CINXE.COM
Synergistic integration of fragmented transportation networks: When do networks (not) synergize? | PLOS Complex Systems
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:dc="http://purl.org/dc/terms/" xmlns:doi="http://dx.doi.org/" lang="en" xml:lang="en" itemscope itemtype="http://schema.org/Article" class="no-js"> <head prefix="og: http://ogp.me/ns#"> <link rel="stylesheet" href="/resource/css/screen.css?79f248ebefa43b7800a14562e5049ab4"/> <!-- allows for extra head tags --> <!-- hello --> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Open+Sans:400,400i,600"> <link media="print" rel="stylesheet" type="text/css" href="/resource/css/print.css"/> <script type="text/javascript"> var siteUrlPrefix = "/complexsystems/"; </script> <script src="/resource/js/vendor/modernizr-v2.7.1.js" type="text/javascript"></script> <script src="/resource/js/vendor/detectizr.min.js" type="text/javascript"></script> <link rel="shortcut icon" href="/resource/img/favicon.ico" type="image/x-icon"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link rel="canonical" href="https://journals.plos.org/complexsystems/article?id=10.1371/journal.pcsy.0000017" /> <meta name="description" content="Author summary We investigated the effects of integrating two transportation networks to leverage the excess transportation capacity left behind by fluctuations in demand or fragmented by disasters. We developed an analytical framework and conducted numerical experiments to identify conditions under which network integration is beneficial. Networks with uniformly important nodes benefit significantly while core–periphery networks benefit less. Based on our results, we propose an indicator for predicting the synergistic effect. This paper offers practical strategies for integrating transportation networks to improve performance amid fluctuating demands and provides insights for stakeholders in logistics, supply chain, urban planning, and infrastructure developments." /> <meta name="citation_abstract" content="The transportation of information, goods, people, and other entities inevitably experiences fluctuations in demand and supply, which results in the underutilization of certain links within a transportation network while other links are fully utilized and unable to accommodate any additional demand. A promising strategy for leveraging these links is the collaborative integration of fragmented transportation networks to facilitate access between isolated nodes. We present a novel analytical framework for examining the conditions under which such network integration would enhance the overall transportation efficiency. We conducted comprehensive numerical experiments to investigate the influence of the network structure on the synergistic effects of network integration with a focus on the link survival ratio and dissimilarity between networks. The results showed that networks comprising nodes with relatively uniform importance benefit significantly from network integration whereas core–periphery networks are less likely to benefit. Based on our findings, we propose an indicator for predicting the potential for synergistic effects that is related to the growth rate of the giant component. This study contributes understanding of transportation network dynamics and offers practical insights for optimizing network integration strategies to leverage underutilized capacities and improve various types of transportation systems."> <meta name="keywords" content="Transportation,Network analysis,Power grids,Statistical mechanics,Social networks,Scale-free networks,Transportation infrastructure,Telecommunications" /> <meta name="citation_doi" content="10.1371/journal.pcsy.0000017"/> <meta name="citation_author" content="Takahiro Ezaki"/> <meta name="citation_author_institution" content="Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan"/> <meta name="citation_author" content="Naoto Imura"/> <meta name="citation_author_institution" content="Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan"/> <meta name="citation_author" content="Katsuhiro Nishinari"/> <meta name="citation_author_institution" content="Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan"/> <meta name="citation_author_institution" content="Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan"/> <meta name="citation_title" content="Synergistic integration of fragmented transportation networks: When do networks (not) synergize?"/> <meta itemprop="name" content="Synergistic integration of fragmented transportation networks: When do networks (not) synergize?"/> <meta name="citation_journal_title" content="PLOS Complex Systems"/> <meta name="citation_journal_abbrev" content="PLOS Complex Systems"/> <meta name="citation_date" content="Nov 5, 2024"/> <meta name="citation_firstpage" content="e0000017"/> <meta name="citation_issue" content="3"/> <meta name="citation_volume" content="1"/> <meta name="citation_issn" content="2837-8830"/> <meta name="citation_publisher" content="Public Library of Science"/> <meta name="citation_pdf_url" content="https://journals.plos.org/complexsystems/article/file?id=10.1371/journal.pcsy.0000017&type=printable"> <meta name="citation_article_type" content="Research Article"> <meta name="dc.identifier" content="10.1371/journal.pcsy.0000017" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="PLOSComplexSys"/> <meta name="twitter:title" content="Synergistic integration of fragmented transportation networks: When do networks (not) synergize?" /> <meta property="twitter:description" content="Author summary We investigated the effects of integrating two transportation networks to leverage the excess transportation capacity left behind by fluctuations in demand or fragmented by disasters. We developed an analytical framework and conducted numerical experiments to identify conditions under which network integration is beneficial. Networks with uniformly important nodes benefit significantly while core–periphery networks benefit less. Based on our results, we propose an indicator for predicting the synergistic effect. This paper offers practical strategies for integrating transportation networks to improve performance amid fluctuating demands and provides insights for stakeholders in logistics, supply chain, urban planning, and infrastructure developments." /> <meta property="twitter:image" content="https://journals.plos.org/complexsystems/article/figure/image?id=10.1371/journal.pcsy.0000017.g006&size=inline" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://journals.plos.org/complexsystems/article?id=10.1371/journal.pcsy.0000017"/> <meta property="og:title" content="Synergistic integration of fragmented transportation networks: When do networks (not) synergize?"/> <meta property="og:description" content="Author summary We investigated the effects of integrating two transportation networks to leverage the excess transportation capacity left behind by fluctuations in demand or fragmented by disasters. We developed an analytical framework and conducted numerical experiments to identify conditions under which network integration is beneficial. Networks with uniformly important nodes benefit significantly while core–periphery networks benefit less. Based on our results, we propose an indicator for predicting the synergistic effect. This paper offers practical strategies for integrating transportation networks to improve performance amid fluctuating demands and provides insights for stakeholders in logistics, supply chain, urban planning, and infrastructure developments."/> <meta property="og:image" content="https://journals.plos.org/complexsystems/article/figure/image?id=10.1371/journal.pcsy.0000017.g006&size=inline"/> <meta name="citation_reference" content="citation_title=Optimal design of reliable network systems in presence of uncertainty;citation_author=M Marseguerra;citation_author=E Zio;citation_author=L Podofillini;citation_author=DW Coit;citation_journal_title=IEEE Transactions on Reliability;citation_volume=54;citation_number=54;citation_issue=2;citation_first_page=243;citation_last_page=253;citation_publication_date=2005;"/> <meta name="citation_reference" content="citation_title=Robust transportation network design under demand uncertainty;citation_author=SV Ukkusuri;citation_author=TV Mathew;citation_author=ST Waller;citation_journal_title=Computer-aided Civil and Infrastructure Engineering;citation_volume=22;citation_number=22;citation_issue=1;citation_first_page=6;citation_last_page=18;citation_publication_date=2007;"/> <meta name="citation_reference" content="citation_title=Transport Network Design Problem under Uncertainty: A Review and New Developments;citation_author=A Chen;citation_author=Z Zhou;citation_author=P Chootinan;citation_author=S Ryu;citation_author=C Yang;citation_author=SC Wong;citation_journal_title=Transport Reviews;citation_volume=31;citation_number=31;citation_issue=6;citation_first_page=743;citation_last_page=768;citation_publication_date=2011;"/> <meta name="citation_reference" content="citation_title=Travel time resilience of roadway networks under disaster;citation_author=R Faturechi;citation_author=E Miller-Hooks;citation_journal_title=Transportation Research Part B: Methodological;citation_volume=70;citation_number=70;citation_first_page=47;citation_last_page=64;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Supply network disruption and resilience: A network structural perspective;citation_author=Y Kim;citation_author=YS Chen;citation_author=K Linderman;citation_journal_title=Journal of Operations Management;citation_volume=33-34;citation_number=33;citation_first_page=43;citation_last_page=59;citation_publication_date=2015;"/> <meta name="citation_reference" content="citation_title=Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions;citation_author=M Çelik;citation_journal_title=Surveys in Operations Research and Management Science;citation_volume=21;citation_number=21;citation_issue=2;citation_first_page=47;citation_last_page=61;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Horizontal Cooperation in Transport and Logistics: A Literature Review;citation_author=F Cruijssen;citation_author=W Dullaert;citation_author=H Fleuren;citation_journal_title=Transportation Journal;citation_volume=46;citation_number=46;citation_issue=3;citation_first_page=22;citation_last_page=39;citation_publication_date=2007;"/> <meta name="citation_reference" content="citation_title=Horizontal collaborative transport: survey of solutions and practical implementation issues;citation_author=S Pan;citation_author=D Trentesaux;citation_author=E Ballot;citation_author=GQ Huang;citation_journal_title=International Journal of Production Research;citation_volume=57;citation_number=57;citation_issue=15-16;citation_first_page=5340;citation_last_page=5361;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes;citation_author=M Du;citation_author=J Zhou;citation_author=A Chen;citation_author=H Tan;citation_journal_title=Transportation Research Part E: Logistics and Transportation Review;citation_volume=168;citation_number=168;citation_first_page=102937;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem;citation_author=Y Fan;citation_author=J Ding;citation_author=H Liu;citation_author=Y Wang;citation_author=J Long;citation_journal_title=Transportation Research Part E: Logistics and Transportation Review;citation_volume=164;citation_number=164;citation_first_page=102832;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=Emergence of network features from multiplexity;citation_author=A Cardillo;citation_author=J Gómez-Gardeñes;citation_author=M Zanin;citation_author=M Romance;citation_author=D Papo;citation_author=F del Pozo;citation_journal_title=Scientific Reports;citation_volume=3;citation_number=3;citation_first_page=1344;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=Analysis of the Chinese Airline Network as multi-layer networks;citation_author=WB Du;citation_author=XL Zhou;citation_author=O Lordan;citation_author=Z Wang;citation_author=C Zhao;citation_author=YB Zhu;citation_journal_title=Transportation Research Part E: Logistics and Transportation Review;citation_volume=89;citation_number=89;citation_first_page=108;citation_last_page=116;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Optimal transport on complex networks;citation_author=B Danila;citation_author=Y Yu;citation_author=JA Marsh;citation_author=KE Bassler;citation_journal_title=Physical Review E;citation_volume=74;citation_number=74;citation_issue=4 Pt 2;citation_first_page=046106;citation_publication_date=2006;"/> <meta name="citation_reference" content="citation_title=Towards design principles for optimal transport networks;citation_author=G Li;citation_author=SDS Reis;citation_author=AA Moreira;citation_author=S Havlin;citation_author=HE Stanley;citation_author=JS Andrade Jr;citation_journal_title=Physical Review Letters;citation_volume=104;citation_number=104;citation_issue=1;citation_first_page=018701;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Fluctuations and redundancy in optimal transport networks;citation_author=F Corson;citation_journal_title=Physical Review Letters;citation_volume=104;citation_number=104;citation_issue=4;citation_first_page=048703;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Towards understanding network topology and robustness of logistics systems;citation_author=T Ezaki;citation_author=N Imura;citation_author=K Nishinari;citation_journal_title=Communications in Transportation Research;citation_volume=2;citation_number=2;citation_first_page=100064;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=Measuring the vulnerability of public transport networks;citation_author=E Rodríguez-Núñez;citation_author=JC García-Palomares;citation_journal_title=Journal of Transport Geography;citation_volume=35;citation_number=35;citation_first_page=50;citation_last_page=63;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Critical Link Analysis for Urban Transportation Systems;citation_author=Y Zhou;citation_author=J Wang;citation_journal_title=IEEE Transactions on Intelligent Transportation Systems;citation_volume=19;citation_number=19;citation_issue=2;citation_first_page=402;citation_last_page=415;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Measures for Network Structural Dependency Analysis;citation_author=YT Woldeyohannes;citation_author=Y Jiang;citation_journal_title=IEEE Communications Letters;citation_volume=22;citation_number=22;citation_issue=10;citation_first_page=2052;citation_last_page=2055;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Reinforcing critical links for robust network logistics: A centrality measure for substitutability;citation_author=T Ezaki;citation_author=N Imura;citation_author=K Nishinari;citation_journal_title=Journal of Physics Communications;citation_volume=7;citation_number=7;citation_issue=2;citation_first_page=025001;citation_publication_date=2023;"/> <meta name="citation_reference" content="citation_title=Community structure in time-dependent, multiscale, and multiplex networks;citation_author=PJ Mucha;citation_author=T Richardson;citation_author=K Macon;citation_author=MA Porter;citation_author=JP Onnela;citation_journal_title=Science;citation_volume=328;citation_number=328;citation_issue=5980;citation_first_page=876;citation_last_page=878;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Mathematical Formulation of Multilayer Networks;citation_author=M De Domenico;citation_author=A Solé-Ribalta;citation_author=E Cozzo;citation_author=M Kivelä;citation_author=Y Moreno;citation_author=MA Porter;citation_journal_title=Physical Review X;citation_volume=3;citation_number=3;citation_issue=4;citation_first_page=041022;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=The structure and dynamics of multilayer networks;citation_author=S Boccaletti;citation_author=G Bianconi;citation_author=R Criado;citation_author=CI Del Genio;citation_author=J Gómez-Gardeñes;citation_author=M Romance;citation_journal_title=Physics Reports;citation_volume=544;citation_number=544;citation_issue=1;citation_first_page=1;citation_last_page=122;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Multilayer networks;citation_author=M Kivelä;citation_author=A Arenas;citation_author=M Barthelemy;citation_author=JP Gleeson;citation_author=Y Moreno;citation_author=MA Porter;citation_journal_title=Journal of Complex Networks;citation_volume=2;citation_number=2;citation_issue=3;citation_first_page=203;citation_last_page=271;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Traffic dynamics on multilayer networks;citation_author=J Wu;citation_author=C Pu;citation_author=L Li;citation_author=G Cao;citation_journal_title=Digital Communications and Networks;citation_volume=6;citation_number=6;citation_issue=1;citation_first_page=58;citation_last_page=63;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Transport on coupled spatial networks;citation_author=RG Morris;citation_author=M Barthelemy;citation_journal_title=Physical Review Letters;citation_volume=109;citation_number=109;citation_issue=12;citation_first_page=128703;citation_publication_date=2012;"/> <meta name="citation_reference" content="citation_title=Transportation dynamics on coupled networks with limited bandwidth;citation_author=M Li;citation_author=MB Hu;citation_author=BH Wang;citation_journal_title=Scientific Reports;citation_volume=6;citation_number=6;citation_first_page=39175;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Anatomy and efficiency of urban multimodal mobility;citation_author=R Gallotti;citation_author=M Barthelemy;citation_journal_title=Scientific Reports;citation_volume=4;citation_number=4;citation_first_page=6911;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=A Multilayer perspective for the analysis of urban transportation systems;citation_author=A Aleta;citation_author=S Meloni;citation_author=Y Moreno;citation_journal_title=Scientific Reports;citation_volume=7;citation_number=7;citation_first_page=44359;citation_publication_date=2017;"/> <meta name="citation_reference" content="citation_title=Network robustness and fragility: percolation on random graphs;citation_author=DS Callaway;citation_author=ME Newman;citation_author=SH Strogatz;citation_author=DJ Watts;citation_journal_title=Physical Review Letters;citation_volume=85;citation_number=85;citation_issue=25;citation_first_page=5468;citation_last_page=5471;citation_publication_date=2000;"/> <meta name="citation_reference" content="citation_title=Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition;citation_author=R Parshani;citation_author=SV Buldyrev;citation_author=S Havlin;citation_journal_title=Physical Review Letters;citation_volume=105;citation_number=105;citation_issue=4;citation_first_page=048701;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Percolation on sparse networks;citation_author=B Karrer;citation_author=MEJ Newman;citation_author=L Zdeborová;citation_journal_title=Physical Review Letters;citation_volume=113;citation_number=113;citation_issue=20;citation_first_page=208702;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Percolation in real interdependent networks;citation_author=F Radicchi;citation_journal_title=Nature Physics;citation_volume=11;citation_number=11;citation_issue=7;citation_first_page=597;citation_last_page=602;citation_publication_date=2015;"/> <meta name="citation_reference" content="citation_title=Bond Percolation on Multiplex Networks;citation_author=A Hackett;citation_author=D Cellai;citation_author=S Gómez;citation_author=A Arenas;citation_author=JP Gleeson;citation_journal_title=Physical Review X;citation_volume=6;citation_number=6;citation_issue=2;citation_first_page=021002;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Optimal percolation in correlated multilayer networks with overlap;citation_author=A Santoro;citation_author=V Nicosia;citation_journal_title=Physical Review Research;citation_volume=2;citation_number=2;citation_issue=3;citation_first_page=033122;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Percolation on complex networks: Theory and application;citation_author=M Li;citation_author=RR Liu;citation_author=L Lü;citation_author=MB Hu;citation_author=S Xu;citation_author=YC Zhang;citation_journal_title=Physics Reports;citation_volume=907;citation_number=907;citation_first_page=1;citation_last_page=68;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Transport on percolation clusters with power-law distributed bond strengths;citation_author=M Alava;citation_author=CF Moukarzel;citation_journal_title=Physical Review E;citation_volume=67;citation_number=67;citation_issue=5 Pt 2;citation_first_page=056106;citation_publication_date=2003;"/> <meta name="citation_reference" content="citation_title=Percolation transition in dynamical traffic network with evolving critical bottlenecks;citation_author=D Li;citation_author=B Fu;citation_author=Y Wang;citation_author=G Lu;citation_author=Y Berezin;citation_author=HE Stanley;citation_journal_title=Proceedings of the National Academy of Sciences of the U S A;citation_volume=112;citation_number=112;citation_issue=3;citation_first_page=669;citation_last_page=672;citation_publication_date=2015;"/> <meta name="citation_reference" content="citation_title=Switch between critical percolation modes in city traffic dynamics;citation_author=G Zeng;citation_author=D Li;citation_author=S Guo;citation_author=L Gao;citation_author=Z Gao;citation_author=HE Stanley;citation_journal_title=Proceedings of the National Academy of Sciences of the U S A;citation_volume=116;citation_number=116;citation_issue=1;citation_first_page=23;citation_last_page=28;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks;citation_author=H Hamedmoghadam;citation_author=M Jalili;citation_author=HL Vu;citation_author=L Stone;citation_journal_title=Nature Communications;citation_volume=12;citation_number=12;citation_issue=1;citation_first_page=1254;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram;citation_author=L Ambühl;citation_author=M Menendez;citation_author=MC González;citation_journal_title=Communications Physics;citation_volume=6;citation_number=6;citation_first_page=26;citation_publication_date=2023;"/> <meta name="citation_reference" content="citation_title=Maximal Flow Through a Network;citation_author=LR Ford;citation_author=DR Fulkerson;citation_journal_title=Canadian Journal of Mathematics Journal Canadien de Mathematiques;citation_volume=8;citation_number=8;citation_first_page=399;citation_last_page=404;citation_publication_date=1956;"/> <meta name="citation_reference" content="citation_title=Flows in Networks;citation_author=LR Ford;citation_author=DR Fulkerson;citation_publication_date=1962;citation_publisher=Princeton University Press"/> <meta name="citation_reference" content="citation_title=Maximum flow and topological structure of complex