CINXE.COM
Dimensional analysis - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Dimensional analysis - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"83c31e7d-9dc1-4f60-9484-c26feb1ab1a4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dimensional_analysis","wgTitle":"Dimensional analysis","wgCurRevisionId":1254137729,"wgRevisionId":1254137729,"wgArticleId":8267,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Use dmy dates from April 2021","All articles with unsourced statements","Articles with unsourced statements from May 2021","Articles with unsourced statements from September 2013","Commons category link from Wikidata","Webarchive template wayback links","Dimensional analysis","Measurement","Conversion of units of measurement","Chemical engineering", "Mechanical engineering","Environmental engineering"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Dimensional_analysis","wgRelevantArticleId":8267,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q217113","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Dimensional analysis - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Dimensional_analysis"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Dimensional_analysis&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Dimensional_analysis"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dimensional_analysis rootpage-Dimensional_analysis skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Dimensional+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Dimensional+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Dimensional+analysis" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Dimensional+analysis" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Formulation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formulation</span> </div> </a> <button aria-controls="toc-Formulation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formulation subsection</span> </button> <ul id="toc-Formulation-sublist" class="vector-toc-list"> <li id="toc-Simple_cases" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simple_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Simple cases</span> </div> </a> <ul id="toc-Simple_cases-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rayleigh's_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rayleigh's_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Rayleigh's method</span> </div> </a> <ul id="toc-Rayleigh's_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Concrete_numbers_and_base_units" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Concrete_numbers_and_base_units"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Concrete numbers and base units</span> </div> </a> <button aria-controls="toc-Concrete_numbers_and_base_units-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Concrete numbers and base units subsection</span> </button> <ul id="toc-Concrete_numbers_and_base_units-sublist" class="vector-toc-list"> <li id="toc-Percentages,_derivatives_and_integrals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Percentages,_derivatives_and_integrals"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Percentages, derivatives and integrals</span> </div> </a> <ul id="toc-Percentages,_derivatives_and_integrals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dimensional_homogeneity_(commensurability)" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dimensional_homogeneity_(commensurability)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Dimensional homogeneity (commensurability)</span> </div> </a> <ul id="toc-Dimensional_homogeneity_(commensurability)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conversion_factor" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Conversion_factor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Conversion factor</span> </div> </a> <ul id="toc-Conversion_factor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Mathematics</span> </div> </a> <ul id="toc-Mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finance,_economics,_and_accounting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finance,_economics,_and_accounting"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Finance, economics, and accounting</span> </div> </a> <ul id="toc-Finance,_economics,_and_accounting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fluid_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fluid_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Fluid mechanics</span> </div> </a> <ul id="toc-Fluid_mechanics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-A_simple_example:_period_of_a_harmonic_oscillator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_simple_example:_period_of_a_harmonic_oscillator"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>A simple example: period of a harmonic oscillator</span> </div> </a> <ul id="toc-A_simple_example:_period_of_a_harmonic_oscillator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_more_complex_example:_energy_of_a_vibrating_wire" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_more_complex_example:_energy_of_a_vibrating_wire"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>A more complex example: energy of a vibrating wire</span> </div> </a> <ul id="toc-A_more_complex_example:_energy_of_a_vibrating_wire-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_third_example:_demand_versus_capacity_for_a_rotating_disc" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_third_example:_demand_versus_capacity_for_a_rotating_disc"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>A third example: demand versus capacity for a rotating disc</span> </div> </a> <ul id="toc-A_third_example:_demand_versus_capacity_for_a_rotating_disc-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Mathematical_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Mathematical properties</span> </div> </a> <ul id="toc-Mathematical_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Mechanics</span> </div> </a> <ul id="toc-Mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_fields_of_physics_and_chemistry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_fields_of_physics_and_chemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Other fields of physics and chemistry</span> </div> </a> <ul id="toc-Other_fields_of_physics_and_chemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polynomials_and_transcendental_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polynomials_and_transcendental_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Polynomials and transcendental functions</span> </div> </a> <ul id="toc-Polynomials_and_transcendental_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Combining_units_and_numerical_values" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Combining_units_and_numerical_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Combining units and numerical values</span> </div> </a> <ul id="toc-Combining_units_and_numerical_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantity_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantity_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Quantity equations</span> </div> </a> <ul id="toc-Quantity_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dimensionless_concepts" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dimensionless_concepts"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Dimensionless concepts</span> </div> </a> <button aria-controls="toc-Dimensionless_concepts-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Dimensionless concepts subsection</span> </button> <ul id="toc-Dimensionless_concepts-sublist" class="vector-toc-list"> <li id="toc-Constants" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Constants"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Constants</span> </div> </a> <ul id="toc-Constants-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formalisms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formalisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Formalisms</span> </div> </a> <ul id="toc-Formalisms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dimensional_equivalences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dimensional_equivalences"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Dimensional equivalences</span> </div> </a> <button aria-controls="toc-Dimensional_equivalences-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Dimensional equivalences subsection</span> </button> <ul id="toc-Dimensional_equivalences-sublist" class="vector-toc-list"> <li id="toc-SI_units" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#SI_units"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>SI units</span> </div> </a> <ul id="toc-SI_units-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Programming_languages" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Programming_languages"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Programming languages</span> </div> </a> <ul id="toc-Programming_languages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometry:_position_vs._displacement" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geometry:_position_vs._displacement"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Geometry: position vs. displacement</span> </div> </a> <button aria-controls="toc-Geometry:_position_vs._displacement-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Geometry: position vs. displacement subsection</span> </button> <ul id="toc-Geometry:_position_vs._displacement-sublist" class="vector-toc-list"> <li id="toc-Affine_quantities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_quantities"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Affine quantities</span> </div> </a> <ul id="toc-Affine_quantities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orientation_and_frame_of_reference" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Orientation_and_frame_of_reference"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Orientation and frame of reference</span> </div> </a> <ul id="toc-Orientation_and_frame_of_reference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Huntley's_extensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Huntley's_extensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3</span> <span>Huntley's extensions</span> </div> </a> <ul id="toc-Huntley's_extensions-sublist" class="vector-toc-list"> <li id="toc-Directed_dimensions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Directed_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3.1</span> <span>Directed dimensions</span> </div> </a> <ul id="toc-Directed_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantity_of_matter" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Quantity_of_matter"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3.2</span> <span>Quantity of matter</span> </div> </a> <ul id="toc-Quantity_of_matter-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Siano's_extension:_orientational_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Siano's_extension:_orientational_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.4</span> <span>Siano's extension: orientational analysis</span> </div> </a> <ul id="toc-Siano's_extension:_orientational_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Related_areas_of_mathematics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_areas_of_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Related areas of mathematics</span> </div> </a> <ul id="toc-Related_areas_of_mathematics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Dimensional analysis</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 34 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-34" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">34 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%D9%8A%D9%84_%D8%A8%D8%B9%D8%AF%D9%8A" title="تحليل بعدي – Arabic" lang="ar" hreflang="ar" data-title="تحليل بعدي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A6%BE%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A6%BE_%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3" title="মাত্রা সমীকরণ – Bangla" lang="bn" hreflang="bn" data-title="মাত্রা সমীকরণ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D0%B7_%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BD%D0%B0%D1%81%D1%86%D0%B5%D0%B9" title="Аналіз размернасцей – Belarusian" lang="be" hreflang="be" data-title="Аналіз размернасцей" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/An%C3%A0lisi_dimensional" title="Anàlisi dimensional – Catalan" lang="ca" hreflang="ca" data-title="Anàlisi dimensional" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Dimensionsanalyse" title="Dimensionsanalyse – German" lang="de" hreflang="de" data-title="Dimensionsanalyse" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Dimensionaalanal%C3%BC%C3%BCs" title="Dimensionaalanalüüs – Estonian" lang="et" hreflang="et" data-title="Dimensionaalanalüüs" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CF%83%CF%84%CE%B1%CF%84%CE%B9%CE%BA%CE%AE_%CE%B1%CE%BD%CE%AC%CE%BB%CF%85%CF%83%CE%B7" title="Διαστατική ανάλυση – Greek" lang="el" hreflang="el" data-title="Διαστατική ανάλυση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/An%C3%A1lisis_dimensional" title="Análisis dimensional – Spanish" lang="es" hreflang="es" data-title="Análisis dimensional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%DB%8C%D9%84_%D8%A7%D8%A8%D8%B9%D8%A7%D8%AF%DB%8C" title="تحلیل ابعادی – Persian" lang="fa" hreflang="fa" data-title="تحلیل ابعادی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Analyse_dimensionnelle" title="Analyse dimensionnelle – French" lang="fr" hreflang="fr" data-title="Analyse dimensionnelle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Anail%C3%ADs_thoiseach" title="Anailís thoiseach – Irish" lang="ga" hreflang="ga" data-title="Anailís thoiseach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B0%A8%EC%9B%90_%ED%95%B4%EC%84%9D" title="차원 해석 – Korean" lang="ko" hreflang="ko" data-title="차원 해석" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%89%D5%A1%D6%83%D5%A1%D5%B5%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Չափայնություն – Armenian" lang="hy" hreflang="hy" data-title="Չափայնություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%AE%E0%A5%80%E0%A4%AF_%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B2%E0%A5%87%E0%A4%B7%E0%A4%A3" title="विमीय विश्लेषण – Hindi" lang="hi" hreflang="hi" data-title="विमीय विश्लेषण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Analisis_dimensi" title="Analisis dimensi – Indonesian" lang="id" hreflang="id" data-title="Analisis dimensi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Analisi_dimensionale" title="Analisi dimensionale – Italian" lang="it" hreflang="it" data-title="Analisi dimensionale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A0%D7%9C%D7%99%D7%96%D7%94_%D7%9E%D7%9E%D7%93%D7%99%D7%AA" title="אנליזה ממדית – Hebrew" lang="he" hreflang="he" data-title="אנליזה ממדית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%92%E1%83%90%E1%83%9C%E1%83%96%E1%83%9D%E1%83%9B%E1%83%98%E1%83%9A%E1%83%94%E1%83%91%E1%83%90_(%E1%83%A4%E1%83%98%E1%83%96%E1%83%98%E1%83%99%E1%83%90)" title="განზომილება (ფიზიკა) – Georgian" lang="ka" hreflang="ka" data-title="განზომილება (ფიზიკა)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D3%A8%D0%BB%D1%88%D0%B5%D0%BC%D0%B4%D1%96%D0%BB%D1%96%D0%BA%D1%82%D0%B5%D1%80%D0%B4%D1%96_%D1%82%D0%B0%D0%BB%D0%B4%D0%B0%D1%83" title="Өлшемділіктерді талдау – Kazakh" lang="kk" hreflang="kk" data-title="Өлшемділіктерді талдау" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Analiz_dimansyon%C3%A8l" title="Analiz dimansyonèl – Haitian Creole" lang="ht" hreflang="ht" data-title="Analiz dimansyonèl" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%AC%A1%E5%85%83%E8%A7%A3%E6%9E%90" title="次元解析 – Japanese" lang="ja" hreflang="ja" data-title="次元解析" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Dimensjonsanalyse" title="Dimensjonsanalyse – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Dimensjonsanalyse" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Analiza_wymiarowa" title="Analiza wymiarowa – Polish" lang="pl" hreflang="pl" data-title="Analiza wymiarowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/An%C3%A1lise_dimensional" title="Análise dimensional – Portuguese" lang="pt" hreflang="pt" data-title="Análise dimensional" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Analiz%C4%83_dimensional%C4%83" title="Analiză dimensională – Romanian" lang="ro" hreflang="ro" data-title="Analiză dimensională" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Анализ размерности – Russian" lang="ru" hreflang="ru" data-title="Анализ размерности" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Dimensional_analysis" title="Dimensional analysis – Simple English" lang="en-simple" hreflang="en-simple" data-title="Dimensional analysis" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Razse%C5%BEnostna_analiza" title="Razsežnostna analiza – Slovenian" lang="sl" hreflang="sl" data-title="Razsežnostna analiza" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Dimensioanalyysi" title="Dimensioanalyysi – Finnish" lang="fi" hreflang="fi" data-title="Dimensioanalyysi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Dimensionsanalys" title="Dimensionsanalys – Swedish" lang="sv" hreflang="sv" data-title="Dimensionsanalys" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Boyut_analizi" title="Boyut analizi – Turkish" lang="tr" hreflang="tr" data-title="Boyut analizi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7%D1%83_%D1%80%D0%BE%D0%B7%D0%BC%D1%96%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9" title="Метод аналізу розмірностей – Ukrainian" lang="uk" hreflang="uk" data-title="Метод аналізу розмірностей" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A2n_t%C3%ADch_th%E1%BB%A9_nguy%C3%AAn" title="Phân tích thứ nguyên – Vietnamese" lang="vi" hreflang="vi" data-title="Phân tích thứ nguyên" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9B%A0%E6%AC%A1%E5%88%86%E6%9E%90" title="因次分析 – Chinese" lang="zh" hreflang="zh" data-title="因次分析" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q217113#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dimensional_analysis" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Dimensional_analysis" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dimensional_analysis"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Dimensional_analysis"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Dimensional_analysis" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Dimensional_analysis" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&oldid=1254137729" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Dimensional_analysis&id=1254137729&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDimensional_analysis"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDimensional_analysis"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Dimensional_analysis&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Dimensional_analysis&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Dimensional_analysis" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q217113" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Analysis of the relationships between different physical quantities</div> <p class="mw-empty-elt"> </p><p>In <a href="/wiki/Engineering" title="Engineering">engineering</a> and <a href="/wiki/Science" title="Science">science</a>, <b>dimensional analysis</b> is the analysis of the relationships between different <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantities</a> by identifying their <a href="/wiki/Base_quantity" class="mw-redirect" title="Base quantity">base quantities</a> (such as <a href="/wiki/Length" title="Length">length</a>, <a href="/wiki/Mass" title="Mass">mass</a>, <a href="/wiki/Time" title="Time">time</a>, and <a href="/wiki/Electric_current" title="Electric current">electric current</a>) and <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">units of measurement</a> (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to <a href="/wiki/Conversion_of_units" title="Conversion of units">conversion of units</a> from one dimensional unit to another, which can be used to evaluate scientific formulae. </p><p><i><b>Commensurable</b></i> physical quantities are of the same <a href="/wiki/Kind_of_quantity" class="mw-redirect" title="Kind of quantity">kind</a> and have the same dimension, and can be directly compared to each other, even if they are expressed in differing units of measurement; e.g., metres and feet, grams and pounds, seconds and years. <i>Incommensurable</i> physical <a href="/wiki/Quantity" title="Quantity">quantities</a> are of different <a href="/wiki/Kind_of_quantity" class="mw-redirect" title="Kind of quantity">kinds</a> and have different dimensions, and can not be directly compared to each other, no matter what <a href="/wiki/Unit_of_measurement" title="Unit of measurement">units</a> they are expressed in, e.g. metres and grams, seconds and grams, metres and seconds. For example, asking whether a gram is larger than an hour is meaningless. </p><p>Any physically meaningful <a href="/wiki/Equation" title="Equation">equation</a>, or <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality</a>, <i>must</i> have the same dimensions on its left and right sides, a property known as <i>dimensional homogeneity</i>. Checking for dimensional homogeneity is a common application of dimensional analysis, serving as a plausibility check on <a href="/wiki/Formal_proof" title="Formal proof">derived</a> equations and <a href="/wiki/Computation" title="Computation">computations</a>. It also serves as a guide and constraint in deriving equations that may describe a physical <a href="/wiki/System" title="System">system</a> in the absence of a more rigorous derivation. </p><p>The concept of <b>physical dimension</b> or <b>quantity dimension</b>, and of dimensional analysis, was introduced by <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a> in 1822.