CINXE.COM

Search results for: HEPA filter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: HEPA filter</title> <meta name="description" content="Search results for: HEPA filter"> <meta name="keywords" content="HEPA filter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="HEPA filter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="HEPA filter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 836</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: HEPA filter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Maguire">Richard Maguire </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency%20particulate%20air" title="high efficiency particulate air">high efficiency particulate air</a>, <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title=" HEPA filter"> HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pollution" title=" traffic pollution"> traffic pollution</a> </p> <a href="https://publications.waset.org/abstracts/104024/measuring-and-evaluating-the-effectiveness-of-mobile-high-efficiency-particulate-air-filtering-on-particulate-matter-within-the-road-traffic-network-of-a-sample-of-non-sparse-and-sparse-urban-environments-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serap%20Gedikli">Serap Gedikli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20%C3%87akmak"> Hakan 脟akmak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bu%C4%9Fra%20G%C3%BCldiken"> M. Bu臒ra G眉ldiken</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Yaln%C4%B1zo%C4%9Flu"> Duygu Yaln谋zo臒lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m鲁, 600 m鲁, and 1000 m鲁 completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m鲁 (cfu/m鲁) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37掳C for bacteria and 72 hours at 30掳C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by 陌n枚n眉 University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title="HEPA filter">HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a> </p> <a href="https://publications.waset.org/abstracts/140805/microbial-and-sars-cov-2-efficiency-analysis-of-froumann-hepa-filter-air-cleaner-brand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Experimental Investigation of Powder Holding Capacities of H13 and H14 Class Activated Carbon Filters Based on En 779 Standard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20I%C5%9F%C4%B1kta%C5%9F">Abdullah I艧谋kta艧</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of HEPA filters for air conditioning systems in clean rooms tends to increase progressively in pharmaceutical, food stuff industries and in hospitals. There are two standards widely used for HEPA filters; the EN 1822 standards published by the European Union, CEN (European Committee for Standardization) and the US based IEST standard (Institute of Environmental Sciences and Technology. Both standards exhibit some differences in the definitions of efficiency and its measurement methods. While IEST standard defines efficiency at the grit diameter of 0.3 碌m, the EN 1822 standard takes MPPS (Most Penetrating Particle Size) as the basis of its definition. That is, the most difficult grit size to catch up. On the other hand, while IEST suggests that photometer and grit counters be used for filter testing, in EN 1822 standard, only the grit (grain) counters are recommended for that purpose. In this study, powder holding capacities of H13 and H14 grade materials under the EN 779 standard are investigated experimentally by using activated carbon. Measurements were taken on an experimental set up based on the TS 932 standard. Filter efficiency was measured by injecting test powder at amounts predetermined in the standards into the filters at certain intervals. The data obtained showed that the powder holding capacities of the activated carbon filter are high enough to yield efficiency of around 90% and that the H13 and H14 filters exhibit high efficiency suitable for the standard used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20filters" title="activated carbon filters">activated carbon filters</a>, <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filters" title=" HEPA filters"> HEPA filters</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20holding%20capacities" title=" powder holding capacities"> powder holding capacities</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title=" air conditioning systems"> air conditioning systems</a> </p> <a href="https://publications.waset.org/abstracts/11620/experimental-investigation-of-powder-holding-capacities-of-h13-and-h14-class-activated-carbon-filters-based-on-en-779-standard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Gaussian Particle Flow Bernoulli Filter for Single Target Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongbok%20Kim">Hyeongbok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Zhao"> Lingling Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Su"> Xiaohong Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Wang"> Junjie Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernoulli%20filter" title="Bernoulli filter">Bernoulli filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20filter" title=" particle flow filter"> particle flow filter</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20finite%20sets" title=" random finite sets"> random finite sets</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title=" target tracking"> target tracking</a> </p> <a href="https://publications.waset.org/abstracts/162210/gaussian-particle-flow-bernoulli-filter-for-single-target-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Kalman Filter Gain Elimination in Linear Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20D.