networks;citation_author=DS Lee;citation_author=H Rieger;citation_journal_title=EPL;citation_volume=73;citation_number=73;citation_issue=3;citation_first_page=471;citation_publication_date=2005;"/> <meta name="citation_reference" content="citation_title=A maximum-flow-based complex network approach for power system vulnerability analysis;citation_author=A Dwivedi;citation_author=X Yu;citation_journal_title=IEEE transactions on industrial informatics / a publication of the IEEE Industrial Electronics Society;citation_volume=9;citation_number=9;citation_issue=1;citation_first_page=81;citation_last_page=88;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=Network Robustness Analysis Based on Maximum Flow;citation_author=M Cai;citation_author=J Liu;citation_author=Y Cui;citation_journal_title=Frontiers in Physics;citation_volume=9;citation_number=9;citation_first_page=792410;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Sudden Emergence of a Giantk-Core in a Random Graph;citation_author=B Pittel;citation_author=J Spencer;citation_author=N Wormald;citation_journal_title=Journal of Combinatorial Theory Series B;citation_volume=67;citation_number=67;citation_issue=1;citation_first_page=111;citation_last_page=151;citation_publication_date=1996;"/> <meta name="citation_reference" content="citation_title=k-Core organization of complex networks;citation_author=SN Dorogovtsev;citation_author=AV Goltsev;citation_author=JFF Mendes;citation_journal_title=Physical Review Letters;citation_volume=96;citation_number=96;citation_issue=4;citation_first_page=040601;citation_publication_date=2006;"/> <meta name="citation_reference" content="citation_title=A clarified typology of core-periphery structure in networks;citation_author=RJ Gallagher;citation_author=JG Young;citation_author=BF Welles;citation_journal_title=Science Advances;citation_volume=7;citation_number=7;citation_first_page=eabc9800;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Revealing the structure of the world airline network;citation_author=T Verma;citation_author=NAM Araújo;citation_author=HJ Herrmann;citation_journal_title=Scientific Reports;citation_volume=4;citation_number=4;citation_first_page=5638;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Emergence of core–peripheries in networks;citation_author=T Verma;citation_author=F Russmann;citation_author=NAM Araújo;citation_author=J Nagler;citation_author=HJ Herrmann;citation_journal_title=Nature Communications;citation_volume=7;citation_number=7;citation_first_page=10441;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Core-periphery structure in sectoral international trade networks: A new approach to an old theory;citation_author=O Kostoska;citation_author=S Mitikj;citation_author=P Jovanovski;citation_author=L Kocarev;citation_journal_title=PLOS ONE;citation_volume=15;citation_number=15;citation_issue=4;citation_first_page=e0229547;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Multiscale core-periphery structure in a global liner shipping network;citation_author=S Kojaku;citation_author=M Xu;citation_author=H Xia;citation_author=N Masuda;citation_journal_title=Scientific Reports;citation_volume=9;citation_number=9;citation_issue=1;citation_first_page=404;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=Population-weighted efficiency in transportation networks;citation_author=L Dong;citation_author=R Li;citation_author=J Zhang;citation_author=Z Di;citation_journal_title=Scientific Reports;citation_volume=6;citation_number=6;citation_first_page=26377;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Gravity model in dockless bike-sharing systems within cities;citation_author=R Li;citation_author=S Gao;citation_author=A Luo;citation_author=Q Yao;citation_author=B Chen;citation_author=F Shang;citation_journal_title=Physical Review E;citation_volume=103;citation_number=103;citation_issue=1-1;citation_first_page=012312;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Freight transportation demand elasticities: a geographic multimodal transportation network analysis;citation_author=M Beuthe;citation_author=B Jourquin;citation_author=JF Geerts;citation_author=C Koul à Ndjang’ Ha;citation_journal_title=Transportation Research Part E: Logistics and Transportation Review;citation_volume=37;citation_number=37;citation_issue=4;citation_first_page=253;citation_last_page=266;citation_publication_date=2001;"/> <meta name="citation_reference" content="citation_title=Robust solutions for network design under transportation cost and demand uncertainty;citation_author=S Mudchanatongsuk;citation_author=F Ordóñez;citation_author=J Liu;citation_journal_title=The Journal of the Operational Research Society;citation_volume=59;citation_number=59;citation_issue=5;citation_first_page=652;citation_last_page=662;citation_publication_date=2008;"/> <meta name="citation_reference" content="citation_title=A collection of public transport network data sets for 25 cities;citation_author=R Kujala;citation_author=C Weckström;citation_author=RK Darst;citation_author=MN Mladenović;citation_author=J Saramäki;citation_journal_title=Scientific Data;citation_volume=5;citation_number=5;citation_first_page=180089;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Big data in public transportation: a review of sources and methods;citation_author=TF Welch;citation_author=A Widita;citation_journal_title=Transport Reviews;citation_volume=39;citation_number=39;citation_issue=6;citation_first_page=795;citation_last_page=818;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=Transport in networks with multiple sources and sinks;citation_author=S Carmi;citation_author=Z Wu;citation_author=S Havlin;citation_author=HE Stanley;citation_journal_title=EPL;citation_volume=84;citation_number=84;citation_issue=2;citation_first_page=28005;citation_publication_date=2008;"/> <meta name="citation_reference" content="Hagberg A, Schult D, Swart P, Hagberg JM. Exploring network structure, dynamics, and function using NetworkX; 2008."/> <meta name="citation_reference" content="citation_title=Emergence of scaling in random networks;citation_author=AL Barabasi;citation_author=R Albert;citation_journal_title=Science;citation_volume=286;citation_number=286;citation_issue=5439;citation_first_page=509;citation_last_page=512;citation_publication_date=1999;"/> <meta name="citation_reference" content="Rossi R, Ahmed N. The Network Data Repository with Interactive Graph Analytics and Visualization. Proceedings of the AAAI Conference on Artificial Intelligence. 2015;29(1)."/> <meta name="citation_reference" content="citation_title=Models of core/periphery structures;citation_author=SP Borgatti;citation_author=MG Everett;citation_journal_title=Social Networks;citation_volume=21;citation_number=21;citation_issue=4;citation_first_page=375;citation_last_page=395;citation_publication_date=2000;"/> <meta name="citation_reference" content="citation_title=Stochastic blockmodels and community structure in networks;citation_author=B Karrer;citation_author=MEJ Newman;citation_journal_title=Physical Review E;citation_volume=83;citation_number=83;citation_issue=1 Pt 2;citation_first_page=016107;citation_publication_date=2011;"/> <!-- DoubleClick overall ad setup script --> <script type='text/javascript'> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; (function() { var gads = document.createElement('script'); gads.async = true; gads.type = 'text/javascript'; var useSSL = 'https:' == document.location.protocol; gads.src = (useSSL ? 'https:' : 'http:') + '//www.googletagservices.com/tag/js/gpt.js'; var node = document.getElementsByTagName('script')[0]; node.parentNode.insertBefore(gads, node); })(); </script> <!-- DoubleClick ad slot setup script --> <script id="doubleClickSetupScript" type='text/javascript'> googletag.cmd.push(function() { googletag.defineSlot('/75507958/PCSY_728x90_ATF', [728, 90], 'div-gpt-ad-1458247671871-0').addService(googletag.pubads()); googletag.defineSlot('/75507958/PCSY_160x600_BTF', [160, 600], 'div-gpt-ad-1458247671871-1').addService(googletag.pubads()); var personalizedAds = window.plosCookieConsent && window.plosCookieConsent.hasConsented('advertising'); googletag.pubads().setRequestNonPersonalizedAds(personalizedAds ? 0 : 1); googletag.pubads().enableSingleRequest(); googletag.enableServices(); }); </script> <script type="text/javascript"> var WombatConfig = WombatConfig || {}; WombatConfig.journalKey = "PLOSComplexSystems"; WombatConfig.journalName = "PLOS Complex Systems"; WombatConfig.figurePath = "/complexsystems/article/figure/image"; WombatConfig.figShareInstitutionString = "plos"; WombatConfig.doiResolverPrefix = "https://dx.plos.org/"; </script> <script type="text/javascript"> var WombatConfig = WombatConfig || {}; WombatConfig.metrics = WombatConfig.metrics || {}; WombatConfig.metrics.referenceUrl = "http://lagotto.io/plos"; WombatConfig.metrics.googleScholarUrl = "https://scholar.google.com/scholar"; WombatConfig.metrics.googleScholarCitationUrl = WombatConfig.metrics.googleScholarUrl + "?hl=en&lr=&q="; WombatConfig.metrics.crossrefUrl = "https://www.crossref.org"; </script> <script defer="defer" src="/resource/js/defer.js?13928eb59791c3cc61cf"></script><script src="/resource/js/sync.js?13928eb59791c3cc61cf"></script> <script src="/resource/js/vendor/jquery.min.js" type="text/javascript"></script> <script type="text/javascript" src="https://widgets.figshare.com/static/figshare.js"></script> <script src="/resource/js/vendor/fastclick/lib/fastclick.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.js" type="text/javascript"></script> <script src="/resource/js/vendor/underscore-min.js" type="text/javascript"></script> <script src="/resource/js/vendor/underscore.string.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/moment.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery-ui-effects.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.tooltip.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.dropdown.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.tab.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.reveal.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.slider.js" type="text/javascript"></script> <script src="/resource/js/util/utils.js" type="text/javascript"></script> <script src="/resource/js/components/toggle.js" type="text/javascript"></script> <script src="/resource/js/components/truncate_elem.js" type="text/javascript"></script> <script src="/resource/js/components/tooltip_hover.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.dotdotdot.js" type="text/javascript"></script> <!--For Google Tag manager to be able to track site information --> <script> dataLayer = [{ 'mobileSite': 'false', 'desktopSite': 'true' }]; </script> <title>Synergistic integration of fragmented transportation networks: When do networks (not) synergize? | PLOS Complex Systems</title> </head> <body class="article ploscomplexsystems"> <!-- Google Tag Manager --> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-TP26BH" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-TP26BH'); </script> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-MQQMGF" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-MQQMGF');</script> <!-- End Google Tag Manager --> <!-- New Relic --> <script type="text/javascript"> ;window.NREUM||(NREUM={});NREUM.init={distributed_tracing:{enabled:true},privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]}}; window.NREUM||(NREUM={}),__nr_require=function(t,e,n){function r(n){if(!e[n]){var o=e[n]={exports:{}};t[n][0].call(o.exports,function(e){var o=t[n][1][e];return r(o||e)},o,o.exports)}return e[n].exports}if("function"==typeof __nr_require)return __nr_require;for(var o=0;o<n.length;o++)r(n[o]);return r}({1:[function(t,e,n){function r(t){try{s.console&&console.log(t)}catch(e){}}var o,i=t("ee"),a=t(32),s={};try{o=localStorage.getItem("__nr_flags").split(","),console&&"function"==typeof console.log&&(s.console=!0,o.indexOf("dev")!==-1&&(s.dev=!0),o.indexOf("nr_dev")!==-1&&(s.nrDev=!0))}catch(c){}s.nrDev&&i.on("internal-error",function(t){r(t.stack)}),s.dev&&i.on("fn-err",function(t,e,n){r(n.stack)}),s.dev&&(r("NR AGENT IN DEVELOPMENT MODE"),r("flags: "+a(s,function(t,e){return t}).join(", ")))},{}],2:[function(t,e,n){function r(t,e,n,r,s){try{l?l-=1:o(s||new UncaughtException(t,e,n),!0)}catch(f){try{i("ierr",[f,c.now(),!0])}catch(d){}}return"function"==typeof u&&u.apply(this,a(arguments))}function UncaughtException(t,e,n){this.message=t||"Uncaught error with no additional information",this.sourceURL=e,this.line=n}function o(t,e){var n=e?null:c.now();i("err",[t,n])}var i=t("handle"),a=t(33),s=t("ee"),c=t("loader"),f=t("gos"),u=window.onerror,d=!1,p="nr@seenError";if(!c.disabled){var l=0;c.features.err=!0,t(1),window.onerror=r;try{throw new Error}catch(h){"stack"in h&&(t(14),t(13),"addEventListener"in window&&t(7),c.xhrWrappable&&t(15),d=!0)}s.on("fn-start",function(t,e,n){d&&(l+=1)}),s.on("fn-err",function(t,e,n){d&&!n[p]&&(f(n,p,function(){return!0}),this.thrown=!0,o(n))}),s.on("fn-end",function(){d&&!this.thrown&&l>0&&(l-=1)}),s.on("internal-error",function(t){i("ierr",[t,c.now(),!0])})}},{}],3:[function(t,e,n){var r=t("loader");r.disabled||(r.features.ins=!0)},{}],4:[function(t,e,n){function r(){U++,L=g.hash,this[u]=y.now()}function o(){U--,g.hash!==L&&i(0,!0);var t=y.now();this[h]=~~this[h]+t-this[u],this[d]=t}function i(t,e){E.emit("newURL",[""+g,e])}function a(t,e){t.on(e,function(){this[e]=y.now()})}var s="-start",c="-end",f="-body",u="fn"+s,d="fn"+c,p="cb"+s,l="cb"+c,h="jsTime",m="fetch",v="addEventListener",w=window,g=w.location,y=t("loader");if(w[v]&&y.xhrWrappable&&!y.disabled){var x=t(11),b=t(12),E=t(9),R=t(7),O=t(14),T=t(8),P=t(15),S=t(10),M=t("ee"),N=M.get("tracer"),C=t(23);t(17),y.features.spa=!0;var L,U=0;M.on(u,r),b.on(p,r),S.on(p,r),M.on(d,o),b.on(l,o),S.on(l,o),M.buffer([u,d,"xhr-resolved"]),R.buffer([u]),O.buffer(["setTimeout"+c,"clearTimeout"+s,u]),P.buffer([u,"new-xhr","send-xhr"+s]),T.buffer([m+s,m+"-done",m+f+s,m+f+c]),E.buffer(["newURL"]),x.buffer([u]),b.buffer(["propagate",p,l,"executor-err","resolve"+s]),N.buffer([u,"no-"+u]),S.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"]),a(T,m+s),a(T,m+"-done"),a(S,"new-jsonp"),a(S,"jsonp-end"),a(S,"cb-start"),E.on("pushState-end",i),E.on("replaceState-end",i),w[v]("hashchange",i,C(!0)),w[v]("load",i,C(!0)),w[v]("popstate",function(){i(0,U>1)},C(!0))}},{}],5:[function(t,e,n){function r(){var t=new PerformanceObserver(function(t,e){var n=t.getEntries();s(v,[n])});try{t.observe({entryTypes:["resource"]})}catch(e){}}function o(t){if(s(v,[window.performance.getEntriesByType(w)]),window.performance["c"+p])try{window.performance[h](m,o,!1)}catch(t){}else try{window.performance[h]("webkit"+m,o,!1)}catch(t){}}function i(t){}if(window.performance&&window.performance.timing&&window.performance.getEntriesByType){var a=t("ee"),s=t("handle"),c=t(14),f=t(13),u=t(6),d=t(23),p="learResourceTimings",l="addEventListener",h="removeEventListener",m="resourcetimingbufferfull",v="bstResource",w="resource",g="-start",y="-end",x="fn"+g,b="fn"+y,E="bstTimer",R="pushState",O=t("loader");if(!O.disabled){O.features.stn=!0,t(9),"addEventListener"in window&&t(7);var T=NREUM.o.EV;a.on(x,function(t,e){var n=t[0];n instanceof T&&(this.bstStart=O.now())}),a.on(b,function(t,e){var n=t[0];n instanceof T&&s("bst",[n,e,this.bstStart,O.now()])}),c.on(x,function(t,e,n){this.bstStart=O.now(),this.bstType=n}),c.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),this.bstType])}),f.on(x,function(){this.bstStart=O.now()}),f.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),"requestAnimationFrame"])}),a.on(R+g,function(t){this.time=O.now(),this.startPath=location.pathname+location.hash}),a.on(R+y,function(t){s("bstHist",[location.pathname+location.hash,this.startPath,this.time])}),u()?(s(v,[window.performance.getEntriesByType("resource")]),r()):l in window.performance&&(window.performance["c"+p]?window.performance[l](m,o,d(!1)):window.performance[l]("webkit"+m,o,d(!1))),document[l]("scroll",i,d(!1)),document[l]("keypress",i,d(!1)),document[l]("click",i,d(!1))}}},{}],6:[function(t,e,n){e.exports=function(){return"PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver}},{}],7:[function(t,e,n){function r(t){for(var e=t;e&&!e.hasOwnProperty(u);)e=Object.getPrototypeOf(e);e&&o(e)}function o(t){s.inPlace(t,[u,d],"-",i)}function i(t,e){return t[1]}var a=t("ee").get("events"),s=t("wrap-function")(a,!0),c=t("gos"),f=XMLHttpRequest,u="addEventListener",d="removeEventListener";e.exports=a,"getPrototypeOf"in Object?(r(document),r(window),r(f.prototype)):f.prototype.hasOwnProperty(u)&&(o(window),o(f.prototype)),a.on(u+"-start",function(t,e){var n=t[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var r=c(n,"nr@wrapped",function(){function t(){if("function"==typeof n.handleEvent)return n.handleEvent.apply(n,arguments)}var e={object:t,"function":n}[typeof n];return e?s(e,"fn-",null,e.name||"anonymous"):n});this.wrapped=t[1]=r}}),a.on(d+"-start",function(t){t[1]=this.wrapped||t[1]})},{}],8:[function(t,e,n){function r(t,e,n){var r=t[e];"function"==typeof r&&(t[e]=function(){var t=i(arguments),e={};o.emit(n+"before-start",[t],e);var a;e[m]&&e[m].dt&&(a=e[m].dt);var s=r.apply(this,t);return o.emit(n+"start",[t,a],s),s.then(function(t){return o.emit(n+"end",[null,t],s),t},function(t){throw o.emit(n+"end",[t],s),t})})}var o=t("ee").get("fetch"),i=t(33),a=t(32);e.exports=o;var s=window,c="fetch-",f=c+"body-",u=["arrayBuffer","blob","json","text","formData"],d=s.Request,p=s.Response,l=s.fetch,h="prototype",m="nr@context";d&&p&&l&&(a(u,function(t,e){r(d[h],e,f),r(p[h],e,f)}),r(s,"fetch",c),o.on(c+"end",function(t,e){var n=this;if(e){var r=e.headers.get("content-length");null!==r&&(n.rxSize=r),o.emit(c+"done",[null,e],n)}else o.emit(c+"done",[t],n)}))},{}],9:[function(t,e,n){var r=t("ee").get("history"),o=t("wrap-function")(r);e.exports=r;var i=window.history&&window.history.constructor&&window.history.constructor.prototype,a=window.history;i&&i.pushState&&i.replaceState&&(a=i),o.inPlace(a,["pushState","replaceState"],"-")},{}],10:[function(t,e,n){function r(t){function e(){f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}function n(){f.emit("jsonp-error",[],l),f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}var r=t&&"string"==typeof t.nodeName&&"script"===t.nodeName.toLowerCase();if(r){var o="function"==typeof t.addEventListener;if(o){var a=i(t.src);if(a){var d=s(a),p="function"==typeof d.parent[d.key];if(p){var l={};u.inPlace(d.parent,[d.key],"cb-",l),t.addEventListener("load",e,c(!1)),t.addEventListener("error",n,c(!1)),f.emit("new-jsonp",[t.src],l)}}}}}function o(){return"addEventListener"in window}function i(t){var e=t.match(d);return e?e[1]:null}function a(t,e){var n=t.match(l),r=n[1],o=n[3];return o?a(o,e[r]):e[r]}function s(t){var e=t.match(p);return e&&e.length>=3?{key:e[2],parent:a(e[1],window)}:{key:t,parent:window}}var c=t(23),f=t("ee").get("jsonp"),u=t("wrap-function")(f);if(e.exports=f,o()){var d=/[?&](?:callback|cb)=([^&#]+)/,p=/(.*)\.([^.]+)/,l=/^(\w+)(\.|$)(.*)$/,h=["appendChild","insertBefore","replaceChild"];Node&&Node.prototype&&Node.prototype.appendChild?u.inPlace(Node.prototype,h,"dom-"):(u.inPlace(HTMLElement.prototype,h,"dom-"),u.inPlace(HTMLHeadElement.prototype,h,"dom-"),u.inPlace(HTMLBodyElement.prototype,h,"dom-")),f.on("dom-start",function(t){r(t[0])})}},{}],11:[function(t,e,n){var r=t("ee").get("mutation"),o=t("wrap-function")(r),i=NREUM.o.MO;e.exports=r,i&&(window.MutationObserver=function(t){return this instanceof i?new i(o(t,"fn-")):i.apply(this,arguments)},MutationObserver.prototype=i.prototype)},{}],12:[function(t,e,n){function r(t){var e=i.context(),n=s(t,"executor-",e,null,!1),r=new f(n);return i.context(r).getCtx=function(){return e},r}var o=t("wrap-function"),i=t("ee").get("promise"),a=t("ee").getOrSetContext,s=o(i),c=t(32),f=NREUM.o.PR;e.exports=i,f&&(window.Promise=r,["all","race"].forEach(function(t){var e=f[t];f[t]=function(n){function r(t){return function(){i.emit("propagate",[null,!o],a,!1,!1),o=o||!t}}var o=!1;c(n,function(e,n){Promise.resolve(n).then(r("all"===t),r(!1))});var a=e.apply(f,arguments),s=f.resolve(a);return s}}),["resolve","reject"].forEach(function(t){var e=f[t];f[t]=function(t){var n=e.apply(f,arguments);return t!==n&&i.emit("propagate",[t,!0],n,!1,!1),n}}),f.prototype["catch"]=function(t){return this.then(null,t)},f.prototype=Object.create(f.prototype,{constructor:{value:r}}),c(Object.getOwnPropertyNames(f),function(t,e){try{r[e]=f[e]}catch(n){}}),o.wrapInPlace(f.prototype,"then",function(t){return function(){var e=this,n=o.argsToArray.apply(this,arguments),r=a(e);r.promise=e,n[0]=s(n[0],"cb-",r,null,!1),n[1]=s(n[1],"cb-",r,null,!1);var c=t.apply(this,n);return r.nextPromise=c,i.emit("propagate",[e,!0],c,!1,!1),c}}),i.on("executor-start",function(t){t[0]=s(t[0],"resolve-",this,null,!1),t[1]=s(t[1],"resolve-",this,null,!1)}),i.on("executor-err",function(t,e,n){t[1](n)}),i.on("cb-end",function(t,e,n){i.emit("propagate",[n,!0],this.nextPromise,!1,!1)}),i.on("propagate",function(t,e,n){this.getCtx&&!e||(this.getCtx=function(){if(t instanceof Promise)var e=i.context(t);return e&&e.getCtx?e.getCtx():this})}),r.toString=function(){return""+f})},{}],13:[function(t,e,n){var r=t("ee").get("raf"),o=t("wrap-function")(r),i="equestAnimationFrame";e.exports=r,o.inPlace(window,["r"+i,"mozR"+i,"webkitR"+i,"msR"+i],"raf-"),r.on("raf-start",function(t){t[0]=o(t[0],"fn-")})},{}],14:[function(t,e,n){function r(t,e,n){t[0]=a(t[0],"fn-",null,n)}function o(t,e,n){this.method=n,this.timerDuration=isNaN(t[1])?0:+t[1],t[0]=a(t[0],"fn-",this,n)}var i=t("ee").get("timer"),a=t("wrap-function")(i),s="setTimeout",c="setInterval",f="clearTimeout",u="-start",d="-";e.exports=i,a.inPlace(window,[s,"setImmediate"],s+d),a.inPlace(window,[c],c+d),a.inPlace(window,[f,"clearImmediate"],f+d),i.on(c+u,r),i.on(s+u,o)},{}],15:[function(t,e,n){function r(t,e){d.inPlace(e,["onreadystatechange"],"fn-",s)}function o(){var t=this,e=u.context(t);t.readyState>3&&!e.resolved&&(e.resolved=!0,u.emit("xhr-resolved",[],t)),d.inPlace(t,y,"fn-",s)}function i(t){x.push(t),m&&(E?E.then(a):w?w(a):(R=-R,O.data=R))}function a(){for(var t=0;t<x.length;t++)r([],x[t]);x.length&&(x=[])}function s(t,e){return e}function c(t,e){for(var n in t)e[n]=t[n];return e}t(7);var f=t("ee"),u=f.get("xhr"),d=t("wrap-function")(u),p=t(23),l=NREUM.o,h=l.XHR,m=l.MO,v=l.PR,w=l.SI,g="readystatechange",y=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],x=[];e.exports=u;var b=window.XMLHttpRequest=function(t){var e=new h(t);try{u.emit("new-xhr",[e],e),e.addEventListener(g,o,p(!1))}catch(n){try{u.emit("internal-error",[n])}catch(r){}}return e};if(c(h,b),b.prototype=h.prototype,d.inPlace(b.prototype,["open","send"],"-xhr-",s),u.on("send-xhr-start",function(t,e){r(t,e),i(e)}),u.on("open-xhr-start",r),m){var E=v&&v.resolve();if(!w&&!v){var R=1,O=document.createTextNode(R);new m(a).observe(O,{characterData:!0})}}else f.on("fn-end",function(t){t[0]&&t[0].type===g||a()})},{}],16:[function(t,e,n){function r(t){if(!s(t))return null;var e=window.NREUM;if(!e.loader_config)return null;var n=(e.loader_config.accountID||"").toString()||null,r=(e.loader_config.agentID||"").toString()||null,f=(e.loader_config.trustKey||"").toString()||null;if(!n||!r)return null;var h=l.generateSpanId(),m=l.generateTraceId(),v=Date.now(),w={spanId:h,traceId:m,timestamp:v};return(t.sameOrigin||c(t)&&p())&&(w.traceContextParentHeader=o(h,m),w.traceContextStateHeader=i(h,v,n,r,f)),(t.sameOrigin&&!u()||!t.sameOrigin&&c(t)&&d())&&(w.newrelicHeader=a(h,m,v,n,r,f)),w}function o(t,e){return"00-"+e+"-"+t+"-01"}function i(t,e,n,r,o){var i=0,a="",s=1,c="",f="";return o+"@nr="+i+"-"+s+"-"+n+"-"+r+"-"+t+"-"+a+"-"+c+"-"+f+"-"+e}function a(t,e,n,r,o,i){var a="btoa"in window&&"function"==typeof window.btoa;if(!a)return null;var s={v:[0,1],d:{ty:"Browser",ac:r,ap:o,id:t,tr:e,ti:n}};return i&&r!