<sup id="cite_ref-Bolster_1-0" class="reference"><a href="#cite_note-Bolster-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 42">: 42 </span></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formulation">Formulation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=1" title="Edit section: Formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Dimension (physics)" redirects here. For physical dimensions, see <a href="/wiki/Size" title="Size">Size</a>.</div> <p>The <a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">Buckingham π theorem</a> describes how every physically meaningful equation involving <span class="texhtml"><i>n</i></span> variables can be equivalently rewritten as an equation of <span class="texhtml"><i>n</i> − <i>m</i></span> dimensionless parameters, where <i>m</i> is the <a href="/wiki/Rank_of_a_matrix" class="mw-redirect" title="Rank of a matrix">rank</a> of the dimensional <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. Furthermore, and most importantly, it provides a method for computing these dimensionless parameters from the given variables. </p><p>A dimensional equation can have the dimensions reduced or eliminated through <a href="/wiki/Nondimensionalization" title="Nondimensionalization">nondimensionalization</a>, which begins with dimensional analysis, and involves scaling quantities by <a href="/wiki/Characteristic_units" class="mw-redirect" title="Characteristic units">characteristic units</a> of a system or <a href="/wiki/Physical_constant" title="Physical constant">physical constants</a> of nature.<sup id="cite_ref-Bolster_1-1" class="reference"><a href="#cite_note-Bolster-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 43">: 43 </span></sup> This may give insight into the fundamental properties of the system, as illustrated in the examples below. </p><p>The dimension of a <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantity</a> can be expressed as a product of the base physical dimensions such as length, mass and time, each raised to an integer (and occasionally <a href="/wiki/Rational_number" title="Rational number">rational</a>) <a href="/wiki/Power_(mathematics)" class="mw-redirect" title="Power (mathematics)">power</a>. The <i>dimension</i> of a physical quantity is more fundamental than some <i>scale</i> or <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">unit</a> used to express the amount of that physical quantity. For example, <i>mass</i> is a dimension, while the kilogram is a particular reference quantity chosen to express a quantity of mass. The choice of unit is arbitrary, and its choice is often based on historical precedent. <a href="/wiki/Natural_units" title="Natural units">Natural units</a>, being based on only universal constants, may be thought of as being "less arbitrary". </p><p>There are many possible choices of base physical dimensions. The <a href="/wiki/International_System_of_Units" title="International System of Units">SI standard</a> selects the following dimensions and corresponding <b>dimension symbols</b>:<span class="anchor" id="Dimension_symbol"></span> </p> <dl><dd><a href="/wiki/Time" title="Time">time</a> (T), <a href="/wiki/Length" title="Length">length</a> (L), <a href="/wiki/Mass" title="Mass">mass</a> (M), <a href="/wiki/Electric_current" title="Electric current">electric current</a> (I), <a href="/wiki/Absolute_temperature" class="mw-redirect" title="Absolute temperature">absolute temperature</a> (Θ), <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a> (N) and <a href="/wiki/Luminous_intensity" title="Luminous intensity">luminous intensity</a> (J).</dd></dl> <p>The symbols are by convention usually written in <a href="/wiki/Roman_type" title="Roman type">roman</a> <a href="/wiki/Sans_serif" class="mw-redirect" title="Sans serif">sans serif</a> typeface.<sup id="cite_ref-SIBrochure9th_2-0" class="reference"><a href="#cite_note-SIBrochure9th-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Mathematically, the dimension of the quantity <span class="texhtml"><i>Q</i></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} Q={\mathsf {T}}^{a}{\mathsf {L}}^{b}{\mathsf {M}}^{c}{\mathsf {I}}^{d}{\mathsf {\Theta }}^{e}{\mathsf {N}}^{f}{\mathsf {J}}^{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>Q</mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">Θ<!-- Θ --></mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">N</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">J</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} Q={\mathsf {T}}^{a}{\mathsf {L}}^{b}{\mathsf {M}}^{c}{\mathsf {I}}^{d}{\mathsf {\Theta }}^{e}{\mathsf {N}}^{f}{\mathsf {J}}^{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63e51aa884fe81ae58a4b8c4cf7c3c3448242c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.505ex; height:3.009ex;" alt="{\displaystyle \operatorname {dim} Q={\mathsf {T}}^{a}{\mathsf {L}}^{b}{\mathsf {M}}^{c}{\mathsf {I}}^{d}{\mathsf {\Theta }}^{e}{\mathsf {N}}^{f}{\mathsf {J}}^{g}}"></span></dd></dl> <p>where <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, <span class="texhtml"><i>d</i></span>, <span class="texhtml"><i>e</i></span>, <span class="texhtml"><i>f</i></span>, <span class="texhtml"><i>g</i></span> are the dimensional exponents. Other physical quantities could be defined as the base quantities, as long as they form a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> – for instance, one could replace the dimension (I) of <a href="/wiki/Electric_current" title="Electric current">electric current</a> of the SI basis with a dimension (Q) of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>, since <span class="nowrap">Q = TI</span>. </p><p>A quantity that has only <span class="texhtml"><i>b</i> ≠ 0</span> (with all other exponents zero) is known as a <b><a href="/wiki/Geometry" title="Geometry">geometric</a> quantity</b>. A quantity that has only both <span class="texhtml"><i>a</i> ≠ 0</span> and <span class="texhtml"><i>b</i> ≠ 0</span> is known as a <b><a href="/wiki/Kinematics" title="Kinematics">kinematic</a> quantity</b>. A quantity that has only all of <span class="texhtml"><i>a</i> ≠ 0</span>, <span class="texhtml"><i>b</i> ≠ 0</span>, and <span class="texhtml"><i>c</i> ≠ 0</span> is known as a <b><a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">dynamic</a> quantity</b>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> A quantity that has all exponents null is said to have <b>dimension one</b>.<sup id="cite_ref-SIBrochure9th_2-1" class="reference"><a href="#cite_note-SIBrochure9th-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>The unit chosen to express a physical quantity and its dimension are related, but not identical concepts. The units of a physical quantity are defined by convention and related to some standard; e.g., length may have units of metres, feet, inches, miles or micrometres; but any length always has a dimension of L, no matter what units of length are chosen to express it. Two different units of the same physical quantity have <a href="/wiki/Conversion_of_units" title="Conversion of units">conversion factors</a> that relate them. For example, <span class="nowrap">1 in = 2.54 cm</span>; in this case 2.54 cm/in is the conversion factor, which is itself dimensionless. Therefore, multiplying by that conversion factor does not change the dimensions of a physical quantity. </p><p>There are also physicists who have cast doubt on the very existence of incompatible fundamental dimensions of physical quantity,<sup id="cite_ref-duff_4-0" class="reference"><a href="#cite_note-duff-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> although this does not invalidate the usefulness of dimensional analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Simple_cases">Simple cases</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=2" title="Edit section: Simple cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As examples, the dimension of the physical quantity <a href="/wiki/Speed" title="Speed">speed</a> <span class="texhtml"><i>v</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} v={\frac {\text{length}}{\text{time}}}={\frac {\mathsf {L}}{\mathsf {T}}}={\mathsf {T}}^{-1}{\mathsf {L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>length</mtext> <mtext>time</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} v={\frac {\text{length}}{\text{time}}}={\frac {\mathsf {L}}{\mathsf {T}}}={\mathsf {T}}^{-1}{\mathsf {L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d75f48af42dbe8fc30d7d9a42a1b2bb1220d88b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.094ex; height:5.343ex;" alt="{\displaystyle \operatorname {dim} v={\frac {\text{length}}{\text{time}}}={\frac {\mathsf {L}}{\mathsf {T}}}={\mathsf {T}}^{-1}{\mathsf {L}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> <span class="texhtml"><i>a</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} a={\frac {\text{speed}}{\text{time}}}={\frac {{\mathsf {T}}^{-1}{\mathsf {L}}}{\mathsf {T}}}={\mathsf {T}}^{-2}{\mathsf {L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>speed</mtext> <mtext>time</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} a={\frac {\text{speed}}{\text{time}}}={\frac {{\mathsf {T}}^{-1}{\mathsf {L}}}{\mathsf {T}}}={\mathsf {T}}^{-2}{\mathsf {L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce331869b778547ce9bb4e96396f997989b0d778" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.024ex; height:5.676ex;" alt="{\displaystyle \operatorname {dim} a={\frac {\text{speed}}{\text{time}}}={\frac {{\mathsf {T}}^{-1}{\mathsf {L}}}{\mathsf {T}}}={\mathsf {T}}^{-2}{\mathsf {L}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Force_(physics)" class="mw-redirect" title="Force (physics)">force</a> <span class="texhtml"><i>F</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} F={\text{mass}}\times {\text{acceleration}}={\mathsf {M}}\times {\mathsf {T}}^{-2}{\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>mass</mtext> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>acceleration</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>×<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} F={\text{mass}}\times {\text{acceleration}}={\mathsf {M}}\times {\mathsf {T}}^{-2}{\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a76ad3144e7e52d667c6d2b5e2afe85434d6a203" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:52.995ex; height:2.676ex;" alt="{\displaystyle \operatorname {dim} F={\text{mass}}\times {\text{acceleration}}={\mathsf {M}}\times {\mathsf {T}}^{-2}{\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Pressure" title="Pressure">pressure</a> <span class="texhtml"><i>P</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} P={\frac {\text{force}}{\text{area}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}}{{\mathsf {L}}^{2}}}={\mathsf {T}}^{-2}{\mathsf {L}}^{-1}{\mathsf {M}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>P</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>force</mtext> <mtext>area</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} P={\frac {\text{force}}{\text{area}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}}{{\mathsf {L}}^{2}}}={\mathsf {T}}^{-2}{\mathsf {L}}^{-1}{\mathsf {M}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca9b0281e6e7b8a6a8b491328afe0c70cf5ee51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.224ex; height:6.176ex;" alt="{\displaystyle \operatorname {dim} P={\frac {\text{force}}{\text{area}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}}{{\mathsf {L}}^{2}}}={\mathsf {T}}^{-2}{\mathsf {L}}^{-1}{\mathsf {M}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Energy" title="Energy">energy</a> <span class="texhtml"><i>E</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} E={\text{force}}\times {\text{displacement}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}\times {\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>force</mtext> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>displacement</mtext> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} E={\text{force}}\times {\text{displacement}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}\times {\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5a5f54aaeba457784c9dd116f1f4159e0cbe9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:56.432ex; height:3.009ex;" alt="{\displaystyle \operatorname {dim} E={\text{force}}\times {\text{displacement}}={\mathsf {T}}^{-2}{\mathsf {L}}{\mathsf {M}}\times {\mathsf {L}}={\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> <span class="texhtml"><i>P</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} P={\frac {\text{energy}}{\text{time}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {T}}}={\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>P</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>energy</mtext> <mtext>time</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} P={\frac {\text{energy}}{\text{time}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {T}}}={\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d57a232a36309b729817e6531f599348734433a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:40.808ex; height:5.676ex;" alt="{\displaystyle \operatorname {dim} P={\frac {\text{energy}}{\text{time}}}={\frac {{\mathsf {T}}^{-2}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {T}}}={\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> <span class="texhtml"><i>Q</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} Q={\text{current}}\times {\text{time}}={\mathsf {T}}{\mathsf {I}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>Q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>current</mtext> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>time</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} Q={\text{current}}\times {\text{time}}={\mathsf {T}}{\mathsf {I}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a438dc2f4ac1fb9696bed95071e9cd74a724bb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.912ex; height:2.509ex;" alt="{\displaystyle \operatorname {dim} Q={\text{current}}\times {\text{time}}={\mathsf {T}}{\mathsf {I}}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Voltage" title="Voltage">voltage</a> <span class="texhtml"><i>V</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} V={\frac {\text{power}}{\text{current}}}={\frac {{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {I}}}={\mathsf {T^{-3}}}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>power</mtext> <mtext>current</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="sans-serif">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="sans-serif">−<!-- − --></mo> <mn mathvariant="sans-serif">3</mn> </mrow> </msup> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} V={\frac {\text{power}}{\text{current}}}={\frac {{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {I}}}={\mathsf {T^{-3}}}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43aa6a14fe493e84f827e442b7377dea91b7a75e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.548ex; height:5.676ex;" alt="{\displaystyle \operatorname {dim} V={\frac {\text{power}}{\text{current}}}={\frac {{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}}{\mathsf {I}}}={\mathsf {T^{-3}}}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}.}"></span></dd></dl> <p>The dimension of the physical quantity <a href="/wiki/Capacitance" title="Capacitance">capacitance</a> <span class="texhtml"><i>C</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {dim} C={\frac {\text{electric charge}}{\text{electric potential difference}}}={\frac {{\mathsf {T}}{\mathsf {I}}}{{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}}}={\mathsf {T^{4}}}{\mathsf {L^{-2}}}{\mathsf {M^{-1}}}{\mathsf {I^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>electric charge</mtext> <mtext>electric potential difference</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mrow> </mrow> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">M</mi> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="sans-serif">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="sans-serif">4</mn> </mrow> </msup> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="sans-serif">L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="sans-serif">−<!-- − --></mo> <mn mathvariant="sans-serif">2</mn> </mrow> </msup> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="sans-serif">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="sans-serif">−<!-- − --></mo> <mn mathvariant="sans-serif">1</mn> </mrow> </msup> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="sans-serif">I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="sans-serif">2</mn> </mrow> </msup> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {dim} C={\frac {\text{electric charge}}{\text{electric potential difference}}}={\frac {{\mathsf {T}}{\mathsf {I}}}{{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}}}={\mathsf {T^{4}}}{\mathsf {L^{-2}}}{\mathsf {M^{-1}}}{\mathsf {I^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03cf072064b1eeeecb9379a30f92b826873c6e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:68.326ex; height:5.843ex;" alt="{\displaystyle \operatorname {dim} C={\frac {\text{electric charge}}{\text{electric potential difference}}}={\frac {{\mathsf {T}}{\mathsf {I}}}{{\mathsf {T}}^{-3}{\mathsf {L}}^{2}{\mathsf {M}}{\mathsf {I}}^{-1}}}={\mathsf {T^{4}}}{\mathsf {L^{-2}}}{\mathsf {M^{-1}}}{\mathsf {I^{2}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Rayleigh's_method"><span id="Rayleigh.27s_method"></span>Rayleigh's method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=3" title="Edit section: Rayleigh's method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In dimensional analysis, <b>Rayleigh's method</b> is a conceptual tool used in <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, and <a href="/wiki/Engineering" title="Engineering">engineering</a>. It expresses a <a href="/wiki/Functional_relationship" class="mw-redirect" title="Functional relationship">functional relationship</a> of some <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> in the form of an <a href="/wiki/Exponential_equation" class="mw-redirect" title="Exponential equation">exponential equation</a>. It was named after <a href="/wiki/John_William_Strutt,_3rd_Baron_Rayleigh" title="John William Strutt, 3rd Baron Rayleigh">Lord Rayleigh</a>. </p><p>The method involves the following steps: </p> <ol><li>Gather all the <a href="/wiki/Independent_variable" class="mw-redirect" title="Independent variable">independent variables</a> that are likely to influence the <a href="/wiki/Dependent_variable" class="mw-redirect" title="Dependent variable">dependent variable</a>.