <a href="/search/physics?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09937v3-abstract-short" style="display: inline;"> A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). It uses superfluid $^4$He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09937v3-abstract-full').style.display = 'inline'; document.getElementById('1908.09937v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09937v3-abstract-full" style="display: none;"> A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). It uses superfluid $^4$He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized $^3$He from an Atomic Beam Source injected into the superfluid $^4$He and transported to the measurement cells as a co-magnetometer. The superfluid $^4$He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of $2-3\times 10^{-28}$ e-cm, with anticipated systematic uncertainties below this level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09937v3-abstract-full').style.display = 'none'; document.getElementById('1908.09937v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Vol 14, P11017, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08234">arXiv:1907.08234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08234">pdf</a>, <a href="https://arxiv.org/ps/1907.08234">ps</a>, <a href="https://arxiv.org/format/1907.08234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2019-100380-x">10.1140/epjd/e2019-100380-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton impact on ground and excited states of atomic hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+A+C+K">Anthony C. K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Kirchner%2C+T">Tom Kirchner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08234v2-abstract-short" style="display: inline;"> The processes of electron excitation, capture, and ionization were investigated in proton collisions with atomic hydrogen in the initial $n=1$ and $n=2$ states at impact energies from 1 to 300 keV. The theoretical analysis is based on the close-coupling two-center basis generator method in the semiclassical approximation. Calculated cross sections are compared with previous results which include d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08234v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08234v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08234v2-abstract-full" style="display: none;"> The processes of electron excitation, capture, and ionization were investigated in proton collisions with atomic hydrogen in the initial $n=1$ and $n=2$ states at impact energies from 1 to 300 keV. The theoretical analysis is based on the close-coupling two-center basis generator method in the semiclassical approximation. Calculated cross sections are compared with previous results which include data obtained from classical-trajectory Monte Carlo, convergent close-coupling, and other two-center atomic orbital expansion approaches. There is an overall good agreement in the capture and excitation cross sections while there are some discrepancies in the ionization results at certain impact energies. These discrepancies in the present results can be partially understood through the use of a $1/n^{3}$ scaling model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08234v2-abstract-full').style.display = 'none'; document.getElementById('1907.08234v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Eur. Phys. J. D. Final Accepted Version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D (2019) 73: 246 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.09459">arXiv:1905.09459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.09459">pdf</a>, <a href="https://arxiv.org/format/1905.09459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5109879">10.1063/1.5109879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A next-generation inverse-geometry spallation-driven ultracold neutron source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Muhrer%2C+G">G. Muhrer</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCgle%2C+T">T. H眉gle</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+T+M">T. M. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Lutz%2C+E+M">E. M. Lutz</a>, <a href="/search/physics?searchtype=author&amp;query=Makela%2C+M">M. Makela</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+C+L">C. L. Morris</a>, <a href="/search/physics?searchtype=author&amp;query=Pattie%2C%2C+R+W">R. W. Pattie, Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Saunders%2C+A">A. Saunders</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+A+R">A. R. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.09459v2-abstract-short" style="display: inline;"> The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09459v2-abstract-full').style.display = 'inline'; document.getElementById('1905.09459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.09459v2-abstract-full" style="display: none;"> The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel &#34;Inverse Geometry&#34; design is used with 40 L of superfluid $^4$He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to $\sim$1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach $P_{UCN}=2.1\times10^9\,/$s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in $P_{UCN}$ due to pressurization to reach $P_{UCN}=1.8\times10^9\,/$s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of $R_{use}=5\times10^8\,/$s from a 18 cm diameter guide 5 m from the source. Under a conservative &#34;no return&#34; approximation, this rate can produce an extracted density of $&gt;1\times10^4\,/$cm$^3$ in $&lt;$1000~L external experimental volumes with a $^{58}$Ni (335 neV) cut-off potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09459v2-abstract-full').style.display = 'none'; document.getElementById('1905.09459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Applied Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07812">arXiv:1904.07812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07812">pdf</a>, <a href="https://arxiv.org/format/1904.07812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.111801">10.1103/PhysRevLett.123.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of the $^{235}$U and $^{239}$Pu Antineutrino Spectra at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07812v3-abstract-short" style="display: inline;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'inline'; document.getElementById('1904.07812v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07812v3-abstract-full" style="display: none;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U and $^{239}$Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4--6~MeV, a 7\% (9\%) excess of events is observed for the $^{235}$U ($^{239}$Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is $4.0蟽$ for $^{235}$U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at $5.3蟽$. In the energy range of 4--6~MeV, a maximal local discrepancy of $6.3蟽$ is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'none'; document.getElementById('1904.07812v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated title</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 111801 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04891">arXiv:1904.04891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.04891">pdf</a>, <a href="https://arxiv.org/format/1904.04891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0632-3">10.1038/s41567-019-0632-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular lattice clock with long vibrational coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kondov%2C+S+S">S. S. Kondov</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+C+-">C. -H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+H">K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Liedl%2C+C">C. Liedl</a>, <a href="/search/physics?searchtype=author&amp;query=Majewska%2C+I">I. Majewska</a>, <a href="/search/physics?searchtype=author&amp;query=Moszynski%2C+R">R. Moszynski</a>, <a href="/search/physics?searchtype=author&amp;query=Zelevinsky%2C+T">T. Zelevinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04891v1-abstract-short" style="display: inline;"> Atomic lattice clocks have spurred numerous ideas for tests of fundamental physics, detection of general relativistic effects, and studies of interacting many-body systems. On the other hand, molecular structure and dynamics offer rich energy scales that are at the heart of new protocols in precision measurement and quantum information science. Here we demonstrate a fundamentally distinct type