==i&&(s.d.tk=i),btoa(JSON.stringify(s))}function s(t){return f()&&c(t)}function c(t){var e=!1,n={};if("init"in NREUM&&"distributed_tracing"in NREUM.init&&(n=NREUM.init.distributed_tracing),t.sameOrigin)e=!0;else if(n.allowed_origins instanceof Array)for(var r=0;r<n.allowed_origins.length;r++){var o=h(n.allowed_origins[r]);if(t.hostname===o.hostname&&t.protocol===o.protocol&&t.port===o.port){e=!0;break}}return e}function f(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.enabled}function u(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.exclude_newrelic_header}function d(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&NREUM.init.distributed_tracing.cors_use_newrelic_header!==!1}function p(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.cors_use_tracecontext_headers}var l=t(29),h=t(18);e.exports={generateTracePayload:r,shouldGenerateTrace:s}},{}],17:[function(t,e,n){function r(t){var e=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(var r=0;r<p;r++)t.removeEventListener(d[r],this.listener,!1);e.aborted||(n.duration=a.now()-this.startTime,this.loadCaptureCalled||4!==t.readyState?null==e.status&&(e.status=0):i(this,t),n.cbTime=this.cbTime,s("xhr",[e,n,this.startTime,this.endTime,"xhr"],this))}}function o(t,e){var n=c(e),r=t.params;r.hostname=n.hostname,r.port=n.port,r.protocol=n.protocol,r.host=n.hostname+":"+n.port,r.pathname=n.pathname,t.parsedOrigin=n,t.sameOrigin=n.sameOrigin}function i(t,e){t.params.status=e.status;var n=v(e,t.lastSize);if(n&&(t.metrics.rxSize=n),t.sameOrigin){var r=e.getResponseHeader("X-NewRelic-App-Data");r&&(t.params.cat=r.split(", ").pop())}t.loadCaptureCalled=!0}var a=t("loader");if(a.xhrWrappable&&!a.disabled){var s=t("handle"),c=t(18),f=t(16).generateTracePayload,u=t("ee"),d=["load","error","abort","timeout"],p=d.length,l=t("id"),h=t(24),m=t(22),v=t(19),w=t(23),g=NREUM.o.REQ,y=window.XMLHttpRequest;a.features.xhr=!0,t(15),t(8),u.on("new-xhr",function(t){var e=this;e.totalCbs=0,e.called=0,e.cbTime=0,e.end=r,e.ended=!1,e.xhrGuids={},e.lastSize=null,e.loadCaptureCalled=!1,e.params=this.params||{},e.metrics=this.metrics||{},t.addEventListener("load",function(n){i(e,t)},w(!1)),h&&(h>34||h<10)||t.addEventListener("progress",function(t){e.lastSize=t.loaded},w(!1))}),u.on("open-xhr-start",function(t){this.params={method:t[0]},o(this,t[1]),this.metrics={}}),u.on("open-xhr-end",function(t,e){"loader_config"in NREUM&&"xpid"in NREUM.loader_config&&this.sameOrigin&&e.setRequestHeader("X-NewRelic-ID",NREUM.loader_config.xpid);var n=f(this.parsedOrigin);if(n){var r=!1;n.newrelicHeader&&(e.setRequestHeader("newrelic",n.newrelicHeader),r=!0),n.traceContextParentHeader&&(e.setRequestHeader("traceparent",n.traceContextParentHeader),n.traceContextStateHeader&&e.setRequestHeader("tracestate",n.traceContextStateHeader),r=!0),r&&(this.dt=n)}}),u.on("send-xhr-start",function(t,e){var n=this.metrics,r=t[0],o=this;if(n&&r){var i=m(r);i&&(n.txSize=i)}this.startTime=a.now(),this.listener=function(t){try{"abort"!==t.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==t.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof e.onload))&&o.end(e)}catch(n){try{u.emit("internal-error",[n])}catch(r){}}};for(var s=0;s<p;s++)e.addEventListener(d[s],this.listener,w(!1))}),u.on("xhr-cb-time",function(t,e,n){this.cbTime+=t,e?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof n.onload||this.end(n)}),u.on("xhr-load-added",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&!this.xhrGuids[n]&&(this.xhrGuids[n]=!0,this.totalCbs+=1)}),u.on("xhr-load-removed",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&this.xhrGuids[n]&&(delete this.xhrGuids[n],this.totalCbs-=1)}),u.on("xhr-resolved",function(){this.endTime=a.now()}),u.on("addEventListener-end",function(t,e){e instanceof y&&"load"===t[0]&&u.emit("xhr-load-added",[t[1],t[2]],e)}),u.on("removeEventListener-end",function(t,e){e instanceof y&&"load"===t[0]&&u.emit("xhr-load-removed",[t[1],t[2]],e)}),u.on("fn-start",function(t,e,n){e instanceof y&&("onload"===n&&(this.onload=!0),("load"===(t[0]&&t[0].type)||this.onload)&&(this.xhrCbStart=a.now()))}),u.on("fn-end",function(t,e){this.xhrCbStart&&u.emit("xhr-cb-time",[a.now()-this.xhrCbStart,this.onload,e],e)}),u.on("fetch-before-start",function(t){function e(t,e){var n=!1;return e.newrelicHeader&&(t.set("newrelic",e.newrelicHeader),n=!0),e.traceContextParentHeader&&(t.set("traceparent",e.traceContextParentHeader),e.traceContextStateHeader&&t.set("tracestate",e.traceContextStateHeader),n=!0),n}var n,r=t[1]||{};"string"==typeof t[0]?n=t[0]:t[0]&&t[0].url?n=t[0].url:window.URL&&t[0]&&t[0]instanceof URL&&(n=t[0].href),n&&(this.parsedOrigin=c(n),this.sameOrigin=this.parsedOrigin.sameOrigin);var o=f(this.parsedOrigin);if(o&&(o.newrelicHeader||o.traceContextParentHeader))if("string"==typeof t[0]||window.URL&&t[0]&&t[0]instanceof URL){var i={};for(var a in r)i[a]=r[a];i.headers=new Headers(r.headers||{}),e(i.headers,o)&&(this.dt=o),t.length>1?t[1]=i:t.push(i)}else t[0]&&t[0].headers&&e(t[0].headers,o)&&(this.dt=o)}),u.on("fetch-start",function(t,e){this.params={},this.metrics={},this.startTime=a.now(),this.dt=e,t.length>=1&&(this.target=t[0]),t.length>=2&&(this.opts=t[1]);var n,r=this.opts||{},i=this.target;"string"==typeof i?n=i:"object"==typeof i&&i instanceof g?n=i.url:window.URL&&"object"==typeof i&&i instanceof URL&&(n=i.href),o(this,n);var s=(""+(i&&i instanceof g&&i.method||r.method||"GET")).toUpperCase();this.params.method=s,this.txSize=m(r.body)||0}),u.on("fetch-done",function(t,e){this.endTime=a.now(),this.params||(this.params={}),this.params.status=e?e.status:0;var n;"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);var r={txSize:this.txSize,rxSize:n,duration:a.now()-this.startTime};s("xhr",[this.params,r,this.startTime,this.endTime,"fetch"],this)})}},{}],18:[function(t,e,n){var r={};e.exports=function(t){if(t in r)return r[t];var e=document.createElement("a"),n=window.location,o={};e.href=t,o.port=e.port;var i=e.href.split("://");!o.port&&i[1]&&(o.port=i[1].split("/")[0].split("@").pop().split(":")[1]),o.port&&"0"!==o.port||(o.port="https"===i[0]?"443":"80"),o.hostname=e.hostname||n.hostname,o.pathname=e.pathname,o.protocol=i[0],"/"!==o.pathname.charAt(0)&&(o.pathname="/"+o.pathname);var a=!e.protocol||":"===e.protocol||e.protocol===n.protocol,s=e.hostname===document.domain&&e.port===n.port;return o.sameOrigin=a&&(!e.hostname||s),"/"===o.pathname&&(r[t]=o),o}},{}],19:[function(t,e,n){function r(t,e){var n=t.responseType;return"json"===n&&null!==e?e:"arraybuffer"===n||"blob"===n||"json"===n?o(t.response):"text"===n||""===n||void 0===n?o(t.responseText):void 0}var o=t(22);e.exports=r},{}],20:[function(t,e,n){function r(){}function o(t,e,n,r){return function(){return u.recordSupportability("API/"+e+"/called"),i(t+e,[f.now()].concat(s(arguments)),n?null:this,r),n?void 0:this}}var i=t("handle"),a=t(32),s=t(33),c=t("ee").get("tracer"),f=t("loader"),u=t(25),d=NREUM;"undefined"==typeof window.newrelic&&(newrelic=d);var p=["setPageViewName","setCustomAttribute","setErrorHandler","finished","addToTrace","inlineHit","addRelease"],l="api-",h=l+"ixn-";a(p,function(t,e){d[e]=o(l,e,!0,"api")}),d.addPageAction=o(l,"addPageAction",!0),d.setCurrentRouteName=o(l,"routeName",!0),e.exports=newrelic,d.interaction=function(){return(new r).get()};var m=r.prototype={createTracer:function(t,e){var n={},r=this,o="function"==typeof e;return i(h+"tracer",[f.now(),t,n],r),function(){if(c.emit((o?"":"no-")+"fn-start",[f.now(),r,o],n),o)try{return e.apply(this,arguments)}catch(t){throw c.emit("fn-err",[arguments,this,t],n),t}finally{c.emit("fn-end",[f.now()],n)}}}};a("actionText,setName,setAttribute,save,ignore,onEnd,getContext,end,get".split(","),function(t,e){m[e]=o(h,e)}),newrelic.noticeError=function(t,e){"string"==typeof t&&(t=new Error(t)),u.recordSupportability("API/noticeError/called"),i("err",[t,f.now(),!1,e])}},{}],21:[function(t,e,n){function r(t){if(NREUM.init){for(var e=NREUM.init,n=t.split("."),r=0;r<n.length-1;r++)if(e=e[n[r]],"object"!=typeof e)return;return e=e[n[n.length-1]]}}e.exports={getConfiguration:r}},{}],22:[function(t,e,n){e.exports=function(t){if("string"==typeof t&&t.length)return t.length;if("object"==typeof t){if("undefined"!=typeof ArrayBuffer&&t instanceof ArrayBuffer&&t.byteLength)return t.byteLength;if("undefined"!=typeof Blob&&t instanceof Blob&&t.size)return t.size;if(!("undefined"!=typeof FormData&&t instanceof FormData))try{return JSON.stringify(t).length}catch(e){return}}}},{}],23:[function(t,e,n){var r=!1;try{var o=Object.defineProperty({},"passive",{get:function(){r=!0}});window.addEventListener("testPassive",null,o),window.removeEventListener("testPassive",null,o)}catch(i){}e.exports=function(t){return r?{passive:!0,capture:!!t}:!!t}},{}],24:[function(t,e,n){var r=0,o=navigator.userAgent.match(/Firefox[\/\s](\d+\.\d+)/);o&&(r=+o[1]),e.exports=r},{}],25:[function(t,e,n){function r(t,e){var n=[a,t,{name:t},e];return i("storeMetric",n,null,"api"),n}function o(t,e){var n=[s,t,{name:t},e];return i("storeEventMetrics",n,null,"api"),n}var i=t("handle"),a="sm",s="cm";e.exports={constants:{SUPPORTABILITY_METRIC:a,CUSTOM_METRIC:s},recordSupportability:r,recordCustom:o}},{}],26:[function(t,e,n){function r(){return s.exists&&performance.now?Math.round(performance.now()):(i=Math.max((new Date).getTime(),i))-a}function o(){return i}var i=(new Date).getTime(),a=i,s=t(34);e.exports=r,e.exports.offset=a,e.exports.getLastTimestamp=o},{}],27:[function(t,e,n){function r(t){return!(!t||!t.protocol||"file:"===t.protocol)}e.exports=r},{}],28:[function(t,e,n){function r(t,e){var n=t.getEntries();n.forEach(function(t){"first-paint"===t.name?p("timing",["fp",Math.floor(t.startTime)]):"first-contentful-paint"===t.name&&p("timing",["fcp",Math.floor(t.startTime)])})}function o(t,e){var n=t.getEntries();if(n.length>0){var r=n[n.length-1];if(c&&c<r.startTime)return;p("lcp",[r])}}function i(t){t.getEntries().forEach(function(t){t.hadRecentInput||p("cls",[t])})}function a(t){if(t instanceof v&&!g){var e=Math.round(t.timeStamp),n={type:t.type};e<=l.now()?n.fid=l.now()-e:e>l.offset&&e<=Date.now()?(e-=l.offset,n.fid=l.now()-e):e=l.now(),g=!0,p("timing",["fi",e,n])}}function s(t){"hidden"===t&&(c=l.now(),p("pageHide",[c]))}if(!("init"in NREUM&&"page_view_timing"in NREUM.init&&"enabled"in NREUM.init.page_view_timing&&NREUM.init.page_view_timing.enabled===!1)){var c,f,u,d,p=t("handle"),l=t("loader"),h=t(31),m=t(23),v=NREUM.o.EV;if("PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver){f=new PerformanceObserver(r);try{f.observe({entryTypes:["paint"]})}catch(w){}u=new PerformanceObserver(o);try{u.observe({entryTypes:["largest-contentful-paint"]})}catch(w){}d=new PerformanceObserver(i);try{d.observe({type:"layout-shift",buffered:!0})}catch(w){}}if("addEventListener"in document){var g=!1,y=["click","keydown","mousedown","pointerdown","touchstart"];y.forEach(function(t){document.addEventListener(t,a,m(!1))})}h(s)}},{}],29:[function(t,e,n){function r(){function t(){return e?15&e[n++]:16*Math.random()|0}var e=null,n=0,r=window.crypto||window.msCrypto;r&&r.getRandomValues&&(e=r.getRandomValues(new Uint8Array(31)));for(var o,i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx",a="",s=0;s<i.length;s++)o=i[s],"x"===o?a+=t().toString(16):"y"===o?(o=3&t()|8,a+=o.toString(16)):a+=o;return a}function o(){return a(16)}function i(){return a(32)}function a(t){function e(){return n?15&n[r++]:16*Math.random()|0}var n=null,r=0,o=window.crypto||window.msCrypto;o&&o.getRandomValues&&Uint8Array&&(n=o.getRandomValues(new Uint8Array(31)));for(var i=[],a=0;a<t;a++)i.push(e().toString(16));return i.join("")}e.exports={generateUuid:r,generateSpanId:o,generateTraceId:i}},{}],30:[function(t,e,n){function r(t,e){if(!o)return!1;if(t!==o)return!1;if(!e)return!0;if(!i)return!1;for(var n=i.split("."),r=e.split("."),a=0;a<r.length;a++)if(r[a]!==n[a])return!1;return!0}var o=null,i=null,a=/Version\/(\S+)\s+Safari/;if(navigator.userAgent){var s=navigator.userAgent,c=s.match(a);c&&s.indexOf("Chrome")===-1&&s.indexOf("Chromium")===-1&&(o="Safari",i=c[1])}e.exports={agent:o,version:i,match:r}},{}],31:[function(t,e,n){function r(t){function e(){t(s&&document[s]?document[s]:document[i]?"hidden":"visible")}"addEventListener"in document&&a&&document.addEventListener(a,e,o(!1))}var o=t(23);e.exports=r;var i,a,s;"undefined"!=typeof document.hidden?(i="hidden",a="visibilitychange",s="visibilityState"):"undefined"!=typeof document.msHidden?(i="msHidden",a="msvisibilitychange"):"undefined"!=typeof document.webkitHidden&&(i="webkitHidden",a="webkitvisibilitychange",s="webkitVisibilityState")},{}],32:[function(t,e,n){function r(t,e){var n=[],r="",i=0;for(r in t)o.call(t,r)&&(n[i]=e(r,t[r]),i+=1);return n}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],33:[function(t,e,n){function r(t,e,n){e||(e=0),"undefined"==typeof n&&(n=t?t.length:0);for(var r=-1,o=n-e||0,i=Array(o<0?0:o);++r<o;)i[r]=t[e+r];return i}e.exports=r},{}],34:[function(t,e,n){e.exports={exists:"undefined"!=typeof window.performance&&window.performance.timing&&"undefined"!=typeof window.performance.timing.navigationStart}},{}],ee:[function(t,e,n){function r(){}function o(t){function e(t){return t&&t instanceof r?t:t?f(t,c,a):a()}function n(n,r,o,i,a){if(a!==!1&&(a=!0),!l.aborted||i){t&&a&&t(n,r,o);for(var s=e(o),c=m(n),f=c.length,u=0;u<f;u++)c[u].apply(s,r);var p=d[y[n]];return p&&p.push([x,n,r,s]),s}}function i(t,e){g[t]=m(t).concat(e)}function h(t,e){var n=g[t];if(n)for(var r=0;r<n.length;r++)n[r]===e&&n.splice(r,1)}function m(t){return g[t]||[]}function v(t){return p[t]=p[t]||o(n)}function w(t,e){l.aborted||u(t,function(t,n){e=e||"feature",y[n]=e,e in d||(d[e]=[])})}var g={},y={},x={on:i,addEventListener:i,removeEventListener:h,emit:n,get:v,listeners:m,context:e,buffer:w,abort:s,aborted:!1};return x}function i(t){return f(t,c,a)}function a(){return new r}function s(){(d.api||d.feature)&&(l.aborted=!0,d=l.backlog={})}var c="nr@context",f=t("gos"),u=t(32),d={},p={},l=e.exports=o();e.exports.getOrSetContext=i,l.backlog=d},{}],gos:[function(t,e,n){function r(t,e,n){if(o.call(t,e))return t[e];var r=n();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(t,e,{value:r,writable:!0,enumerable:!1}),r}catch(i){}return t[e]=r,r}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],handle:[function(t,e,n){function r(t,e,n,r){o.buffer([t],r),o.emit(t,e,n)}var o=t("ee").get("handle");e.exports=r,r.ee=o},{}],id:[function(t,e,n){function r(t){var e=typeof t;return!t||"object"!==e&&"function"!==e?-1:t===window?0:a(t,i,function(){return o++})}var o=1,i="nr@id",a=t("gos");e.exports=r},{}],loader:[function(t,e,n){function r(){if(!P++){var t=T.info=NREUM.info,e=v.getElementsByTagName("script")[0];if(setTimeout(f.abort,3e4),!(t&&t.licenseKey&&t.applicationID&&e))return f.abort();c(R,function(e,n){t[e]||(t[e]=n)});var n=a();s("mark",["onload",n+T.offset],null,"api"),s("timing",["load",n]);var r=v.createElement("script");0===t.agent.indexOf("http://")||0===t.agent.indexOf("https://")?r.src=t.agent:r.src=h+"://"+t.agent,e.parentNode.insertBefore(r,e)}}function o(){"complete"===v.readyState&&i()}function i(){s("mark",["domContent",a()+T.offset],null,"api")}var a=t(26),s=t("handle"),c=t(32),f=t("ee"),u=t(30),d=t(27),p=t(21),l=t(23),h=p.getConfiguration("ssl")===!1?"http":"https",m=window,v=m.document,w="addEventListener",g="attachEvent",y=m.XMLHttpRequest,x=y&&y.prototype,b=!d(m.location);NREUM.o={ST:setTimeout,SI:m.setImmediate,CT:clearTimeout,XHR:y,REQ:m.Request,EV:m.Event,PR:m.Promise,MO:m.MutationObserver};var E=""+location,R={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",agent:"js-agent.newrelic.com/nr-spa-1212.min.js"},O=y&&x&&x[w]&&!/CriOS/.test(navigator.userAgent),T=e.exports={offset:a.getLastTimestamp(),now:a,origin:E,features:{},xhrWrappable:O,userAgent:u,disabled:b};if(!b){t(20),t(28),v[w]?(v[w]("DOMContentLoaded",i,l(!1)),m[w]("load",r,l(!1))):(v[g]("onreadystatechange",o),m[g]("onload",r)),s("mark",["firstbyte",a.getLastTimestamp()],null,"api");var P=0}},{}],"wrap-function":[function(t,e,n){function r(t,e){function n(e,n,r,c,f){function nrWrapper(){var i,a,u,p;try{a=this,i=d(arguments),u="function"==typeof r?r(i,a):r||{}}catch(l){o([l,"",[i,a,c],u],t)}s(n+"start",[i,a,c],u,f);try{return p=e.apply(a,i)}catch(h){throw s(n+"err",[i,a,h],u,f),h}finally{s(n+"end",[i,a,p],u,f)}}return a(e)?e:(n||(n=""),nrWrapper[p]=e,i(e,nrWrapper,t),nrWrapper)}function r(t,e,r,o,i){r||(r="");var s,c,f,u="-"===r.charAt(0);for(f=0;f<e.length;f++)c=e[f],s=t[c],a(s)||(t[c]=n(s,u?c+r:r,o,c,i))}function s(n,r,i,a){if(!h||e){var s=h;h=!0;try{t.emit(n,r,i,e,a)}catch(c){o([c,n,r,i],t)}h=s}}return t||(t=u),n.inPlace=r,n.flag=p,n}function o(t,e){e||(e=u);try{e.emit("internal-error",t)}catch(n){}}function i(t,e,n){if(Object.defineProperty&&Object.keys)try{var r=Object.keys(t);return r.forEach(function(n){Object.defineProperty(e,n,{get:function(){return t[n]},set:function(e){return t[n]=e,e}})}),e}catch(i){o([i],n)}for(var a in t)l.call(t,a)&&(e[a]=t[a]);return e}function a(t){return!(t&&t instanceof Function&&t.apply&&!t[p])}function s(t,e){var n=e(t);return n[p]=t,i(t,n,u),n}function c(t,e,n){var r=t[e];t[e]=s(r,n)}function f(){for(var t=arguments.length,e=new Array(t),n=0;n<t;++n)e[n]=arguments[n];return e}var u=t("ee"),d=t(33),p="nr@original",l=Object.prototype.hasOwnProperty,h=!1;e.exports=r,e.exports.wrapFunction=s,e.exports.wrapInPlace=c,e.exports.argsToArray=f},{}]},{},["loader",2,17,5,3,4]); ;NREUM.loader_config={accountID:"804283",trustKey:"804283",agentID:"402703674",licenseKey:"cf99e8d2a3",applicationID:"402703674"} ;NREUM.info={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",licenseKey:"cf99e8d2a3", // Modified this value from the generated script, to pass prod vs dev applicationID: window.location.hostname.includes('journals.plos.org') ? "402703674" : "402694889", sa:1} </script> <!-- End New Relic --> <header> <div id="topslot" class="head-top"> <a id="skip-to-content" tabindex="0" class="button" href="#main-content"> Skip to main content </a> <div class="center"> <div class="title">Advertisement</div> <!-- DoubleClick Ad Zone --> <div class='advertisement' id='div-gpt-ad-1458247671871-0' style='width:728px; height:90px;'> <script type='text/javascript'> googletag.cmd.push(function() { googletag.display('div-gpt-ad-1458247671871-0'); }); </script> </div> </div> </div> <div id="user" class="nav" data-user-management-url="https://community.plos.org"> </div> <div id="pagehdr"> <nav class="nav-main"> <h1 class="logo"> <a href="/complexsystems/.">PLOS Complex Systems</a> </h1> <section class="top-bar-section"> <ul class="nav-elements"> <li class="multi-col-parent menu-section-header has-dropdown" id="publish"> Publish <div class="dropdown mega "> <ul class="multi-col" id="publish-dropdown-list"> <li class="menu-section-header " id="submissions"> <span class="menu-section-header-title"> Submissions </span> <ul class="menu-section " id="submissions-dropdown-list"> <li> <a href="/complexsystems/s/submission-guidelines" >Submission Guidelines</a> </li> <li> <a href="/complexsystems/s/figures" >Figures</a> </li> <li> <a href="/complexsystems/s/tables" >Tables</a> </li> <li> <a href="/complexsystems/s/supporting-information" >Supporting Information</a> </li> <li> <a href="/complexsystems/s/latex" >LaTeX</a> </li> <li> <a href="/complexsystems/s/what-we-publish" >What We Publish</a> </li> <li> <a href="/complexsystems/s/preprints" >Preprints</a> </li> <li> <a href="/complexsystems/s/revising-your-manuscript" >Revising Your Manuscript</a> </li> <li> <a href="/complexsystems/s/submit-now" >Submit Now</a> </li> </ul> </li> <li class="menu-section-header " id="policies"> <span class="menu-section-header-title"> Policies </span> <ul class="menu-section " id="policies-dropdown-list"> <li> <a href="/complexsystems/s/best-practices-in-research-reporting" >Best Practices in Research Reporting</a> </li> <li> <a href="/complexsystems/s/human-subjects-research" >Human Subjects Research</a> </li> <li> <a href="/complexsystems/s/animal-research" >Animal Research</a> </li> <li> <a href="/complexsystems/s/competing-interests" >Competing Interests</a> </li> <li> <a href="/complexsystems/s/disclosure-of-funding-sources" >Disclosure of Funding Sources</a> </li> <li> <a href="/complexsystems/s/licenses-and-copyright" >Licenses and Copyright</a> </li> <li> <a href="/complexsystems/s/data-availability" >Data Availability</a> </li> <li> <a href="/complexsystems/s/complementary-research" >Complementary Research</a> </li> <li> <a href="/complexsystems/s/materials-software-and-code-sharing" >Materials, Software and Code Sharing</a> </li> <li> <a href="/complexsystems/s/ethical-publishing-practice" >Ethical Publishing Practice</a> </li> <li> <a href="/complexsystems/s/authorship" >Authorship</a> </li> <li> <a href="/complexsystems/s/corrections-expressions-of-concern-and-retractions" >Corrections, Expressions of Concern, and Retractions</a> </li> </ul> </li> <li class="menu-section-header " id="manuscript-review-and-publication"> <span class="menu-section-header-title"> Manuscript Review and Publication </span> <ul class="menu-section " id="manuscript-review-and-publication-dropdown-list"> <li> <a href="/complexsystems/s/editorial-and-peer-review-process" >Editorial and Peer Review Process</a> </li> <li> <a href="https://plos.org/resources/editor-center" >Editor Center</a> </li> <li> <a href="/complexsystems/s/reviewer-guidelines" >Guidelines for Reviewers</a> </li> <li> <a href="/complexsystems/s/accepted-manuscripts" >Accepted Manuscripts</a> </li> <li> <a href="/complexsystems/s/comments" >Comments</a> </li> <li> <a href="/complexsystems/s/guidelines-for-editors" >Guidelines for Editors</a> </li> </ul> </li> </ul> <div class="calloutcontainer"> <h3 class="callout-headline">Submit Your Manuscript</h3> <div class="action-contain"> <p class="callout-content"> <em>PLOS Complex Systems</em> publishes research of broad significance that untangles the complex systems at the heart of the world we live in. </p> <p class="button-contain"> <a class="button button-default" href="/complexsystems/s/submit-now"> Get Started </a> </p> </div> <!