</li> <li>If <span class="texhtml"><i>R</i></span> is a variable that depends upon independent variables <span class="texhtml"><i>R</i><sub>1</sub></span>, <span class="texhtml"><i>R</i><sub>2</sub></span>, <span class="texhtml"><i>R</i><sub>3</sub></span>, ..., <span class="texhtml"><i>R</i><sub><i>n</i></sub></span>, then the <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> can be written as <span class="texhtml"><i>R</i> = <i>F</i>(<i>R</i><sub>1</sub>, <i>R</i><sub>2</sub>, <i>R</i><sub>3</sub>, ..., <i>R</i><sub><i>n</i></sub>)</span>.</li> <li>Write the above equation in the form <span class="texhtml"><i>R</i> = <i>C</i> <i>R</i><sub>1</sub><sup><i>a</i></sup> <i>R</i><sub>2</sub><sup><i>b</i></sup> <i>R</i><sub>3</sub><sup><i>c</i></sup> ... <i>R</i><sub><i>n</i></sub><sup><i>m</i></sup></span>, where <span class="texhtml"><i>C</i></span> is a <a href="/wiki/Dimensionless_constant" class="mw-redirect" title="Dimensionless constant">dimensionless constant</a> and <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, ..., <span class="texhtml"><i>m</i></span> are arbitrary exponents.</li> <li>Express each of the quantities in the equation in some <a href="/wiki/Base_unit_(measurement)" class="mw-redirect" title="Base unit (measurement)">base units</a> in which the solution is required.</li> <li>By using <a href="#Dimensional_homogeneity">dimensional homogeneity</a>, obtain a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of <a href="/wiki/Simultaneous_equations" class="mw-redirect" title="Simultaneous equations">simultaneous equations</a> involving the exponents <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, ..., <span class="texhtml"><i>m</i></span>.</li> <li><a href="/wiki/Equation_solving" title="Equation solving">Solve</a> these equations to obtain the values of the exponents <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, ..., <span class="texhtml"><i>m</i></span>.</li> <li><a href="/wiki/Simultaneous_equations#Substitution_method" class="mw-redirect" title="Simultaneous equations">Substitute</a> the values of exponents in the main equation, and form the <a href="/wiki/Non-dimensional" class="mw-redirect" title="Non-dimensional">non-dimensional</a> <a href="/wiki/Parameter" title="Parameter">parameters</a> by <a href="/wiki/Combining_like_terms" class="mw-redirect" title="Combining like terms">grouping</a> the variables with like exponents.</li></ol> <p>As a drawback, Rayleigh's method does not provide any information regarding number of dimensionless groups to be obtained as a result of dimensional analysis. </p> <div class="mw-heading mw-heading2"><h2 id="Concrete_numbers_and_base_units">Concrete numbers and base units</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=4" title="Edit section: Concrete numbers and base units"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many parameters and measurements in the physical sciences and engineering are expressed as a <a href="/wiki/Concrete_number" title="Concrete number">concrete number</a>—a numerical quantity and a corresponding dimensional unit. Often a quantity is expressed in terms of several other quantities; for example, speed is a combination of length and time, e.g. 60 kilometres per hour or 1.4 kilometres per second. Compound relations with "per" are expressed with <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a>, e.g. 60 km/h. Other relations can involve <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> (often shown with a <a href="/wiki/Centered_dot" class="mw-redirect" title="Centered dot">centered dot</a> or <a href="/wiki/Juxtaposition#Mathematics" title="Juxtaposition">juxtaposition</a>), powers (like m<sup>2</sup> for square metres), or combinations thereof. </p><p>A set of <a href="/wiki/Base_unit_(measurement)" class="mw-redirect" title="Base unit (measurement)">base units</a> for a <a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">system of measurement</a> is a conventionally chosen set of units, none of which can be expressed as a combination of the others and in terms of which all the remaining units of the system can be expressed.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> For example, units for <a href="/wiki/Length" title="Length">length</a> and time are normally chosen as base units. Units for <a href="/wiki/Volume" title="Volume">volume</a>, however, can be factored into the base units of length (m<sup>3</sup>), thus they are considered derived or compound units. </p><p>Sometimes the names of units obscure the fact that they are derived units. For example, a <a href="/wiki/Newton_(unit)" title="Newton (unit)">newton</a> (N) is a unit of <a href="/wiki/Force" title="Force">force</a>, which may be expressed as the product of mass (with unit kg) and acceleration (with unit m⋅s<sup>−2</sup>). The newton is defined as <span class="nowrap">1 N = 1 kg⋅m⋅s<sup>−2</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Percentages,_derivatives_and_integrals"><span id="Percentages.2C_derivatives_and_integrals"></span>Percentages, derivatives and integrals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=5" title="Edit section: Percentages, derivatives and integrals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Percentages are dimensionless quantities, since they are ratios of two quantities with the same dimensions. In other words, the % sign can be read as "hundredths", since <span class="nowrap">1% = 1/100</span>. </p><p>Taking a derivative with respect to a quantity divides the dimension by the dimension of the variable that is differentiated with respect to. Thus: </p> <ul><li>position (<span class="texhtml"><i>x</i></span>) has the dimension L (length);</li> <li>derivative of position with respect to time (<span class="texhtml"><i>dx</i>/<i>dt</i></span>, <a href="/wiki/Velocity" title="Velocity">velocity</a>) has dimension T<sup>−1</sup>L—length from position, time due to the gradient;</li> <li>the second derivative (<span class="texhtml"><i>d</i><span style="padding-left:0.12em;"><sup>2</sup></span><i>x</i>/<i>dt</i><span style="padding-left:0.12em;"><sup>2</sup></span> = <i>d</i>(<i>dx</i>/<i>dt</i>) / <i>dt</i></span>, <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>) has dimension <span style="font-family:sans-serif;font-style:normal;">T</span><sup>−2</sup><span style="font-family:sans-serif;font-style:normal;">L</span>.</li></ul> <p>Likewise, taking an integral adds the dimension of the variable one is integrating with respect to, but in the numerator. </p> <ul><li><a href="/wiki/Force" title="Force">force</a> has the dimension <span style="font-family:sans-serif;font-style:normal;">T</span><sup>−2</sup><span style="font-family:sans-serif;font-style:normal;">L</span><span style="font-family:sans-serif;font-style:normal;">M</span> (mass multiplied by acceleration);</li> <li>the integral of force with respect to the distance (<span class="texhtml"><i>s</i></span>) the object has travelled (<span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int F\ ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>F</mi> <mtext> </mtext> <mi>d</mi> <mi>s</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int F\ ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de9a1fdc5398782108b63e2e9287ba5d317b0ded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.433ex; height:3.176ex;" alt="{\displaystyle \textstyle \int F\ ds}"></span>⁠</span>, <a href="/wiki/Work_(physics)#Mathematical_calculation" title="Work (physics)">work</a>) has dimension <span style="font-family:sans-serif;font-style:normal;">T</span><sup>−2</sup><span style="font-family:sans-serif;font-style:normal;">L</span><sup>2</sup><span style="font-family:sans-serif;font-style:normal;">M</span>.</li></ul> <p>In economics, one distinguishes between <a href="/wiki/Stocks_and_flows" class="mw-redirect" title="Stocks and flows">stocks and flows</a>: a stock has a unit (say, widgets or dollars), while a flow is a derivative of a stock, and has a unit of the form of this unit divided by one of time (say, dollars/year). </p><p>In some contexts, dimensional quantities are expressed as dimensionless quantities or percentages by omitting some dimensions. For example, <a href="/wiki/Debt-to-GDP_ratio" title="Debt-to-GDP ratio">debt-to-GDP ratios</a> are generally expressed as percentages: total debt outstanding (dimension of currency) divided by annual GDP (dimension of currency)—but one may argue that, in comparing a stock to a flow, annual GDP should have dimensions of currency/time (dollars/year, for instance) and thus debt-to-GDP should have the unit year, which indicates that debt-to-GDP is the number of years needed for a constant GDP to pay the debt, if all GDP is spent on the debt and the debt is otherwise unchanged. </p> <div class="mw-heading mw-heading2"><h2 id="Dimensional_homogeneity_(commensurability)"><span id="Dimensional_homogeneity_.28commensurability.29"></span>Dimensional homogeneity (commensurability) <span class="anchor" id="Dimensional_homogeneity"></span><span class="anchor" id="Commensurability"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=6" title="Edit section: Dimensional homogeneity (commensurability)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Apples_and_oranges" title="Apples and oranges">Apples and oranges</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Kind_of_quantity" class="mw-redirect" title="Kind of quantity">Kind of quantity</a></div> <p>The most basic rule of dimensional analysis is that of dimensional homogeneity.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent">Only commensurable quantities (physical quantities having the same dimension) may be <i>compared</i>, <i>equated</i>, <i>added</i>, or <i>subtracted</i>.</div> <p>However, the dimensions form an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> under multiplication, so: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent">One may take <i>ratios</i> of <i>incommensurable</i> quantities (quantities with different dimensions), and <i>multiply</i> or <i>divide</i> them.</div> <p>For example, it makes no sense to ask whether 1 hour is more, the same, or less than 1 kilometre, as these have different dimensions, nor to add 1 hour to 1 kilometre. However, it makes sense to ask whether 1 mile is more, the same, or less than 1 kilometre, being the same dimension of physical quantity even though the units are different. On the other hand, if an object travels 100 km in 2 hours, one may divide these and conclude that the object's average speed was 50 km/h. </p><p>The rule implies that in a physically meaningful <i>expression</i> only quantities of the same dimension can be added, subtracted, or compared. For example, if <span class="texhtml"><i>m</i><sub>man</sub></span>, <span class="texhtml"><i>m</i><sub>rat</sub></span> and <span class="texhtml"><i>L</i><sub>man</sub></span> denote, respectively, the mass of some man, the mass of a rat and the length of that man, the dimensionally homogeneous expression <span class="texhtml"><i>m</i><sub>man</sub> + <i>m</i><sub>rat</sub></span> is meaningful, but the heterogeneous expression <span class="texhtml"><i>m</i><sub>man</sub> + <i>L</i><sub>man</sub></span> is meaningless. However, <span class="texhtml"><i>m</i><sub>man</sub>/<i>L</i><sup>2</sup><sub>man</sub></span> is fine. Thus, dimensional analysis may be used as a <a href="/wiki/Sanity_check" title="Sanity check">sanity check</a> of physical equations: the two sides of any equation must be commensurable or have the same dimensions. </p><p>Even when two physical quantities have identical dimensions, it may nevertheless be meaningless to compare or add them. For example, although <a href="/wiki/Torque" title="Torque">torque</a> and energy share the dimension <span style="font-family:sans-serif;font-style:normal;">T</span><sup>−2</sup><span style="font-family:sans-serif;font-style:normal;">L</span><sup>2</sup><span style="font-family:sans-serif;font-style:normal;">M</span>, they are fundamentally different physical quantities. </p><p>To compare, add, or subtract quantities with the same dimensions but expressed in different units, the standard procedure is first to convert them all to the same unit. For example, to compare 32 metres with 35 yards, use <span class="nowrap">1 yard = 0.9144 m</span> to convert 35 yards to 32.004 m. </p><p>A related principle is that any physical law that accurately describes the real world must be independent of the units used to measure the physical variables.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> For example, <a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newton's laws of motion</a> must hold true whether distance is measured in miles or kilometres. This principle gives rise to the form that a conversion factor between two units that measure the same dimension must take multiplication by a simple constant. It also ensures equivalence; for example, if two buildings are the same height in feet, then they must be the same height in metres. </p> <div class="mw-heading mw-heading2"><h2 id="Conversion_factor">Conversion factor</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=7" title="Edit section: Conversion factor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conversion_factor" class="mw-redirect" title="Conversion factor">Conversion factor</a></div> <p>In dimensional analysis, a ratio which converts one unit of measure into another without changing the quantity is called a <i><a href="/wiki/Conversion_factor" class="mw-redirect" title="Conversion factor">conversion factor</a></i>. For example, kPa and bar are both units of pressure, and <span class="nowrap">100 kPa = 1 bar</span>. The rules of algebra allow both sides of an equation to be divided by the same expression, so this is equivalent to <span class="nowrap">100 kPa / 1 bar = 1</span>. Since any quantity can be multiplied by 1 without changing it, the expression "<span class="nowrap">100 kPa / 1 bar</span>" can be used to convert from bars to kPa by multiplying it with the quantity to be converted, including the unit. For example, <span class="nowrap">5 bar × 100 kPa / 1 bar = 500 kPa</span> because <span class="nowrap">5 × 100 / 1 = 500</span>, and bar/bar cancels out, so <span class="nowrap">5 bar = 500 kPa</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=8" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dimensional analysis is most often used in physics and chemistry – and in the mathematics thereof – but finds some applications outside of those fields as well. </p> <div class="mw-heading mw-heading3"><h3 id="Mathematics">Mathematics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=9" title="Edit section: Mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A simple application of dimensional analysis to mathematics is in computing the form of the <a href="/wiki/N-sphere#Volume_of_the_n-ball" title="N-sphere">volume of an <span class="texhtml"><i>n</i></span>-ball</a> (the solid ball in <i>n</i> dimensions), or the area of its surface, the <a href="/wiki/N-sphere" title="N-sphere"><span class="texhtml"><i>n</i></span>-sphere</a>: being an <span class="texhtml"><i>n</i></span>-dimensional figure, the volume scales as <span class="texhtml"><i>x</i><sup><i>n</i></sup></span>, while the surface area, being <span class="texhtml">(<i>n</i> − 1)</span>-dimensional, scales as <span class="texhtml"><i>x</i><sup><i>n</i>−1</sup></span>. Thus the volume of the <span class="texhtml"><i>n</i></span>-ball in terms of the radius is <span class="texhtml"><i>C</i><sub><i>n</i></sub><i>r</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span></span>, for some constant <span class="texhtml"><i>C</i><sub><i>n</i></sub></span>. Determining the constant takes more involved mathematics, but the form can be deduced and checked by dimensional analysis alone. </p> <div class="mw-heading mw-heading3"><h3 id="Finance,_economics,_and_accounting"><span id="Finance.2C_economics.2C_and_accounting"></span>Finance, economics, and accounting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=10" title="Edit section: Finance, economics, and accounting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In finance, economics, and accounting, dimensional analysis is most commonly referred to in terms of the <a href="/wiki/Stock_and_flow" title="Stock and flow">distinction between stocks and flows</a>. More generally, dimensional analysis is used in interpreting various <a href="/wiki/Financial_ratios" class="mw-redirect" title="Financial ratios">financial ratios</a>, economics ratios, and accounting ratios. </p> <ul><li>For example, the <a href="/wiki/P/E_ratio" class="mw-redirect" title="P/E ratio">P/E ratio</a> has dimensions of time (unit: year), and can be interpreted as "years of earnings to earn the price paid".</li> <li>In economics, <a href="/wiki/Debt-to-GDP_ratio" title="Debt-to-GDP ratio">debt-to-GDP ratio</a> also has the unit year (debt has a unit of currency, GDP has a unit of currency/year).</li> <li><a href="/wiki/Velocity_of_money" title="Velocity of money">Velocity of money</a> has a unit of 1/years (GDP/money supply has a unit of currency/year over currency): how often a unit of currency circulates per year.</li> <li>Annual continuously compounded interest rates and simple interest rates are often expressed as a percentage (adimensional quantity) while time is expressed as an adimensional quantity consisting of the number of years. However, if the time includes year as the unit of measure, the dimension of the rate is 1/year. Of course, there is nothing special (apart from the usual convention) about using year as a unit of time: any other time unit can be used. Furthermore, if rate and time include their units of measure, the use of different units for each is not problematic. In contrast, rate and time need to refer to a common period if they are adimensional. (Note that effective interest rates can only be defined as adimensional quantities.)</li> <li>In financial analysis, <a href="/wiki/Bond_duration" class="mw-redirect" title="Bond duration">bond duration</a> can be defined as <span class="texhtml">(<i>dV</i>/<i>dr</i>)/<i>V</i></span>, where <span class="texhtml"><i>V</i></span> is the value of a bond (or portfolio), <span class="texhtml"><i>r</i></span> is the continuously compounded interest rate and <span class="texhtml"><i>dV</i>/<i>dr</i></span> is a derivative. From the previous point, the dimension of <span class="texhtml"><i>r</i></span> is 1/time. Therefore, the dimension of duration is time (usually expressed in years) because <span class="texhtml"><i>dr</i></span> is in the "denominator" of the derivative.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Fluid_mechanics">Fluid mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=11" title="Edit section: Fluid mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a>, dimensional analysis is performed to obtain dimensionless <a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">pi terms</a> or groups. According to the principles of dimensional analysis, any prototype can be described by a series of these terms or groups that describe the behaviour of the system. Using suitable pi terms or groups, it is possible to develop a similar set of pi terms for a model that has the same dimensional relationships.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In other words, pi terms provide a shortcut to developing a model representing a certain prototype. Common dimensionless groups in fluid mechanics include: </p> <ul><li><a href="/wiki/Reynolds_number" title="Reynolds number">Reynolds number</a> (<span class="texhtml">Re</span>), generally important in all types of fluid problems: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} ={\frac {\rho \,ud}{\mu }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ρ<!-- ρ --></mi> <mspace width="thinmathspace" /> <mi>u</mi> <mi>d</mi> </mrow> <mi>μ<!-- μ --></mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} ={\frac {\rho \,ud}{\mu }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb62f29538eb15474ddbbb1923b10c09b061705" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.459ex; height:5.843ex;" alt="{\displaystyle \mathrm {Re} ={\frac {\rho \,ud}{\mu }}.