of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04891v1-abstract-full').style.display = 'inline'; document.getElementById('1904.04891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04891v1-abstract-full" style="display: none;"> Atomic lattice clocks have spurred numerous ideas for tests of fundamental physics, detection of general relativistic effects, and studies of interacting many-body systems. On the other hand, molecular structure and dynamics offer rich energy scales that are at the heart of new protocols in precision measurement and quantum information science. Here we demonstrate a fundamentally distinct type of lattice clock that is based on vibrations in diatomic molecules, and present coherent Rabi oscillations between weakly and deeply bound molecules that persist for 10&#39;s of milliseconds. This control is made possible by a state-insensitive magic lattice trap that weakly couples to molecular vibronic resonances and enhances the coherence time between molecules and light by several orders of magnitude. The achieved quality factor $Q=8\times10^{11}$ results from 30-Hz narrow resonances for a 25-THz clock transition in Sr$_2$. Our technique of extended coherent manipulation is applicable to long-term storage of quantum information in qubits based on ultracold polar molecules, while the vibrational clock enables precise probes of interatomic forces, tests of Newtonian gravitation at ultrashort range, and model-independent searches for electron-to-proton mass ratio variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04891v1-abstract-full').style.display = 'none'; document.getElementById('1904.04891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 15, 1118 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02700">arXiv:1903.02700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.02700">pdf</a>, <a href="https://arxiv.org/format/1903.02700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201921902005">10.1051/epjconf/201921902005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The neutron electric dipole moment experiment at the Spallation Neutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+M">M. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alarcon%2C+R">R. Alarcon</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksandrova%2C+A">A. Aleksandrova</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%C3%9Fler%2C+S">S. Bae脽ler</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%C3%B3n-Palos%2C+L">L. Barr贸n-Palos</a>, <a href="/search/physics?searchtype=author&amp;query=Bartoszek%2C+L">L. Bartoszek</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D+H">D. H. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Behzadipour%2C+M">M. Behzadipour</a>, <a href="/search/physics?searchtype=author&amp;query=Bessuille%2C+J">J. Bessuille</a>, <a href="/search/physics?searchtype=author&amp;query=Blatnik%2C+M+A">M. A. Blatnik</a>, <a href="/search/physics?searchtype=author&amp;query=Broering%2C+M">M. Broering</a>, <a href="/search/physics?searchtype=author&amp;query=Broussard%2C+L+J">L. J. Broussard</a>, <a href="/search/physics?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cianciolo%2C+V">V. Cianciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Clayton%2C+S+M">S. M. Clayton</a>, <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+M+D">M. D. Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Crawford%2C+C">C. Crawford</a>, <a href="/search/physics?searchtype=author&amp;query=Currie%2C+S+A">S. A. Currie</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+C">C. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=Dipert%2C+R">R. Dipert</a>, <a href="/search/physics?searchtype=author&amp;query=Dow%2C+K">K. Dow</a>, <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+D">D. Dutta</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02700v3-abstract-short" style="display: inline;"> Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub &amp; Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02700v3-abstract-full').style.display = 'inline'; document.getElementById('1903.02700v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02700v3-abstract-full" style="display: none;"> Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub &amp; Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarized $^3$He, and superfluid $^4$He will be exploited to provide a sensitivity to $\sim 10^{-28}\,e{\rm \,\cdot\, cm}$. Our cryogenic apparatus will deploy two small ($3\,{\rm L}$) measurement cells with a high density of ultracold neutrons produced and spin analyzed in situ. The electric field strength, precession time, magnetic shielding, and detected UCN number will all be enhanced compared to previous room temperature Ramsey measurements. Our $^3$He co-magnetometer offers unique control of systematic effects, in particular the Bloch-Siegert induced false EDM. Furthermore, there will be two distinct measurement modes: free precession and dressed spin. This will provide an important self-check of our results. Following five years of &#34;critical component demonstration,&#34; our collaboration transitioned to a &#34;large scale integration&#34; phase in 2018. An overview of our measurement techniques, experimental design, and brief updates are described in these proceedings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02700v3-abstract-full').style.display = 'none'; document.getElementById('1903.02700v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to proceedings of PPNS 2018 - International Workshop on Particle physics at Neutron Sources (https://www.webofconferences.org/epj-web-of-conferences-forthcoming-conferences/1148-ppns-2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08241">arXiv:1902.08241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08241">pdf</a>, <a href="https://arxiv.org/format/1902.08241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A high precision calibration of the nonlinear energy response at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08241v2-abstract-short" style="display: inline;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'inline'; document.getElementById('1902.08241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08241v2-abstract-full" style="display: none;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occurring radioactive sources, the $尾$ spectrum from $^{12}$B decays, and a direct measurement of the electronics nonlinearity with a new flash analog-to-digital converter readout system. Less than 0.5% uncertainty in the energy nonlinearity calibration is achieved for positrons of kinetic energies greater than 1 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'none'; document.getElementById('1902.08241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 22 figures, 4 tables. Final version to be published in NIM-A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00099">arXiv:1811.00099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00099">pdf</a>, <a href="https://arxiv.org/ps/1811.00099">ps</a>, <a href="https://arxiv.org/format/1811.00099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.8b02173">10.1021/acs.jpclett.8b02173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Concerted Metal Cation Desorption and Proton Transfer on Deprotonated Silica Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Criscenti%2C+L+J">Louise J. Criscenti</a>, <a href="/search/physics?searchtype=author&amp;query=Knight%2C+A+W">Andrew W. Knight</a>, <a href="/search/physics?searchtype=author&amp;query=Ilgen%2C+A+G">Anastasia G. Ilgen</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+T+A">Tuan A. Ho</a>, <a href="/search/physics?searchtype=author&amp;query=Greathouse%2C+J+A">Jeffery A. Greathouse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00099v1-abstract-short" style="display: inline;"> The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption/desorption is often proposed to occur in concert with proton-transfer on hydroxyl-covered mineral surfaces, but so far this cooperative effect has been inferred indirectly. This work applies Density Fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00099v1-abstract-full').style.display = 'inline'; document.getElementById('1811.00099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00099v1-abstract-full" style="display: none;"> The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption/desorption is often proposed to occur in concert with proton-transfer on hydroxyl-covered mineral surfaces, but so far this cooperative effect has been inferred