-- opens in siteMenuCalloutDescription --> </div> </div> </li> <li class="menu-section-header has-dropdown " id="about"> <span class="menu-section-header-title"> About </span> <ul class="menu-section dropdown " id="about-dropdown-list"> <li> <a href="/complexsystems/s/journal-information" >Journal Information</a> </li> <li> <a href="/complexsystems/s/editors-in-chief" >Editors-in-Chief</a> </li> <li> <a href="/complexsystems/s/editorial-board" >Editorial Board</a> </li> <li> <a href="/complexsystems/s/publishing-information" >Publishing Information</a> </li> <li> <a href="https://plos.org/publication-fees" >Publication Fees</a> </li> <li> <a href="https://plos.org/press-and-media" >Press and Media</a> </li> <li> <a href="/complexsystems/s/contact" >Contact</a> </li> </ul> </li> <li class="menu-section-header ignore-top-bar-li-style"> <a href="/complexsystems/search?sortOrder=DATE_NEWEST_FIRST&filterStartDate=2021-10-01&filterJournals=PLOSComplexSystems&q=&resultsPerPage=60">Browse</a> </li> <script src="/resource/js/vendor/jquery.hoverIntent.js" type="text/javascript"></script> <script src="/resource/js/components/menu_drop.js" type="text/javascript"></script> <script src="/resource/js/components/hover_delay.js" type="text/javascript"></script> <li id="navsearch" class="head-search"> <form name="searchForm" action="/complexsystems/search" method="get"> <fieldset> <legend>Search</legend> <label for="search">Search</label> <div class="search-contain"> <input id="search" type="text" name="q" placeholder="SEARCH" required/> <button id="headerSearchButton" type="submit" aria-label="Submit search"> <i title="Submit search" class="search-icon"></i> </button> </div> </fieldset> <input type="hidden" name="filterJournals" value="PLOSComplexSystems"/> </form> <a id="advSearch" href="/complexsystems/search"> advanced search </a> <script src="/resource/js/components/placeholder_style.js" type="text/javascript"></script> </li> </ul> </section> </nav> </div> </header> <main id="main-content"> <div class="set-grid"> <header class="title-block"> <script src="/resource/js/components/signposts.js" type="text/javascript"></script> <ul id="almSignposts" class="signposts"> <li id="loadingMetrics"> <p>Loading metrics</p> </li> </ul> <script type="text/template" id="signpostsGeneralErrorTemplate"> <li id="metricsError">Article metrics are unavailable at this time. Please try again later.</li> </script> <script type="text/template" id="signpostsNewArticleErrorTemplate"> <li></li><li></li><li id="tooSoon">Article metrics are unavailable for recently published articles.</li> </script> <script type="text/template" id="signpostsTemplate"> <li id="almSaves"> <%= s.numberFormat(saveCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#savedHeader">Save</a> <p class="saves-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#savedHeader">Total Mendeley and Citeulike bookmarks.</a></p> </div> </li> <li id="almCitations"> <%= s.numberFormat(citationCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#citedHeader">Citation</a> <p class="citations-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#citedHeader">Paper's citation count computed by Dimensions.</a></p> </div> </li> <li id="almViews"> <%= s.numberFormat(viewCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#viewedHeader">View</a> <p class="views-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#viewedHeader">PLOS views and downloads.</a></p> </div> </li> <li id="almShares"> <%= s.numberFormat(shareCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#discussedHeader">Share</a> <p class="shares-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017#discussedHeader">Sum of Facebook, Twitter, Reddit and Wikipedia activity.</a></p> </div> </li> </script> <div class="article-meta"> <div class="classifications"> <p class="license-short" id="licenseShort">Open Access</p> <p class="peer-reviewed" id="peerReviewed">Peer-reviewed</p> <div class="article-type" > <p class="type-article" id="artType">Research Article</p> </div> </div> </div> <div class="article-title-etc"> <div class="title-authors"> <h1 id="artTitle"><?xml version="1.0" encoding="UTF-8"?>Synergistic integration of fragmented transportation networks: When do networks (not) synergize?</h1> <ul class="author-list clearfix" data-js-tooltip="tooltip_container" id="author-list"> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="0" class="author-name" > Takahiro Ezaki <span class="email"> </span>,</a> <div id="author-meta-0" class="author-info" data-js-tooltip="tooltip_target"> <p class="roles" id="authRoles"> <span class="type">Roles</span> Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Visualization, Writing – original draft, Writing – review & editing </p> <p id="authCorresponding-0"> <span class="email">* E-mail:</span> <a href="mailto:tkezaki@g.ecc.u-tokyo.ac.jp">tkezaki@g.ecc.u-tokyo.ac.jp</a></p> <p id="authAffiliations-0"><span class="type">Affiliation</span> Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan </p> <div> <p class="orcid" id="authOrcid-0"> <span> <a id="connect-orcid-link" href="https://orcid.org/0000-0003-4175-3028" target="_blank" title="ORCID Registry"> <img id="orcid-id-logo" src="/resource/img/orcid_16x16.png" width="16" height="16" alt="ORCID logo"/> https://orcid.org/0000-0003-4175-3028 </a> </span> </p> </div> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose0"> ⨯ </a> </div> </li> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="1" class="author-name" > Naoto Imura,</a> <div id="author-meta-1" class="author-info" data-js-tooltip="tooltip_target"> <p class="roles" id="authRoles"> <span class="type">Roles</span> Project administration, Supervision, Writing – review & editing </p> <p id="authAffiliations-1"><span class="type">Affiliation</span> Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan </p> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose1"> ⨯ </a> </div> </li> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="2" class="author-name" > Katsuhiro Nishinari</a> <div id="author-meta-2" class="author-info" data-js-tooltip="tooltip_target"> <p class="roles" id="authRoles"> <span class="type">Roles</span> Project administration, Supervision, Writing – review & editing </p> <p id="authAffiliations-2"><span class="type">Affiliations</span> Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan, Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan </p> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose2"> ⨯ </a> </div> </li> </ul> <script src="/resource/js/components/tooltip.js" type="text/javascript"></script> </div> <div id="floatTitleTop" data-js-floater="title_author" class="float-title" role="presentation"> <div class="set-grid"> <div class="float-title-inner"> <h1><?xml version="1.0" encoding="UTF-8"?>Synergistic integration of fragmented transportation networks: When do networks (not) synergize?</h1> <ul id="floatAuthorList" data-js-floater="floated_authors"> <li data-float-index="1">Takahiro Ezaki, </li> <li data-float-index="2">Naoto Imura, </li> <li data-float-index="3">Katsuhiro Nishinari </li> </ul> </div> <div class="logo-close" id="titleTopCloser"> <img src="/resource/img/logo-plos.png" style="height: 2em" alt="PLOS" /> <div class="close-floater" title="close">x</div> </div> </div> </div> <ul class="date-doi"> <li id="artPubDate">Published: November 5, 2024</li> <li id="artDoi"> <a href="https://doi.org/10.1371/journal.pcsy.0000017">https://doi.org/10.1371/journal.pcsy.0000017</a> </li> <li class="flex-spacer"></li> </ul> </div> <div> </div> </header> <section class="article-body"> <ul class="article-tabs"> <li class="tab-title active" id="tabArticle"> <a href="/complexsystems/article?id=10.1371/journal.pcsy.0000017" class="article-tab-1">Article</a> </li> <li class="tab-title " id="tabAuthors"> <a href="/complexsystems/article/authors?id=10.1371/journal.pcsy.0000017" class="article-tab-2">Authors</a> </li> <li class="tab-title " id="tabMetrics"> <a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000017" class="article-tab-3">Metrics</a> </li> <li class="tab-title " id="tabComments"> <a href="/complexsystems/article/comments?id=10.1371/journal.pcsy.0000017" class="article-tab-4">Comments</a> </li> <li class="tab-title" id="tabRelated"> <a class="article-tab-5" id="tabRelated-link">Media Coverage</a> <script>$(document).ready(function() { $.getMediaLink("10.1371/journal.pcsy.0000017").then(function (url) { $("#tabRelated-link").attr("href", url) } ) })</script> </li> </ul> <div class="article-container"> <div id="nav-article"> <ul class="nav-secondary"> <li class="nav-comments" id="nav-comments"> <a href="article/comments?id=10.1371/journal.pcsy.0000017">Reader Comments</a> </li> <li id="nav-figures"><a href="#" data-doi="10.1371/journal.pcsy.0000017">Figures</a></li> </ul> <div id="nav-data-linking" data-data-url=""> </div> </div> <script src="/resource/js/components/scroll.js" type="text/javascript"></script> <script src="/resource/js/components/nav_builder.js" type="text/javascript"></script> <script src="/resource/js/components/floating_nav.js" type="text/javascript"></script> <div id="figure-lightbox-container"></div> <script id="figure-lightbox-template" type="text/template"> <div id="figure-lightbox" class="reveal-modal full" data-reveal aria-hidden="true" role="dialog"> <div class="lb-header"> <h1 id="lb-title"><%= articleTitle %></h1> <div id="lb-authors"> <span>Takahiro Ezaki</span> <span>Naoto Imura</span> <span>Katsuhiro Nishinari</span> </div> <div class="lb-close" title="close"> </div> </div> <div class="img-container"> <div class="loader"> <i class="fa-spinner"></i> </div> <img class="main-lightbox-image" src=""/> <aside id="figures-list"> <% figureList.each(function (ix, figure) { %> <div class="change-img" data-doi="<%= figure.getAttribute('data-doi') %>"> <img class="aside-figure" src="/complexsystems/article/figure/image?size=inline&id=<%= figure.getAttribute('data-doi') %>" /> </div> <% }) %> <div class="dummy-figure"> </div> </aside> </div> <div id="lightbox-footer"> <div id="btns-container" class="lightbox-row <% if(figureList.length <= 1) { print('one-figure-only') } %>"> <div class="fig-btns-container reset-zoom-wrapper left"> <span class="fig-btn reset-zoom-btn">Reset zoom</span> </div> <div class="zoom-slider-container"> <div class="range-slider-container"> <span id="lb-zoom-min"></span> <div class="range-slider round" data-slider data-options="start: 20; end: 200; initial: 20;"> <span class="range-slider-handle" role="slider" tabindex="0"></span> <span class="range-slider-active-segment"></span> <input type="hidden"> </div> <span id="lb-zoom-max"></span> </div> </div> <% if(figureList.length > 1) { %> <div class="fig-btns-container"> <span class="fig-btn all-fig-btn"><i class="icon icon-all"></i> All Figures</span> <span class="fig-btn next-fig-btn"><i class="icon icon-next"></i> Next</span> <span class="fig-btn prev-fig-btn"><i class="icon icon-prev"></i> Previous</span> </div> <% } %> </div> <div id="image-context"> </div> </div> </div> </script> <script id="image-context-template" type="text/template"> <div class="footer-text"> <div id="figure-description-wrapper"> <div id="view-more-wrapper" style="<% descriptionExpanded? print('display:none;') : '' %>"> <span id="figure-title"><%= title %></span> <p id="figure-description"> <%= description %> </p> <span id="view-more">show more<i class="icon-arrow-right"></i></span> </div> <div id="view-less-wrapper" style="<% descriptionExpanded? print('display:inline-block;') : '' %>" > <span id="figure-title"><%= title %></span> <p id="full-figure-description"> <%= description %> <span id="view-less">show less<i class="icon-arrow-left"></i></span> </p> </div> </div> </div> <div id="show-context-container"> <a class="btn show-context" href="<%= showInContext(strippedDoi) %>">Show in Context</a> </div> <div id="download-buttons"> <h3>Download:</h3> <div class="item"> <a href="/complexsystems/article/figure/image?size=original&download=&id=<%= doi %>" title="original image"> <span class="download-btn">TIFF</span> </a> <span class="file-size"><%= fileSizes.original %></span> </div> <div class="item"> <a href="/complexsystems/article/figure/image?size=large&download=&id=<%= doi %>" title="large image"> <span class="download-btn">PNG</span> </a> <span class="file-size"><%= fileSizes.large %></span> </div> <div class="item"> <a href="/complexsystems/article/figure/powerpoint?id=<%= doi %>" title="PowerPoint slide"> <span class="download-btn">PPT</span> </a> </div> </div> </script> <div class="article-content"> <div id="figure-carousel-section"> <h2>Figures</h2> <div id="figure-carousel"> <div class="carousel-wrapper"> <div class="slider"> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g001"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g001" loading="lazy" alt="Fig 1" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g002"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g002" loading="lazy" alt="Fig 2" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g003"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g003" loading="lazy" alt="Fig 3" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g004"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g004" loading="lazy" alt="Fig 4" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g005"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g005" loading="lazy" alt="Fig 5" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000017.g006"> <img src="/complexsystems/article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g006" loading="lazy" alt="Fig 6" /> </div> </div> </div> <div class="carousel-control"> <span class="button previous"></span> <span class="button next"></span> </div> <div class="carousel-page-buttons"> </div> </div> </div> <script src="/resource/js/vendor/jquery.touchswipe.js" type="text/javascript"></script> <script src="/resource/js/components/figure_carousel.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.dotdotdot.js" type="text/javascript"></script> <div class="article-text" id="artText"> <div xmlns:plos="http://plos.org" class="abstract toc-section abstract-type-"><a id="abstract0" name="abstract0" data-toc="abstract0" class="link-target" title="Abstract"></a><h2>Abstract</h2><div class="abstract-content"><a id="article1.front1.article-meta1.abstract1.p1" name="article1.front1.article-meta1.abstract1.p1" class="link-target"></a><p>The transportation of information, goods, people, and other entities inevitably experiences fluctuations in demand and supply, which results in the underutilization of certain links within a transportation network while other links are fully utilized and unable to accommodate any additional demand. A promising strategy for leveraging these links is the collaborative integration of fragmented transportation networks to facilitate access between isolated nodes. We present a novel analytical framework for examining the conditions under which such network integration would enhance the overall transportation efficiency. We conducted comprehensive numerical experiments to investigate the influence of the network structure on the synergistic effects of network integration with a focus on the link survival ratio and dissimilarity between networks. The results showed that networks comprising nodes with relatively uniform importance benefit significantly from network integration whereas core–periphery networks are less likely to benefit. Based on our findings, we propose an indicator for predicting the potential for synergistic effects that is related to the growth rate of the giant component. This study contributes understanding of transportation network dynamics and offers practical insights for optimizing network integration strategies to leverage underutilized capacities and improve various types of transportation systems.</p> </div></div><div xmlns:plos="http://plos.org" class="abstract toc-section abstract-type-summary"><a id="abstract1" name="abstract1" data-toc="abstract1" class="link-target" title="Author summary"></a> <h2>Author summary</h2> <div class="abstract-content"><a id="article1.front1.article-meta1.abstract2.p1" name="article1.front1.article-meta1.abstract2.p1" class="link-target"></a><p>We investigated the effects of integrating two transportation networks to leverage the excess transportation capacity left behind by fluctuations in demand or fragmented by disasters. We developed an analytical framework and conducted numerical experiments to identify conditions under which network integration is beneficial. Networks with uniformly important nodes benefit significantly while core–periphery networks benefit less. Based on our results, we propose an indicator for predicting the synergistic effect. This paper offers practical strategies for integrating transportation networks to improve performance amid fluctuating demands and provides insights for stakeholders in logistics, supply chain, urban planning, and infrastructure developments.</p> </div></div> <div xmlns:plos="http://plos.org" class="articleinfo"><p><strong>Citation: </strong>Ezaki T, Imura N, Nishinari K (2024) Synergistic integration of fragmented transportation networks: When do networks (not) synergize? PLOS Complex Syst 1(3): e0000017. https://doi.org/10.1371/journal.pcsy.0000017</p><p><strong>Editor: </strong>Gaoxi Xiao, Nanyang Technological University, SINGAPORE </p><p><strong>Received: </strong>May 4, 2024; <strong>Accepted: </strong>September 9, 2024; <strong>Published: </strong> November 5, 2024</p><p><strong>Copyright: </strong> © 2024 Ezaki et al. This is an open access article distributed under the terms of the <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</a>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</p><p><strong>Data Availability: </strong>All the data and information to replicate the results are shown in the article.</p><p><strong>Funding: </strong>This study was partially supported by Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research (KAKENHI; Grant No. 24H02203 to TE). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p><p><strong>Competing interests: </strong> The authors have no competing interests to disclose.</p></div> <div xmlns:plos="http://plos.org" id="section1" class="section toc-section"><a id="sec001" name="sec001" data-toc="sec001" class="link-target" title="Introduction"></a><h2>Introduction</h2><a id="article1.body1.sec1.p1" name="article1.body1.sec1.p1" class="link-target"></a><p>Transportation networks are systems that move information, goods, people, and other tangible or nontangible entities, which can be found in diverse sectors such as telecommunications, public transit, logistics, and power distribution. It is relatively rare for the capacity of transportation networks to be fully utilized due to fluctuations in demand and supply while most links are often fully utilized when the system operates under limited cost constraints [<a href="#pcsy.0000017.ref001" class="ref-tip">1</a>–<a href="#pcsy.0000017.ref003" class="ref-tip">3</a>]. In addition, temporary disruptions due to disasters or malfunctions [<a href="#pcsy.0000017.ref004" class="ref-tip">4</a>–<a href="#pcsy.0000017.ref006" class="ref-tip">6</a>] result in fragmented networks where the remaining capacity is underutilized.</p> <a id="article1.body1.sec1.p2" name="article1.body1.sec1.p2" class="link-target"></a><p>One strategy for leveraging these fragmented networks is to integrate them with other fragmented networks, which facilitates access to isolated nodes, by opening up new paths to meet demand. In the context of logistics, the integration of multiple delivery networks or modes of delivery to improve cost efficiency and reduce CO<sub>2</sub> emissions is a topic of active discussion [<a href="#pcsy.0000017.ref007" class="ref-tip">7</a>, <a href="#pcsy.0000017.ref008" class="ref-tip">8</a>]. Similarly, the arrangement of alternative transportation during service interruptions or periods of excessive demand in public transit systems [<a href="#pcsy.0000017.ref009" class="ref-tip">9</a>, <a href="#pcsy.0000017.ref010" class="ref-tip">10</a>] and the adaptive assignment of passengers to flights within airline alliances [<a href="#pcsy.0000017.ref011" class="ref-tip">11</a>, <a href="#pcsy.0000017.ref012" class="ref-tip">12</a>] can be considered forms of network integration. Thus, such an approach is gathering growing interest for the sustainable operation of various systems, but its theoretical foundations have not yet been fully established.</p> <a id="article1.body1.sec1.p3" name="article1.body1.sec1.p3" class="link-target"></a><p>The efficient design and control of transportation networks have been extensively studied in various domains. For instance, theoretical research on complex networks has focused on maximizing the overall flow [<a href="#pcsy.0000017.ref013" class="ref-tip">13</a>, <a href="#pcsy.0000017.ref014" class="ref-tip">14</a>], as well as optimizing redundancy [<a href="#pcsy.0000017.ref015" class="ref-tip">15</a>, <a href="#pcsy.0000017.ref016" class="ref-tip">16</a>] and critical links [<a href="#pcsy.0000017.ref017" class="ref-tip">17</a>–<a href="#pcsy.0000017.ref020" class="ref-tip">20</a>] for enhanced robustness. Other studies have explored the impacts and mechanisms of integrating multiple transportation networks [<a href="#pcsy.0000017.ref021" class="ref-tip">21</a>–<a href="#pcsy.0000017.ref025" class="ref-tip">25</a>]. Morris and Barthelemy [<a href="#pcsy.0000017.ref026" class="ref-tip">26</a>] found a nontrivial optimal coupling level of two networks to maximize their utility that depends on the source–sink distribution. Also, Li et al. [<a href="#pcsy.0000017.ref027" class="ref-tip">27</a>] showed that assortative coupling decreases the transportation capacity of multilayer networks. From a more practical perspective, other studies have focused on the transportation dynamics of empirical systems such as urban transportation networks [<a href="#pcsy.0000017.ref028" class="ref-tip">28</a>, <a href="#pcsy.0000017.ref029" class="ref-tip">29</a>] and airline multiplexity [<a href="#pcsy.0000017.ref011" class="ref-tip">11</a>, <a href="#pcsy.0000017.ref012" class="ref-tip">12</a>]. Another related research field is percolation theory, which has been widely used to study the connectivity and fragmentation of networks [<a href="#pcsy.0000017.ref030" class="ref-tip">30</a>–<a href="#pcsy.0000017.ref036" class="ref-tip">36</a>]. In the context of transportation networks, it has been used to explain their dynamics [<a href="#pcsy.0000017.ref037" class="ref-tip">37</a>–<a href="#pcsy.0000017.ref041" class="ref-tip">41</a>]. Also, the percolation on multilayer networks has been studied from theoretical perspectives [<a href="#pcsy.0000017.ref033" class="ref-tip">33</a>, <a href="#pcsy.0000017.ref034" class="ref-tip">34</a>].