}"></span></li> <li><a href="/wiki/Froude_number" title="Froude number">Froude number</a> (<span class="texhtml">Fr</span>), modeling flow with a free surface: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {g\,L}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> <mi mathvariant="normal">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <msqrt> <mi>g</mi> <mspace width="thinmathspace" /> <mi>L</mi> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {g\,L}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57700331f119ecfd90ea77b0238e484dff5d6dcb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.421ex; height:6.009ex;" alt="{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {g\,L}}}.}"></span></li> <li><a href="/wiki/Euler_number_(physics)" title="Euler number (physics)">Euler number</a> (<span class="texhtml">Eu</span>), used in problems in which pressure is of interest: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Eu} ={\frac {\Delta p}{\rho u^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">u</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>p</mi> </mrow> <mrow> <mi>ρ<!-- ρ --></mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Eu} ={\frac {\Delta p}{\rho u^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe36061df39f64561eba660adaba0c0b3ca4bc4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.043ex; height:6.009ex;" alt="{\displaystyle \mathrm {Eu} ={\frac {\Delta p}{\rho u^{2}}}.}"></span></li> <li><a href="/wiki/Mach_number" title="Mach number">Mach number</a> (<span class="texhtml">Ma</span>), important in high speed flows where the velocity approaches or exceeds the local speed of sound: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Ma} ={\frac {u}{c}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mi>c</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Ma} ={\frac {u}{c}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc6be14ef82592d3b433dc91a7f3a43c81be89e6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.205ex; height:4.676ex;" alt="{\displaystyle \mathrm {Ma} ={\frac {u}{c}},}"></span> where <span class="texhtml"><i>c</i></span> is the local speed of sound.</li></ul> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=12" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The origins of dimensional analysis have been disputed by historians.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Martins_1981_10-0" class="reference"><a href="#cite_note-Martins_1981-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> The first written application of dimensional analysis has been credited to <a href="/wiki/Fran%C3%A7ois_Daviet_de_Foncenex" title="François Daviet de Foncenex">François Daviet</a>, a student of <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a>, in a 1799 article at the <a href="/wiki/Turin" title="Turin">Turin</a> Academy of Science.<sup id="cite_ref-Martins_1981_10-1" class="reference"><a href="#cite_note-Martins_1981-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>This led to the conclusion that meaningful laws must be homogeneous equations in their various units of measurement, a result which was eventually later formalized in the <a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">Buckingham π theorem</a>. <a href="/wiki/Simeon_Poisson" class="mw-redirect" title="Simeon Poisson">Simeon Poisson</a> also treated the same problem of the <a href="/wiki/Parallelogram_law" title="Parallelogram law">parallelogram law</a> by Daviet, in his treatise of 1811 and 1833 (vol I, p. 39).<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> In the second edition of 1833, Poisson explicitly introduces the term <i>dimension</i> instead of the Daviet <i>homogeneity</i>. </p><p>In 1822, the important Napoleonic scientist <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a> made the first credited important contributions<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> based on the idea that physical laws like <a href="/wiki/Newton%27s_second_law" class="mw-redirect" title="Newton's second law"><span class="nowrap"><i>F</i> = <i>ma</i></span></a> should be independent of the units employed to measure the physical variables. </p><p><a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> played a major role in establishing modern use of dimensional analysis by distinguishing mass, length, and time as fundamental units, while referring to other units as derived.<sup id="cite_ref-maxwell_13-0" class="reference"><a href="#cite_note-maxwell-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> Although Maxwell defined length, time and mass to be "the three fundamental units", he also noted that gravitational mass can be derived from length and time by assuming a form of <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a> in which the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a> <span class="texhtml"><i>G</i></span> is taken as <a href="/wiki/1" title="1">unity</a>, thereby defining <span class="nowrap">M = T<sup>−2</sup>L<sup>3</sup></span>.<sup id="cite_ref-maxwell2_14-0" class="reference"><a href="#cite_note-maxwell2-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> By assuming a form of <a href="/wiki/Coulomb%27s_law" title="Coulomb's law">Coulomb's law</a> in which the <a href="/wiki/Coulomb_constant" class="mw-redirect" title="Coulomb constant">Coulomb constant</a> <i>k</i><sub>e</sub> is taken as unity, Maxwell then determined that the dimensions of an electrostatic unit of charge were <span class="nowrap">Q = T<sup>−1</sup>L<sup>3/2</sup>M<sup>1/2</sup></span>,<sup id="cite_ref-maxwell3_15-0" class="reference"><a href="#cite_note-maxwell3-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> which, after substituting his <span class="nowrap">M = T<sup>−2</sup>L<sup>3</sup></span> equation for mass, results in charge having the same dimensions as mass, viz. <span class="nowrap">Q = T<sup>−2</sup>L<sup>3</sup></span>. </p><p>Dimensional analysis is also used to derive relationships between the physical quantities that are involved in a particular phenomenon that one wishes to understand and characterize. It was used for the first time in this way in 1872 by <a href="/wiki/Lord_Rayleigh" class="mw-redirect" title="Lord Rayleigh">Lord Rayleigh</a>, who was trying to understand why the sky is blue.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Rayleigh first published the technique in his 1877 book <i>The Theory of Sound</i>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>The original meaning of the word <i>dimension</i>, in Fourier's <i>Theorie de la Chaleur</i>, was the numerical value of the exponents of the base units. For example, acceleration was considered to have the dimension 1 with respect to the unit of length, and the dimension −2 with respect to the unit of time.<sup id="cite_ref-FOOTNOTEFourier1822[httpsbooksgooglecombooksidTDQJAAAAIAAJpgPA156_156]_18-0" class="reference"><a href="#cite_note-FOOTNOTEFourier1822[httpsbooksgooglecombooksidTDQJAAAAIAAJpgPA156_156]-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> This was slightly changed by Maxwell, who said the dimensions of acceleration are T<sup>−2</sup>L, instead of just the exponents.<sup id="cite_ref-maxwell4_19-0" class="reference"><a href="#cite_note-maxwell4-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=13" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="A_simple_example:_period_of_a_harmonic_oscillator">A simple example: period of a harmonic oscillator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=14" title="Edit section: A simple example: period of a harmonic oscillator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>What is the period of <a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">oscillation</a> <span class="texhtml"><i>T</i></span> of a mass <span class="texhtml mvar" style="font-style:italic;">m</span> attached to an ideal linear spring with spring constant <span class="texhtml"><i>k</i></span> suspended in gravity of strength <span class="texhtml"><i>g</i></span>? That period is the solution for <span class="texhtml"><i>T</i></span> of some dimensionless equation in the variables <span class="texhtml"><i>T</i></span>, <span class="texhtml"><i>m</i></span>, <span class="texhtml"><i>k</i></span>, and <span class="texhtml"><i>g</i></span>. The four quantities have the following dimensions: <span class="texhtml mvar" style="font-style:italic;">T</span> [T]; <span class="texhtml mvar" style="font-style:italic;">m</span> [M]; <span class="texhtml mvar" style="font-style:italic;">k</span> [M/T<sup>2</sup>]; and <span class="texhtml"><i>g</i></span> [L/T<sup>2</sup>]. From these we can form only one dimensionless product of powers of our chosen variables, <span class="texhtml"><i>G</i><sub>1</sub> = <i>T</i><span style="padding-left:0.12em;"><sup>2</sup></span><i>k</i>/<i>m</i></span> <span class="nowrap">[T<sup>2</sup> · M/T<sup>2</sup> / M = 1]</span>, and putting <span class="texhtml"><i>G</i><sub>1</sub> = <i>C</i></span> for some dimensionless constant <span class="texhtml"><i>C</i></span> gives the dimensionless equation sought. The dimensionless product of powers of variables is sometimes referred to as a dimensionless group of variables; here the term "group" means "collection" rather than mathematical <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>. They are often called <a href="/wiki/Dimensionless_number" class="mw-redirect" title="Dimensionless number">dimensionless numbers</a> as well. </p><p>The variable <span class="texhtml mvar" style="font-style:italic;">g</span> does not occur in the group. It is easy to see that it is impossible to form a dimensionless product of powers that combines <span class="texhtml mvar" style="font-style:italic;">g</span> with <span class="texhtml mvar" style="font-style:italic;">k</span>, <span class="texhtml mvar" style="font-style:italic;">m</span>, and <span class="texhtml mvar" style="font-style:italic;">T</span>, because <span class="texhtml mvar" style="font-style:italic;">g</span> is the only quantity that involves the dimension L. This implies that in this problem the <span class="texhtml"><i>g</i></span> is irrelevant. Dimensional analysis can sometimes yield strong statements about the <i>irrelevance</i> of some quantities in a problem, or the need for additional parameters. If we have chosen enough variables to properly describe the problem, then from this argument we can conclude that the period of the mass on the spring is independent of <span class="texhtml"><i>g</i></span>: it is the same on the earth or the moon. The equation demonstrating the existence of a product of powers for our problem can be written in an entirely equivalent way: <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\kappa {\sqrt {\tfrac {m}{k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>m</mi> <mi>k</mi> </mfrac> </mstyle> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=\kappa {\sqrt {\tfrac {m}{k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ebb262b2a45b53961263dbad0baed52c4b3ee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.676ex; height:4.843ex;" alt="{\displaystyle T=\kappa {\sqrt {\tfrac {m}{k}}}}"></span>⁠</span>, for some dimensionless constant <span class="texhtml"><i>κ</i></span> (equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {C}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>C</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {C}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2c4a9f5aa72990db3f302b96fb9c389ff151f9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.702ex; height:3.009ex;" alt="{\displaystyle {\sqrt {C}}}"></span> from the original dimensionless equation). </p><p>When faced with a case where dimensional analysis rejects a variable (<span class="texhtml"><i>g</i></span>, here) that one intuitively expects to belong in a physical description of the situation, another possibility is that the rejected variable is in fact relevant, but that some other relevant variable has been omitted, which might combine with the rejected variable to form a dimensionless quantity. That is, however, not the case here. </p><p>When dimensional analysis yields only one dimensionless group, as here, there are no unknown functions, and the solution is said to be "complete" – although it still may involve unknown dimensionless constants, such as <span class="texhtml"><i>κ</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="A_more_complex_example:_energy_of_a_vibrating_wire">A more complex example: energy of a vibrating wire</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=15" title="Edit section: A more complex example: energy of a vibrating wire"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the case of a vibrating wire of <a href="/wiki/Length" title="Length">length</a> <span class="texhtml"><i>ℓ</i></span> (L) vibrating with an <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> <span class="texhtml"><i>A</i></span> (L). The wire has a <a href="/wiki/Linear_density" title="Linear density">linear density</a> <span class="texhtml"><i>ρ</i></span> (M/L) and is under <a href="/wiki/Tension_(physics)" title="Tension (physics)">tension</a> <span class="texhtml"><i>s</i></span> (LM/T<sup>2</sup>), and we want to know the energy <span class="texhtml"><i>E</i></span> (L<sup>2</sup>M/T<sup>2</sup>) in the wire. Let <span class="texhtml"><i>π</i><sub>1</sub></span> and <span class="texhtml"><i>π</i><sub>2</sub></span> be two dimensionless products of <a href="/wiki/Power_(mathematics)" class="mw-redirect" title="Power (mathematics)">powers</a> of the variables chosen, given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\pi _{1}&={\frac {E}{As}}\\\pi _{2}&={\frac {\ell }{A}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mrow> <mi>A</mi> <mi>s</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ℓ<!-- ℓ --></mi> <mi>A</mi> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\pi _{1}&={\frac {E}{As}}\\\pi _{2}&={\frac {\ell }{A}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b16f0518441549e8e5b49cba80ba81ecd86b999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.675ex; margin-bottom: -0.329ex; width:9.899ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}\pi _{1}&={\frac {E}{As}}\\\pi _{2}&={\frac {\ell }{A}}.\end{aligned}}}"></span></dd></dl> <p>The linear density of the wire is not involved. The two groups found can be combined into an equivalent form as an equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\left({\frac {E}{As}},{\frac {\ell }{A}}\right)=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mrow> <mi>A</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ℓ<!-- ℓ --></mi> <mi>A</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\left({\frac {E}{As}},{\frac {\ell }{A}}\right)=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160ea2b194ff1cf5693f462eb534ac281b63d9e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.74ex; height:6.176ex;" alt="{\displaystyle F\left({\frac {E}{As}},{\frac {\ell }{A}}\right)=0,}"></span></dd></dl> <p>where <span class="texhtml"><i>F</i></span> is some unknown function, or, equivalently as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=Asf\left({\frac {\ell }{A}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>A</mi> <mi>s</mi> <mi>f</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ℓ<!-- ℓ --></mi> <mi>A</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=Asf\left({\frac {\ell }{A}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4abcbfd2075735058dd91c478886c2403001ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.408ex; height:6.176ex;" alt="{\displaystyle E=Asf\left({\frac {\ell }{A}}\right),}"></span></dd></dl> <p>where <span class="texhtml"><i>f</i></span> is some other unknown function. Here the unknown function implies that our solution is now incomplete, but dimensional analysis has given us something that may not have been obvious: the energy is proportional to the first power of the tension. Barring further analytical analysis, we might proceed to experiments to discover the form for the unknown function <span class="texhtml"><i>f</i></span>. But our experiments are simpler than in the absence of dimensional analysis. We'd perform none to verify that the energy is proportional to the tension. Or perhaps we might guess that the energy is proportional to <span class="texhtml"><i>ℓ</i></span>, and so infer that <span class="texhtml"><i>E</i> = <i>ℓs</i></span>. The power of dimensional analysis as an aid to experiment and forming hypotheses becomes evident. </p><p>The power of dimensional analysis really becomes apparent when it is applied to situations, unlike those given above, that are more complicated, the set of variables involved are not apparent, and the underlying equations hopelessly complex. Consider, for example, a small pebble sitting on the bed of a river. If the river flows fast enough, it will actually raise the pebble and cause it to flow along with the water. At what critical velocity will this occur? Sorting out the guessed variables is not so easy as before. But dimensional analysis can be a powerful aid in understanding problems like this, and is usually the very first tool to be applied to complex problems where the underlying equations and constraints are poorly understood. In such cases, the answer may depend on a <a href="/wiki/Dimensionless_number" class="mw-redirect" title="Dimensionless number">dimensionless number</a> such as the <a href="/wiki/Reynolds_number" title="Reynolds number">Reynolds number</a>, which may be interpreted by dimensional analysis. </p> <div class="mw-heading mw-heading3"><h3 id="A_third_example:_demand_versus_capacity_for_a_rotating_disc">A third example: demand versus capacity for a rotating disc</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=16" title="Edit section: A third example: demand versus capacity for a rotating disc"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Dimensional_analysis_01.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Dimensional_analysis_01.jpg/330px-Dimensional_analysis_01.jpg" decoding="async" width="330" height="226" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Dimensional_analysis_01.jpg/495px-Dimensional_analysis_01.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Dimensional_analysis_01.jpg/660px-Dimensional_analysis_01.jpg 2x" data-file-width="1067" data-file-height="732" /></a><figcaption>Dimensional analysis and numerical experiments for a rotating disc</figcaption></figure> <p>Consider the case of a thin, solid, parallel-sided rotating disc of axial thickness <span class="texhtml"><i>t</i></span> (L) and radius <span class="texhtml"><i>R</i></span> (L). The disc has a density <span class="texhtml"><i>ρ</i></span> (M/L<sup>3</sup>), rotates at an angular velocity <span class="texhtml"><i>ω</i></span> (T<sup>−1</sup>) and this leads to a stress <span class="texhtml"><i>S</i></span> (T<sup>−2</sup>L<sup>−1</sup>M) in the material. There is a theoretical linear elastic solution, given by Lame, to this problem when the disc is thin relative to its radius, the faces of the disc are free to move axially, and the plane stress constitutive relations can be assumed to be valid. As the disc becomes thicker relative to the radius then the plane stress solution breaks down. If the disc is restrained axially on its free faces then a state of plane strain will occur. However, if this is not the case then the state of stress may only be determined though consideration of three-dimensional elasticity and there is no known theoretical solution for this case. An engineer might, therefore, be interested in establishing a relationship between the five variables. Dimensional analysis for this case leads to the following (<span class="nowrap">5 − 3 = 2</span>) non-dimensional groups: </p> <dl><dd>demand/capacity = <span class="texhtml"><i>ρR</i><span style="padding-left:0.12em;"><sup>2</sup></span><i>ω</i><span style="padding-left:0.12em;"><sup>2</sup></span>/<i>S</i></span></dd> <dd>thickness/radius or aspect ratio = <span class="texhtml"><i>t</i>/<i>R</i></span></dd></dl> <p>Through the use of numerical experiments using, for example, the <a href="/wiki/Finite_element_method" title="Finite element method">finite element method</a>, the nature of the relationship between the two non-dimensional groups can be obtained as shown in the figure. As this problem only involves two non-dimensional groups, the complete picture is provided in a single plot and this can be used as a design/assessment chart for rotating discs.