%20Assimakis">Nicholas D. Assimakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20time" title="discrete time">discrete time</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter%20gain" title=" Kalman filter gain"> Kalman filter gain</a> </p> <a href="https://publications.waset.org/abstracts/123040/kalman-filter-gain-elimination-in-linear-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Operation Parameters of Vacuum Cleaned Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilhelm%20Hoeflinger">Wilhelm Hoeflinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Laminger"> Thomas Laminger</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wolfslehner"> Johannes Wolfslehner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For vacuum cleaned dust filters, used e. g. in textile industry, there exist no calculation methods to determine design parameters (e. g. traverse speed of the nozzle, filter area...). In this work a method to calculate the optimum traverse speed of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20dust%20filter" title="design of dust filter">design of dust filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20removing" title=" dust removing"> dust removing</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20regeneration" title=" filter regeneration"> filter regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20parameters" title=" operation parameters"> operation parameters</a> </p> <a href="https://publications.waset.org/abstracts/2536/operation-parameters-of-vacuum-cleaned-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Compact Microstrip Ultra-Wideband Bandstop Filter With Quasi-Elliptic Function Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Shaman">Hussein Shaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20Almansour"> Faris Almansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a modified optimum bandstop filter with ultra-wideband stopband. The filter consists of three shunt open-circuited stubs and two non-redundant unit elements. The proposed bandstop filter is designed with unequal electrical lengths of the open-circuited stubs at the mid-stopband. Therefore, the filter can exhibit a quasi-elliptic function response that improves the selectivity and enhances the rejection bandwidth. The filter is designed to exhibit a fractional bandwidth of about 114% at a mid-stopband frequency of 3.0 GHz. The filter is successfully realized in theory, simulated, fabricated and measured. An excellent agreement is obtained between calculated, simulated and measured. The fabricated filter has a compact size with a low insertion loss in the passbands, high selectivity and good attenuation level inside the desired stopband <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstrip%20filter" title="microstrip filter">microstrip filter</a>, <a href="https://publications.waset.org/abstracts/search?q=bandstop%20filter" title=" bandstop filter"> bandstop filter</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB%20filter" title=" UWB filter"> UWB filter</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line%20filter" title=" transmission line filter"> transmission line filter</a> </p> <a href="https://publications.waset.org/abstracts/151305/compact-microstrip-ultra-wideband-bandstop-filter-with-quasi-elliptic-function-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> A Finite Memory Residual Generation Filter for Fault Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20generation%20filter" title="residual generation filter">residual generation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20structure" title=" finite memory structure"> finite memory structure</a>, <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title=" kalman filter"> kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20detection" title=" fast detection"> fast detection</a> </p> <a href="https://publications.waset.org/abstracts/35140/a-finite-memory-residual-generation-filter-for-fault-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chan%20Jong%20Park">Chan Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Min%20Park"> Hye Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Ho%20Kim"> Jeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Hyun%20Park"> Ki Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Koan%20Sik%20Joo"> Koan Sik Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25渭m, 50渭m, and 75渭m. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray" title="X-ray">X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title=" MCNPX"> MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/53350/study-on-filter-for-semiconductor-of-minimizing-damage-by-x-ray-laminography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> The Effect of Filter Design and Face Velocity on Air Filter Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyad%20Al-Attar">Iyad Al-Attar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20filters" title="air filters">air filters</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20efficiency" title=" fractional efficiency"> fractional efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20cleaning" title=" gas cleaning"> gas cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibre" title=" glass fibre"> glass fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title=" HEPA filter"> HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/84989/the-effect-of-filter-design-and-face-velocity-on-air-filter-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packet%20loss%20probability%20estimation" title="packet loss probability estimation">packet loss probability estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20filter" title=" finite memory filter"> finite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20memory%20filter" title=" infinite memory filter"> infinite memory filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/9519/a-packet-loss-probability-estimation-filter-using-most-recent-finite-traffic-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">672</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Design Dual Band Band-Pass Filter by Using Stepped Impedance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawzia%20Al-Sakeer">Fawzia Al-Sakeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Aldeeb"> Hassan Aldeeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20pass%20filter" title="band pass filter">band pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20band%20band-pass%20filter" title=" dual band band-pass filter"> dual band band-pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=ADS" title=" ADS"> ADS</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20filter" title=" microstrip filter"> microstrip filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20impedance" title=" stepped impedance"> stepped impedance</a> </p> <a href="https://publications.waset.org/abstracts/177757/design-dual-band-band-pass-filter-by-using-stepped-impedance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Arda%20Adrina%20Daud">Noor Arda Adrina Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hanafi%20Ali"> Mohd Hanafi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compensating%20filter" title="compensating filter">compensating filter</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral" title=" lateral"> lateral</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracolumbar" title=" thoracolumbar "> thoracolumbar </a> </p> <a href="https://publications.waset.org/abstracts/6135/the-effect-of-compensating-filter-on-image-quality-in-lateral-projection-of-thoracolumbar-radiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Thermal Properties of Chitosan-Filled Empty Fruit Bunches Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziatul%20Niza%20Sadikin">Aziatul Niza Sadikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norasikin%20Othman"> Norasikin Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ghazali%20Mohd%20Nawawi"> Mohd Ghazali Mohd Nawawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Aisah%20Asli"> Umi Aisah Asli</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshafima%20Rasit%20Ali"> Roshafima Rasit Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiziana%20Md%20Kasmani"> Rafiziana Md Kasmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-woven fibrous filter media from empty fruit bunches were fabricated by using chitosan as a binder. Chitosan powder was dissolved in a 1 wt% aqueous acetic acid and 1 wt% to 4 wt% of chitosan solutions was prepared. Chitosan-filled empty fruit bunches filter media have been prepared via wet-layup method. Thermogravimetric analysis (TGA) was performed to study various thermal properties of the fibrous filter media. It was found that the fibrous filter media have undergone several decomposition stages over a range of temperatures as revealed by TGA thermo-grams, where the temperature for 10% weight loss for chitosan-filled EFB filter media and binder-less filter media was at 150oC and 300oC, Respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunches" title="empty fruit bunches">empty fruit bunches</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/3285/thermal-properties-of-chitosan-filled-empty-fruit-bunches-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Frequency Transformation with Pascal Matrix Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal&rsquo;s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title="frequency transformation">frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title=" bilinear z-transformation"> bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-warping%20frequency" title=" pre-warping frequency"> pre-warping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20filters" title=" digital filters"> digital filters</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filters" title=" analog filters"> analog filters</a>, <a href="https://publications.waset.org/abstracts/search?q=pascal%E2%80%99s%20triangle" title=" pascal鈥檚 triangle"> pascal鈥檚 triangle</a> </p> <a href="https://publications.waset.org/abstracts/34866/frequency-transformation-with-pascal-matrix-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Design of Wide-Range Variable Fractional-Delay FIR Digital Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Jy%20Shyu">Jong-Jy Shyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Chang%20Pei"> Soo-Chang Pei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Da%20Huang"> Yun-Da Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20filter" title="digital filter">digital filter</a>, <a href="https://publications.waset.org/abstracts/search?q=FIR%20filter" title=" FIR filter"> FIR filter</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20fractional-delay%20%28VFD%29%20filter" title=" variable fractional-delay (VFD) filter"> variable fractional-delay (VFD) filter</a>, <a href="https://publications.waset.org/abstracts/search?q=least-squares%20approximation" title=" least-squares approximation"> least-squares approximation</a> </p> <a href="https://publications.waset.org/abstracts/8390/design-of-wide-range-variable-fractional-delay-fir-digital-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbahuddin%20Mahammad">Misbahuddin Mahammad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chandra%20Sekhar"> P. Chandra Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Metuku%20Shyamsunder"> Metuku Shyamsunder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sigma%20delta%20modulator" title="sigma delta modulator">sigma delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=CIC%20filter" title=" CIC filter"> CIC filter</a>, <a href="https://publications.waset.org/abstracts/search?q=decimation%20filter" title=" decimation