CINXE.COM
Search results for: similarity transformations
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: similarity transformations</title> <meta name="description" content="Search results for: similarity transformations"> <meta name="keywords" content="similarity transformations"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="similarity transformations" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="similarity transformations"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1009</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: similarity transformations</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Data Transformations in Data Envelopment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Mohammadpour">Mansour Mohammadpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20transformation" title="data transformation">data transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=undesirable%20data" title=" undesirable data"> undesirable data</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20data" title=" negative data"> negative data</a> </p> <a href="https://publications.waset.org/abstracts/192236/data-transformations-in-data-envelopment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Transformations between Bivariate Polynomial Bases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Varsamis">Dimitris Varsamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Karampetakis"> Nicholas Karampetakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that any interpolating polynomial P(x,y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis etc. The aim of this paper is twofold: a) to present transformations between the coordinates of the polynomial P(x,y) in the aforementioned basis and b) to present transformations between these bases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20interpolation%20polynomial" title="bivariate interpolation polynomial">bivariate interpolation polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20basis" title=" polynomial basis"> polynomial basis</a>, <a href="https://publications.waset.org/abstracts/search?q=transformations" title=" transformations"> transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolating%20polynomial" title=" interpolating polynomial"> interpolating polynomial</a> </p> <a href="https://publications.waset.org/abstracts/14542/transformations-between-bivariate-polynomial-bases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriuk%20Boris">Kriuk Boris</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriuk%20Fedor"> Kriuk Fedor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=siamese%20networks" title="siamese networks">siamese networks</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20textual%20similarity" title=" semantic textual similarity"> semantic textual similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20functions" title=" similarity functions"> similarity functions</a>, <a href="https://publications.waset.org/abstracts/search?q=STS%20benchmark%20dataset" title=" STS benchmark dataset"> STS benchmark dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20selection" title=" threshold selection"> threshold selection</a> </p> <a href="https://publications.waset.org/abstracts/187407/multi-objective-optimal-threshold-selection-for-similarity-functions-in-siamese-networks-for-semantic-textual-similarity-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Teachers’ Instructional Decisions When Teaching Geometric Transformations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Kasmer">Lisa Kasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20plane" title="coordinate plane">coordinate plane</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20transformations" title=" geometric transformations"> geometric transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=instructional%20decisions" title=" instructional decisions"> instructional decisions</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20mathematics" title=" middle school mathematics"> middle school mathematics</a> </p> <a href="https://publications.waset.org/abstracts/149689/teachers-instructional-decisions-when-teaching-geometric-transformations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Majda">Aicha Majda</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20El%20Hassani"> Abdelhamid El Hassani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20cuts" title="graph cuts">graph cuts</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20CT%20scan" title=" lung CT scan"> lung CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20parenchyma%20segmentation" title=" lung parenchyma segmentation"> lung parenchyma segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=patch-based%20similarity%20metric" title=" patch-based similarity metric"> patch-based similarity metric</a> </p> <a href="https://publications.waset.org/abstracts/87346/graph-cuts-segmentation-approach-using-a-patch-based-similarity-measure-applied-for-interactive-ct-lung-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20R%C4%83dulescu"> Dan Rădulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tag" title="Tag">Tag</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20page" title=" web page"> web page</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20value" title=" similarity value"> similarity value</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a> </p> <a href="https://publications.waset.org/abstracts/50460/approximately-similarity-measurement-of-web-sites-using-genetic-algorithms-and-binary-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Measuring Text-Based Semantics Relatedness Using WordNet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Khan">Madiha Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidrah%20Ramzan"> Sidrah Ramzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemab%20Khan"> Seemab Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Hassan"> Shahzad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Saeed"> Kamran Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphviz%20representation" title="Graphviz representation">Graphviz representation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20relatedness" title=" semantic relatedness"> semantic relatedness</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measurement" title=" similarity measurement"> similarity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=WordNet%20similarity" title=" WordNet similarity"> WordNet similarity</a> </p> <a href="https://publications.waset.org/abstracts/95106/measuring-text-based-semantics-relatedness-using-wordnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20images" title="big images">big images</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images" title=" binary images"> binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20similarity" title=" image similarity"> image similarity</a> </p> <a href="https://publications.waset.org/abstracts/89963/quick-similarity-measurement-of-binary-images-via-probabilistic-pixel-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> A Context-Sensitive Algorithm for Media Similarity Search </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang-Ho%20Cha">Guang-Ho Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context-sensitive%20search" title="context-sensitive search">context-sensitive