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=17" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Mathematical_properties">Mathematical properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=18" title="Edit section: Mathematical properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">Buckingham π theorem</a></div> <p>The dimensions that can be formed from a given collection of basic physical dimensions, such as T, L, and M, form an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a>: The <a href="/wiki/Identity_element" title="Identity element">identity</a> is written as 1;<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Both the new SI and the as-yet unpublished VIM4 make no such statement. (May 2021)">citation needed</span></a></i>]</sup> <span class="nowrap">L<sup>0</sup> = 1</span>, and the inverse of L is 1/L or L<sup>−1</sup>. L raised to any integer power <span class="texhtml"><i>p</i></span> is a member of the group, having an inverse of L<sup><span class="texhtml">−<i>p</i></span></sup> or 1/L<sup><span class="texhtml"><i>p</i></span></sup>. The operation of the group is multiplication, having the usual rules for handling exponents (<span class="nowrap">L<sup><span class="texhtml"><i>n</i></span></sup> × L<sup><span class="texhtml"><i>m</i></span></sup> = L<sup><span class="texhtml"><i>n</i>+<i>m</i></span></sup></span>). Physically, 1/L can be interpreted as <a href="/wiki/Reciprocal_length" title="Reciprocal length">reciprocal length</a>, and 1/T as reciprocal time (see <a href="/wiki/Reciprocal_second" class="mw-redirect" title="Reciprocal second">reciprocal second</a>). </p><p>An abelian group is equivalent to a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> over the integers, with the dimensional symbol <span style="white-space:nowrap">T<sup><span class="texhtml"><i>i</i></span></sup><span style="margin-left:0.25em">L<sup><span class="texhtml"><i>j</i></span></sup></span><span style="margin-left:0.25em">M<sup><span class="texhtml"><i>k</i></span></sup></span></span> corresponding to the tuple <span class="texhtml">(<i>i</i>, <i>j</i>, <i>k</i>)</span>. When physical measured quantities (be they like-dimensioned or unlike-dimensioned) are multiplied or divided by one other, their dimensional units are likewise multiplied or divided; this corresponds to addition or subtraction in the module. When measurable quantities are raised to an integer power, the same is done to the dimensional symbols attached to those quantities; this corresponds to <a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a> in the module. </p><p>A basis for such a module of dimensional symbols is called a set of <a href="/wiki/Base_quantity" class="mw-redirect" title="Base quantity">base quantities</a>, and all other vectors are called derived units. As in any module, one may choose different <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">bases</a>, which yields different systems of units (e.g., <a href="/wiki/Ampere#Proposed_future_definition" title="Ampere">choosing</a> whether the unit for charge is derived from the unit for current, or vice versa). </p><p>The group identity, the dimension of dimensionless quantities, corresponds to the origin in this module, <span class="texhtml">(0, 0, 0)</span>. </p><p>In certain cases, one can define fractional dimensions, specifically by formally defining fractional powers of one-dimensional vector spaces, like <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>L</i><sup>1/2</sup></sup></span></span>.<sup id="cite_ref-FOOTNOTETao2012"With_a_bit_of_additional_effort_(and_taking_full_advantage_of_the_one-dimensionality_of_the_vector_spaces),_one_can_also_define_spaces_with_fractional_exponents&nbsp;..."_21-0" class="reference"><a href="#cite_note-FOOTNOTETao2012"With_a_bit_of_additional_effort_(and_taking_full_advantage_of_the_one-dimensionality_of_the_vector_spaces),_one_can_also_define_spaces_with_fractional_exponents&nbsp;..."-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> However, it is not possible to take arbitrary fractional powers of units, due to <a href="/wiki/Representation_theory" title="Representation theory">representation-theoretic</a> obstructions.<sup id="cite_ref-FOOTNOTETao2012"However,_when_working_with_vector-valued_quantities_in_two_and_higher_dimensions,_there_are_representation-theoretic_obstructions_to_taking_arbitrary_fractional_powers_of_units&nbsp;..."_22-0" class="reference"><a href="#cite_note-FOOTNOTETao2012"However,_when_working_with_vector-valued_quantities_in_two_and_higher_dimensions,_there_are_representation-theoretic_obstructions_to_taking_arbitrary_fractional_powers_of_units&nbsp;..."-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>One can work with vector spaces with given dimensions without needing to use units (corresponding to coordinate systems of the vector spaces). For example, given dimensions <span class="texhtml"><i>M</i></span> and <span class="texhtml"><i>L</i></span>, one has the vector spaces <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>M</i></sup></span></span> and <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>L</i></sup></span></span>, and can define <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>ML</i></sup></span> := <i>V</i><span style="padding-left:0.12em;"><sup><i>M</i></sup></span> ⊗ <i>V</i><span style="padding-left:0.12em;"><sup><i>L</i></sup></span></span> as the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a>. Similarly, the dual space can be interpreted as having "negative" dimensions.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> This corresponds to the fact that under the <a href="/wiki/Natural_pairing" class="mw-redirect" title="Natural pairing">natural pairing</a> between a vector space and its dual, the dimensions cancel, leaving a <a href="/wiki/Dimensionless" class="mw-redirect" title="Dimensionless">dimensionless</a> scalar. </p><p>The set of units of the physical quantities involved in a problem correspond to a set of vectors (or a matrix). The <a href="/wiki/Kernel_(linear_algebra)#nullity" title="Kernel (linear algebra)">nullity</a> describes some number (e.g., <span class="texhtml"><i>m</i></span>) of ways in which these vectors can be combined to produce a zero vector. These correspond to producing (from the measurements) a number of dimensionless quantities, <span class="texhtml">{π<sub>1</sub>, ..., π<sub><i>m</i></sub>}</span>. (In fact these ways completely span the null subspace of another different space, of powers of the measurements.) Every possible way of multiplying (and <a href="/wiki/Exponent_(mathematics)" class="mw-redirect" title="Exponent (mathematics)">exponentiating</a>) together the measured quantities to produce something with the same unit as some derived quantity <span class="texhtml"><i>X</i></span> can be expressed in the general form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\prod _{i=1}^{m}(\pi _{i})^{k_{i}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\prod _{i=1}^{m}(\pi _{i})^{k_{i}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad65a9fa94cc730508862772b02da652c4f7002d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.729ex; height:6.843ex;" alt="{\displaystyle X=\prod _{i=1}^{m}(\pi _{i})^{k_{i}}\,.}"></span></dd></dl> <p>Consequently, every possible <a href="#Commensurability">commensurate</a> equation for the physics of the system can be rewritten in the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\pi _{1},\pi _{2},...,\pi _{m})=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\pi _{1},\pi _{2},...,\pi _{m})=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56210f927e04df5c215a2f43167f2f8bb8dba8cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.345ex; height:2.843ex;" alt="{\displaystyle f(\pi _{1},\pi _{2},...,\pi _{m})=0\,.}"></span></dd></dl> <p>Knowing this restriction can be a powerful tool for obtaining new insight into the system. </p> <div class="mw-heading mw-heading3"><h3 id="Mechanics">Mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=19" title="Edit section: Mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The dimension of physical quantities of interest in <a href="/wiki/Mechanics" title="Mechanics">mechanics</a> can be expressed in terms of base dimensions T, L, and M – these form a 3-dimensional vector space. This is not the only valid choice of base dimensions, but it is the one most commonly used. For example, one might choose force, length and mass as the base dimensions (as some have done), with associated dimensions F, L, M; this corresponds to a different basis, and one may convert between these representations by a <a href="/wiki/Change_of_basis" title="Change of basis">change of basis</a>. The choice of the base set of dimensions is thus a convention, with the benefit of increased utility and familiarity. The choice of base dimensions is not entirely arbitrary, because they must form a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a>: they must <a href="/wiki/Linear_span" title="Linear span">span</a> the space, and be <a href="/wiki/Linearly_independent" class="mw-redirect" title="Linearly independent">linearly independent</a>. </p><p>For example, F, L, M form a set of fundamental dimensions because they form a basis that is equivalent to T, L, M: the former can be expressed as [F = LM/T<sup>2</sup>], L, M, while the latter can be expressed as [T = (LM/F)<sup>1/2</sup>], L, M. </p><p>On the other hand, length, velocity and time (T, L, V) do not form a set of base dimensions for mechanics, for two reasons: </p> <ul><li>There is no way to obtain mass – or anything derived from it, such as force – without introducing another base dimension (thus, they do not <i>span the space</i>).</li> <li>Velocity, being expressible in terms of length and time (<span class="nowrap">V = L/T</span>), is redundant (the set is not <i>linearly independent</i>).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Other_fields_of_physics_and_chemistry">Other fields of physics and chemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=20" title="Edit section: Other fields of physics and chemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Depending on the field of physics, it may be advantageous to choose one or another extended set of dimensional symbols. In electromagnetism, for example, it may be useful to use dimensions of T, L, M and Q, where Q represents the dimension of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>. In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, the base set of dimensions is often extended to include a dimension for temperature, Θ. In chemistry, the <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a> (the number of molecules divided by the <a href="/wiki/Avogadro_constant" title="Avogadro constant">Avogadro constant</a>, ≈ <span class="nowrap"><span data-sort-value="7023602000000000000♠"></span>6.02<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>23</sup> mol<sup>−1</sup></span>) is also defined as a base dimension, N. In the interaction of <a href="/wiki/Relativistic_plasma" title="Relativistic plasma">relativistic plasma</a> with strong laser pulses, a dimensionless <a href="/wiki/Relativistic_similarity_parameter" title="Relativistic similarity parameter">relativistic similarity parameter</a>, connected with the symmetry properties of the collisionless <a href="/wiki/Vlasov_equation" title="Vlasov equation">Vlasov equation</a>, is constructed from the plasma-, electron- and critical-densities in addition to the electromagnetic vector potential. The choice of the dimensions or even the number of dimensions to be used in different fields of physics is to some extent arbitrary, but consistency in use and ease of communications are common and necessary features. </p> <div class="mw-heading mw-heading3"><h3 id="Polynomials_and_transcendental_functions">Polynomials and transcendental functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=21" title="Edit section: Polynomials and transcendental functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bridgman's theorem restricts the type of function that can be used to define a physical quantity from general (dimensionally compounded) quantities to only products of powers of the quantities, unless some of the independent quantities are algebraically combined to yield dimensionless groups, whose functions are grouped together in the dimensionless numeric multiplying factor.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> This excludes polynomials of more than one term or transcendental functions not of that form. </p><p><a href="/wiki/Scalar_(physics)" title="Scalar (physics)">Scalar</a> arguments to <a href="/wiki/Transcendental_function" title="Transcendental function">transcendental functions</a> such as <a href="/wiki/Exponential_function" title="Exponential function">exponential</a>, <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric</a> and <a href="/wiki/Logarithm" title="Logarithm">logarithmic</a> functions, or to <a href="/wiki/Inhomogeneous_polynomial" class="mw-redirect" title="Inhomogeneous polynomial">inhomogeneous polynomials</a>, must be <a href="/wiki/Dimensionless_number" class="mw-redirect" title="Dimensionless number">dimensionless quantities</a>. (Note: this requirement is somewhat relaxed in Siano's orientational analysis described below, in which the square of certain dimensioned quantities are dimensionless.) </p><p>While most mathematical identities about dimensionless numbers translate in a straightforward manner to dimensional quantities, care must be taken with logarithms of ratios: the identity <span class="texhtml">log(<i>a</i>/<i>b</i>) = log <i>a</i> − log <i>b</i></span>, where the logarithm is taken in any base, holds for dimensionless numbers <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span>, but it does <i>not</i> hold if <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span> are dimensional, because in this case the left-hand side is well-defined but the right-hand side is not.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p><p>Similarly, while one can evaluate <a href="/wiki/Monomials" class="mw-redirect" title="Monomials">monomials</a> (<span class="texhtml"><i>x</i><sup><i>n</i></sup></span>) of dimensional quantities, one cannot evaluate polynomials of mixed degree with dimensionless coefficients on dimensional quantities: for <span class="texhtml"><i>x</i><sup>2</sup></span>, the expression <span class="nowrap">(3 m)<sup>2</sup> = 9 m<sup>2</sup></span> makes sense (as an area), while for <span class="texhtml"><i>x</i><sup>2</sup> + <i>x</i></span>, the expression <span class="nowrap">(3 m)<sup>2</sup> + 3 m = 9 m<sup>2</sup> + 3 m</span> does not make sense. </p><p>However, polynomials of mixed degree can make sense if the coefficients are suitably chosen physical quantities that are not dimensionless. For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot t^{2}+(\mathrm {500~m/s} )\cdot t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>9.8</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi mathvariant="normal">s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>500</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot t^{2}+(\mathrm {500~m/s} )\cdot t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00f068315e8b0b4d644f847699c8aa45c532b82c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:35.047ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot t^{2}+(\mathrm {500~m/s} )\cdot t.}"></span></dd></dl> <p>This is the height to which an object rises in time <span class="texhtml"><i>t</i></span> if the acceleration of <a href="/wiki/Gravity" title="Gravity">gravity</a> is 9.8 <span class="nowrap">metres per second per second</span> and the initial upward speed is 500 <span class="nowrap">metres per second</span>. It is not necessary for <span class="texhtml"><i>t</i></span> to be in <i>seconds</i>. For example, suppose <span class="texhtml"><i>t</i></span> = 0.01 minutes. Then the first term would be </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot (\mathrm {0.01~min} )^{2}\\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)(\mathrm {min/s} )^{2}\cdot \mathrm {m} \\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)\cdot 60^{2}\cdot \mathrm {m} .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.3em 1.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>9.8</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi mathvariant="normal">s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0.01</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>9.8</mn> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <msup> <mn>0.01</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">s</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>9.8</mn> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <msup> <mn>0.01</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>60</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot (\mathrm {0.01~min} )^{2}\\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)(\mathrm {min/s} )^{2}\cdot \mathrm {m} \\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)\cdot 60^{2}\cdot \mathrm {m} .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b5bd672290410cfcc7876ecb6d84b36b7b2421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:33.139ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}&{\tfrac {1}{2}}\cdot (\mathrm {-9.8~m/s^{2}} )\cdot (\mathrm {0.01~min} )^{2}\\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)(\mathrm {min/s} )^{2}\cdot \mathrm {m} \\[10pt]={}&{\tfrac {1}{2}}\cdot -9.8\cdot \left(0.01^{2}\right)\cdot 60^{2}\cdot \mathrm {m} .\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Combining_units_and_numerical_values">Combining units and numerical values</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=22" title="Edit section: Combining units and numerical values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Physical_quantity#Components" title="Physical quantity">Physical quantity § Components</a></div> <p>The value of a dimensional physical quantity <span class="texhtml"><i>Z</i></span> is written as the product of a <a href="/wiki/Unit_of_measurement" title="Unit of measurement">unit</a> [<span class="texhtml"><i>Z</i></span>] within the dimension and a dimensionless numerical value or numerical factor, <span class="texhtml"><i>n</i></span>.<sup id="cite_ref-Pisanty13_27-0" class="reference"><a href="#cite_note-Pisanty13-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=n\times [Z]=n[Z]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>n</mi> <mo>×<!-- × --></mo> <mo stretchy="false">[</mo> <mi>Z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>n</mi> <mo stretchy="false">[</mo> <mi>Z</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=n\times [Z]=n[Z]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a301c02a2b018e24efb3c614727ead393565b8b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.455ex; height:2.843ex;" alt="{\displaystyle Z=n\times [Z]=n[Z]}"></span></dd></dl> <p>When like-dimensioned quantities are added or subtracted or compared, it is convenient to express them in the same unit so that the numerical values of these quantities may be directly added or subtracted. But, in concept, there is no problem adding quantities of the same dimension expressed in different units. For example, 1 metre added to 1 foot is a length, but one cannot derive that length by simply adding 1 and 1. A <a href="/wiki/Conversion_of_units" title="Conversion of units">conversion factor</a>, which is a ratio of like-dimensioned quantities and is equal to the dimensionless unity, is needed: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {1\,ft} =\mathrm {0.3048\,m} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">t</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0.3048</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {1\,ft} =\mathrm {0.3048\,m} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9880ba71e05ee42612ad7450e2edc24c5398f547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.2ex; height:2.176ex;" alt="{\displaystyle \mathrm {1\,ft} =\mathrm {0.3048\,m} }"></span> is identical to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1={\frac {\mathrm {0.3048\,m} }{\mathrm {1\,ft} }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mn>0.3048</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mspace width="thinmathspace" /> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1={\frac {\mathrm {0.3048\,m} }{\mathrm {1\,ft} }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52e1f20475d7427b2eab7a17381cdfc1c9acc674" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.526ex; height:5.343ex;" alt="{\displaystyle 1={\frac {\mathrm {0.3048\,m} }{\mathrm {1\,ft} }}.