filter"> decimation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=compensation%20filter" title=" compensation filter"> compensation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20shaping" title=" noise shaping"> noise shaping</a> </p> <a href="https://publications.waset.org/abstracts/15366/design-of-decimation-filter-using-cascade-structure-for-sigma-delta-adc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang">Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Inoue"> Kohei Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiichi%20Urahama"> Kiichi Urahama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilateral%20filter" title="bilateral filter">bilateral filter</a>, <a href="https://publications.waset.org/abstracts/search?q=binarized-weight%20bilateral%20filter" title=" binarized-weight bilateral filter"> binarized-weight bilateral filter</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20smoothing" title=" image smoothing"> image smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20sampling" title=" pixel sampling"> pixel sampling</a> </p> <a href="https://publications.waset.org/abstracts/8980/binarized-weight-bilateral-filter-for-low-computational-cost-image-smoothing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Effect of Filter Paper Technique in Measuring Hydraulic Capacity of Unsaturated Expansive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenechi%20Kurtis%20Onochie">Kenechi Kurtis Onochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows the use of filter paper technique in the measurement of matric suction of unsaturated expansive soil around the Haspolat region of Lefkosa, North Cyprus in other to establish the soil water characteristics curve (SWCC) or soil water retention curve (SWRC). The dry filter paper approach which is standardized by ASTM, 2003, D 5298-03 in which the filter paper is initially dry was adopted. The whatman No. 42 filter paper was used in the matric suction measurement. The maximum dry density of the soil was obtained as 2.66kg/cm鲁 and the optimum moisture content as 21%. The soil was discovered to have high air entry value of 1847.46KPa indicating finer particles and 25% hydraulic capacity using filter paper technique. The filter paper technique proved to be very useful for measuring the hydraulic capacity of unsaturated expansive soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SWCC" title="SWCC">SWCC</a>, <a href="https://publications.waset.org/abstracts/search?q=matric%20suction" title=" matric suction"> matric suction</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20paper" title=" filter paper"> filter paper</a>, <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title=" expansive soil"> expansive soil</a> </p> <a href="https://publications.waset.org/abstracts/105060/effect-of-filter-paper-technique-in-measuring-hydraulic-capacity-of-unsaturated-expansive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Javidnia">Hossein Javidnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehe%20Taheri"> Salehe Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electrocardiogram (ECG) is the recording of the heart鈥檚 electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20noise%20filtering" title="ECG noise filtering">ECG noise filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20filtering" title=" Wiener filtering"> Wiener filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20filtering" title=" median filtering"> median filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20noise" title=" Gaussian noise"> Gaussian noise</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20performance" title=" filtering performance"> filtering performance</a> </p> <a href="https://publications.waset.org/abstracts/9623/additive-white-gaussian-noise-filtering-from-ecg-by-wiener-filter-and-median-filter-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> FPGA Based IIR Filter Design Using MAC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Mehra">Rajesh Mehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Thakur"> Bharti Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Butterworth%20filter" title="Butterworth filter">Butterworth filter</a>, <a href="https://publications.waset.org/abstracts/search?q=DSP" title=" DSP"> DSP</a>, <a href="https://publications.waset.org/abstracts/search?q=IIR" title=" IIR"> IIR</a>, <a href="https://publications.waset.org/abstracts/search?q=MAC" title=" MAC"> MAC</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a> </p> <a href="https://publications.waset.org/abstracts/41409/fpga-based-iir-filter-design-using-mac-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baiyeri%20R.%20M">Baiyeri R. M</a>, <a href="https://publications.waset.org/abstracts/search?q=Oloriegbe%20Y.%20A."> Oloriegbe Y. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20A.%20O."> Saad A. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf"> Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O."> K. O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetised%20water" title="magnetised water">magnetised water</a>, <a href="https://publications.waset.org/abstracts/search?q=sow%20sand%20filter" title=" sow sand filter"> sow sand filter</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20water" title=" portable water"> portable water</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/169477/impact-of-activated-carbon-and-magnetic-field-in-slow-sand-filter-on-water-purification-for-rural-dwellers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Linear MIMO Model Identification Using an Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20C.