search</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20search" title=" image search"> image search</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20ranking" title=" similarity ranking"> similarity ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20search" title=" similarity search"> similarity search</a> </p> <a href="https://publications.waset.org/abstracts/65150/a-context-sensitive-algorithm-for-media-similarity-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Strengthening Urban Governance and Planning Practices for Urban Sustainability Transformations in Cambodia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiona%20Lord">Fiona Lord</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents research on strengthening urban governance and planning practices for sustainable and regenerative city transformations looking at urban governance in Cambodia as a case study. Transformations to urban sustainability and regeneration require systemic and long-term transformation processes, across multiple levels of society and inclusive of multiple urban actors. This paper presents the emerging findings of a qualitative case study comparing the urban governance and planning practices in two of Cambodia's secondary cities - Battambang and Sihanoukville. The lessons learned have broader implications for how governance and planning can be strengthened to initiate and sustain urban sustainability transformations in other developing country cities of Cambodia and the Southeast Asia region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cambodia" title="Cambodia">Cambodia</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20practices" title=" planning practices"> planning practices</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20governance" title=" urban governance"> urban governance</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability%20transformations" title=" urban sustainability transformations"> urban sustainability transformations</a> </p> <a href="https://publications.waset.org/abstracts/135576/strengthening-urban-governance-and-planning-practices-for-urban-sustainability-transformations-in-cambodia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Review and Suggestions of the Similarity between Employee and Its Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gi%20Ryung%20Song">Gi Ryung Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Seok%20Kim"> Kyoung Seok Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reviewed the literature that focused on similarity of various characteristics such as values, personality, or demographics between employee and other elements in its organization for example employee with leader, job, and organization. We divided a body of this study into two parts and organized and demonstrated recent studies in first part. Three issues appeared in this part, which are statistical ways of measuring similarity, supervisor-subordinate similarity, and person-organization fit with person-job fit. In the latter part, based on the three issues of recent studies, we suggested three propositions about points that the recent studies missed or the studies did not orient. First proposition argued about the direction of similarity, which could also be interpreted as there is causal relation between employee and its workplace environments. Second, we suggested a consideration of eliminating common variance buried in one’s characteristics or its profiles. Third proposition was about the similarity of extra role behavior between individual and organization, and we treated this organization’s level of extra role behavior as a kind of its culture. In doing so, similarity of individual’s extra role behavior and organization’s has the meaning that individual’s congruence against their organization culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=similarity" title="similarity">similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=person-organization%20fit" title=" person-organization fit"> person-organization fit</a>, <a href="https://publications.waset.org/abstracts/search?q=supervisor-subordinate%20similarity" title=" supervisor-subordinate similarity"> supervisor-subordinate similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a> </p> <a href="https://publications.waset.org/abstracts/54492/review-and-suggestions-of-the-similarity-between-employee-and-its-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> 2D Fingerprint Performance for PubChem Chemical Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Zawani%20Abdullah">Fatimah Zawani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shereena%20Mohd%20Arif"> Shereena Mohd Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Malim"> Nurul Malim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20fingerprints" title="2D fingerprints">2D fingerprints</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanimoto" title=" Tanimoto"> Tanimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=PubChem" title=" PubChem"> PubChem</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20searching" title=" similarity searching"> similarity searching</a>, <a href="https://publications.waset.org/abstracts/search?q=chemoinformatics" title=" chemoinformatics"> chemoinformatics</a> </p> <a href="https://publications.waset.org/abstracts/15097/2d-fingerprint-performance-for-pubchem-chemical-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binyam%20Teferi">Binyam Teferi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stretching%20velocity" title="stretching velocity">stretching velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20transformations" title=" similarity transformations"> similarity transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dependent%20magnetic%20field%20intensity" title=" time dependent magnetic field intensity"> time dependent magnetic field intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title=" chemical reaction"> chemical reaction</a> </p> <a href="https://publications.waset.org/abstracts/157021/effect-of-thermal-radiation-and-chemical-reaction-on-mhd-flow-of-blood-in-stretching-permeable-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Similarity Based Membership of Elements to Uncertain Concept in Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamel%20El-Sayed">M. Kamel El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20system" title="information system">information system</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20concept" title=" uncertain concept"> uncertain concept</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20relation" title=" similarity relation"> similarity relation</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20similarity" title=" degree of similarity"> degree of similarity</a> </p> <a href="https://publications.waset.org/abstracts/88086/similarity-based-membership-of-elements-to-uncertain-concept-in-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerarka">A. Zerarka</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Djoudi"> W. Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20transformations" title="fractional transformations">fractional transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20equation" title=" nonlinear equation"> nonlinear equation</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20solutions" title=" travelling wave solutions"> travelling wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20equation" title=" lattice equation "> lattice equation </a> </p> <a href="https://publications.waset.org/abstracts/20487/exactly-fractional-solutions-of-nonlinear-lattice-equation-via-some-fractional-transformations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salima%20Kouici">Salima Kouici</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Khelladi"> Abdelkader Khelladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally, the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20data" title="binary data">binary data</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measure" title=" similarity measure"> similarity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=T%CE%B8%20measures" title=" Tθ measures"> Tθ measures</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title=" agglomerative hierarchical clustering"> agglomerative hierarchical clustering</a> </p> <a href="https://publications.waset.org/abstracts/13108/agglomerative-hierarchical-clustering-using-the-tth-family-of-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Empirical Study of Partitions Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Alfalah">Abdelkrim Alfalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahcen%20Ouarbya"> Lahcen Ouarbya</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Howroyd"> John Howroyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=comparing%20partitions" title=" comparing partitions"> comparing partitions</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measure" title=" similarity measure"> similarity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20distance" title=" partition distance"> partition distance</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20metric" title=" partition metric"> partition metric</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20between%20partitions" title=" similarity between partitions"> similarity between partitions</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20comparison." title=" clustering comparison."> clustering comparison.</a> </p> <a href="https://publications.waset.org/abstracts/143607/empirical-study-of-partitions-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Sandesh">K. P. Sandesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Suman"> M. H. Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=document%20classification" title="document classification">document classification</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20clustering" title=" document clustering"> document clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithms" title=" clustering algorithms"> clustering algorithms</a> </p> <a href="https://publications.waset.org/abstracts/22708/a-similarity-measure-for-classification-and-clustering-in-image-based-medical-and-text-based-banking-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Tool for Determining the Similarity between Two Web Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raducanu%20Dragos%20Ionut"> Raducanu Dragos Ionut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the presentation of a tool which measures the similarity between two websites is made. The websites are compound only from webpages created with HTML. The tool uses three ways of calculating the similarity between two websites based on certain results already published. The first way compares all the webpages within a website, the second way compares a webpage with all the pages within the second website and the third way compares two webpages. Java programming language and technologies such as spring, Jsoup, log4j were used for the implementation of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Java" title="Java">Java</a>, <a href="https://publications.waset.org/abstracts/search?q=Jsoup" title=" Jsoup"> Jsoup</a>, <a href="https://publications.waset.org/abstracts/search?q=HTM" title=" HTM"> HTM</a>, <a href="https://publications.waset.org/abstracts/search?q=spring" title=" spring"> spring</a> </p> <a href="https://publications.waset.org/abstracts/48293/tool-for-determining-the-similarity-between-two-web-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Improving Similarity Search Using Clustered Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokho%20Kim">Deokho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wonwoo%20Lee"> Wonwoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewoong%20Lee"> Jaewoong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Ng"> Teresa Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun-Ill%20Lee"> Gun-Ill Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Jeong"> Jiwon Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20search" title="visual search">visual search</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/92185/improving-similarity-search-using-clustered-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeepa%20Teegala">Pradeepa Teegala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramreddy%20Chetteti"> Ramreddy Chetteti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title=" convective boundary condition"> convective boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=joule%20heating" title=" joule heating"> joule heating</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20quasilinearization%20method" title=" spectral quasilinearization method"> spectral quasilinearization method</a> </p> <a href="https://publications.waset.org/abstracts/53751/effect-of-joule-heating-on-chemically-reacting-micropolar-fluid-flow-over-truncated-cone-with-convective-boundary-condition-using-spectral-quasilinearization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Impact of Similarity Ratings on Human Judgement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20A.%20McCulloh">Ian A. McCulloh</a>, <a href="https://publications.waset.org/abstracts/search?q=Madelaine%20Zinser"> Madelaine Zinser</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesse%20Patsolic"> Jesse Patsolic</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Ramos"> Michael Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ratings" title="ratings">ratings</a>, <a href="https://publications.waset.org/abstracts/search?q=rankings" title=" rankings"> rankings</a>, <a href="https://publications.waset.org/abstracts/search?q=crowdsourcing" title=" crowdsourcing"> crowdsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20studies" title=" empirical studies"> empirical studies</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20studies" title=" user studies"> user studies</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measures" title=" similarity measures"> similarity measures</a>, <a href="https://publications.waset.org/abstracts/search?q=human-centered%20computing" title=" human-centered computing"> human-centered computing</a>, <a href="https://publications.waset.org/abstracts/search?q=novelty%20in%20information%20retrieval" title=" novelty in information retrieval"> novelty in information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/163910/impact-of-similarity-ratings-on-human-judgement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Text Similarity in Vector Space Models: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Shahmirzadi">Omid Shahmirzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Lugowski"> Adam Lugowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Younge"> Kenneth