}"></span></dd></dl> <p>The factor 0.3048 m/ft is identical to the dimensionless 1, so multiplying by this conversion factor changes nothing. Then when adding two quantities of like dimension, but expressed in different units, the appropriate conversion factor, which is essentially the dimensionless 1, is used to convert the quantities to the same unit so that their numerical values can be added or subtracted. </p><p>Only in this manner is it meaningful to speak of adding like-dimensioned quantities of differing units. </p> <div class="mw-heading mw-heading3"><h3 id="Quantity_equations">Quantity equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=23" title="Edit section: Quantity equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Quantity_theory_of_money" title="Quantity theory of money">Quantity theory of money</a>.</div> <p>A <b>quantity equation</b>, also sometimes called a <b>complete equation</b>, is an equation that remains valid independently of the <a href="/wiki/Unit_of_measurement" title="Unit of measurement">unit of measurement</a> used when expressing the <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantities</a>.<sup id="cite_ref-nist_28-0" class="reference"><a href="#cite_note-nist-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>In contrast, in a <i>numerical-value equation</i>, just the numerical values of the quantities occur, without units. Therefore, it is only valid when each numerical values is referenced to a specific unit. </p><p>For example, a quantity equation for <a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">displacement</a> <span class="texhtml"><i>d</i></span> as <a href="/wiki/Speed" title="Speed">speed</a> <span class="texhtml"><i>s</i></span> multiplied by time difference <span class="texhtml"><i>t</i></span> would be: </p> <dl><dd><span class="texhtml"><i>d</i> = <i>s</i> <i>t</i></span></dd></dl> <p>for <span class="texhtml"><i>s</i></span> = 5 m/s, where <span class="texhtml"><i>t</i></span> and <span class="texhtml"><i>d</i></span> may be expressed in any units, <a href="/wiki/Conversion_of_units" title="Conversion of units">converted</a> if necessary. In contrast, a corresponding numerical-value equation would be: </p> <dl><dd><span class="texhtml"><i>D</i> = 5 <i>T</i></span></dd></dl> <p>where <span class="texhtml"><i>T</i></span> is the numeric value of <span class="texhtml"><i>t</i></span> when expressed in seconds and <span class="texhtml"><i>D</i></span> is the numeric value of <span class="texhtml"><i>d</i></span> when expressed in metres. </p><p>Generally, the use of numerical-value equations is discouraged.<sup id="cite_ref-nist_28-1" class="reference"><a href="#cite_note-nist-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Dimensionless_concepts">Dimensionless concepts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=24" title="Edit section: Dimensionless concepts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Constants">Constants</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=25" title="Edit section: Constants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Dimensionless_quantity" title="Dimensionless quantity">Dimensionless quantity</a></div> <p>The dimensionless constants that arise in the results obtained, such as the <span class="texhtml"><i>C</i></span> in the Poiseuille's Law problem and the <span class="texhtml"><i>κ</i></span> in the spring problems discussed above, come from a more detailed analysis of the underlying physics and often arise from integrating some differential equation. Dimensional analysis itself has little to say about these constants, but it is useful to know that they very often have a magnitude of order unity. This observation can allow one to sometimes make "<a href="/wiki/Back_of_the_envelope" class="mw-redirect" title="Back of the envelope">back of the envelope</a>" calculations about the phenomenon of interest, and therefore be able to more efficiently design experiments to measure it, or to judge whether it is important, etc. </p> <div class="mw-heading mw-heading3"><h3 id="Formalisms">Formalisms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=26" title="Edit section: Formalisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Paradoxically, dimensional analysis can be a useful tool even if all the parameters in the underlying theory are dimensionless, e.g., lattice models such as the <a href="/wiki/Ising_model" title="Ising model">Ising model</a> can be used to study phase transitions and critical phenomena. Such models can be formulated in a purely dimensionless way. As we approach the critical point closer and closer, the distance over which the variables in the lattice model are correlated (the so-called correlation length, <span class="texhtml"><i>χ</i></span>) becomes larger and larger. Now, the correlation length is the relevant length scale related to critical phenomena, so one can, e.g., surmise on "dimensional grounds" that the non-analytical part of the free energy per lattice site should be <span class="texhtml">~ 1/<i>χ</i><sup><i>d</i></sup></span>, where <span class="texhtml"><i>d</i></span> is the dimension of the lattice. </p><p>It has been argued by some physicists, e.g., <a href="/wiki/Michael_Duff_(physicist)" title="Michael Duff (physicist)">Michael J. Duff</a>,<sup id="cite_ref-duff_4-1" class="reference"><a href="#cite_note-duff-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> that the laws of physics are inherently dimensionless. The fact that we have assigned incompatible dimensions to Length, Time and Mass is, according to this point of view, just a matter of convention, borne out of the fact that before the advent of modern physics, there was no way to relate mass, length, and time to each other. The three independent dimensionful constants: <a href="/wiki/Speed_of_light" title="Speed of light"><span class="texhtml"><i>c</i></span></a>, <a href="/wiki/Planck_constant" title="Planck constant"><span class="texhtml"><i>ħ</i></span></a>, and <a href="/wiki/Gravitational_constant" title="Gravitational constant"><span class="texhtml"><i>G</i></span></a>, in the fundamental equations of physics must then be seen as mere conversion factors to convert Mass, Time and Length into each other. </p><p>Just as in the case of critical properties of lattice models, one can recover the results of dimensional analysis in the appropriate scaling limit; e.g., dimensional analysis in mechanics can be derived by reinserting the constants <span class="texhtml"><i>ħ</i></span>, <span class="texhtml"><i>c</i></span>, and <span class="texhtml"><i>G</i></span> (but we can now consider them to be dimensionless) and demanding that a nonsingular relation between quantities exists in the limit <span class="texhtml"><i>c</i> → ∞</span>, <span class="texhtml"><i>ħ</i> → 0</span> and <span class="texhtml"><i>G</i> → 0</span>. In problems involving a gravitational field the latter limit should be taken such that the field stays finite. </p> <div class="mw-heading mw-heading2"><h2 id="Dimensional_equivalences">Dimensional equivalences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=27" title="Edit section: Dimensional equivalences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Following are tables of commonly occurring expressions in physics, related to the dimensions of energy, momentum, and force.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Martin08_32-0" class="reference"><a href="#cite_note-Martin08-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="SI_units">SI units</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=28" title="Edit section: SI units"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a></div> <table class="wikitable"> <tbody><tr> <th scope="col" style="width:100px;">Energy, <span class="texhtml"><i>E</i></span> <p>T<sup>−2</sup>L<sup>2</sup>M </p> </th> <th scope="col" style="width:100px;">Expression </th> <th scope="col" style="width:350px;">Nomenclature </th></tr> <tr> <td rowspan="4">Mechanical </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Fd}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Fd}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4341fc3d6f7042fe530b3e46f827478a3e1aa3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.957ex; height:2.176ex;" alt="{\displaystyle Fd}"></span> </td> <td><span class="texhtml"><i>F</i></span> = <a href="/wiki/Force" title="Force">force</a>, <span class="texhtml"><i>d</i></span> = <a href="/wiki/Distance" title="Distance">distance</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S/t\equiv Pt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> <mo>≡<!-- ≡ --></mo> <mi>P</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S/t\equiv Pt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcfdae8d8f8494479da8e6d28f4cd7ca003299b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.185ex; height:2.843ex;" alt="{\displaystyle S/t\equiv Pt}"></span> </td> <td><span class="texhtml"><i>S</i></span> = <a href="/wiki/Action_(physics)" title="Action (physics)">action</a>, <span class="texhtml"><i>t</i></span> = time, <span class="texhtml"><i>P</i></span> = <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mv^{2}\equiv pv\equiv p^{2}/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mi>p</mi> <mi>v</mi> <mo>≡<!-- ≡ --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mv^{2}\equiv pv\equiv p^{2}/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4fe64c19cf0d7ef4aa36dbbb56f11e9a6014d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.143ex; height:3.176ex;" alt="{\displaystyle mv^{2}\equiv pv\equiv p^{2}/m}"></span> </td> <td><span class="texhtml"><i>m</i></span> = <a href="/wiki/Mass" title="Mass">mass</a>, <span class="texhtml"><i>v</i></span> = <a href="/wiki/Velocity" title="Velocity">velocity</a>, <span class="texhtml"><i>p</i></span> = <a href="/wiki/Momentum" title="Momentum">momentum</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\omega ^{2}\equiv L\omega \equiv L^{2}/I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mi>L</mi> <mi>ω<!-- ω --></mi> <mo>≡<!-- ≡ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\omega ^{2}\equiv L\omega \equiv L^{2}/I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/221126104fe8f34f17a1f3e02cfc2a615e6b3c44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.869ex; height:3.176ex;" alt="{\displaystyle I\omega ^{2}\equiv L\omega \equiv L^{2}/I}"></span> </td> <td><span class="texhtml"><i>L</i></span> = <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>, <span class="texhtml"><i>I</i></span> = <a href="/wiki/Moment_of_inertia" title="Moment of inertia">moment of inertia</a>, <span class="texhtml"><i>ω</i></span> = <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a> </td></tr> <tr> <td>Ideal gases </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pV\equiv NT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>V</mi> <mo>≡<!-- ≡ --></mo> <mi>N</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pV\equiv NT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4663267c271c99cabd8d2e47b052fe5bec973c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:9.844ex; height:2.509ex;" alt="{\displaystyle pV\equiv NT}"></span> </td> <td><span class="texhtml"><i>p</i></span> = pressure, <span class="texhtml"><i>V</i></span> = volume, <span class="texhtml"><i>T</i></span> = temperature, <span class="texhtml"><i>N</i></span> = <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a> </td></tr> <tr> <td>Waves </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AIt\equiv ASt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>I</mi> <mi>t</mi> <mo>≡<!-- ≡ --></mo> <mi>A</mi> <mi>S</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AIt\equiv ASt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0f6510d54783c2ded7fb4bee5851676489a9d28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.935ex; height:2.176ex;" alt="{\displaystyle AIt\equiv ASt}"></span> </td> <td><span class="texhtml"><i>A</i></span> = <a href="/wiki/Area" title="Area">area</a> of <a href="/wiki/Huygens%E2%80%93Fresnel_principle" title="Huygens–Fresnel principle">wave front</a>, <span class="texhtml"><i>I</i></span> = wave <a href="/wiki/Intensity_(physics)" title="Intensity (physics)">intensity</a>, <span class="texhtml"><i>t</i></span> = <a href="/wiki/Time" title="Time">time</a>, <span class="texhtml"><i>S</i></span> = <a href="/wiki/Poynting_vector" title="Poynting vector">Poynting vector</a> </td></tr> <tr> <td rowspan="3">Electromagnetic </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/788fd1628f0f3ecf23ad1e662119c00043f1f322" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle q\phi }"></span> </td> <td><span class="texhtml"><i>q</i></span> = <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>, <span class="texhtml"><i>ϕ</i></span> = <a href="/wiki/Electric_potential" title="Electric potential">electric potential</a> (for changes this is <a href="/wiki/Voltage" title="Voltage">voltage</a>) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon E^{2}V\equiv B^{2}V/\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> <mo>≡<!-- ≡ --></mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon E^{2}V\equiv B^{2}V/\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c658c66f158c728a1aea97161eabb5c12633ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.987ex; height:3.176ex;" alt="{\displaystyle \varepsilon E^{2}V\equiv B^{2}V/\mu }"></span> </td> <td><span class="texhtml"><i>E</i></span> = <a href="/wiki/Electric_field" title="Electric field">electric field</a>, <span class="texhtml"><i>B</i></span> = <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>, <br /> <span class="texhtml"><i>ε</i></span> = <a href="/wiki/Permittivity" title="Permittivity">permittivity</a>, <span class="texhtml"><i>μ</i></span> = <a href="/wiki/Permeability_(electromagnetism)" title="Permeability (electromagnetism)">permeability</a>, <br /><span class="texhtml"><i>V</i></span> = 3d <a href="/wiki/Volume" title="Volume">volume</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pE\equiv mB\equiv IAB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>E</mi> <mo>≡<!-- ≡ --></mo> <mi>m</mi> <mi>B</mi> <mo>≡<!-- ≡ --></mo> <mi>I</mi> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pE\equiv mB\equiv IAB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02e8e5ebc7db1187a1651d4957365c9888a5631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:17.715ex; height:2.509ex;" alt="{\displaystyle pE\equiv mB\equiv IAB}"></span> </td> <td><span class="texhtml"><i>p</i></span> = <a href="/wiki/Electric_dipole_moment" title="Electric dipole moment">electric dipole moment</a>, <span class="texhtml"><i>m</i></span> = magnetic moment, <br /> <span class="texhtml"><i>A</i></span> = area (bounded by a current loop), <i>I</i> = <a href="/wiki/Electric_current" title="Electric current">electric current</a> in loop </td></tr></tbody></table> <table class="wikitable"> <tbody><tr> <th scope="col" style="width:100px;">Momentum, <span class="texhtml"><i>p</i></span> <p>T<sup>−1</sup>LM </p> </th> <th scope="col" style="width:100px;">Expression </th> <th scope="col" style="width:350px;">Nomenclature </th></tr> <tr> <td rowspan="2">Mechanical </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mv\equiv Ft}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>v</mi> <mo>≡<!-- ≡ --></mo> <mi>F</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mv\equiv Ft}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cfaa0a56cff383603db63a441d85041a48a313c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.847ex; height:2.176ex;" alt="{\displaystyle mv\equiv Ft}"></span> </td> <td><span class="texhtml"><i>m</i></span> = mass, <span class="texhtml"><i>v</i></span> = velocity, <span class="texhtml"><i>F</i></span> = force, <span class="texhtml"><i>t</i></span> = time </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S/r\equiv L/r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> <mo>≡<!-- ≡ --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S/r\equiv L/r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/525943bd549c2065cb15857a227643e81d129e92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.603ex; height:2.843ex;" alt="{\displaystyle S/r\equiv L/r}"></span> </td> <td><span class="texhtml"><i>S</i></span> = action, <span class="texhtml"><i>L</i></span> = angular momentum, <span class="texhtml"><i>r</i></span> = <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a> </td></tr> <tr> <td>Thermal </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m{\sqrt {\left\langle v^{2}\right\rangle }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow> <mo>⟨</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⟩</mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m{\sqrt {\left\langle v^{2}\right\rangle }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab78cfbf5be9137387006a6de82b01aa572a656b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.741ex; height:4.843ex;" alt="{\displaystyle m{\sqrt {\left\langle v^{2}\right\rangle }}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\left\langle v^{2}\right\rangle }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow> <mo>⟨</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⟩</mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\left\langle v^{2}\right\rangle }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f77c4f373c76bce15f45faa9dc4ad87da3977056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.7ex; height:4.843ex;" alt="{\displaystyle {\sqrt {\left\langle v^{2}\right\rangle }}}"></span> = <a href="/wiki/Root_mean_square_velocity" class="mw-redirect" title="Root mean square velocity">root mean square velocity</a>, <i>m</i> = mass (of a molecule) </td></tr> <tr> <td>Waves </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho Vv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mi>V</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho Vv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94bb528cde8928d89ff558ffcf1ee8270a5a65c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.117ex; height:2.676ex;" alt="{\displaystyle \rho Vv}"></span> </td> <td><span class="texhtml"><i>ρ</i></span> = <a href="/wiki/Density" title="Density">density</a>, <span class="texhtml"><i>V</i></span> = <a href="/wiki/Volume" title="Volume">volume</a>, <span class="texhtml"><i>v</i></span> = <a href="/wiki/Phase_velocity" title="Phase velocity">phase velocity</a> </td></tr> <tr> <td>Electromagnetic </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657b35ea84812416259a0be0fd54980d5e209a50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.813ex; height:2.509ex;" alt="{\displaystyle qA}"></span> </td> <td><span class="texhtml"><i>A</i></span> = <a href="/wiki/Magnetic_vector_potential" title="Magnetic vector potential">magnetic vector potential</a> </td></tr></tbody></table> <table class="wikitable"> <tbody><tr> <th scope="col" style="width:100px;">Force, <span class="texhtml"><i>F</i></span> <p>T<sup>−2</sup>LM </p> </th> <th scope="col" style="width:100px;">Expression </th> <th scope="col" style="width:350px;">Nomenclature </th></tr> <tr> <td>Mechanical </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ma\equiv p/t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>a</mi> <mo>≡<!-- ≡ --></mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ma\equiv p/t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a623c77b846e5702838c98061ad6c05c54f42364" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.54ex; height:2.843ex;" alt="{\displaystyle ma\equiv p/t}"></span> </td> <td><span class="texhtml"><i>m</i></span> = mass, <span class="texhtml"><i>a</i></span> = acceleration </td></tr> <tr> <td>Thermal </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\delta S/\delta r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>δ<!