%20Best">Matthew C. Best</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter鈥檚 self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20model" title=" linear model"> linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20order%20reduction" title=" model order reduction"> model order reduction</a> </p> <a href="https://publications.waset.org/abstracts/24532/linear-mimo-model-identification-using-an-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ladislav%20Ptacek">Ladislav Ptacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vanek"> Jan Vanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Eisner"> Jan Eisner</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Pruchova"> Alexandra Pruchova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Linhart"> Pavel Linhart</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludek%20Muller"> Ludek Muller</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Jirotkova"> Dana Jirotkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avian%20audiogram" title="avian audiogram">avian audiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20individual%20identification" title=" bird individual identification"> bird individual identification</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20song%20processing" title=" bird song processing"> bird song processing</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20species%20recognition" title=" bird species recognition"> bird species recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20bank" title=" filter bank"> filter bank</a> </p> <a href="https://publications.waset.org/abstracts/71830/bird-adapted-filter-for-avian-species-and-individual-identification-systems-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20Mohamed">Mahmoud E. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Shalash"> Ahmed F. Shalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Kamal"> Hanan A. Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20detection" title=" false detection"> false detection</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement "> improvement </a> </p> <a href="https://publications.waset.org/abstracts/7978/fast-accurate-detection-of-frequency-jumps-using-kalman-filter-with-non-linear-improvements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Phasor Measurement Unit Based on Particle Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rithvik%20Reddy%20Adapa">Rithvik Reddy Adapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang"> Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title="phasor measurement unit">phasor measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation" title=" particle swarm optimisation"> particle swarm optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a> </p> <a href="https://publications.waset.org/abstracts/194127/phasor-measurement-unit-based-on-particle-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Azadi-Tinat">N. Azadi-Tinat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Oraizi"> H. Oraizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm 脳 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20least%20square" title="method of least square">method of least square</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20microstrip%20filter" title=" multilayer microstrip filter"> multilayer microstrip filter</a>, <a href="https://publications.waset.org/abstracts/search?q=n-coupled%20transmission%20lines" title=" n-coupled transmission lines"> n-coupled transmission lines</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-wideband" title=" ultra-wideband"> ultra-wideband</a> </p> <a href="https://publications.waset.org/abstracts/51257/design-of-compact-uwb-multilayered-microstrip-filter-with-wide-stopband" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alhajeri">Mohammad Alhajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filtration" title="filtration">filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CCF" title=" CCF"> CCF</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20gas%20filtration" title=" hot gas filtration"> hot gas filtration</a> </p> <a href="https://publications.waset.org/abstracts/36492/cold-flow-investigation-of-silicon-carbide-cylindrical-filter-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Iruleswari">M. Iruleswari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jeyapaul%20Murugan"> A. Jeyapaul Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response" title="finite impulse response">finite impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20arithmetic" title=" distributed arithmetic"> distributed arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gate%20array" title=" field programmable gate array"> field programmable gate array</a>, <a href="https://publications.waset.org/abstracts/search?q=look-up%20table" title=" look-up table"> look-up table</a> </p> <a href="https://publications.waset.org/abstracts/51854/an-efficient-fpga-realization-of-fir-filter-using-distributed-arithmetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Fractional Order Sallen-Key Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Soltan">Ahmed Soltan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20G.%20Radwan"> Ahmed G. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Soliman"> Ahmed M. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sallen-Key" title="Sallen-Key">Sallen-Key</a>, <a href="https://publications.waset.org/abstracts/search?q=fractance" title=" fractance"> fractance</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=low-pass%20filter" title=" low-pass filter"> low-pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filter" title=" analog filter"> analog filter</a> </p> <a href="https://publications.waset.org/abstracts/2170/fractional-order-sallen-key-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">715</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HEPA%20filter&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10