indirectly. This work applies Density Functional Theory (DFT)-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na(+), Mg(2+), and Cu(2+) on partially deprotonated silica surfaces are considered. Na(+) is predicted to be unbound, while Cu(2+) exhibits larger binding free energies to surface SiO(-) groups than Mg(2+). The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu(2+) dissociates one of the H2O molecules in its first solvation shell, turning into Cu(2+)O(-)(H2O)(3), while Mg remains Mg(2+)(H2O)(6). The protonation state of the SiO(-) group at the initial binding site does not vary monotonically with cation desorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00099v1-abstract-full').style.display = 'none'; document.getElementById('1811.00099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physical Chemistry Letters 9(18), 5379-5385 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02261">arXiv:1809.02261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02261">pdf</a>, <a href="https://arxiv.org/format/1809.02261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.241805">10.1103/PhysRevLett.121.241805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02261v5-abstract-short" style="display: inline;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'inline'; document.getElementById('1809.02261v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02261v5-abstract-full" style="display: none;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $\overline谓_{e}$ rates and energy spectra among detectors yields $\sin^{2}2胃_{13} = 0.0856\pm 0.0029$ and $螖m^2_{32}=(2.471^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the normal hierarchy, and $螖m^2_{32}=-(2.575^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the inverted hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'none'; document.getElementById('1809.02261v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, and 1 table. v4: the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 241805 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10836">arXiv:1808.10836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10836">pdf</a>, <a href="https://arxiv.org/format/1808.10836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052004">10.1103/PhysRevD.100.052004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurement of the Reactor Antineutrino Flux at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10836v1-abstract-short" style="display: inline;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new avera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10836v1-abstract-full" style="display: none;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be $(5.91\pm0.09)\times10^{-43}~\rm{cm}^2/\rm{fission}$ with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes $^{235}$U, $^{238}$U, $^{239}$Pu, and $^{241}$Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be $0.952\pm0.014\pm0.023$ ($1.001\pm0.015\pm0.027$) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'none'; document.getElementById('1808.10836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052004 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08616">arXiv:1804.08616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.08616">pdf</a>, <a href="https://arxiv.org/format/1804.08616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2018-12594-2">10.1140/epja/i2018-12594-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solid deuterium surface degradation at ultracold neutron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Anghel%2C+A">A. Anghel</a>, <a href="/search/physics?searchtype=author&amp;query=Bailey%2C+T+L">T. L. Bailey</a>, <a href="/search/physics?searchtype=author&amp;query=Bison%2C+G">G. Bison</a>, <a href="/search/physics?searchtype=author&amp;query=Blau%2C+B">B. Blau</a>, <a href="/search/physics?searchtype=author&amp;query=Broussard%2C+L+J">L. J. Broussard</a>, <a href="/search/physics?searchtype=author&amp;query=Clayton%2C+S+M">S. M. Clayton</a>, <a href="/search/physics?searchtype=author&amp;query=Cude-Woods%2C+C">C. Cude-Woods</a>, <a href="/search/physics?searchtype=author&amp;query=Daum%2C+M">M. Daum</a>, <a href="/search/physics?searchtype=author&amp;query=Hawari%2C+A">A. Hawari</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+N">N. Hild</a>, <a href="/search/physics?searchtype=author&amp;query=Huffman%2C+P">P. Huffman</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+T+M">T. M. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Kirch%2C+K">K. Kirch</a>, <a href="/search/physics?searchtype=author&amp;query=Korobkina%2C+E">E. Korobkina</a>, <a href="/search/physics?searchtype=author&amp;query=Lauss%2C+B">B. Lauss</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Lutz%2C+E+M">E. M. Lutz</a>, <a href="/search/physics?searchtype=author&amp;query=Makela%2C+M">M. Makela</a>, <a href="/search/physics?searchtype=author&amp;query=Medlin%2C+G">G. Medlin</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+C+L">C. L. Morris</a>, <a href="/search/physics?searchtype=author&amp;query=Pattie%2C+R+W">R. W. Pattie</a>, <a href="/search/physics?searchtype=author&amp;query=Ries%2C+D">D. Ries</a>, <a href="/search/physics?searchtype=author&amp;query=Saunders%2C+A">A. Saunders</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt-Wellenburg%2C+P">P. Schmidt-Wellenburg</a>, <a href="/search/physics?searchtype=author&amp;query=Talanov%2C+V">V. Talanov</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08616v2-abstract-short" style="display: inline;"> Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08616v2-abstract-full').style.display = 'inline'; document.getElementById('1804.08616v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08616v2-abstract-full" style="display: none;"> Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning&#39;) of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08616v2-abstract-full').style.display = 'none'; document.getElementById('1804.08616v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 22 figures, accepted by EPJ-A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.03723">arXiv:1803.03723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.03723">pdf</a>, <a href="https://arxiv.org/format/1803.03723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.04.020">10.1016/j.nima.2018.04.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design, construction, and characterization of a compact DD neutron generator designed for 40Ar/39Ar geochronology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ayllon%2C+M">Mauricio Ayllon</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+P+A">Parker A. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+J+D">Joseph D. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+T+A">Tim A. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+S">Su-Ann Chong</a>, <a href="/search/physics?searchtype=author&amp;query=James%2C+J">Jay James</a>, <a href="/search/physics?searchtype=author&amp;query=Kirsch%2C+L+E">Leo E. Kirsch</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Ka-Ngo Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Matthews%2C+E+F">Eric F. Matthews</a>, <a href="/search/physics?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/physics?searchtype=author&amp;query=Renne%2C+P+R">Paul R. Renne</a>, <a href="/search/physics?searchtype=author&amp;query=Rogers%2C+A+M">Andrew M. Rogers</a>, <a href="/search/physics?searchtype=author&amp;query=Rutte%2C+D">Daniel Rutte</a>, <a href="/search/physics?