-- δ --></mi> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>δ<!-- δ --></mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\delta S/\delta r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8c4b6c235c95f506897802e37000652273e290a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.444ex; height:2.843ex;" alt="{\displaystyle T\delta S/\delta r}"></span> </td> <td><span class="texhtml"><i>S</i></span> = entropy, <span class="texhtml"><i>T</i></span> = temperature, <span class="texhtml"><i>r</i></span> = displacement (see <a href="/wiki/Entropic_force" title="Entropic force">entropic force</a>) </td></tr> <tr> <td>Electromagnetic </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Eq\equiv Bqv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>q</mi> <mo>≡<!-- ≡ --></mo> <mi>B</mi> <mi>q</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Eq\equiv Bqv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e7b8ee629533fe114953c7f0b90663b8d29a666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.905ex; height:2.509ex;" alt="{\displaystyle Eq\equiv Bqv}"></span> </td> <td><span class="texhtml"><i>E</i></span> = electric field, <span class="texhtml"><i>B</i></span> = magnetic field, <span class="texhtml"><i>v</i></span> = velocity, <span class="texhtml"><i>q</i></span> = charge </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Programming_languages">Programming languages</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=29" title="Edit section: Programming languages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dimensional correctness as part of <a href="/wiki/Type_system#Type_checking" title="Type system">type checking</a> has been studied since 1977.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> Implementations for Ada<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> and C++<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> were described in 1985 and 1988. Kennedy's 1996 thesis describes an implementation in <a href="/wiki/Standard_ML" title="Standard ML">Standard ML</a>,<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> and later in <a href="/wiki/F_Sharp_(programming_language)" title="F Sharp (programming language)">F#</a>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> There are implementations for <a href="/wiki/Haskell" title="Haskell">Haskell</a>,<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> <a href="/wiki/OCaml" title="OCaml">OCaml</a>,<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Rust_(programming_language)" title="Rust (programming language)">Rust</a>,<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> Python,<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> and a code checker for <a href="/wiki/Fortran" title="Fortran">Fortran</a>.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><br /> Griffioen's 2019 thesis extended Kennedy's <a href="/wiki/Hindley%E2%80%93Milner_type_system" title="Hindley–Milner type system">Hindley–Milner type system</a> to support Hart's matrices.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> McBride and Nordvall-Forsberg show how to use <a href="/wiki/Dependent_type" title="Dependent type">dependent types</a> to extend type systems for units of measure.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>Mathematica 13.2 has a function for transformations with quantities named NondimensionalizationTransform that applies a nondimensionalization transform to an equation.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> Mathematica also has a function to find the dimensions of a unit such as 1 J named UnitDimensions.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Mathematica also has a function that will find dimensionally equivalent combinations of a subset of physical quantities named DimensionalCombations.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> Mathematica can also factor out certain dimension with UnitDimensions by specifying an argument to the function UnityDimensions.<sup id="cite_ref-:0_50-0" class="reference"><a href="#cite_note-:0-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> For example, you can use UnityDimensions to factor out angles.<sup id="cite_ref-:0_50-1" class="reference"><a href="#cite_note-:0-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> In addition to UnitDimensions, Mathematica can find the dimensions of a QuantityVariable with the function QuantityVariableDimensions.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Geometry:_position_vs._displacement">Geometry: position vs. displacement</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=30" title="Edit section: Geometry: position vs. displacement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Affine_quantities">Affine quantities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=31" title="Edit section: Affine quantities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Affine_space" title="Affine space">Affine space</a></div> <p>Some discussions of dimensional analysis implicitly describe all quantities as mathematical vectors. In mathematics scalars are considered a special case of vectors;<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2013)">citation needed</span></a></i>]</sup> vectors can be added to or subtracted from other vectors, and, inter alia, multiplied or divided by scalars. If a vector is used to define a position, this assumes an implicit point of reference: an <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>. While this is useful and often perfectly adequate, allowing many important errors to be caught, it can fail to model certain aspects of physics. A more rigorous approach requires distinguishing between position and displacement (or moment in time versus duration, or absolute temperature versus temperature change). </p><p>Consider points on a line, each with a position with respect to a given origin, and distances among them. Positions and displacements all have units of length, but their meaning is not interchangeable: </p> <ul><li>adding two displacements should yield a new displacement (walking ten paces then twenty paces gets you thirty paces forward),</li> <li>adding a displacement to a position should yield a new position (walking one block down the street from an intersection gets you to the next intersection),</li> <li>subtracting two positions should yield a displacement,</li> <li>but one may <i>not</i> add two positions.</li></ul> <p>This illustrates the subtle distinction between <i>affine</i> quantities (ones modeled by an <a href="/wiki/Affine_space" title="Affine space">affine space</a>, such as position) and <i>vector</i> quantities (ones modeled by a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, such as displacement). </p> <ul><li>Vector quantities may be added to each other, yielding a new vector quantity, and a vector quantity may be added to a suitable affine quantity (a vector space <i><a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">acts on</a></i> an affine space), yielding a new affine quantity.</li> <li>Affine quantities cannot be added, but may be subtracted, yielding <i>relative</i> quantities which are vectors, and these <i>relative differences</i> may then be added to each other or to an affine quantity.</li></ul> <p>Properly then, positions have dimension of <i>affine</i> length, while displacements have dimension of <i>vector</i> length. To assign a number to an <i>affine</i> unit, one must not only choose a unit of measurement, but also a <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">point of reference</a>, while to assign a number to a <i>vector</i> unit only requires a unit of measurement. </p><p>Thus some physical quantities are better modeled by vectorial quantities while others tend to require affine representation, and the distinction is reflected in their dimensional analysis. </p><p>This distinction is particularly important in the case of temperature, for which the numeric value of <a href="/wiki/Absolute_zero" title="Absolute zero">absolute zero</a> is not the origin 0 in some scales. For absolute zero, </p> <dl><dd>−273.15 °C ≘ 0 K = 0 °R ≘ −459.67 °F,</dd></dl> <p>where the symbol ≘ means <i>corresponds to</i>, since although these values on the respective temperature scales correspond, they represent distinct quantities in the same way that the distances from distinct starting points to the same end point are distinct quantities, and cannot in general be equated. </p><p>For temperature differences, </p> <dl><dd>1 K = 1 °C ≠ 1 °F = 1 °R.</dd></dl> <p>(Here °R refers to the <a href="/wiki/Rankine_scale" title="Rankine scale">Rankine scale</a>, not the <a href="/wiki/R%C3%A9aumur_scale" title="Réaumur scale">Réaumur scale</a>). Unit conversion for temperature differences is simply a matter of multiplying by, e.g., 1 °F / 1 K (although the ratio is not a constant value). But because some of these scales have origins that do not correspond to absolute zero, conversion from one temperature scale to another requires accounting for that. As a result, simple dimensional analysis can lead to errors if it is ambiguous whether 1 K means the absolute temperature equal to −272.15 °C, or the temperature difference equal to 1 °C. </p> <div class="mw-heading mw-heading3"><h3 id="Orientation_and_frame_of_reference">Orientation and frame of reference</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=32" title="Edit section: Orientation and frame of reference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Similar to the issue of a point of reference is the issue of orientation: a displacement in 2 or 3 dimensions is not just a length, but is a length together with a <i>direction</i>. (In 1 dimension, this issue is equivalent to the distinction between positive and negative.) Thus, to compare or combine two dimensional quantities in multi-dimensional Euclidean space, one also needs a bearing: they need to be compared to a <a href="/wiki/Frame_of_reference" title="Frame of reference">frame of reference</a>. </p><p>This leads to the <a href="#Extensions">extensions</a> discussed below, namely Huntley's directed dimensions and Siano's orientational analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Huntley's_extensions"><span id="Huntley.27s_extensions"></span>Huntley's extensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=33" title="Edit section: Huntley's extensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Huntley has pointed out that a dimensional analysis can become more powerful by discovering new independent dimensions in the quantities under consideration, thus increasing the rank <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> of the dimensional matrix.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>He introduced two approaches: </p> <ul><li>The magnitudes of the components of a vector are to be considered dimensionally independent. For example, rather than an undifferentiated length dimension L, we may have L<sub>x</sub> represent dimension in the x-direction, and so forth. This requirement stems ultimately from the requirement that each component of a physically meaningful equation (scalar, vector, or tensor) must be dimensionally consistent.</li> <li>Mass as a measure of the quantity of matter is to be considered dimensionally independent from mass as a measure of inertia.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Directed_dimensions">Directed dimensions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=34" title="Edit section: Directed dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As an example of the usefulness of the first approach, suppose we wish to calculate the <a href="/wiki/Trajectory#Range_and_height" title="Trajectory">distance a cannonball travels</a> when fired with a vertical velocity component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f36a81a82eeb0ce3efa733e5017794d8e4220e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.228ex; height:2.343ex;" alt="{\displaystyle v_{\text{y}}}"></span> and a horizontal velocity component <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b3e262033b4eebdbb4568c08311ca11ad013028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle v_{\text{x}}}"></span>⁠</span>, assuming it is fired on a flat surface. Assuming no use of directed lengths, the quantities of interest are then <span class="texhtml mvar" style="font-style:italic;">R</span>, the distance travelled, with dimension L, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b3e262033b4eebdbb4568c08311ca11ad013028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle v_{\text{x}}}"></span>⁠</span>, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0f36a81a82eeb0ce3efa733e5017794d8e4220e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.228ex; height:2.343ex;" alt="{\displaystyle v_{\text{y}}}"></span>⁠</span>, both dimensioned as T<sup>−1</sup>L, and <span class="texhtml mvar" style="font-style:italic;">g</span> the downward acceleration of gravity, with dimension T<sup>−2</sup>L. </p><p>With these four quantities, we may conclude that the equation for the range <span class="texhtml mvar" style="font-style:italic;">R</span> may be written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\propto v_{\text{x}}^{a}\,v_{\text{y}}^{b}\,g^{c}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>∝<!-- ∝ --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\propto v_{\text{x}}^{a}\,v_{\text{y}}^{b}\,g^{c}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52a799c5039f2c298544c83cf4dcab4e623debf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.803ex; height:3.009ex;" alt="{\displaystyle R\propto v_{\text{x}}^{a}\,v_{\text{y}}^{b}\,g^{c}.}"></span></dd></dl> <p>Or dimensionally </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {L}}=\left({\mathsf {T}}^{-1}{\mathsf {L}}\right)^{a+b}\left({\mathsf {T}}^{-2}{\mathsf {L}}\right)^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {L}}=\left({\mathsf {T}}^{-1}{\mathsf {L}}\right)^{a+b}\left({\mathsf {T}}^{-2}{\mathsf {L}}\right)^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4816433cb2ceafb2eb9cb824002b27caf059a89d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.999ex; height:3.843ex;" alt="{\displaystyle {\mathsf {L}}=\left({\mathsf {T}}^{-1}{\mathsf {L}}\right)^{a+b}\left({\mathsf {T}}^{-2}{\mathsf {L}}\right)^{c}}"></span></dd></dl> <p>from which we may deduce that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b+c=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b+c=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0020e7d6928791bd699105650f592c7646a1d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.176ex; height:2.343ex;" alt="{\displaystyle a+b+c=1}"></span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b+2c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b+2c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3692070878cb1ba5581ba5a6fc383efa357ce328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.338ex; height:2.343ex;" alt="{\displaystyle a+b+2c=0}"></span>⁠</span>, which leaves one exponent undetermined. This is to be expected since we have two fundamental dimensions T and L, and four parameters, with one equation. </p><p>However, if we use directed length dimensions, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\mathrm {x} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\mathrm {x} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3578b981b6a3ca532e8b41e4ce4b539c6a8140cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle v_{\mathrm {x} }}"></span> will be dimensioned as T<sup>−1</sup>L<sub><span class="texhtml">x</span></sub>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\mathrm {y} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\mathrm {y} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dd81310a6f5b82062901c1ca2e895bc31f928ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.228ex; height:2.343ex;" alt="{\displaystyle v_{\mathrm {y} }}"></span> as T<sup>−1</sup>L<sub><span class="texhtml">y</span></sub>, <span class="texhtml mvar" style="font-style:italic;">R</span> as L<sub><span class="texhtml">x</span></sub> and <span class="texhtml mvar" style="font-style:italic;">g</span> as T<sup>−2</sup>L<sub><span class="texhtml">y</span></sub>. The dimensional equation becomes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathsf {L}}_{\mathrm {x} }=\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {x} }}\right)^{a}\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{b}\left({{\mathsf {T}}^{-2}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> </mrow> </mrow> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> </mrow> </mrow> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathsf {L}}_{\mathrm {x} }=\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {x} }}\right)^{a}\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{b}\left({{\mathsf {T}}^{-2}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58537db8ab43c0b798e808a05a2e0e9735102b56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.659ex; height:3.843ex;" alt="{\displaystyle {\mathsf {L}}_{\mathrm {x} }=\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {x} }}\right)^{a}\left({{\mathsf {T}}^{-1}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{b}\left({{\mathsf {T}}^{-2}}{{\mathsf {L}}_{\mathrm {y} }}\right)^{c}}"></span></dd></dl> <p>and we may solve completely as <span class="texhtml"><i>a</i> = 1</span>, <span class="texhtml"><i>b</i> = 1</span> and <span class="texhtml"><i>c</i> = −1</span>. The increase in deductive power gained by the use of directed length dimensions is apparent. </p><p>Huntley's concept of directed length dimensions however has some serious limitations: </p> <ul><li>It does not deal well with vector equations involving the <i><a href="/wiki/Cross_product" title="Cross product">cross product</a></i>,</li> <li>nor does it handle well the use of <i>angles</i> as physical variables.</li></ul> <p>It also is often quite difficult to assign the L, L<sub><span class="texhtml">x</span></sub>, L<sub><span class="texhtml">y</span></sub>, L<sub><span class="texhtml">z</span></sub>, symbols to the physical variables involved in the problem of interest. He invokes a procedure that involves the "symmetry" of the physical problem. This is often very difficult to apply reliably: It is unclear as to what parts of the problem that the notion of "symmetry" is being invoked. Is it the symmetry of the physical body that forces are acting upon, or to the points, lines or areas at which forces are being applied? What if more than one body is involved with different symmetries? </p><p>Consider the spherical bubble attached to a cylindrical tube, where one wants the flow rate of air as a function of the pressure difference in the two parts. What are the Huntley extended dimensions of the viscosity of the air contained in the connected parts? What are the extended dimensions of the pressure of the two parts? Are they the same or different? These difficulties are responsible for the limited application of Huntley's directed length dimensions to real problems. </p> <div class="mw-heading mw-heading4"><h4 id="Quantity_of_matter">Quantity of matter</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=35" title="Edit section: Quantity of matter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Huntley's second approach, he holds that it is sometimes useful (e.g., in fluid mechanics and thermodynamics) to distinguish between mass as a measure of inertia (<i>inertial mass</i>), and mass as a measure of the quantity of matter. <b>Quantity of matter</b> is defined by Huntley as a quantity only <em>proportional</em> to inertial mass, while not implicating inertial properties. No further restrictions are added to its definition. </p><p>For example, consider the derivation of <a href="/wiki/Poiseuille%27s_Law" class="mw-redirect" title="Poiseuille's Law">Poiseuille's Law</a>. We wish to find the rate of mass flow of a viscous fluid through a circular pipe. Without drawing distinctions between inertial and substantial mass, we may choose as the relevant variables: </p> <table class="wikitable"> <tbody><tr> <th>Symbol</th> <th>Variable</th> <th>Dimension </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad59b9876301e8fb75b9ddbf08de594b87251d3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:2.176ex;" alt="{\displaystyle {\dot {m}}}"></span></td> <td>mass flow rate</td> <td>T<sup>−1</sup>M </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23ad30e48e8d6c3fd04cbcf1e5aac5440efb3306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.359ex; height:2.009ex;" alt="{\displaystyle p_{\text{x}}}"></span></td> <td>pressure gradient along the pipe</td> <td>T<sup>−2</sup>L<sup>−2</sup>M </td></tr> <tr> <td><span class="texhtml mvar" style="font-style:italic;">ρ</span></td> <td>density</td> <td>L<sup>−3</sup>M </td></tr> <tr> <td><span class="texhtml mvar" style="font-style:italic;">η</span></td> <td>dynamic fluid viscosity</td> <td>T<sup>−1</sup>L<sup>−1</sup>M </td></tr> <tr> <td><span class="texhtml mvar" style="font-style:italic;">r</span></td> <td>radius of the pipe</td> <td>L </td></tr></tbody></table> <p>There are three fundamental variables, so the above five equations will yield two independent dimensionless variables: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{1}={\frac {\dot {m}}{\eta r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> <mrow> <mi>η<!