</p> <a id="article1.body1.sec1.p4" name="article1.body1.sec1.p4" class="link-target"></a><p>Despite the substantial contributions of the above studies, they do not provide a satisfactory answer to the following question: What types of transportation networks demonstrate a synergistic effect from integration? There are several reasons for this. First, the above studies did not focus on the case where each layer of the integrated networks is fragmented (i.e., highly congested scenarios where most of the transportation capacity is already utilized), so they provide limited understanding of the mechanisms that give rise to synergistic effects, such as the recovery of disconnected paths. Second, they mostly focused on a specific network structure or small number of network structures such as Erdős–Rényi, Barabási–Albert (BA), and empirical networks [<a href="#pcsy.0000017.ref025" class="ref-tip">25</a>], so they do not clarify which types of network structures lead to a synergistic effect when integrated. Finally, percolation theory can be used to roughly estimate the critical link density for emergence of the giant component, but its contributions to transportation dynamics are not straightforward.</p> <a id="article1.body1.sec1.p5" name="article1.body1.sec1.p5" class="link-target"></a><p>In this study, we developed a novel analytical framework and conducted extensive numerical experiments to explore the synergistic effects of integrating two fragmented networks. Our contributions are two-fold. First, we focused on integrating fragmented networks with similar network structures because this scenario is expected to yield the least synergistic effects, which allowed us to develop an indicator for estimating the magnitude of the synergistic effect that is related to the growth of the giant component. Then, we confirmed that integrating networks with different structures yields substantial synergistic effects.</p> </div> <div xmlns:plos="http://plos.org" id="section2" class="section toc-section"><a id="sec002" name="sec002" data-toc="sec002" class="link-target" title="Results"></a><h2>Results</h2> <div id="section1" class="section toc-section"><a id="sec003" name="sec003" class="link-target" title="Integration of networks with similar structures"></a> <h3>Integration of networks with similar structures</h3> <a id="article1.body1.sec2.sec1.p1" name="article1.body1.sec2.sec1.p1" class="link-target"></a><p>As shown in <a href="#pcsy-0000017-g001">Fig 1</a>, we generated two fragmented networks from a single network by randomly preserving the same fraction of links (i.e., link survival ratio, denoted by <em>r</em>), while ensuring that a specified fraction of non-overlapping links (i.e., dissimilarity, denoted by <em>d</em>) was controlled. We then overlaid these networks and randomly selected one node in each as the source and sink while avoiding overlapping. This allowed us to simulate the integration of two fragmented networks with the same underlying network structure. We then computed the maximum flow [<a href="#pcsy.0000017.ref042" class="ref-tip">42</a>, <a href="#pcsy.0000017.ref043" class="ref-tip">43</a>] between the source and sink nodes through the links of the integrated network, which we used as a measure of the transportation capability [<a href="#pcsy.0000017.ref044" class="ref-tip">44</a>–<a href="#pcsy.0000017.ref046" class="ref-tip">46</a>].</p> <a class="link-target" id="pcsy-0000017-g001" name="pcsy-0000017-g001"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g001"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g001" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g001"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g001" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g001"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g001"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g001"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 1. </span> Integration of fragmented transportation networks with similar structures to evaluate the synergistic effect.</div><p class="caption_target"><a id="article1.body1.sec2.sec1.fig1.caption1.p1" name="article1.body1.sec2.sec1.fig1.caption1.p1" class="link-target"></a><p>(A) Schematic of the experimental procedure. (B) Example of the integration of two fragmented networks generated from a grid network.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g001"> https://doi.org/10.1371/journal.pcsy.0000017.g001</a></p></div><a id="article1.body1.sec2.sec1.p2" name="article1.body1.sec2.sec1.p2" class="link-target"></a><p> <a href="#pcsy-0000017-g002">Fig 2A</a> shows the maximum flows of the integrated networks with different link survival ratios and dissimilarities. The integrated network with <em>d</em> = 0 (i.e., two fragmented networks were identical) demonstrated no synergistic effect (i.e., the maximum flow of the integrated network was equal to the sum of the maximum flows of the two fragmented networks), and the average maximum flow of the integrated network coincided with the sum of the maximum flows calculated separately for the two fragmented networks for any values of <em>d</em>. Therefore, we evaluated the presence of a synergistic effects by comparing the results of the integrated networks with those obtained under the condition <em>d</em> = 0. For a majority of network structures considered in this study (i.e., grid, random, BA, and power), a substantial synergistic effect was observed where the maximum flow increased with increasing <em>d</em>. In some cases, the synergistic effect was substantial even when <em>d</em> was not excessively large (e.g., <em>d</em> = 0.5). Conversely, for the social and air transportation network, the maximum flow exhibited only a minor dependence on <em>d</em>.</p> <a class="link-target" id="pcsy-0000017-g002" name="pcsy-0000017-g002"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g002"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g002" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g002"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g002" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g002"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g002"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g002"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 2. </span> </div><p class="caption_target"><a id="article1.body1.sec2.sec1.fig2.caption1.p1" name="article1.body1.sec2.sec1.fig2.caption1.p1" class="link-target"></a><p>Synergistic effect in different network types: (A) Maximum flow as a function of the link survival ratio <em>r</em> and dissimilarity <em>d</em>. (B) Size of the giant component. We evaluated 0 ≤ <em>r</em> ≤ 0.05 for the social network because it had a much greater link density than the other networks. (C) Propensity of each node to be included in the giant component under controlled conditions. The error bars in the graphs represent the standard deviation computed based on 1000 samples.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g002"> https://doi.org/10.1371/journal.pcsy.0000017.g002</a></p></div><a id="article1.body1.sec2.sec1.p3" name="article1.body1.sec2.sec1.p3" class="link-target"></a><p>We investigated whether this behavior could be explained by the size of the giant component (i.e., the number of nodes in the largest connected component) of the integrated networks. In general, the majority of nodes became connected once the link survival ratio <em>r</em> exceeded a threshold value. Because nonzero flow can occur within the same connected component, the behavior of the giant component seems a likely indicator of the utility of the integrated network. However, <a href="#pcsy-0000017-g002">Fig 2B</a> shows that the growth pattern of the giant component was not directly reflected by an increase in the maximum flow. More importantly, for networks with no synergistic effect, the size of the giant component increased with increasing <em>d</em>. In other words, the size of the giant component of the integrated network could not simply explain the synergistic effect on its own. We also confirmed that the small-worldness and link density of the network did not significantly influence the synergy (see Fig A1 in <a href="#pcsy.0000017.s001">S1 Appendix</a>).</p> <a id="article1.body1.sec2.sec1.p4" name="article1.body1.sec2.sec1.p4" class="link-target"></a><p>Next, we analyzed the propensity of each node to be included in the giant component. <a href="#pcsy-0000017-g002">Fig 2C</a> shows the distributions of the propensity of each node to be included in the giant component under controlled conditions (see <a href="#sec008">Materials and methods</a> for details). Note that nodes with a higher propensity are more likely to be part of the giant component, indicating their centrality within the network, while those with a lower propensity are typically situated on the periphery. Networks that exhibited a synergistic effect generally had a unimodal distribution of nodes. In contrast, the social and air transportation networks demonstrated a bimodal distribution of core nodes with a high propensity and peripheral nodes with a low propensity. We also performed <em>k</em>-shell decomposition analysis [<a href="#pcsy.0000017.ref047" class="ref-tip">47</a>, <a href="#pcsy.0000017.ref048" class="ref-tip">48</a>] and found that the social and air transportation networks had prominent core–periphery structure (see Fig A2 in <a href="#pcsy.0000017.s001">S1 Appendix</a>). Thus, we hypothesized that a core–periphery network structure could be a key factor that determines the absence of a synergistic effect.</p> </div> <div id="section2" class="section toc-section"><a id="sec004" name="sec004" class="link-target" title="Integration of core–periphery networks"></a> <h3>Integration of core–periphery networks</h3> <a id="article1.body1.sec2.sec2.p1" name="article1.body1.sec2.sec2.p1" class="link-target"></a><p>To validate the above hypothesis, we employed a generative model to allow for continuous interpolation between random networks and core–periphery networks (by a parameter <em>γ</em>) and between hub–spoke and layered types of core–periphery networks (by a parameter <em>δ</em>; see also <a href="#sec008">Materials and methods</a>) [<a href="#pcsy.0000017.ref049" class="ref-tip">49</a>], and investigated the maximum flow of the integrated networks. <a href="#pcsy-0000017-g003">Fig 3A</a> and Fig A1 in <a href="#pcsy.0000017.s001">S1 Appendix</a> show that increasing the degree of the core–periphery structure (<em>γ</em>), diminished the synergistic effect. We can also confirm that the size of the giant component depended on <em>d</em> (<a href="#pcsy-0000017-g003">Fig 3B</a>) even when the distribution of the propensity of each node to be included in the giant component was strongly separated, where the larger peak consisted of core nodes (<a href="#pcsy-0000017-g003">Fig 3C</a>). To gain a deeper understanding of this mechanism, we analyzed fragmented core–periphery networks (i.e., before integration) with strong separation between core and peripheral nodes (<em>γ</em> = 10). <a href="#pcsy-0000017-g003">Fig 3D and 3E</a> show the results, which we classified based on whether the source and sink nodes were assigned to core nodes (which were predefined in the model). When both the source and sink nodes were assigned to core nodes, they were highly likely to be included in the giant component (i.e., a nonzero maximum flow existed) even at low <em>r</em>. Moreover, the resulting maximum flow was substantially larger than that obtained when at least one of the source or sink nodes was assigned to a peripheral node.</p> <a class="link-target" id="pcsy-0000017-g003" name="pcsy-0000017-g003"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g003"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g003" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g003"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g003" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g003"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g003"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g003"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 3. </span> </div><p class="caption_target"><a id="article1.body1.sec2.sec2.fig1.caption1.p1" name="article1.body1.sec2.sec2.fig1.caption1.p1" class="link-target"></a><p>Synergistic effect in integrated networks according to the degree of the core–periphery structure (<em>γ</em>): (A) Maximum flow, (B) size of giant component, and (C) distribution of the propensity of each node to be included in the giant component. We set <em>δ</em> = 0 (see Fig A3 in <a href="#pcsy.0000017.s001">S1 Appendix</a> for the results for <em>δ</em> = 1). Network statistics for fragmented networks (<em>δ</em> = 0, <em>γ</em> = 10): (D) probability of the source and sink nodes being included in the giant component and (E) maximum flow depending on whether the source and sink nodes are core and/or peripheral nodes. The error bars represent the standard deviation computed based on 1000 samples.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g003"> https://doi.org/10.1371/journal.pcsy.0000017.g003</a></p></div><a id="article1.body1.sec2.sec2.p2" name="article1.body1.sec2.sec2.p2" class="link-target"></a><p>In other words, the expected maximum flow was determined by the maximum flow between nodes within the core, and these nodes had a high probability of being connected even at low <em>r</em>. The newly accessible nodes from network integration, which was the origin of the synergistic effect, were mostly on the periphery. Consequently, the additional transportation capacity gained from these nodes was relatively small.</p> <a id="article1.body1.sec2.sec2.p3" name="article1.body1.sec2.sec2.p3" class="link-target"></a><p>Consistent with this observation, we found that the synergistic effect was decreased when we increased the number of core nodes (see Fig A1 in <a href="#pcsy.0000017.s001">S1 Appendix</a>).</p> </div> <div id="section3" class="section toc-section"><a id="sec005" name="sec005" class="link-target" title="Predicting the magnitude of the synergistic effect"></a> <h3>Predicting the magnitude of the synergistic effect</h3> <a id="article1.body1.sec2.sec3.p1" name="article1.body1.sec2.sec3.p1" class="link-target"></a><p>Next, we attempted to predict the magnitude of the synergistic effects based on the network structure. For core–periphery networks, the core nodes became connected abruptly at a relatively low <em>r</em> while the peripheral nodes gradually became connected with increasing <em>r</em> (<a href="#pcsy-0000017-g003">Fig 3D</a>). Conversely, for homogeneous networks, the majority of nodes became connected abruptly when <em>r</em> reached a certain threshold (<a href="#pcsy-0000017-g002">Fig 2B</a>). In the latter case, the increase in links due to network integration should result in a larger synergistic effect because it enables access to many new nodes. Therefore, we developed an indicator of the synergistic effect obtained through network integration by quantifying the “cost” (i.e., additional link survival ratio required) to increase the size of the giant component. <a href="#pcsy-0000017-g004">Fig 4</a> shows the cost normalized by the link survival ratio for a giant component size of half the network (see <a href="#sec008">Materials and methods</a> for details).</p> <a class="link-target" id="pcsy-0000017-g004" name="pcsy-0000017-g004"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g004"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g004" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g004"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g004" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g004"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g004"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g004"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 4. </span> Magnitude of the synergistic effect of network integration vs the cost of increasing the giant component for different network structures with different numbers of nodes (<em>N</em>) and links (<em>L</em>).</div><p class="caption_target"></p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g004"> https://doi.org/10.1371/journal.pcsy.0000017.g004</a></p></div><a id="article1.body1.sec2.sec3.p2" name="article1.body1.sec2.sec3.p2" class="link-target"></a><p>Despite its simplicity, the indicator well explained the potential synergistic effect of a vast majority of networks tested, which included not only different network structures but also different numbers of nodes and link densities.</p> </div> <div id="section4" class="section toc-section"><a id="sec006" name="sec006" class="link-target" title="Integration of networks with different structures"></a> <h3>Integration of networks with different structures</h3> <a id="article1.body1.sec2.sec4.p1" name="article1.body1.sec2.sec4.p1" class="link-target"></a><p>The previous results were focused on the effects of integrating networks with the same underlying structure. Here, we report the results concerning the integration of fragmented networks with different underlying network structures.</p> <a id="article1.body1.sec2.sec4.p2" name="article1.body1.sec2.sec4.p2" class="link-target"></a><p>First, we compared the sum of the maximum flows of the individual fragmented networks before integration, against the maximum flow of the integrated network. We integrated different pairs of the networks in <a href="#pcsy-0000017-g002">Fig 2</a>, where the labels of the nodes for integration were randomly assigned. When the networks with different numbers of nodes were integrated, the larger network had nodes that did not correspond to any nodes in the smaller network. The source and sink nodes were selected from the nodes common to both networks. Because different network structures were being integrated, the dissimilarity <em>d</em> could not be defined in a manner consistent with that used in the previous experiments. <a href="#pcsy-0000017-g005">Fig 5</a> shows that network integration resulted in a substantial increase in the maximum flow for all cases. The synergistic effect was particularly prominent in cases involving the grid or power networks.</p> <a class="link-target" id="pcsy-0000017-g005" name="pcsy-0000017-g005"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g005"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g005" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g005"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g005" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g005"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g005"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g005"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 5. </span> Synergistic effect of integrating networks with different structures.</div><p class="caption_target"><a id="article1.body1.sec2.sec4.fig1.caption1.p1" name="article1.body1.sec2.sec4.fig1.caption1.p1" class="link-target"></a><p>Two fragmented networks were integrated with the same link survival ratio <em>r</em> except for the social network. In this case, <em>r</em>/10 was used given its particularly high link density. The shaded area shows the separate maximum flow for each fragmented network. The error bars represent the standard deviation computed based on 1000 samples.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g005"> https://doi.org/10.1371/journal.pcsy.0000017.g005</a></p></div><a id="article1.body1.sec2.sec4.p3" name="article1.body1.sec2.sec4.p3" class="link-target"></a><p>Finally, we investigated the effects of integrating networks with different core–periphery structures. Networks with the same number of nodes were integrated without randomization to control the position of core nodes. We considered three cases: two networks with the same core–periphery structure, a core–periphery network and random network, and two core–periphery networks with different (i.e., non-overlapping) core nodes. <a href="#pcsy-0000017-g006">Fig 6</a> shows that network integration had a substantial synergistic effect in terms of the maximum flow. However, the dominance of the core–periphery network limited the extent of the synergistic effect when integrated with random network structures. These results indicate that a core–periphery network may need to be integrated with another network having a complementary core–periphery structure to achieve the desired synergistic effect.</p> <a class="link-target" id="pcsy-0000017-g006" name="pcsy-0000017-g006"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000017.g006"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&id=10.1371/journal.pcsy.0000017.g006" data-doi="10.1371/journal.pcsy.0000017" data-uri="10.1371/journal.pcsy.0000017.g006"><img src="article/figure/image?size=inline&id=10.1371/journal.pcsy.0000017.g006" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000017.g006"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&size=large&id=10.1371/journal.pcsy.0000017.g006"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&size=original&id=10.1371/journal.pcsy.0000017.g006"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 6. </span> Synergistic effect of integrating networks with different core–periphery structures.</div><p class="caption_target"><a id="article1.body1.sec2.sec4.fig2.caption1.p1" name="article1.body1.sec2.sec4.fig2.caption1.p1" class="link-target"></a><p>(A) Types of integrated networks. CP1 and CP2 were core–periphery networks with different core nodes (<em>δ</em> = 0, <em>γ</em> = 10). The random network was generated by setting <em>δ</em> = 0 and <em>γ</em> = 0. (B) Maximum flow in the integrated networks. (C) Giant component size in the integrated networks. (D) Distribution of the propensity of each node to be in the giant component. The error bars represent the standard deviation computed based on 1000 samples.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000017.g006"> https://doi.org/10.1371/journal.pcsy.0000017.g006</a></p></div></div> </div> <div xmlns:plos="http://plos.org" id="section3" class="section toc-section"><a id="sec007" name="sec007" data-toc="sec007" class="link-target" title="Discussions and conclusions"></a><h2>Discussions and conclusions</h2><a id="article1.body1.sec3.p1" name="article1.body1.sec3.p1" class="link-target"></a><p>We developed an analytical framework for evaluating the synergistic effect of integrating fragmented transportation networks and obtained the following conclusions: (i) Substantial synergistic effect was observed from integrating a wide range of network structures but not in networks with the same core–periphery structure. (ii) The magnitude of the synergistic effect could be explained to some extent by observing the growth rate of the giant component. (iii) A synergistic effect was observed when fragmented networks with different core–periphery structures were integrated.