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Bibber%2C+K">Karl Van Bibber</a>, <a href="/search/physics?searchtype=author&amp;query=Waltz%2C+C+S">Cory S. Waltz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.03723v2-abstract-short" style="display: inline;"> A next-generation, high-flux DD neutron generator has been designed, commissioned, and characterized, and is now operational in a new facility at the University of California Berkeley. The generator, originally designed for 40Ar/39Ar dating of geological materials, has since served numerous additional applications, including medical isotope production studies, with others planned for the near futu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03723v2-abstract-full').style.display = 'inline'; document.getElementById('1803.03723v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.03723v2-abstract-full" style="display: none;"> A next-generation, high-flux DD neutron generator has been designed, commissioned, and characterized, and is now operational in a new facility at the University of California Berkeley. The generator, originally designed for 40Ar/39Ar dating of geological materials, has since served numerous additional applications, including medical isotope production studies, with others planned for the near future. In this work, we present an overview of the High Flux Neutron Generator (HFNG) which includes a variety of simulations, analytical models, and experimental validation of results. Extensive analysis was performed in order to characterize the neutron yield, flux, and energy distribution at specific locations where samples may be loaded for irradiation. A notable design feature of the HFNG is the possibility for sample irradiation internal to the cathode, just 8 mm away from the neutron production site, thus maximizing the neutron flux (n/cm2/s). The generator&#39;s maximum neutron flux at this irradiation position is 2.58e7 n/cm2/s +/- 5% (approximately 3e8 n/s total yield) as measured via activation of small natural indium foils. However, future development is aimed at achieving an order of magnitude increase in flux. Additionally, the deuterium ion beam optics were optimized by simulations for various extraction configurations in order to achieve a uniform neutron flux distribution and an acceptable heat load. Finally, experiments were performed in order to benchmark the modeling and characterization of the HFNG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03723v2-abstract-full').style.display = 'none'; document.getElementById('1803.03723v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00588">arXiv:1711.00588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00588">pdf</a>, <a href="https://arxiv.org/format/1711.00588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.052009">10.1103/PhysRevD.97.052009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic neutron production at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00588v2-abstract-short" style="display: inline;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintilla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'inline'; document.getElementById('1711.00588v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00588v2-abstract-full" style="display: none;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintillator is measured to be $Y_n=(10.26\pm 0.86)\times 10^{-5}$, $(10.22\pm 0.87)\times 10^{-5}$, and $(17.03\pm 1.22)\times 10^{-5}~渭^{-1}~$g$^{-1}~$cm$^2$ at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of $0.77 \pm 0.03$ for the dependence of the neutron yield on muon energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'none'; document.getElementById('1711.00588v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 052009 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.00035">arXiv:1710.00035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.00035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+J">Jian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+W">Kwok Wa Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.00035v1-abstract-short" style="display: inline;"> Twisted electromagnetic waves, of which the helical phase front is called orbital angular momentum (OAM), have been recently explored for quantum information, high speed communication and radar detections. In this context, generation of high purity waves carrying OAM is of great significance and challenge from low frequency band to optical area. Here, a novel strategy of mode combination method is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00035v1-abstract-full').style.display = 'inline'; document.getElementById('1710.00035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.00035v1-abstract-full" style="display: none;"> Twisted electromagnetic waves, of which the helical phase front is called orbital angular momentum (OAM), have been recently explored for quantum information, high speed communication and radar detections. In this context, generation of high purity waves carrying OAM is of great significance and challenge from low frequency band to optical area. Here, a novel strategy of mode combination method is proposed to generate twisted waves with arbitrary order of OAM index. The higher order mode of a circular horn antenna is used to generate the twisted waves with quite high purity. The proposed strategy is verified with theoretical analysis, numerical simulation and experiments. A circular horn antenna operating at millimeter wave band is designed, fabricated, and measured. Two twisted waves with OAM index of l=+1 and l=-1 with a mode purity as high as 87% are obtained. Compared with the other OAM antennas, the antenna proposed here owns a high antenna gain (over 12 dBi) and wide operating bandwidth (over 15%). The high mode purity, high antenna gain and wide operating band make the antenna suitable for the twisted-wave applications, not only in the microwave and millimeter wave band, but also in the terahertz band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00035v1-abstract-full').style.display = 'none'; document.getElementById('1710.00035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01082">arXiv:1704.01082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01082">pdf</a>, <a href="https://arxiv.org/format/1704.01082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.251801">10.1103/PhysRevLett.118.251801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01082v2-abstract-short" style="display: inline;"> The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW$_{\textrm{th}}$ reactor cores at the Daya Bay and Ling Ao nuclear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01082v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01082v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01082v2-abstract-full" style="display: none;"> The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW$_{\textrm{th}}$ reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective $^{239}$Pu fission fractions, $F_{239}$, from 0.25 to 0.35, Daya Bay measures an average IBD yield, $\bar蟽_f$, of $(5.90 \pm 0.13) \times 10^{-43}$ cm$^2$/fission and a fuel-dependent variation in the IBD yield, $d蟽_f/dF_{239}$, of $(-1.86 \pm 0.18) \times 10^{-43}$ cm$^2$/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the $^{239}$Pu fission fraction at 10 standard deviations. The variation in IBD yield was found to be energy-dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1$蟽$. This discrepancy indicates that an overall deficit in measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes $^{235}$U, $^{239}$Pu, $^{238}$U, and $^{241}$Pu. Based on measured IBD yield variations, yields of $(6.17 \pm 0.17)$ and $(4.27 \pm 0.26) \times 10^{-43}$ cm$^2$/fission have been determined for the two dominant fission parent isotopes $^{235}$U and $^{239}$Pu. A 7.8% discrepancy between the observed and predicted $^{235}$U yield suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01082v2-abstract-full').style.display = 'none'; document.getElementById('1704.01082v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 251801 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.01749">arXiv:1701.01749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.01749">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Confocal micro-Raman Spectra of untreated and lethally treated Escherichia coli exposed to UV-B and violet light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Keeler%2C+W">Werden Keeler</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kam Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.01749v1-abstract-short" style="display: inline;"> We report on changes in the Raman spectrum of live Escherichi coli (E.coli) that result from exposure to lethal fluences of 300 nm (UV-B) and 405 nm (violet) photons. In the first instance, the energy per photon of 4.13 eV is sufficient to break most of the inter-atomic bonds in the bacterium and major change in the Raman spectrum, particularly in the RNA/DNA regions is observed. This energy is in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01749v1-abstract-full').style.display = 'inline'; document.getElementById('1701.01749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.01749v1-abstract-full" style="display: none;"> We report on changes in the Raman spectrum of live Escherichi coli (E.coli) that result from exposure to lethal fluences of 300 nm (UV-B) and 405 nm (violet) photons. In the first instance, the energy per photon of 4.13 eV is sufficient to break most of the inter-atomic bonds in the bacterium and major change in the Raman spectrum, particularly