Younge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20embedding" title=" text embedding"> text embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20similarity" title=" text similarity"> text similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a> </p> <a href="https://publications.waset.org/abstracts/102930/text-similarity-in-vector-space-models-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Static vs. Stream Mining Trajectories Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Riyadh">Musaab Riyadh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norwati%20Mustapha"> Norwati Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Riyadh"> Dina Riyadh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20distance%20measure" title="global distance measure">global distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20distance%20measure" title=" local distance measure"> local distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20trajectory" title=" semantic trajectory"> semantic trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20dimension" title=" spatial dimension"> spatial dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20data%20mining" title=" stream data mining"> stream data mining</a> </p> <a href="https://publications.waset.org/abstracts/94763/static-vs-stream-mining-trajectories-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgi%20I.%20Petkov">Georgi I. Petkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20I.%20Vankov"> Ivan I. Vankov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolina%20A.%20Petrova"> Yolina A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy-making" title="analogy-making">analogy-making</a>, <a href="https://publications.waset.org/abstracts/search?q=categorization" title=" categorization"> categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20of%20categories" title=" learning of categories"> learning of categories</a>, <a href="https://publications.waset.org/abstracts/search?q=abstraction" title=" abstraction"> abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title=" hierarchical structure"> hierarchical structure</a> </p> <a href="https://publications.waset.org/abstracts/94222/discovering-the-dimension-of-abstractness-structure-based-model-that-learns-new-categories-and-categorizes-on-different-levels-of-abstraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vishnav">Nileshkumar Vishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20similarity" title=" graph similarity"> graph similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=isospectral%20graphs" title=" isospectral graphs"> isospectral graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20signal%20processing" title=" nonuniform signal processing"> nonuniform signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59404/graph-similarity-algebraic-model-and-its-application-to-nonuniform-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamanna%20Goyal">Tamanna Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Bansal"> Divya Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sofat"> Sanjeev Sofat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measure" title=" similarity measure"> similarity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20approaches" title=" statistical approaches "> statistical approaches </a> </p> <a href="https://publications.waset.org/abstracts/53364/clustering-of-association-rules-of-isis-al-qaeda-based-on-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Akay">M. C. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aybakan"> A. Aybakan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Temeltas"> H. Temeltas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered. In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20maps" title="common maps">common maps</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20robot%20team" title=" heterogeneous robot team"> heterogeneous robot team</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20matching" title=" map matching"> map matching</a>, <a href="https://publications.waset.org/abstracts/search?q=informative%20theoretic%20similarity%20metrics" title=" informative theoretic similarity metrics"> informative theoretic similarity metrics</a> </p> <a href="https://publications.waset.org/abstracts/99098/map-matching-performance-under-various-similarity-metrics-for-heterogeneous-robot-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Religious and Architectural Transformations of Kourion in Cyprus between the 1st and 6th Centuries AD. The Case of Trypiti Bay and its Topographical Relationships to Coastal Sanctuaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argyroula%20Argyrou">Argyroula Argyrou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of my current research, of which this paper form’s part, is to explore the architectural and religious transformations of Trypiti Bay in the region of Kourion, Cyprus, between the 1st and 6th centuries AD. This research aims to explore and analyse three different stages in the religious and architectural transformations of the ancient port, with evidence supporting these transformations from the main city of Kourion and the Sanctuary of Apollo Hylates between the 1st and 6th centuries. In addition, the research is using historical and archaeological comparisons with coastal sites in the Levant, North Africa, Lebanon, and Europe in an attempt to identify a pattern of development in the religious topography of Kourion and how these contributed to change in the use and symbolism of Trypiti bay as an important passageway to religious sanctuaries in the vicinity of the coast. The construction of Trypiti Bay has been proven, according to archaeological and historical evidence, gathered throughout Kourion’s fieldwork and archival research, that it served as a natural port for cargos that needed to be protected from the strong west winds of the area. The construction of Trypiti Bay is believed to be unique to the island as no similar structure has yet been discovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage" title=" heritage"> heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=perservation" title=" perservation"> perservation</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=unique" title=" unique"> unique</a> </p> <a href="https://publications.waset.org/abstracts/161843/religious-and-architectural-transformations-of-kourion-in-cyprus-between-the-1st-and-6th-centuries-ad-the-case-of-trypiti-bay-and-its-topographical-relationships-to-coastal-sanctuaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Some Results for F-Minimal Hypersurfaces in Manifolds with Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmalek">M. Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20mean%20curvature" title="weighted mean curvature">weighted mean curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20manifolds" title=" weighted manifolds"> weighted manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipticity" title=" ellipticity"> ellipticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20transformations" title=" Newton transformations"> Newton transformations</a> </p> <a href="https://publications.waset.org/abstracts/160174/some-results-for-f-minimal-hypersurfaces-in-manifolds-with-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=similarity%20transformations&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>