</p> <a id="article1.body1.sec3.p2" name="article1.body1.sec3.p2" class="link-target"></a><p>Our results have various theoretical and practical implications. From a theoretical perspective, the established relationship between the cost of the additional link survival ratio to increase the giant component and the expected magnitude of the synergistic effect (<a href="#pcsy-0000017-g004">Fig 4</a>) may suggest an important logical link between percolation theory and the maximum flow problem. Because the integration of two networks effectively increases the number of links and thus increases the size of the giant component, it is not surprising that there is some relationship between them. However, the fact that the maximum synergistic effect which is achieved for various link survival ratios is well explained only by the feature of the giant component in the vicinity of <em>r</em> = <em>r</em><sub>0.5</sub> is nontrivial. We selected the link survival ratio when the giant component was half the size of the total network (<em>r</em><sub>0.5</sub>) as the standard value because of the naive intuition that this point typically represents the percolation behavior in most networks. However, developing a rigorous theoretical interpretation of this observation as well as more refined metrics remains an open challenge.</p> <a id="article1.body1.sec3.p3" name="article1.body1.sec3.p3" class="link-target"></a><p>From a practical perspective, many airline networks [<a href="#pcsy.0000017.ref050" class="ref-tip">50</a>, <a href="#pcsy.0000017.ref051" class="ref-tip">51</a>] and logistics networks [<a href="#pcsy.0000017.ref052" class="ref-tip">52</a>, <a href="#pcsy.0000017.ref053" class="ref-tip">53</a>] have a core–periphery structure. For such networks, collaboration between different transportation modes (e.g., air and sea) rather than within the same transportation mode can potentially lead to a larger synergistic effect. Additionally, for spatial networks such as road networks and power grids that are less likely to have a strong core–periphery structure, a synergistic effect can generally be expected with network integration. However, it is important to note that the specific applicability of these findings may vary depending on the particular constraints and objectives of infrastructural optimization.</p> <a id="article1.body1.sec3.p4" name="article1.body1.sec3.p4" class="link-target"></a><p>In this study, we considered a uniform random and independent fragmentation process across two networks. However, these conditions may not consistently apply in real-world situations. First, traffic demands are often not randomly distributed [<a href="#pcsy.0000017.ref054" class="ref-tip">54</a>, <a href="#pcsy.0000017.ref055" class="ref-tip">55</a>]. Second, the availability of each link is determined by the relationship between supply and demand, which leads to a trade-off with costs that varies according to the situation [<a href="#pcsy.0000017.ref056" class="ref-tip">56</a>, <a href="#pcsy.0000017.ref057" class="ref-tip">57</a>]. Third, networks with the same transportation mode may experience correlated demand, and the same links may be destroyed in cases of fragmentation due to disasters or damage. Even in such cases, the benefits of integrating networks with different structures are likely to remain valid. Incorporating these factors using real-world data [<a href="#pcsy.0000017.ref058" class="ref-tip">58</a>, <a href="#pcsy.0000017.ref059" class="ref-tip">59</a>] is a very important topic for future research. For such an analysis, more detailed considerations would be required, such as the conditions for overlapping nodes (e.g., stations or stops) across different modes, the development of methods to quantify the differences between network pairs of varying sizes, and criteria for realistic link failures.</p> <a id="article1.body1.sec3.p5" name="article1.body1.sec3.p5" class="link-target"></a><p>We used the expected maximum flow between two nodes to measure the performance of transportation networks. Because of the linearity of the maximum flow problem [<a href="#pcsy.0000017.ref043" class="ref-tip">43</a>], similar conclusions can be expected even when multiple sources and sinks are considered [<a href="#pcsy.0000017.ref060" class="ref-tip">60</a>], although congestion is likely to have marginal effects. Additionally, if various capacity values are assigned to each link and/or realistic origin–destination demands are considered, then the problem may become more complex and may exceed the scope of intuitive understanding. However, we can make some conjectures based on the findings of this study. If networks with different demands are integrated, the synergistic effect could be greater than that reported here because of the benefits of gaining access to new nodes and utilizing links that were previously unused in each network. In this case, the information gained in this study would still be useful. Also, in real-world networks, large transportation capacities are often allocated to critical links. In such cases, integrating networks with similar capacity distributions may yield a greater synergistic effect in leveraging high-capacity links than integrating networks with dissimilar capacity distributions. For example, integrating core–periphery networks with different cores may cause the links connecting the core to the periphery to become bottlenecks and prevent the full utilization of the higher capacity links. Thus, topological and capacity characteristics of the networks being integrated need to be considered. For such analysis, <em>k</em>-shell decomposition [<a href="#pcsy.0000017.ref047" class="ref-tip">47</a>, <a href="#pcsy.0000017.ref048" class="ref-tip">48</a>] would be useful to evaluate the size of effective cores in the integrated network.</p> <a id="article1.body1.sec3.p6" name="article1.body1.sec3.p6" class="link-target"></a><p>This study establishes a theoretical foundation for the integration of fragmented transportation networks. Our findings have a wide range of potential applications, spanning fields such as logistics, electric and water infrastructure, information and telecommunication networks, and public transit systems. Exploring these systems using real-world data will be a fascinating future endeavor.</p> </div> <div xmlns:plos="http://plos.org" id="section4" class="section toc-section"><a id="sec008" name="sec008" data-toc="sec008" class="link-target" title="Materials and methods"></a><h2>Materials and methods</h2> <div id="section1" class="section toc-section"><a id="sec009" name="sec009" class="link-target" title="Integration of networks with the same network structure"></a> <h3>Integration of networks with the same network structure</h3> <a id="article1.body1.sec4.sec1.p1" name="article1.body1.sec4.sec1.p1" class="link-target"></a><p>We investigated the change in transportation capacity due to network integration as follows (<a href="#pcsy-0000017-g001">Fig 1B</a>). We generated two fragmented networks by using the following procedure: (i) We prepared the network for analysis. (ii) We randomly preserved the number of links specified by the link survival ratio (0 ≤ <em>r</em> ≤ 0.5) and removed the remaining links to generate network 1. (iii) We randomly replaced a fraction of links with links removed in (ii) as specified by the dissimilarity (0 ≤ <em>d</em> ≤ 1) to generate network 2. In this way, networks 1 and 2 had the same <em>r</em> but a fraction <em>d</em> of links in different positions.</p> <a id="article1.body1.sec4.sec1.p2" name="article1.body1.sec4.sec1.p2" class="link-target"></a><p>We created an integrated network by superimposing the links of the two fragmented networks. If links were present at the same location, the transportation capacity was doubled. We measured the transportation capacity of network 1, network 2, and the integrated network by randomly selecting one source node and one sink node (commonly used in the three networks) and solving the maximum flow problem for each network. The maximum flow represents the maximum amount of flow that can be sent from the source to the sink through links in the network, which we calculated by using the <span class="monospace">maximum_flow()</span> function provided by the Python NetworkX library [<a href="#pcsy.0000017.ref061" class="ref-tip">61</a>]. This function is based on the Ford-Fulkerson method [<a href="#pcsy.0000017.ref042" class="ref-tip">42</a>, <a href="#pcsy.0000017.ref043" class="ref-tip">43</a>] and computes the maximum flow as follows: It iteratively searches for augmenting paths from the source to the sink in the residual graph, where each path represents a route along which additional flow can be sent. The algorithm increases the flow along these paths by the minimum capacity available on the path and updates the residual capacities accordingly. This process repeats until no more augmenting paths can be found, at which point the current flow represents the maximum flow in the network.</p> <a id="article1.body1.sec4.sec1.p3" name="article1.body1.sec4.sec1.p3" class="link-target"></a><p>Unless otherwise stated, we performed 1000 experimental runs for each condition (i.e., choice of network, link survival ratio <em>r</em>, and dissimilarity <em>d</em>), where each run involved generating the networks, selecting the sink and source nodes, and computing the maximum flow. We recorded the average and standard deviation of the maximum flow for each condition.</p> </div> <div id="section2" class="section toc-section"><a id="sec010" name="sec010" class="link-target" title="Analyzed networks"></a> <h3>Analyzed networks</h3> <a id="article1.body1.sec4.sec2.p1" name="article1.body1.sec4.sec2.p1" class="link-target"></a><p>We used the following undirected networks for the experiments, where the numbers of nodes and links were denoted by <em>N</em> and <em>L</em>, respectively. The results in Figs <a href="#pcsy-0000017-g002">2</a> and <a href="#pcsy-0000017-g005">5</a> were obtained under the conditions referred to as example cases. Each link was defined as having a transportation capacity of 1.</p> <div id="section1" class="section toc-section"><a id="sec011" name="sec011" class="link-target" title="Grid network"></a><h4>Grid network.</h4><a id="article1.body1.sec4.sec2.sec1.p1" name="article1.body1.sec4.sec2.sec1.p1" class="link-target"></a><p>The grid network was a square lattice with closed boundaries and a size of <em>l</em> × <em>l</em>. In addition to the example case of <em>l</em> = 20 (<em>N</em> = 400), we also considered the cases of <em>l</em> = 10, 32, 100.</p> </div> <div id="section2" class="section toc-section"><a id="sec012" name="sec012" class="link-target" title="Random network"></a><h4>Random network.</h4><a id="article1.body1.sec4.sec2.sec2.p1" name="article1.body1.sec4.sec2.sec2.p1" class="link-target"></a><p>The random networks were generated by randomly selecting <em>L</em> links without duplication from the list of <em>N</em>(<em>N</em> − 1)/2 possible pairs of nodes. In addition to the example case of <em>N</em> = 400, <em>L</em> = 800, we considered cases with <em>N</em> = 100, 1000, 10000 and <em>L</em> = 1600, 3200.</p> </div> <div id="section3" class="section toc-section"><a id="sec013" name="sec013" class="link-target" title="Barabási-Albert network"></a><h4>Barabási-Albert network.</h4><a id="article1.body1.sec4.sec2.sec3.p1" name="article1.body1.sec4.sec2.sec3.p1" class="link-target"></a><p>We used the Barabási-Albert network as representative of a network with scale-free properties [<a href="#pcsy.0000017.ref062" class="ref-tip">62</a>]. The number of links <em>m</em> to be added when a new node is introduced was set to 1. In addition to the example case of <em>N</em> = 400, we also considered the cases of <em>N</em> = 100, 1000, 10000. The BA network was generated by using the <span class="monospace">barabasi_albert_graph()</span> function provided by the Python NetworkX library [<a href="#pcsy.0000017.ref061" class="ref-tip">61</a>].</p> </div> <div id="section4" class="section toc-section"><a id="sec014" name="sec014" class="link-target" title="Empirical networks"></a><h4>Empirical networks.</h4><a id="article1.body1.sec4.sec2.sec4.p1" name="article1.body1.sec4.sec2.sec4.p1" class="link-target"></a><p>We considered three different empirical networks: a power grid, social network, and air transportation network [<a href="#pcsy.0000017.ref063" class="ref-tip">63</a>]. The power grid had a size of <em>N</em> = 494, <em>L</em> = 586; the social network had a size of <em>N</em> = 769, <em>L</em> = 1.7 × 10<sup>4</sup>; and the air transportation network had a size of <em>N</em> = 332, <em>L</em> = 2.1 × 10<sup>3</sup>.</p> </div> <div id="section5" class="section toc-section"><a id="sec015" name="sec015" class="link-target" title="Core–periphery network"></a><h4>Core–periphery network.</h4><a id="article1.body1.sec4.sec2.sec5.p1" name="article1.body1.sec4.sec2.sec5.p1" class="link-target"></a><p>We created core–periphery networks by using the generative model proposed by Gallagher <em>et al</em>. [<a href="#pcsy.0000017.ref049" class="ref-tip">49</a>]. The network was generated by a stochastic block model [<a href="#pcsy.0000017.ref064" class="ref-tip">64</a>, <a href="#pcsy.0000017.ref065" class="ref-tip">65</a>] with a block matrix: <a name="pcsy.0000017.e001" id="pcsy.0000017.e001" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&id=10.1371/journal.pcsy.0000017.e001" loading="lazy" class="inline-graphic"></span> Here, hub–spoke and layered types of core–periphery networks can be interpolated by using the parameter <em>δ</em>, and core–periphery and random networks can be interpolated by using the parameter <em>γ</em>. We generated networks under the conditions of <em>δ</em> = 0 (purely hub–spoke type), <em>δ</em> = 1 (purely layered type), and <em>γ</em> = 1 (purely random), <em>γ</em> = 5 (moderate link concentration to the core), and <em>γ</em> = 10 (strong link concentration to the core). We considered a network with <em>N</em> = 399 nodes where 133 nodes were designated as core nodes, and the link generation probability <em>p</em> between nodes was fixed at <em>p</em> = 0.01.</p> </div> </div> <div id="section3" class="section toc-section"><a id="sec016" name="sec016" class="link-target" title="Finding the link survival ratio for a given giant component size"></a> <h3>Finding the link survival ratio for a given giant component size</h3> <a id="article1.body1.sec4.sec3.p1" name="article1.body1.sec4.sec3.p1" class="link-target"></a><p>For a single network under analysis, we used a bisection algorithm to find the link survival ratios at which the giant component becomes 0.5 and 0.6 times the total size of the network, which we denoted as <em>r</em><sub>0.5</sub> and <em>r</em><sub>0.6</sub>, respectively. The expected value of the giant component size was calculated based on 10<sup>4</sup> fragmented networks generated randomly for each link survival ratio. The algorithm was iterated until the giant component size was within 0.2% of the target value.</p> </div> <div id="section4" class="section toc-section"><a id="sec017" name="sec017" class="link-target" title="Propensity of each node to be included in the giant component"></a> <h3>Propensity of each node to be included in the giant component</h3> <a id="article1.body1.sec4.sec4.p1" name="article1.body1.sec4.sec4.p1" class="link-target"></a><p>For each network condition, we sampled a single network and found the value of <em>r</em><sub>0.5</sub>. Then, with the obtained link survival ratio, we randomly generated 1000 fragmented networks and counted how many times each node was included in the giant component. The obtained distributions are shown in <a href="#pcsy-0000017-g002">Fig 2C</a>.</p> </div> <div id="section5" class="section toc-section"><a id="sec018" name="sec018" class="link-target" title="Quantifying the synergistic effect and the characteristic growth rate of the giant component"></a> <h3>Quantifying the synergistic effect and the characteristic growth rate of the giant component</h3> <a id="article1.body1.sec4.sec5.p1" name="article1.body1.sec4.sec5.p1" class="link-target"></a><p>The synergistic effect obtained by network integration was calculated as the maximum difference in the maximum flow <em>f</em> between the cases of dissimilarity <em>d</em> = 0 and 1 over various link survival ratios: <a name="pcsy.0000017.e002" id="pcsy.0000017.e002" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&id=10.1371/journal.pcsy.0000017.e002" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec5.p2" name="article1.body1.sec4.sec5.p2" class="link-target"></a><p>We used the cost of increasing the giant component size as an indicator: <a name="pcsy.0000017.e003" id="pcsy.0000017.e003" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&id=10.1371/journal.pcsy.0000017.e003" loading="lazy" class="inline-graphic"></span> The indicator quantifies the magnitude of the additional link survival ratio required to increase the giant component from 0.5 to 0.6 times the total size of the network. The difference was divided by <em>r</em><sub>0.5</sub> to standardize the link density in the network.</p> <a id="article1.body1.sec4.sec5.p3" name="article1.body1.sec4.sec5.p3" class="link-target"></a><p>This analysis was performed by generating a single network of each type and calculating <em>S</em> and <span class="inline-formula"><img src="article/file?type=thumbnail&id=10.1371/journal.pcsy.0000017.e004" loading="lazy" class="inline-graphic"></span>.</p> </div> </div> <div xmlns:plos="http://plos.org" id="section5" class="section toc-section"><a id="sec019" name="sec019" data-toc="sec019" class="link-target" title="Supporting information"></a><h2>Supporting information</h2><div class="figshare_widget" doi="10.1371/journal.pcsy.0000017"></div><div class="supplementary-material"><a name="pcsy.0000017.s001" id="pcsy.0000017.s001" class="link-target"></a><h3 class="siTitle title-small"><a href="article/file?type=supplementary&id=10.1371/journal.pcsy.0000017.s001">S1 Appendix. </a>Supporting information for synergistic integration of fragmented transportation networks: When do networks (not) synergize?</h3><a id="article1.body1.sec5.supplementary-material1.caption1.p1" name="article1.body1.sec5.supplementary-material1.caption1.p1" class="link-target"></a><p class="preSiDOI">Results for additional experiments.</p> <p class="siDoi"><a href="https://doi.org/10.1371/journal.pcsy.0000017.s001">https://doi.org/10.1371/journal.pcsy.0000017.s001</a></p><a id="article1.body1.sec5.supplementary-material1.caption1.p2" name="article1.body1.sec5.supplementary-material1.caption1.p2" class="link-target"></a><p class="postSiDOI">(PDF)</p> </div></div> <div xmlns:plos="http://plos.org" class="toc-section"><a id="references" name="references" class="link-target" data-toc="references" title="References"></a><h2>References</h2><ol class="references"><li id="ref1"><span class="order">1. </span><a name="pcsy.0000017.ref001" id="pcsy.0000017.ref001" class="link-target"></a> Marseguerra M, Zio E, Podofillini L, Coit DW. Optimal design of reliable network systems in presence of uncertainty. IEEE Transactions on Reliability. 2005;54(2):243–253. <ul class="reflinks" data-doi="10.1109/TR.2005.847279"><li><a href="https://doi.org/10.1109/TR.2005.847279" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Optimal+design+of+reliable+network+systems+in+presence+of+uncertainty+Marseguerra+2005" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref2"><span class="order">2. </span><a name="pcsy.0000017.ref002" id="pcsy.0000017.ref002" class="link-target"></a> Ukkusuri SV, Mathew TV, Waller ST. Robust transportation network design under demand uncertainty. Computer-aided Civil and Infrastructure Engineering. 2007;22(1):6–18. <ul class="reflinks" data-doi="10.1111/j.1467-8667.2006.00465.x"><li><a href="https://doi.org/10.1111/j.1467-8667.2006.00465.x" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Robust+transportation+network+design+under+demand+uncertainty+Ukkusuri+2007" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref3"><span class="order">3. </span><a name="pcsy.0000017.ref003" id="pcsy.0000017.ref003" class="link-target"></a> Chen A, Zhou Z, Chootinan P, Ryu S, Yang C, Wong SC. Transport Network Design Problem under Uncertainty: A Review and New Developments. Transport Reviews. 2011;31(6):743–768. <ul class="reflinks" data-doi="10.1080/01441647.2011.589539"><li><a href="https://doi.org/10.1080/01441647.2011.589539" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Transport+Network+Design+Problem+under+Uncertainty%3A+A+Review+and+New+Developments+Chen+2011" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref4"><span class="order">4. </span><a name="pcsy.0000017.ref004" id="pcsy.0000017.ref004" class="link-target"></a> Faturechi R, Miller-Hooks E. Travel time resilience of roadway networks under disaster. Transportation Research Part B: Methodological. 2014;70:47–64. <ul class="reflinks" data-doi="10.1016/j.trb.2014.08.007"><li><a href="https://doi.org/10.1016/j.trb.2014.08.007" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Travel+time+resilience+of+roadway+networks+under+disaster+Faturechi+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref5"><span class="order">5. </span><a name="pcsy.0000017.ref005" id="pcsy.0000017.ref005" class="link-target"></a> Kim Y, Chen YS, Linderman K. Supply network disruption and resilience: A network structural perspective. Journal of Operations Management. 2015;33-34:43–59. <ul class="reflinks" data-doi="10.1016/j.jom.2014.10.006"><li><a href="https://doi.org/10.1016/j.jom.2014.10.006" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Supply+network+disruption+and+resilience%3A+A+network+structural+perspective+Kim+2015" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref6"><span class="order">6. </span><a name="pcsy.0000017.ref006" id="pcsy.0000017.ref006" class="link-target"></a> Çelik M. Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions. Surveys in Operations Research and Management Science. 2016;21(2):47–61. <ul class="reflinks" data-doi="10.1016/j.sorms.2016.12.001"><li><a href="https://doi.org/10.1016/j.sorms.2016.12.001" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Network+restoration+and+recovery+in+humanitarian+operations%3A+Framework%2C+literature+review%2C+and+research+directions+%C3%87elik+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref7"><span class="order">7. </span><a name="pcsy.0000017.ref007" id="pcsy.0000017.ref007" class="link-target"></a> Cruijssen F, Dullaert W, Fleuren H. Horizontal Cooperation in Transport and Logistics: A Literature Review. Transportation Journal. 