in the RNA/DNA regions is observed. This energy is in near resonance with the C-H, N-H, and P-O bond binding energies that interconnect phosphate backbone sections and may initiate the Raman modifications. By contrast, the 3.06 eV violet photon energy is insufficient to cleave the stronger system bonds. The much larger lethal fluence required in this case produces a significant change in the resonant C-N and C-P bond connected amino acid/protein groups and lipid peak signal but much less so in the nucleotide-DNA/RNA signature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01749v1-abstract-full').style.display = 'none'; document.getElementById('1701.01749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00300">arXiv:1701.00300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.00300">pdf</a>, <a href="https://arxiv.org/format/1701.00300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Beam-induced Back-streaming Electron Suppression Analysis for Accelerator Type Neutron Generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Waltz%2C+C">Cory Waltz</a>, <a href="/search/physics?searchtype=author&amp;query=Ayllon%2C+M">Mauricio Ayllon</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+T">Tim Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+L">Lee Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Ka-Ngo Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Kirsch%2C+L">Leo Kirsch</a>, <a href="/search/physics?searchtype=author&amp;query=Renne%2C+P">Paul Renne</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Bibber%2C+K">Karl Van Bibber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00300v1-abstract-short" style="display: inline;"> A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator design produces near monoenergetic 2.45 MeV neutrons at outputs of 10^8 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 10^10 n/s. A sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00300v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00300v1-abstract-full" style="display: none;"> A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator design produces near monoenergetic 2.45 MeV neutrons at outputs of 10^8 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 10^10 n/s. A significant problem encountered was beam-induced electron backstreaming, that needed to be resolved to achieve meaningful beam currents. Two methods of suppressing secondary electrons resulting from the deuterium beam striking the target were tested: the application of static electric and magnetic fields. Computational simulations of both techniques were done using a finite element analysis in COMSOL Multiphysics. Experimental tests verified these simulation results. The most reliable suppression was achieved via the implementation of an electrostatic shroud with a voltage offset of -800 V relative to the target. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00300v1-abstract-full').style.display = 'none'; document.getElementById('1701.00300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.05037">arXiv:1611.05037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.05037">pdf</a>, <a href="https://arxiv.org/ps/1611.05037">ps</a>, <a href="https://arxiv.org/format/1611.05037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.95.035502">10.1103/PhysRevC.95.035502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin flip loss in magnetic confinement of ultracold neutrons for neutron lifetime experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Steyerl%2C+A">A. Steyerl</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Kaufman%2C+C">C. Kaufman</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%BCller%2C+G">G. M眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Malik%2C+S+S">S. S. Malik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.05037v1-abstract-short" style="display: inline;"> We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\textit{et al.}$ [Phys.Rev.C $\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05037v1-abstract-full').style.display = 'inline'; document.getElementById('1611.05037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.05037v1-abstract-full" style="display: none;"> We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\textit{et al.}$ [Phys.Rev.C $\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN$蟿$ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.05037v1-abstract-full').style.display = 'none'; document.getElementById('1611.05037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 95, 035502 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.04015">arXiv:1611.04015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.04015">pdf</a>, <a href="https://arxiv.org/format/1611.04015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/11/P11005">10.1088/1748-0221/11/11/P11005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a Bonner Sphere Neutron Spectrometer from a Commercial Neutron Dosimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Fung%2C+K+Y">K. Y. Fung</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+T">T. Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+J+K+C">J. K. C. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y+C">Y. C. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luk%2C+K+B">K. B. Luk</a>, <a href="/search/physics?searchtype=author&amp;query=Ngai%2C+H+Y">H. Y. Ngai</a>, <a href="/search/physics?searchtype=author&amp;query=Pun%2C+C+S+J">C. S. J. Pun</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+L+H">H. L. H. Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.04015v1-abstract-short" style="display: inline;"> Bonner Spheres have been used widely for the measurement of neutron spectra with neutron energies ranged from thermal up to at least 20 MeV. A Bonner Sphere neutron spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate meter. The BSS consists of a $^{3}$He thermal-neutron detector with integrated electronics, a set of eight polyethylene spherical shells and two optiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04015v1-abstract-full').style.display = 'inline'; document.getElementById('1611.04015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.04015v1-abstract-full" style="display: none;"> Bonner Spheres have been used widely for the measurement of neutron spectra with neutron energies ranged from thermal up to at least 20 MeV. A Bonner Sphere neutron spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate meter. The BSS consists of a $^{3}$He thermal-neutron detector with integrated electronics, a set of eight polyethylene spherical shells and two optional lead shells of various sizes. The response matrix of the BSS was calculated with GEANT4 Monte Carlo simulation. The BSS had a calibration uncertainty of $\pm 8.6\%$ and a detector background rate of $(1.57 \pm 0.04) \times 10^{-3}$ s$^{-1}$. A spectral unfolding code NSUGA was developed. The NSUGA code utilizes genetic algorithms and has been shown to perform well in the absence of a priori information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04015v1-abstract-full').style.display = 'none'; document.getElementById('1611.04015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Instrum. 11 (2016) P11005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04802">arXiv:1610.04802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04802">pdf</a>, <a href="https://arxiv.org/format/1610.04802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.072006">10.1103/PhysRevD.95.072006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+-">J. -H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a> , et al. (198 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04802v1-abstract-short" style="display: inline;"> A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline谓_{e}$&#39;s. Comparison of the $\overline谓_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04802v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04802v1-abstract-full" style="display: none;"> A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline谓_{e}$&#39;s. Comparison of the $\overline谓_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors ($\sim$1500-1950 m) relative to detectors near the reactors ($\sim$350-600 m) allowed a precise measurement of $\overline谓_{e}$ disappearance. More than 2.5 million $\overline谓_{e}$ inverse beta decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (Dec. 2011--Jul. 2012) with a subsequent 1013 days using the complete configuration of eight detectors (Oct. 2012--Jul. 2015). The $\overline谓_{e}$ rate observed at the far detectors relative to the near detectors showed a significant deficit, $R=0.949 \pm 0.002(\mathrm{stat.