2007;46(3):22–39. <ul class="reflinks" data-doi="10.2307/20713677"><li><a href="https://doi.org/10.2307/20713677" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Horizontal+Cooperation+in+Transport+and+Logistics%3A+A+Literature+Review+Cruijssen+2007" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref8"><span class="order">8. </span><a name="pcsy.0000017.ref008" id="pcsy.0000017.ref008" class="link-target"></a> Pan S, Trentesaux D, Ballot E, Huang GQ. Horizontal collaborative transport: survey of solutions and practical implementation issues. International Journal of Production Research. 2019;57(15-16):5340–5361. <ul class="reflinks" data-doi="10.1080/00207543.2019.1574040"><li><a href="https://doi.org/10.1080/00207543.2019.1574040" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Horizontal+collaborative+transport%3A+survey+of+solutions+and+practical+implementation+issues+Pan+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref9"><span class="order">9. </span><a name="pcsy.0000017.ref009" id="pcsy.0000017.ref009" class="link-target"></a> Du M, Zhou J, Chen A, Tan H. Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes. Transportation Research Part E: Logistics and Transportation Review. 2022;168:102937. <ul class="reflinks" data-doi="10.1016/j.tre.2022.102937"><li><a href="https://doi.org/10.1016/j.tre.2022.102937" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Modeling+the+capacity+of+multimodal+and+intermodal+urban+transportation+networks+that+incorporate+emerging+travel+modes+Du+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref10"><span class="order">10. </span><a name="pcsy.0000017.ref010" id="pcsy.0000017.ref010" class="link-target"></a> Fan Y, Ding J, Liu H, Wang Y, Long J. Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem. Transportation Research Part E: Logistics and Transportation Review. 2022;164:102832. <ul class="reflinks" data-doi="10.1016/j.tre.2022.102832"><li><a href="https://doi.org/10.1016/j.tre.2022.102832" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Large-scale+multimodal+transportation+network+models+and+algorithms-Part+I%3A+The+combined+mode+split+and+traffic+assignment+problem+Fan+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref11"><span class="order">11. </span><a name="pcsy.0000017.ref011" id="pcsy.0000017.ref011" class="link-target"></a> Cardillo A, Gómez-Gardeñes J, Zanin M, Romance M, Papo D, del Pozo F, et al. Emergence of network features from multiplexity. Scientific Reports. 2013;3:1344. pmid:23446838 <ul class="reflinks" data-doi="10.1038/srep01344"><li><a href="https://doi.org/10.1038/srep01344" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23446838" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Emergence+of+network+features+from+multiplexity+Cardillo+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref12"><span class="order">12. </span><a name="pcsy.0000017.ref012" id="pcsy.0000017.ref012" class="link-target"></a> Du WB, Zhou XL, Lordan O, Wang Z, Zhao C, Zhu YB. Analysis of the Chinese Airline Network as multi-layer networks. Transportation Research Part E: Logistics and Transportation Review. 2016;89:108–116. <ul class="reflinks" data-doi="10.1016/j.tre.2016.03.009"><li><a href="https://doi.org/10.1016/j.tre.2016.03.009" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Analysis+of+the+Chinese+Airline+Network+as+multi-layer+networks+Du+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref13"><span class="order">13. </span><a name="pcsy.0000017.ref013" id="pcsy.0000017.ref013" class="link-target"></a> Danila B, Yu Y, Marsh JA, Bassler KE. Optimal transport on complex networks. Physical Review E. 2006;74(4 Pt 2):046106. pmid:17155132 <ul class="reflinks" data-doi="10.1103/PhysRevE.74.046106"><li><a href="https://doi.org/10.1103/PhysRevE.74.046106" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/17155132" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Optimal+transport+on+complex+networks+Danila+2006" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref14"><span class="order">14. </span><a name="pcsy.0000017.ref014" id="pcsy.0000017.ref014" class="link-target"></a> Li G, Reis SDS, Moreira AA, Havlin S, Stanley HE, Andrade JS Jr. Towards design principles for optimal transport networks. Physical Review Letters. 2010;104(1):018701. pmid:20366398 <ul class="reflinks" data-doi="10.1103/PhysRevLett.104.018701"><li><a href="https://doi.org/10.1103/PhysRevLett.104.018701" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20366398" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Towards+design+principles+for+optimal+transport+networks+Li+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref15"><span class="order">15. </span><a name="pcsy.0000017.ref015" id="pcsy.0000017.ref015" class="link-target"></a> Corson F. Fluctuations and redundancy in optimal transport networks. Physical Review Letters. 2010;104(4):048703. pmid:20366745 <ul class="reflinks" data-doi="10.1103/PhysRevLett.104.048703"><li><a href="https://doi.org/10.1103/PhysRevLett.104.048703" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20366745" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Fluctuations+and+redundancy+in+optimal+transport+networks+Corson+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref16"><span class="order">16. </span><a name="pcsy.0000017.ref016" id="pcsy.0000017.ref016" class="link-target"></a> Ezaki T, Imura N, Nishinari K. Towards understanding network topology and robustness of logistics systems. Communications in Transportation Research. 2022;2:100064. <ul class="reflinks" data-doi="10.1016/j.commtr.2022.100064"><li><a href="https://doi.org/10.1016/j.commtr.2022.100064" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Towards+understanding+network+topology+and+robustness+of+logistics+systems+Ezaki+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref17"><span class="order">17. </span><a name="pcsy.0000017.ref017" id="pcsy.0000017.ref017" class="link-target"></a> Rodríguez-Núñez E, García-Palomares JC. Measuring the vulnerability of public transport networks. Journal of Transport Geography. 2014;35:50–63. <ul class="reflinks" data-doi="10.1016/j.jtrangeo.2014.01.008"><li><a href="https://doi.org/10.1016/j.jtrangeo.2014.01.008" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Measuring+the+vulnerability+of+public+transport+networks+Rodr%C3%ADguez-N%C3%BA%C3%B1ez+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref18"><span class="order">18. </span><a name="pcsy.0000017.ref018" id="pcsy.0000017.ref018" class="link-target"></a> Zhou Y, Wang J. Critical Link Analysis for Urban Transportation Systems. IEEE Transactions on Intelligent Transportation Systems. 2018;19(2):402–415. <ul class="reflinks" data-doi="10.1109/TITS.2017.2700080"><li><a href="https://doi.org/10.1109/TITS.2017.2700080" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Critical+Link+Analysis+for+Urban+Transportation+Systems+Zhou+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref19"><span class="order">19. </span><a name="pcsy.0000017.ref019" id="pcsy.0000017.ref019" class="link-target"></a> Woldeyohannes YT, Jiang Y. Measures for Network Structural Dependency Analysis. IEEE Communications Letters. 2018;22(10):2052–2055. <ul class="reflinks" data-doi="10.1109/LCOMM.2018.2864109"><li><a href="https://doi.org/10.1109/LCOMM.2018.2864109" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Measures+for+Network+Structural+Dependency+Analysis+Woldeyohannes+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref20"><span class="order">20. </span><a name="pcsy.0000017.ref020" id="pcsy.0000017.ref020" class="link-target"></a> Ezaki T, Imura N, Nishinari K. Reinforcing critical links for robust network logistics: A centrality measure for substitutability. Journal of Physics Communications. 2023;7(2):025001. <ul class="reflinks" data-doi="10.1088/2399-6528/acb7c9"><li><a href="https://doi.org/10.1088/2399-6528/acb7c9" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Reinforcing+critical+links+for+robust+network+logistics%3A+A+centrality+measure+for+substitutability+Ezaki+2023" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref21"><span class="order">21. </span><a name="pcsy.0000017.ref021" id="pcsy.0000017.ref021" class="link-target"></a> Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. Community structure in time-dependent, multiscale, and multiplex networks. Science. 2010;328(5980):876–878. pmid:20466926 <ul class="reflinks" data-doi="10.1126/science.1184819"><li><a href="https://doi.org/10.1126/science.1184819" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20466926" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Community+structure+in+time-dependent%2C+multiscale%2C+and+multiplex+networks+Mucha+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref22"><span class="order">22. </span><a name="pcsy.0000017.ref022" id="pcsy.0000017.ref022" class="link-target"></a> De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, et al. Mathematical Formulation of Multilayer Networks. Physical Review X. 2013;3(4):041022. <ul class="reflinks" data-doi="10.1103/PhysRevX.3.041022"><li><a href="https://doi.org/10.1103/PhysRevX.3.041022" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Mathematical+Formulation+of+Multilayer+Networks+De+Domenico+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref23"><span class="order">23. </span><a name="pcsy.0000017.ref023" id="pcsy.0000017.ref023" class="link-target"></a> Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardeñes J, Romance M, et al. The structure and dynamics of multilayer networks. Physics Reports. 2014;544(1):1–122. pmid:32834429 <ul class="reflinks" data-doi="10.1016/j.physrep.2014.07.001"><li><a href="https://doi.org/10.1016/j.physrep.2014.07.001" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/32834429" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=The+structure+and+dynamics+of+multilayer+networks+Boccaletti+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref24"><span class="order">24. </span><a name="pcsy.0000017.ref024" id="pcsy.0000017.ref024" class="link-target"></a> Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. Journal of Complex Networks. 2014;2(3):203–271. <ul class="reflinks" data-doi="10.1093/comnet/cnu016"><li><a href="https://doi.org/10.1093/comnet/cnu016" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Multilayer+networks+Kivel%C3%A4+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref25"><span class="order">25. </span><a name="pcsy.0000017.ref025" id="pcsy.0000017.ref025" class="link-target"></a> Wu J, Pu C, Li L, Cao G. Traffic dynamics on multilayer networks. Digital Communications and Networks. 2020;6(1):58–63. <ul class="reflinks" data-doi="10.1016/j.dcan.2018.10.011"><li><a href="https://doi.org/10.1016/j.dcan.2018.10.011" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Traffic+dynamics+on+multilayer+networks+Wu+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref26"><span class="order">26. </span><a name="pcsy.0000017.ref026" id="pcsy.0000017.ref026" class="link-target"></a> Morris RG, Barthelemy M. Transport on coupled spatial networks. Physical Review Letters. 2012;109(12):128703. pmid:23006001 <ul class="reflinks" data-doi="10.1103/PhysRevLett.109.128703"><li><a href="https://doi.org/10.1103/PhysRevLett.109.128703" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23006001" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Transport+on+coupled+spatial+networks+Morris+2012" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref27"><span class="order">27. </span><a name="pcsy.0000017.ref027" id="pcsy.0000017.ref027" class="link-target"></a> Li M, Hu MB, Wang BH. Transportation dynamics on coupled networks with limited bandwidth. Scientific Reports. 2016;6:39175. pmid:27966624 <ul class="reflinks" data-doi="10.1038/srep39175"><li><a href="https://doi.org/10.1038/srep39175" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/27966624" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Transportation+dynamics+on+coupled+networks+with+limited+bandwidth+Li+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref28"><span class="order">28. </span><a name="pcsy.0000017.ref028" id="pcsy.0000017.ref028" class="link-target"></a> Gallotti R, Barthelemy M. Anatomy and efficiency of urban multimodal mobility. Scientific Reports. 2014;4:6911. pmid:25371238 <ul class="reflinks" data-doi="10.1038/srep06911"><li><a href="https://doi.org/10.1038/srep06911" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/25371238" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Anatomy+and+efficiency+of+urban+multimodal+mobility+Gallotti+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref29"><span class="order">29. </span><a name="pcsy.0000017.ref029" id="pcsy.0000017.ref029" class="link-target"></a> Aleta A, Meloni S, Moreno Y. A Multilayer perspective for the analysis of urban transportation systems. Scientific Reports. 2017;7:44359. pmid:28295015 <ul class="reflinks" data-doi="10.1038/srep44359"><li><a href="https://doi.org/10.1038/srep44359" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/28295015" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+Multilayer+perspective+for+the+analysis+of+urban+transportation+systems+Aleta+2017" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref30"><span class="order">30. </span><a name="pcsy.0000017.ref030" id="pcsy.0000017.ref030" class="link-target"></a> Callaway DS, Newman ME, Strogatz SH, Watts DJ. Network robustness and fragility: percolation on random graphs. Physical Review Letters. 2000;85(25):5468–5471. pmid:11136023 <ul class="reflinks" data-doi="10.1103/PhysRevLett.85.5468"><li><a href="https://doi.org/10.1103/PhysRevLett.85.5468" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/11136023" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Network+robustness+and+fragility%3A+percolation+on+random+graphs+Callaway+2000" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref31"><span class="order">31. </span><a name="pcsy.0000017.ref031" id="pcsy.0000017.ref031" class="link-target"></a> Parshani R, Buldyrev SV, Havlin S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Physical Review Letters. 2010;105(4):048701. pmid:20867893 <ul class="reflinks" data-doi="10.1103/PhysRevLett.105.048701"><li><a href="https://doi.org/10.1103/PhysRevLett.105.048701" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20867893" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Interdependent+networks%3A+reducing+the+coupling+strength+leads+to+a+change+from+a+first+to+second+order+percolation+transition+Parshani+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref32"><span class="order">32. </span><a name="pcsy.0000017.ref032" id="pcsy.0000017.ref032" class="link-target"></a> Karrer B, Newman MEJ, Zdeborová L. Percolation on sparse networks. Physical Review Letters. 2014;113(20):208702. pmid:25432059 <ul class="reflinks" data-doi="10.1103/PhysRevLett.113.208702"><li><a href="https://doi.org/10.1103/PhysRevLett.113.208702" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/25432059" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Percolation+on+sparse+networks+Karrer+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref33"><span class="order">33. </span><a name="pcsy.0000017.ref033" id="pcsy.0000017.ref033" class="link-target"></a> Radicchi F. Percolation in real interdependent networks. Nature Physics. 2015;11(7):597–602. <ul class="reflinks" data-doi="10.1038/nphys3374"><li><a href="https://doi.org/10.1038/nphys3374" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Percolation+in+real+interdependent+networks+Radicchi+2015" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref34"><span class="order">34. </span><a name="pcsy.0000017.ref034" id="pcsy.0000017.ref034" class="link-target"></a> Hackett A, Cellai D, Gómez S, Arenas A, Gleeson JP. Bond Percolation on Multiplex Networks. Physical Review X. 2016;6(2):021002. <ul class="reflinks" data-doi="10.1103/PhysRevX.6.021002"><li><a href="https://doi.org/10.1103/PhysRevX.6.021002" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Bond+Percolation+on+Multiplex+Networks+Hackett+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref35"><span class="order">35. </span><a name="pcsy.0000017.ref035" id="pcsy.0000017.ref035" class="link-target"></a> Santoro A, Nicosia V. Optimal percolation in correlated multilayer networks with overlap. Physical Review Research. 2020;2(3):033122. <ul class="reflinks" data-doi="10.1103/PhysRevResearch.2.033122"><li><a href="https://doi.org/10.1103/PhysRevResearch.2.033122" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Optimal+percolation+in+correlated+multilayer+networks+with+overlap+Santoro+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref36"><span class="order">36. </span><a name="pcsy.0000017.ref036" id="pcsy.0000017.ref036" class="link-target"></a> Li M, Liu RR, Lü L, Hu MB, Xu S, Zhang YC. Percolation on complex networks: Theory and application. Physics Reports 2021;907:1–68. <ul class="reflinks" data-doi="10.1016/j.physrep.2021.02.003"><li><a href="https://doi.org/10.1016/j.physrep.2021.02.003" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Percolation+on+complex+networks%3A+Theory+and+application+Li+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref37"><span class="order">37. </span><a name="pcsy.0000017.ref037" id="pcsy.0000017.ref037" class="link-target"></a> Alava M, Moukarzel CF. Transport on percolation clusters with power-law distributed bond strengths. Physical Review E. 2003;67(5 Pt 2):056106. pmid:12786219 <ul class="reflinks" data-doi="10.1103/PhysRevE.67.056106"><li><a href="https://doi.org/10.1103/PhysRevE.67.056106" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/12786219" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Transport+on+percolation+clusters+with+power-law+distributed+bond+strengths+Alava+2003" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref38"><span class="order">38. </span><a name="pcsy.0000017.ref038" id="pcsy.0000017.ref038" class="link-target"></a> Li D, Fu B, Wang Y, Lu G, Berezin Y, Stanley HE, et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences of the U S A. 2015;112(3):669–672. pmid:25552558 <ul class="reflinks" data-doi="10.1073/pnas.1419185112"><li><a href="https://doi.org/10.1073/pnas.1419185112" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/25552558" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Percolation+transition+in+dynamical+traffic+network+with+evolving+critical+bottlenecks+Li+2015" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref39"><span class="order">39. </span><a name="pcsy.0000017.ref039" id="pcsy.0000017.ref039" class="link-target"></a> Zeng G, Li D, Guo S, Gao L, Gao Z, Stanley HE, et al. Switch between critical percolation modes in city traffic dynamics. Proceedings of the National Academy of Sciences of the U S A. 2019;116(1):23–28. pmid:30591562 <ul class="reflinks" data-doi="10.1073/pnas.1801545116"><li><a href="https://doi.org/10.1073/pnas.1801545116" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/30591562" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Switch+between+critical+percolation+modes+in+city+traffic+dynamics+Zeng+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref40"><span class="order">40. </span><a name="pcsy.0000017.ref040" id="pcsy.0000017.ref040" class="link-target"></a> Hamedmoghadam H, Jalili M, Vu HL, Stone L. Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks. Nature Communications. 2021;12(1):1254. pmid:33623037 <ul class="reflinks" data-doi="10.1038/s41467-021-21483-y"><li><a href="https://doi.org/10.1038/s41467-021-21483-y" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33623037" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Percolation+of+heterogeneous+flows+uncovers+the+bottlenecks+of+infrastructure+networks+Hamedmoghadam+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref41"><span class="order">41. </span><a name="pcsy.0000017.ref041" id="pcsy.0000017.ref041" class="link-target"></a> Ambühl L, Menendez M, González MC. Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram. Communications Physics. 2023;6:26. pmid:38665407 <ul class="reflinks" data-doi="10.1038/s42005-023-01144-w"><li><a href="https://doi.org/10.1038/s42005-023-01144-w" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/38665407" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Understanding+congestion+propagation+by+combining+percolation+theory+with+the+macroscopic+fundamental+diagram+Amb%C3%BChl+2023" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref42"><span class="order">42. </span><a name="pcsy.0000017.ref042" id="pcsy.0000017.ref042" class="link-target"></a> Ford LR, Fulkerson DR. Maximal Flow Through a Network. Canadian Journal of Mathematics Journal Canadien de Mathematiques. 1956;8:399–404. <ul class="reflinks" data-doi="10.4153/CJM-1956-045-5"><li><a href="https://doi.org/10.4153/CJM-1956-045-5" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Maximal+Flow+Through+a+Network+Ford+1956" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref43"><span class="order">43. </span><a name="pcsy.0000017.ref043" id="pcsy.0000017.ref043" class="link-target"></a> Ford LR, Fulkerson DR. Flows in Networks. Princetion: Princeton University Press; 1962. <ul class="find-nolinks"></ul></li><li id="ref44"><span class="order">44. </span><a name="pcsy.0000017.ref044" id="pcsy.0000017.ref044" class="link-target"></a> Lee DS, Rieger H. Maximum flow and topological structure of complex networks. EPL. 2005;73(3):471. <ul class="reflinks" data-doi="10.1209/epl/i2005-10407-5"><li><a href="https://doi.org/10.1209/epl/i2005-10407-5" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Maximum+flow+and+topological+structure+of+complex+networks+Lee+2005" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref45"><span class="order">45. </span><a name="pcsy.0000017.ref045" id="pcsy.0000017.ref045" class="link-target"></a> Dwivedi A, Yu X. A maximum-flow-based complex network approach for power system vulnerability analysis. IEEE transactions on industrial informatics / a publication of the IEEE Industrial Electronics Society. 2013;9(1):81–88. <ul class="reflinks" data-doi="10.1109/TII.2011.2173944"><li><a href="https://doi.org/10.1109/TII.2011.2173944" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=A+maximum-flow-based+complex+network+approach+for+power+system+vulnerability+analysis+Dwivedi+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref46"><span class="order">46. </span><a name="pcsy.0000017.ref046" id="pcsy.0000017.ref046" class="link-target"></a> Cai M, Liu J, Cui Y. Network Robustness Analysis Based on Maximum Flow. Frontiers in Physics. 2021;9:792410. <ul class="reflinks" data-doi="10.3389/fphy.2021.792410"><li><a href="https://doi.org/10.3389/fphy.2021.792410" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Network+Robustness+Analysis+Based+on+Maximum+Flow+Cai+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref47"><span class="order">47. </span><a name="pcsy.0000017.ref047" id="pcsy.0000017.ref047" class="link-target"></a> Pittel B, Spencer J, Wormald N. Sudden Emergence of a Giantk-Core in a Random Graph. Journal of Combinatorial Theory Series B. 1996;67(1):111–151. <ul class="reflinks" data-doi="10.1006/jctb.1996.0036"><li><a href="https://doi.org/10.1006/jctb.1996.0036" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Sudden+Emergence+of+a+Giantk-Core+in+a+Random+Graph+Pittel+1996" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref48"><span class="order">48. </span><a name="pcsy.0000017.ref048" id="pcsy.0000017.ref048" class="link-target"></a> Dorogovtsev SN, Goltsev AV, Mendes JFF. k-Core organization of complex networks. Physical Review Letters. 2006;96(4):040601. pmid:16486798 <ul class="reflinks" data-doi="10.1103/PhysRevLett.96.040601"><li><a href="https://doi.org/10.1103/PhysRevLett.96.040601" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/16486798" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=k-Core+organization+of+complex+networks+Dorogovtsev+2006" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref49"><span class="order">49. </span><a name="pcsy.0000017.ref049" id="pcsy.0000017.ref049" class="link-target"></a> Gallagher RJ, Young JG, Welles BF. A clarified typology of core-periphery structure in networks. Science Advances. 2021;7:eabc9800. pmid:33731343 <ul class="reflinks" data-doi="10.1126/sciadv.abc9800"><li><a href="https://doi.org/10.1126/sciadv.abc9800" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33731343" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+clarified+typology+of+core-periphery+structure+in+networks+Gallagher+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref50"><span class="order">50. </span><a name="pcsy.0000017.ref050" id="pcsy.0000017.ref050" class="link-target"></a> Verma T, Araújo NAM, Herrmann HJ. Revealing the structure of the world airline network. Scientific Reports. 2014;4:5638. pmid:25005934 <ul class="reflinks" data-doi="10.1038/srep05638"><li><a href="https://doi.org/10.1038/srep05638" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/25005934" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Revealing+the+structure+of+the+world+airline+network+Verma+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref51"><span class="order">51. </span><a name="pcsy.0000017.ref051" id="pcsy.0000017.ref051" class="link-target"></a> Verma T, Russmann F, Araújo NAM, Nagler J, Herrmann HJ. Emergence of core–peripheries in networks. Nature Communications. 2016;7:10441. pmid:26822856 <ul class="reflinks" data-doi="10.1038/ncomms10441"><li><a href="https://doi.org/10.1038/ncomms10441" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/26822856" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Emergence+of+core%E2%80%93peripheries+in+networks+Verma+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref52"><span class="order">52. </span><a name="pcsy.0000017.ref052" id="pcsy.0000017.ref052" class="link-target"></a> Kostoska O, Mitikj S, Jovanovski P, Kocarev L. Core-periphery structure in sectoral international trade networks: A new approach to an old theory. PLOS ONE. 2020;15(4):e0229547. pmid:32240201 <ul class="reflinks" data-doi="10.1371/journal.pone.0229547"><li><a href="https://doi.org/10.1371/journal.pone.0229547" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/32240201" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Core-periphery+structure+in+sectoral+international+trade+networks%3A+A+new+approach+to+an+old+theory+Kostoska+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref53"><span class="order">53. </span><a name="pcsy.0000017.ref053" id="pcsy.0000017.ref053" class="link-target"></a> Kojaku S, Xu M, Xia H, Masuda N. Multiscale core-periphery structure in a global liner shipping network. Scientific Reports. 2019;9(1):404. pmid:30674915 <ul class="reflinks" data-doi="10.1038/s41598-018-35922-2"><li><a href="https://doi.org/10.1038/s41598-018-35922-2" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/30674915" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Multiscale+core-periphery+structure+in+a+global+liner+shipping+network+Kojaku+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref54"><span class="order">54. </span><a name="pcsy.0000017.ref054" id="pcsy.0000017.ref054" class="link-target"></a> Dong L, Li R, Zhang J, Di Z. Population-weighted efficiency in transportation networks. Scientific Reports. 2016;6:26377. pmid:27230706 <ul class="reflinks" data-doi="10.1038/srep26377"><li><a href="https://doi.org/10.1038/srep26377" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/27230706" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Population-weighted+efficiency+in+transportation+networks+Dong+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref55"><span class="order">55. </span><a name="pcsy.0000017.ref055" id="pcsy.0000017.ref055" class="link-target"></a> Li R, Gao S, Luo A, Yao Q, Chen B, Shang F, et al. Gravity model in dockless bike-sharing systems within cities. Physical Review E. 2021;103(1-1):012312. pmid:33601646 <ul class="reflinks" data-doi="10.1103/PhysRevE.103.012312"><li><a href="https://doi.org/10.1103/PhysRevE.103.012312" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33601646" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Gravity+model+in+dockless+bike-sharing+systems+within+cities+Li+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref56"><span class="order">56. </span><a name="pcsy.0000017.ref056" id="pcsy.0000017.ref056" class="link-target"></a> Beuthe M, Jourquin B, Geerts JF, Koul à Ndjang’ Ha C. Freight transportation demand elasticities: a geographic multimodal transportation network analysis. Transportation Research Part E: Logistics and Transportation Review. 2001;37(4):253–266. <ul class="reflinks" data-doi="10.1016/S1366-5545(00)00022-3"><li><a href="https://doi.org/10.1016/S1366-5545(00)00022-3" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Freight+transportation+demand+elasticities%3A+a+geographic+multimodal+transportation+network+analysis+Beuthe+2001" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref57"><span class="order">57. </span><a name="pcsy.0000017.ref057" id="pcsy.0000017.ref057" class="link-target"></a> Mudchanatongsuk S, Ordóñez F, Liu J. Robust solutions for network design under transportation cost and demand uncertainty. The Journal of the Operational Research Society. 2008;59(5):652–662. <ul class="reflinks" data-doi="10.1057/palgrave.jors.2602362"><li><a href="https://doi.org/10.1057/palgrave.jors.2602362" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Robust+solutions+for+network+design+under+transportation+cost+and+demand+uncertainty+Mudchanatongsuk+2008" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref58"><span class="order">58. </span><a name="pcsy.0000017.ref058" id="pcsy.0000017.ref058" class="link-target"></a> Kujala R, Weckström C, Darst RK, Mladenović MN, Saramäki J. A collection of public transport network data sets for 25 cities. Scientific Data. 2018;5:180089. pmid:29762553 <ul class="reflinks" data-doi="10.1038/sdata.2018.89"><li><a href="https://doi.org/10.1038/sdata.2018.89" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/29762553" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+collection+of+public+transport+network+data+sets+for+25+cities+Kujala+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref59"><span class="order">59. </span><a name="pcsy.0000017.ref059" id="pcsy.0000017.ref059" class="link-target"></a> Welch TF, Widita A. Big data in public transportation: a review of sources and methods. Transport Reviews. 2019;39(6):795–818. <ul class="reflinks" data-doi="10.1080/01441647.2019.1616849"><li><a href="https://doi.org/10.1080/01441647.2019.1616849" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Big+data+in+public+transportation%3A+a+review+of+sources+and+methods+Welch+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref60"><span class="order">60. </span><a name="pcsy.0000017.ref060" id="pcsy.0000017.ref060" class="link-target"></a> Carmi S, Wu Z, Havlin S, Stanley HE. Transport in networks with multiple sources and sinks. EPL. 2008;84(2):28005. <ul class="reflinks" data-doi="10.1209/0295-5075/84/28005"><li><a href="https://doi.org/10.1209/0295-5075/84/28005" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Transport+in+networks+with+multiple+sources+and+sinks+Carmi+2008" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref61"><span class="order">61. </span><a name="pcsy.0000017.ref061" id="pcsy.0000017.ref061" class="link-target"></a>Hagberg A, Schult D, Swart P, Hagberg JM. Exploring network structure, dynamics, and function using NetworkX; 2008. <ul class="find-nolinks"></ul></li><li id="ref62"><span class="order">62. </span><a name="pcsy.0000017.ref062" id="pcsy.0000017.ref062" class="link-target"></a> Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. pmid:10521342 <ul class="reflinks" data-doi="10.1126/science.286.5439.509"><li><a href="https://doi.org/10.1126/science.286.5439.509" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/10521342" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Emergence+of+scaling+in+random+networks+Barabasi+1999" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref63"><span class="order">63. </span><a name="pcsy.0000017.ref063" id="pcsy.0000017.ref063" class="link-target"></a>Rossi R, Ahmed N. The Network Data Repository with Interactive Graph Analytics and Visualization. Proceedings of the AAAI Conference on Artificial Intelligence. 2015;29(1). <ul class="find-nolinks"></ul></li><li id="ref64"><span class="order">64. </span><a name="pcsy.0000017.ref064" id="pcsy.0000017.ref064" class="link-target"></a> Borgatti SP, Everett MG. Models of core/periphery structures. Social Networks 2000;21(4):375–395. <ul class="reflinks" data-doi="10.1016/S0378-8733(99)00019-2"><li><a href="https://doi.org/10.1016/S0378-8733(99)00019-2" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Models+of+core%2Fperiphery+structures+Borgatti+2000" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref65"><span class="order">65. </span><a name="pcsy.0000017.ref065" id="pcsy.0000017.ref065" class="link-target"></a> Karrer B, Newman MEJ. Stochastic blockmodels and community structure in networks. Physical Review E. 2011;83(1 Pt 2):016107. pmid:21405744 <ul class="reflinks" data-doi="10.1103/PhysRevE.83.016107"><li><a href="https://doi.org/10.1103/PhysRevE.83.016107" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/21405744" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Stochastic+blockmodels+and+community+structure+in+networks+Karrer+2011" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li></ol></div> <div class="ref-tooltip"> <div class="ref_tooltip-content"> </div> </div> </div> </div> </div> </section> <aside class="article-aside"> <!--[if IE 9]> <style> .dload-xml {margin-top: 38px} </style> <![endif]--> <div class="dload-menu"> <div class="dload-pdf"> <a href="/complexsystems/article/file?id=10.1371/journal.pcsy.0000017&type=printable" id="downloadPdf" target="_blank">Download PDF</a> </div> <div data-js-tooltip-hover="trigger" class="dload-hover"> <ul class="dload-xml" data-js-tooltip-hover="target"> <li><a href="/complexsystems/article/citation?id=10.1371/journal.pcsy.0000017" id="downloadCitation">Citation</a></li> <li><a href="/complexsystems/article/file?id=10.1371/journal.pcsy.0000017&type=manuscript" id="downloadXml">XML</a> </li> </ul> </div> </div> <div class="aside-container"> <div class="print-article" id="printArticle" data-js-tooltip-hover="trigger"> <a href="#" onclick="window.print(); return false;" class="preventDefault" id="printBrowser">Print</a> </div> <div class="share-article" id="shareArticle" data-js-tooltip-hover="trigger"> Share <ul data-js-tooltip-hover="target" class="share-options" id="share-options"> <li><a href="https://www.reddit.com/submit?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017" id="shareReddit" target="_blank" title="Submit to Reddit"><img src="/resource/img/icon.reddit.16.png" width="16" height="16" alt="Reddit">Reddit</a></li> <li><a href="https://www.facebook.com/share.php?u=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017&t=Synergistic integration of fragmented transportation networks: When do networks (not) synergize?" id="shareFacebook" target="_blank" title="Share on Facebook"><img src="/resource/img/icon.fb.16.png" width="16" height="16" alt="Facebook">Facebook</a></li> <li><a href="https://www.linkedin.com/shareArticle?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017&title=Synergistic integration of fragmented transportation networks: When do networks (not) synergize?&summary=Checkout this article I found at PLOS" id="shareLinkedIn" target="_blank" title="Add to LinkedIn"><img src="/resource/img/icon.linkedin.16.png" width="16" height="16" alt="LinkedIn">LinkedIn</a></li> <li><a href="https://www.mendeley.com/import/?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017" id="shareMendeley" target="_blank" title="Add to Mendeley"><img src="/resource/img/icon.mendeley.16.png" width="16" height="16" alt="Mendeley">Mendeley</a></li> <li><a href="https://twitter.com/intent/tweet?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017&text=%23PLOSComplexSys%3A%20Synergistic integration of fragmented transportation networks: When do networks (not) synergize?" target="_blank" title="share on Twitter" id="twitter-share-link"><img src="/resource/img/icon.twtr.16.png" width="16" height="16" alt="Twitter">Twitter</a></li> <li><a href="mailto:?subject=Synergistic integration of fragmented transportation networks: When do networks (not) synergize?&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Complex Systems:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000017" id="shareEmail" rel="noreferrer" aria-label="Email"><img src="/resource/img/icon.email.16.png" width="16" height="16" alt="Email">Email</a></li> <script src="/resource/js/components/tweet140.js" type="text/javascript"></script> </ul> </div> </div> <!-- Crossmark 2.0 widget --> <script src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js"></script> <a aria-label="Check for updates via CrossMark" data-target="crossmark"> <img alt="Check for updates via CrossMark" width="150" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_BW_horizontal.svg"> </a> <!-- End Crossmark 2.0 widget --> <div class="aside-container collections-aside-container"><!-- React Magic --></div> <div class="skyscraper-container"> <div class="title">Advertisement</div> <!-- DoubleClick Ad Zone --> <div class='advertisement' id='div-gpt-ad-1458247671871-1' style='width:160px; height:600px;'> <script type='text/javascript'> googletag.cmd.push(function() { googletag.display('div-gpt-ad-1458247671871-1'); }); </script> </div> </div> <div class="subject-areas-container"> <h3>Subject Areas <div id="subjInfo">?</div> <div id="subjInfoText"> <p>For more information about PLOS Subject Areas, click <a href="https://github.com/PLOS/plos-thesaurus/blob/master/README.md" target="_blank" title="Link opens in new window">here</a>.</p> <span class="inline-intro">We want your feedback.</span> Do these Subject Areas make sense for this article? Click the target next to the incorrect Subject Area and let us know. Thanks for your help! </div> </h3> <ul id="subjectList"> <li> <a class="taxo-term" title="Search for articles about Transportation" href="/complexsystems/search?filterSubjects=Transportation&filterJournals=PLOSComplexSystems&q=">Transportation</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Transportation"><p class="taxo-explain">Is the Subject Area <strong>"Transportation"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Network analysis" href="/complexsystems/search?filterSubjects=Network+analysis&filterJournals=PLOSComplexSystems&q=">Network analysis</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Network analysis"><p class="taxo-explain">Is the Subject Area <strong>"Network analysis"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Power grids" href="/complexsystems/search?filterSubjects=Power+grids&filterJournals=PLOSComplexSystems&q=">Power grids</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Power grids"><p class="taxo-explain">Is the Subject Area <strong>"Power grids"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Statistical mechanics" href="/complexsystems/search?filterSubjects=Statistical+mechanics&filterJournals=PLOSComplexSystems&q=">Statistical mechanics</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Statistical mechanics"><p class="taxo-explain">Is the Subject Area <strong>"Statistical mechanics"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Social networks" href="/complexsystems/search?filterSubjects=Social+networks&filterJournals=PLOSComplexSystems&q=">Social networks</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Social networks"><p class="taxo-explain">Is the Subject Area <strong>"Social networks"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Scale-free networks" href="/complexsystems/search?filterSubjects=Scale-free+networks&filterJournals=PLOSComplexSystems&q=">Scale-free networks</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Scale-free networks"><p class="taxo-explain">Is the Subject Area <strong>"Scale-free networks"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Transportation infrastructure" href="/complexsystems/search?filterSubjects=Transportation+infrastructure&filterJournals=PLOSComplexSystems&q=">Transportation infrastructure</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Transportation infrastructure"><p class="taxo-explain">Is the Subject Area <strong>"Transportation infrastructure"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Telecommunications" href="/complexsystems/search?filterSubjects=Telecommunications&filterJournals=PLOSComplexSystems&q=">Telecommunications</a> <span class="taxo-flag"> </span> <div class="taxo-tooltip" data-categoryname="Telecommunications"><p class="taxo-explain">Is the Subject Area <strong>"Telecommunications"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> </ul> </div> <div id="subjectErrors"></div> </aside> </div> </main> <footer id="pageftr"> <div class="row"> <div class="block x-small"> <ul class="nav nav-secondary"> <li class="ftr-header"><a href="https://plos.org/publications/journals/">Publications</a></li> <li><a href="/plosbiology/" id="ftr-bio">PLOS Biology</a></li> <li><a href="/climate/" id="ftr-climate">PLOS Climate</a></li> <li><a href="/complexsystems/" id="ftr-complex-systems">PLOS Complex Systems</a></li> <li><a href="/ploscompbiol/" id="ftr-compbio">PLOS Computational Biology</a></li> <li><a href="/digitalhealth/" id="ftr-digitalhealth">PLOS Digital Health</a></li> <li><a href="/plosgenetics/" id="ftr-gen">PLOS Genetics</a></li> <li><a href="/globalpublichealth/" id="ftr-globalpublichealth">PLOS Global Public Health</a></li> </ul> </div> <div class="block x-small"> <ul class="nav nav-secondary"> <li class="ftr-header"> </li> <li><a href="/plosmedicine/" id="ftr-med">PLOS Medicine</a></li> <li><a href="/mentalhealth/" id="ftr-mental-health">PLOS Mental Health</a></li> <li><a href="/plosntds/" id="ftr-ntds">PLOS Neglected Tropical Diseases</a></li> <li><a href="/plosone/" id="ftr-one">PLOS ONE</a></li> <li><a href="/plospathogens/" id="ftr-path">PLOS Pathogens</a></li> <li><a href="/sustainabilitytransformation/" id="ftr-sustainabilitytransformation">PLOS Sustainability and Transformation</a></li> <li><a href="/water/" id="ftr-water">PLOS Water</a></li> </ul> </div> <div class="block xx-small"> <ul class="nav nav-tertiary"> <li> <a href="https://plos.org" id="ftr-home">Home</a> </li> <li> <a href="https://blogs.plos.org" id="ftr-blog">Blogs</a> </li> <li> <a href="https://collections.plos.org/" id="ftr-collections">Collections</a> </li> <li> <a href="mailto:webmaster@plos.org" id="ftr-feedback">Give feedback</a> </li> <li> <a href="/complexsystems/lockss-manifest" id="ftr-lockss">LOCKSS</a> </li> </ul> </div> <div class="block xx-small"> <ul class="nav nav-primary"> <li><a href="https://plos.org/privacy-policy" id="ftr-privacy">Privacy Policy</a></li> <li><a href="https://plos.org/terms-of-use" id="ftr-terms">Terms of Use</a></li> <li><a href="https://plos.org/advertise/" id="ftr-advertise">Advertise</a></li> <li><a href="https://plos.org/media-inquiries" id="ftr-media">Media Inquiries</a></li> <li><a href="https://plos.org/contact" id="ftr-contact">Contact</a></li> </ul> </div> </div> <div class="row"> <p> <img src="/resource/img/logo-plos-footer.png" alt="PLOS" class="logo-footer"/> <span class="footer-non-profit-statement">PLOS is a nonprofit 501(c)(3) corporation, #C2354500, based in San Francisco, California, US</span> </p> <div class="block"> </div> </div> <script src="/resource/js/global.js" type="text/javascript"></script> </footer> <script type="text/javascript"> var ArticleData = { doi: '10.1371/journal.pcsy.0000017', title: '<article-title xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">Synergistic integration of fragmented transportation networks: When do networks (not) synergize?<\/article-title>', date: 'Nov 05, 2024' }; </script> <script src="/resource/js/components/show_onscroll.js" type="text/javascript"></script> <script src="/resource/js/components/pagination.js" type="text/javascript"></script> <script src="/resource/js/vendor/spin.js" type="text/javascript"></script> <script src="/resource/js/pages/article.js" type="text/javascript"></script> <script src="/resource/js/pages/article_references.js" type="text/javascript"></script> <script src="/resource/js/pages/article_sidebar.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.dropdown.js" type="text/javascript"></script> <script src="/resource/js/components/table_open.js" type="text/javascript"></script> <script src="/resource/js/components/figshare.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.panzoom.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.mousewheel.js" type="text/javascript"></script> <script src="/resource/js/components/lightbox.js" type="text/javascript"></script> <script src="/resource/js/pages/article_body.js" type="text/javascript"></script> <!-- This file should be loaded before the renderJs, to avoid conflicts with the FigShare, that implements the MathJax also. --> <!-- mathjax configuration options --> <!-- more can be found at http://docs.mathjax.org/en/latest/ --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { scale: 100, availableFonts: ["STIX","TeX"], preferredFont: "STIX", webFont: "STIX-Web", linebreaks: { automatic: false } }, jax: ["input/MathML", "output/HTML-CSS"] }); </script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=MML_HTMLorMML"></script> <div class="reveal-modal-bg"></div> </body> </html>