}) \pm 0.002(\mathrm{syst.})$. The energy dependence of $\overline谓_{e}$ disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle $\sin^22胃_{13}=0.0841 \pm 0.0027(\mathrm{stat.}) \pm 0.0019(\mathrm{syst.})$ and the effective neutrino mass-squared difference of $\left|螖m^2_{\mathrm{ee}}\right|=(2.50 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$. Analysis using the exact three-flavor probability found $螖m^2_{32}=(2.45 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ assuming the normal neutrino mass hierarchy and $螖m^2_{32}=(-2.56 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ for the inverted hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04802v1-abstract-full').style.display = 'none'; document.getElementById('1610.04802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 44 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 072006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00929">arXiv:1606.00929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00929">pdf</a>, <a href="https://arxiv.org/format/1606.00929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.94.045502">10.1103/PhysRevC.94.045502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Geltenbort%2C+P">P. Geltenbort</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+S">S. Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenau%2C+F">F. Rosenau</a>, <a href="/search/physics?searchtype=author&amp;query=Zimmer%2C+O">O. Zimmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00929v1-abstract-short" style="display: inline;"> Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00929v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00929v1-abstract-full" style="display: none;"> Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 \pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 \pm 32)$ s and $(835 \pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $蟿_{\rm n} = (887 \pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time constants of the UCN population during cleaning were observed and compared to calculations based on UCN kinetic theory as well as Monte-Carlo studies. These calculations are used to predict above-threshold populations of $\sim 5\%$, $\sim 0.5\%$ and $\sim 10^{-12}\%$ remaining after cleaning in the no remover, 80~cm remover and 65~cm remover measurements. Thus, by using a non-specular reflector covering the entire bottom of the trap and a remover at the top of the trap, we have established an effective cleaning procedure for removing a major systematic effect in high-precision $蟿_{\rm n}$ experiments with magnetically stored UCNs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00929v1-abstract-full').style.display = 'none'; document.getElementById('1606.00929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.08292">arXiv:1604.08292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.08292">pdf</a>, <a href="https://arxiv.org/format/1604.08292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.05.058">10.1016/j.nima.2016.05.058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wanchun Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Broussard%2C+L+J">L. J. Broussard</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffbauer%2C+M+A">M. A. Hoffbauer</a>, <a href="/search/physics?searchtype=author&amp;query=Makela%2C+M">M. Makela</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+C+L">C. L. Morris</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Z">Z. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Adamek%2C+E+R">E. R. Adamek</a>, <a href="/search/physics?searchtype=author&amp;query=Callahan%2C+N+B">N. B. Callahan</a>, <a href="/search/physics?searchtype=author&amp;query=Clayton%2C+S+M">S. M. Clayton</a>, <a href="/search/physics?searchtype=author&amp;query=Cude-Woods%2C+C">C. Cude-Woods</a>, <a href="/search/physics?searchtype=author&amp;query=Currie%2C+S">S. Currie</a>, <a href="/search/physics?searchtype=author&amp;query=Dees%2C+E+B">E. B. Dees</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+X">X. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Geltenbort%2C+P">P. Geltenbort</a>, <a href="/search/physics?searchtype=author&amp;query=Hickerson%2C+K+P">K. P. Hickerson</a>, <a href="/search/physics?searchtype=author&amp;query=Holley%2C+A+T">A. T. Holley</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+T+M">T. M. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K">K. K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C+-">C. -Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Morley%2C+D+J">D. J. Morley</a>, <a href="/search/physics?searchtype=author&amp;query=Ortiz%2C+J+D">Jose D. Ortiz</a>, <a href="/search/physics?searchtype=author&amp;query=Pattie%2C%2C+R+W">R. W. Pattie, Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsey%2C+J+C">J. C. Ramsey</a>, <a href="/search/physics?searchtype=author&amp;query=Saunders%2C+A">A. Saunders</a>, <a href="/search/physics?searchtype=author&amp;query=Seestrom%2C+S+J">S. J. Seestrom</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.08292v2-abstract-short" style="display: inline;"> Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 $渭$m has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation $未E = m_0g 未x$. Here, the symbols $未E$, $未x$, $m_0$ and $g$ are the energy resolution, the spatial resolution, the neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08292v2-abstract-full').style.display = 'inline'; document.getElementById('1604.08292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.08292v2-abstract-full" style="display: none;"> Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 $渭$m has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation $未E = m_0g 未x$. Here, the symbols $未E$, $未x$, $m_0$ and $g$ are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08292v2-abstract-full').style.display = 'none'; document.getElementById('1604.08292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 figures, 28 pages, accepted for publication in NIMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Los Alamos National Lab Report LA-UR-16-22875 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A, vol. 830, 36-43 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03549">arXiv:1603.03549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03549">pdf</a>, <a href="https://arxiv.org/format/1603.03549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.072011">10.1103/PhysRevD.93.072011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New measurement of $胃_{13}$ via neutron capture on hydrogen at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+H">J. H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+-">J. -H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a> , et al. (203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03549v2-abstract-short" style="display: inline;"> This article reports an improved independent measurement of neutrino mixing angle $胃_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $尾$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detecto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03549v2-abstract-full').style.display = 'inline'; document.getElementById('1603.03549v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03549v2-abstract-full" style="display: none;"> This article reports an improved independent measurement of neutrino mixing angle $胃_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $尾$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced $^9$Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded $\sin^22胃_{13} = 0.071 \pm 0.011$ in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03549v2-abstract-full').style.display = 'none'; document.getElementById('1603.03549v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 072011 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04885">arXiv:1601.04885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04885">pdf</a>, <a href="https://arxiv.org/ps/1601.04885">ps</a>, <a href="https://arxiv.org/format/1601.04885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2015.11.093">10.1016/j.nima.2015.11.093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Kwan%2C+K+K">K. K. Kwan</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+M+W">M. W. Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+T">T. Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+J+K+C">J. K. C. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+Y">K. Y. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y+C">Y. C. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Luk%2C+K+B">K. B. Luk</a>, <a href="/search/physics?searchtype=author&amp;query=Pun%2C+C+S+J">C. S. J. Pun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04885v1-abstract-short" style="display: inline;"> We developed a highly sensitive, reliable and portable automatic system (H$^{3}$) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H$^{3}$ is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25$^{\circ}$C) with radon concentration as low as 50 Bq/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04885v1-abstract-full').style.display = 'inline'; document.getElementById('1601.04885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04885v1-abstract-full" style="display: none;"> We developed a highly sensitive, reliable and portable automatic system (H$^{3}$) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H$^{3}$ is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25$^{\circ}$C) with radon concentration as low as 50 Bq/m$^{3}$. This is achieved by using a large radon progeny collection chamber, semiconductor $伪$-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04885v1-abstract-full').style.display = 'none'; document.getElementById('1601.04885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A (2016), pp. 156-164 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.02978">arXiv:1510.02978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.02978">pdf</a>, <a href="https://arxiv.org/format/1510.02978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.indag.2016.04.003">10.1016/j.indag.2016.04.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Diver with a Rotor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bharadwaj%2C+S">Sudarsh Bharadwaj</a>, <a href="/search/physics?searchtype=author&amp;query=Duignan%2C+N">Nathan Duignan</a>, <a href="/search/physics?searchtype=author&amp;query=Dullin%2C+H+R">Holger R. Dullin</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Karen Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+W">William Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.02978v1-abstract-short" style="display: inline;"> We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on&#39; and with `&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02978v1-abstract-full').style.display = 'inline'; document.getElementById('1510.02978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.02978v1-abstract-full" style="display: none;"> We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on&#39; and with `rotor off&#39; the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02978v1-abstract-full').style.display = 'none'; document.getElementById('1510.02978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 70E55; 70E15; 74A99; 93B99; 53Z05 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Indagationes Mathematicae, 27:1147-1161, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.09038">arXiv:1509.09038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.09038">pdf</a>, <a href="https://arxiv.org/format/1509.09038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.072005">10.1103/PhysRevD.93.072005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S+C">S. C. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X+C">X. C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+K+X">K. X. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+R+L">R. L. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+T+H">T. H. Ho</a>, <a href="/search/physics?searchtype=author&amp;query=Hor%2C+Y+K">Y. K. Hor</a>, <a href="/search/physics?searchtype=author&amp;query=Hsiung%2C+Y+B">Y. B. Hsiung</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+B+Z">B. Z. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Kwan%2C+K+K">K. K. Kwan</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+M+W">M. W. Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+T">T. Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Lau%2C+Y+P">Y. P. Lau</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+K+P">K. P. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+J+K+C">J. K. C. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+Y">K. Y. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+G+L">G. L. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y+C">Y. C. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Luk%2C+K+B">K. B. Luk</a>, <a href="/search/physics?searchtype=author&amp;query=Luk%2C+W+H">W. H. Luk</a>, <a href="/search/physics?searchtype=author&amp;query=Ngai%2C+H+Y">H. Y. Ngai</a>, <a href="/search/physics?searchtype=author&amp;query=Ngai%2C+W+K">W. K. Ngai</a>, <a href="/search/physics?searchtype=author&amp;query=Ngan%2C+S+Y">S. Y. Ngan</a>, <a href="/search/physics?searchtype=author&amp;query=Pun%2C+C+S+J">C. S. J. Pun</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.09038v4-abstract-short" style="display: inline;"> We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09038v4-abstract-full').style.display = 'inline'; document.getElementById('1509.09038v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.09038v4-abstract-full" style="display: none;"> We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be $I_渭 = (5.7 \pm 0.6) \times 10^{-6}$ cm$^{-2}$s$^{-1}$sr$^{-1}$. The yield of muon-induced neutrons in the liquid scintillator was determined to be $Y_{n} = (1.19 \pm 0.08 (stat) \pm 0.21 (syst)) \times 10^{-4}$ neutrons/($渭\cdot$g$\cdot$cm$^{-2}$). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of $\left\langle E_渭 \right\rangle^{0.76 \pm 0.03}$ for liquid-scintillator targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.09038v4-abstract-full').style.display = 'none'; document.getElementById('1509.09038v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 072005 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.04233">arXiv:1508.04233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.04233">pdf</a>, <a href="https://arxiv.org/format/1508.04233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.061801">10.1103/PhysRevLett.116.061801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Butorov%2C+I">I. Butorov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+H">J. H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a> , et al. (200 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.04233v1-abstract-short" style="display: inline;"> This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04233v1-abstract-full').style.display = 'inline'; document.getElementById('1508.04233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.04233v1-abstract-full" style="display: none;"> This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $\pm$ 0.04) $\times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $\pm$ 0.14) $\times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946\pm0.022$ ($0.991\pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$蟽$ over the full energy range with a local significance of up to $\sim$4$蟽$ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.04233v1-abstract-full').style.display = 'none'; document.getElementById('1508.04233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 061801 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.03943">arXiv:1508.03943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.03943">pdf</a>, <a href="https://arxiv.org/format/1508.03943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2015.11.144">10.1016/j.nima.2015.11.144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Detector System of The Daya Bay Reactor Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Beavis%2C+D">D. Beavis</a>, <a href="/search/physics?searchtype=author&amp;query=Beriguete%2C+W">W. Beriguete</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+R+L">R. L. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Butorov%2C+I">I. Butorov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+W+T">W. T. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chasman%2C+C">C. Chasman</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+Y">H. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a> , et al. (310 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.03943v2-abstract-short" style="display: inline;"> The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar谓_e$ oscillations over km-baselines. Subsequent data has provided the world&#39;s most precise measurement of $\rm{sin}^22胃_{13}$ and the effective mass splitting $螖m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nucl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03943v2-abstract-full').style.display = 'inline'; document.getElementById('1508.03943v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.03943v2-abstract-full" style="display: none;"> The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar谓_e$ oscillations over km-baselines. Subsequent data has provided the world&#39;s most precise measurement of $\rm{sin}^22胃_{13}$ and the effective mass splitting $螖m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world&#39;s most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors&#39; baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03943v2-abstract-full').style.display = 'none'; document.getElementById('1508.03943v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 51 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods A 811(2016) 133-161 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07475">arXiv:1507.07475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07475">pdf</a>, <a href="https://arxiv.org/format/1507.07475">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.025501">10.1103/PhysRevC.93.025501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultracold neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+S">S. Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Piegsa%2C+F+M">F. M. Piegsa</a>, <a href="/search/physics?searchtype=author&amp;query=Simson%2C+M">M. Simson</a>, <a href="/search/physics?searchtype=author&amp;query=Zimmer%2C+O">O. Zimmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07475v2-abstract-short" style="display: inline;"> Ultracold neutrons (UCNs) were produced in a 4 liter volume of superfluid helium using the PF1B cold neutron beam facility at the Institut Laue-Langevin and then extracted to a detector at room temperature. With a converter temperature of 1.08 K the number of accumulated UCNs was counted to be $91,\!700 \pm 300$. From this, we derive a volumetric UCN production rate of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07475v2-abstract-full').style.display = 'inline'; document.getElementById('1507.07475v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07475v2-abstract-full" style="display: none;"> Ultracold neutrons (UCNs) were produced in a 4 liter volume of superfluid helium using the PF1B cold neutron beam facility at the Institut Laue-Langevin and then extracted to a detector at room temperature. With a converter temperature of 1.08 K the number of accumulated UCNs was counted to be $91,\!700 \pm 300$. From this, we derive a volumetric UCN production rate of $(6.9 \pm 1.7)\,\mathrm{cm^{-3}\,s^{-1}}$, which includes a correction for losses in the converter during UCN extraction caused by a short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs due to excitations in the superfluid was studied by scanning the temperature between 1.2-2.4 K. Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data in the analysis, the only UCN up-scattering process found to be present was from two-phonon scattering. Our analysis rules out contributions from the other scattering processes to $\lesssim 10\%$ of their predicted levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07475v2-abstract-full').style.display = 'none'; document.getElementById('1507.07475v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 93, 025501 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02334">arXiv:1507.02334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02334">pdf</a>, <a href="https://arxiv.org/ps/1507.02334">ps</a>, <a href="https://arxiv.org/format/1507.02334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.b01643">10.1021/acs.jpcc.b01643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K">Kevin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Leenheer%2C+A">Andrew Leenheer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02334v1-abstract-short" style="display: inline;"> Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the &#34;electric double layer&#34; (EDL). We apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02334v1-abstract-full').style.display = 'inline'; document.getElementById('1507.02334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02334v1-abstract-full" style="display: none;"> Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the &#34;electric double layer&#34; (EDL). We apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic lengthscales, including charge separation and interfacial dipole moments. Illustrating examples include Li(3)PO(4), Li(2)CO(3), and Li(x)Mn(2)O(4) thin-films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the &#34;lithium cohesive energy&#34; based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. This distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02334v1-abstract-full').style.display = 'none'; document.getElementById('1507.02334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages. 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physical Chemistry C volume 119, issue 19, pages 10234-10246 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.07785">arXiv:1506.07785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.07785">pdf</a>, <a href="https://arxiv.org/format/1506.07785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.92.024004">10.1103/PhysRevC.92.024004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of ultracold neutron production in pressurized superfluid helium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt-Wellenburg%2C+P">P. Schmidt-Wellenburg</a>, <a href="/search/physics?searchtype=author&amp;query=Bossy%2C+J">J. Bossy</a>, <a href="/search/physics?searchtype=author&amp;query=Farhi%2C+E">E. Farhi</a>, <a href="/search/physics?searchtype=author&amp;query=Fertl%2C+M">M. Fertl</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+K+K+H">K. K. H. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Rahli%2C+A">A. Rahli</a>, <a href="/search/physics?searchtype=author&amp;query=Soldner%2C+T">T. Soldner</a>, <a href="/search/physics?searchtype=author&amp;query=Zimmer%2C+O">O. Zimmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.07785v2-abstract-short" style="display: inline;"> We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10脜. The predicted pressure depende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07785v2-abstract-full').style.display = 'inline'; document.getElementById('1506.07785v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.07785v2-abstract-full" style="display: none;"> We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10脜. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07785v2-abstract-full').style.display = 'none'; document.getElementById('1506.07785v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures Version accepted for publication in PRC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.03456">arXiv:1505.03456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.03456">pdf</a>, <a href="https://arxiv.org/format/1505.03456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.111802">10.1103/PhysRevLett.115.111802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Butorov%2C+I">I. Butorov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L+C">L. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+Y">Q. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+H">J. H. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y+P">Y. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a> , et al. (194 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.03456v2-abstract-short" style="display: inline;"> We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9$\times$10$^5$ GW$_{\rm th}$-ton-days, a 3.6 times increase over our pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03456v2-abstract-full').style.display = 'inline'; document.getElementById('1505.03456v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.03456v2-abstract-full" style="display: none;"> We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9$\times$10$^5$ GW$_{\rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $\sin^{2}2胃_{13}$ and $|螖m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $\sin^{2}2胃_{13} = 0.084\pm0.005$ and $|螖m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3}$ eV$^2$ in the three-neutrino framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03456v2-abstract-full').style.display = 'none'; document.getElementById('1505.03456v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to match final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 111802 (2015) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Leung%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10