-- η --></mi> <mi>r</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{1}={\frac {\dot {m}}{\eta r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98540ff5f962f3280bf6c0801845ef9bf2c98600" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.532ex; height:5.676ex;" alt="{\displaystyle \pi _{1}={\frac {\dot {m}}{\eta r}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{2}={\frac {p_{\mathrm {x} }\rho r^{5}}{{\dot {m}}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> <mi>ρ<!-- ρ --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{2}={\frac {p_{\mathrm {x} }\rho r^{5}}{{\dot {m}}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b652e2d64ee66874cc1c6f46a6cbf7d585b7fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.888ex; height:6.176ex;" alt="{\displaystyle \pi _{2}={\frac {p_{\mathrm {x} }\rho r^{5}}{{\dot {m}}^{2}}}}"></span></dd></dl> <p>If we distinguish between inertial mass with dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\text{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\text{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e4fc40496ff3c8d792e636ec74e3ba2a45ea6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.944ex; height:2.509ex;" alt="{\displaystyle M_{\text{i}}}"></span> and quantity of matter with dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\text{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>m</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\text{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37e0b48800b793082f7c0904989473cb4dbb598" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.855ex; height:2.509ex;" alt="{\displaystyle M_{\text{m}}}"></span>, then mass flow rate and density will use quantity of matter as the mass parameter, while the pressure gradient and coefficient of viscosity will use inertial mass. We now have four fundamental parameters, and one dimensionless constant, so that the dimensional equation may be written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C={\frac {p_{\mathrm {x} }\rho r^{4}}{\eta {\dot {m}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> <mi>ρ<!-- ρ --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C={\frac {p_{\mathrm {x} }\rho r^{4}}{\eta {\dot {m}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71911d472bceefc6681a6c38f3544bcb64b7d4d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.275ex; height:6.343ex;" alt="{\displaystyle C={\frac {p_{\mathrm {x} }\rho r^{4}}{\eta {\dot {m}}}}}"></span></dd></dl> <p>where now only <span class="texhtml mvar" style="font-style:italic;">C</span> is an undetermined constant (found to be equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5560bd24fb121d12a76b93236ac084e4c5844770" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /8}"></span> by methods outside of dimensional analysis). This equation may be solved for the mass flow rate to yield <a href="/wiki/Poiseuille%27s_law" class="mw-redirect" title="Poiseuille's law">Poiseuille's law</a>. </p><p>Huntley's recognition of quantity of matter as an independent quantity dimension is evidently successful in the problems where it is applicable, but his definition of quantity of matter is open to interpretation, as it lacks specificity beyond the two requirements he postulated for it. For a given substance, the SI dimension <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a>, with unit <a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a>, does satisfy Huntley's two requirements as a measure of quantity of matter, and could be used as a quantity of matter in any problem of dimensional analysis where Huntley's concept is applicable. </p> <div class="mw-heading mw-heading3"><h3 id="Siano's_extension:_orientational_analysis"><span id="Siano.27s_extension:_orientational_analysis"></span>Siano's extension: orientational analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=36" title="Edit section: Siano's extension: orientational analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Angle#Dimensional_analysis" title="Angle">Angle § Dimensional analysis</a></div> <p><a href="/wiki/Angle" title="Angle">Angles</a> are, by convention, considered to be dimensionless quantities (although the wisdom of this is contested <sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup>) . As an example, consider again the projectile problem in which a point mass is launched from the origin <span class="texhtml">(<i>x</i>, <i>y</i>) = (0, 0)</span> at a speed <span class="texhtml"><i>v</i></span> and angle <span class="texhtml"><i>θ</i></span> above the <i>x</i>-axis, with the force of gravity directed along the negative <i>y</i>-axis. It is desired to find the range <span class="texhtml"><i>R</i></span>, at which point the mass returns to the <i>x</i>-axis. Conventional analysis will yield the dimensionless variable <span class="texhtml"><i>π</i> = <i>R</i> <i>g</i>/<i>v</i><sup>2</sup></span>, but offers no insight into the relationship between <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>θ</i></span>. </p><p>Siano has suggested that the directed dimensions of Huntley be replaced by using <i>orientational symbols</i> <span class="texhtml">1<sub>x</sub> 1<sub>y</sub> 1<sub>z</sub></span> to denote vector directions, and an orientationless symbol 1<sub>0</sub>.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> Thus, Huntley's L<sub><span class="texhtml">x</span></sub> becomes L1<sub><span class="texhtml">x</span></sub> with L specifying the dimension of length, and <span class="texhtml">1<sub>x</sub></span> specifying the orientation. Siano further shows that the orientational symbols have an algebra of their own. Along with the requirement that <span class="texhtml">1<sub><i>i</i></sub><sup>−1</sup> = 1<sub><i>i</i></sub></span>, the following multiplication table for the orientation symbols results: </p> <table class="wikitable"> <tbody><tr> <th></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{0}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{0}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60946c01b1a16761213276e6153b6192d310a3dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.514ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{0}} }"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{x}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{x}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf6d2297c066b12add1b30c1fc6077e33f50e4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.567ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{\text{x}}} }"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{y}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">y</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{y}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7545bbd6d06311aaf74da6ea62935584336b870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.567ex; height:2.843ex;" alt="{\displaystyle \mathbf {1_{\text{y}}} }"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{z}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">z</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{z}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/331365873e0e7a389539ebad41a431147efc01cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.409ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{\text{z}}} }"></span> </th></tr> <tr> <th scope="col"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{0}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{0}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60946c01b1a16761213276e6153b6192d310a3dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.514ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{0}} }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5120fdb64146fb2d84f979ec73a8e0e2932eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.509ex;" alt="{\displaystyle 1_{0}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c546de465b5fea97b52d56a6c548407d0b782e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle 1_{\text{x}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc82f359b641be89de30f5a826d4beb8feb798e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.263ex; height:2.843ex;" alt="{\displaystyle 1_{\text{y}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1117a4db60559b9ee6daabcebd32a6f686435b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.125ex; height:2.509ex;" alt="{\displaystyle 1_{\text{z}}}"></span> </td></tr> <tr> <th scope="col"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{x}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{x}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf6d2297c066b12add1b30c1fc6077e33f50e4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.567ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{\text{x}}} }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c546de465b5fea97b52d56a6c548407d0b782e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle 1_{\text{x}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5120fdb64146fb2d84f979ec73a8e0e2932eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.509ex;" alt="{\displaystyle 1_{0}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1117a4db60559b9ee6daabcebd32a6f686435b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.125ex; height:2.509ex;" alt="{\displaystyle 1_{\text{z}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc82f359b641be89de30f5a826d4beb8feb798e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.263ex; height:2.843ex;" alt="{\displaystyle 1_{\text{y}}}"></span> </td></tr> <tr> <th scope="col"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{y}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">y</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{y}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7545bbd6d06311aaf74da6ea62935584336b870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.567ex; height:2.843ex;" alt="{\displaystyle \mathbf {1_{\text{y}}} }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc82f359b641be89de30f5a826d4beb8feb798e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.263ex; height:2.843ex;" alt="{\displaystyle 1_{\text{y}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1117a4db60559b9ee6daabcebd32a6f686435b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.125ex; height:2.509ex;" alt="{\displaystyle 1_{\text{z}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5120fdb64146fb2d84f979ec73a8e0e2932eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.509ex;" alt="{\displaystyle 1_{0}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c546de465b5fea97b52d56a6c548407d0b782e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle 1_{\text{x}}}"></span> </td></tr> <tr> <th scope="col"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1_{\text{z}}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mn mathvariant="bold">1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">z</mtext> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1_{\text{z}}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/331365873e0e7a389539ebad41a431147efc01cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.409ex; height:2.509ex;" alt="{\displaystyle \mathbf {1_{\text{z}}} }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1117a4db60559b9ee6daabcebd32a6f686435b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.125ex; height:2.509ex;" alt="{\displaystyle 1_{\text{z}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc82f359b641be89de30f5a826d4beb8feb798e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.263ex; height:2.843ex;" alt="{\displaystyle 1_{\text{y}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\text{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>x</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\text{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c546de465b5fea97b52d56a6c548407d0b782e34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle 1_{\text{x}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5120fdb64146fb2d84f979ec73a8e0e2932eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.509ex;" alt="{\displaystyle 1_{0}}"></span> </td></tr></tbody></table> <p>The orientational symbols form a group (the <a href="/wiki/Klein_four-group" title="Klein four-group">Klein four-group</a> or "Viergruppe"). In this system, scalars always have the same orientation as the identity element, independent of the "symmetry of the problem". Physical quantities that are vectors have the orientation expected: a force or a velocity in the z-direction has the orientation of <span class="texhtml">1<sub>z</sub></span>. For angles, consider an angle <span class="texhtml mvar" style="font-style:italic;">θ</span> that lies in the z-plane. Form a right triangle in the z-plane with <span class="texhtml mvar" style="font-style:italic;">θ</span> being one of the acute angles. The side of the right triangle adjacent to the angle then has an orientation <span class="texhtml">1<sub>x</sub></span> and the side opposite has an orientation <span class="texhtml">1<sub>y</sub></span>. Since (using <span class="texhtml">~</span> to indicate orientational equivalence) <span class="texhtml">tan(<i>θ</i>) = <i>θ</i> + ... ~ 1<sub>y</sub>/1<sub>x</sub></span> we conclude that an angle in the xy-plane must have an orientation <span class="texhtml">1<sub>y</sub>/1<sub>x</sub> = 1<sub>z</sub></span>, which is not unreasonable. Analogous reasoning forces the conclusion that <span class="texhtml">sin(<i>θ</i>)</span> has orientation <span class="texhtml">1<sub>z</sub></span> while <span class="texhtml">cos(<i>θ</i>)</span> has orientation 1<sub>0</sub>. These are different, so one concludes (correctly), for example, that there are no solutions of physical equations that are of the form <span class="texhtml"><i>a</i> cos(<i>θ</i>) + <i>b</i> sin(<i>θ</i>)</span>, where <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are real scalars. An expression such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(\theta +\pi /2)=\cos(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(\theta +\pi /2)=\cos(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5fd33535f8ef0b98c867b3a3f627cfc81a59754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.362ex; height:2.843ex;" alt="{\displaystyle \sin(\theta +\pi /2)=\cos(\theta )}"></span> is not dimensionally inconsistent since it is a special case of the sum of angles formula and should properly be written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \left(a\,1_{\text{z}}+b\,1_{\text{z}}\right)=\sin \left(a\,1_{\text{z}})\cos(b\,1_{\text{z}}\right)+\sin \left(b\,1_{\text{z}})\cos(a\,1_{\text{z}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \left(a\,1_{\text{z}}+b\,1_{\text{z}}\right)=\sin \left(a\,1_{\text{z}})\cos(b\,1_{\text{z}}\right)+\sin \left(b\,1_{\text{z}})\cos(a\,1_{\text{z}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5956429b00de5508b610127664b79d852196b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.789ex; height:2.843ex;" alt="{\displaystyle \sin \left(a\,1_{\text{z}}+b\,1_{\text{z}}\right)=\sin \left(a\,1_{\text{z}})\cos(b\,1_{\text{z}}\right)+\sin \left(b\,1_{\text{z}})\cos(a\,1_{\text{z}}\right),}"></span></dd></dl> <p>which for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066be9fc9a748456a8198b286d97c4ec84bb87d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.419ex; height:2.176ex;" alt="{\displaystyle a=\theta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=\pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=\pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eba796bff329a22705673036509fcd2184aa022c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.753ex; height:2.843ex;" alt="{\displaystyle b=\pi /2}"></span> yields <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(\theta \,1_{\text{z}}+[\pi /2]\,1_{\text{z}})=1_{\text{z}}\cos(\theta \,1_{\text{z}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo>+</mo> <mo stretchy="false">[</mo> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>z</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(\theta \,1_{\text{z}}+[\pi /2]\,1_{\text{z}})=1_{\text{z}}\cos(\theta \,1_{\text{z}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02f99f85aa2a4dffc37a8a2fd4ad17446fd4b443" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.703ex; height:2.843ex;" alt="{\displaystyle \sin(\theta \,1_{\text{z}}+[\pi /2]\,1_{\text{z}})=1_{\text{z}}\cos(\theta \,1_{\text{z}})}"></span>⁠</span>. Siano distinguishes between geometric angles, which have an orientation in 3-dimensional space, and phase angles associated with time-based oscillations, which have no spatial orientation, i.e. the orientation of a phase angle is <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5120fdb64146fb2d84f979ec73a8e0e2932eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.509ex;" alt="{\displaystyle 1_{0}}"></span>⁠</span>. </p><p>The assignment of orientational symbols to physical quantities and the requirement that physical equations be orientationally homogeneous can actually be used in a way that is similar to dimensional analysis to derive more information about acceptable solutions of physical problems. In this approach, one solves the dimensional equation as far as one can. If the lowest power of a physical variable is fractional, both sides of the solution is raised to a power such that all powers are integral, putting it into <a href="/wiki/Canonical_form" title="Canonical form">normal form</a>. The orientational equation is then solved to give a more restrictive condition on the unknown powers of the orientational symbols. The solution is then more complete than the one that dimensional analysis alone gives. Often, the added information is that one of the powers of a certain variable is even or odd. </p><p>As an example, for the projectile problem, using orientational symbols, <span class="texhtml"><i>θ</i></span>, being in the xy-plane will thus have dimension <span class="texhtml">1<sub>z</sub></span> and the range of the projectile <span class="texhtml mvar" style="font-style:italic;">R</span> will be of the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=g^{a}\,v^{b}\,\theta ^{c}{\text{ which means }}{\mathsf {L}}\,1_{\mathrm {x} }\sim \left({\frac {{\mathsf {L}}\,1_{\text{y}}}{{\mathsf {T}}^{2}}}\right)^{a}\left({\frac {\mathsf {L}}{\mathsf {T}}}\right)^{b}\,1_{\mathsf {z}}^{c}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext> which means </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> <mo>∼<!-- ∼ --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>y</mtext> </mrow> </msub> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msubsup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">z</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=g^{a}\,v^{b}\,\theta ^{c}{\text{ which means }}{\mathsf {L}}\,1_{\mathrm {x} }\sim \left({\frac {{\mathsf {L}}\,1_{\text{y}}}{{\mathsf {T}}^{2}}}\right)^{a}\left({\frac {\mathsf {L}}{\mathsf {T}}}\right)^{b}\,1_{\mathsf {z}}^{c}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a12e838d15bc98f7785efe718044aa5d3ebf37b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:52.566ex; height:6.676ex;" alt="{\displaystyle R=g^{a}\,v^{b}\,\theta ^{c}{\text{ which means }}{\mathsf {L}}\,1_{\mathrm {x} }\sim \left({\frac {{\mathsf {L}}\,1_{\text{y}}}{{\mathsf {T}}^{2}}}\right)^{a}\left({\frac {\mathsf {L}}{\mathsf {T}}}\right)^{b}\,1_{\mathsf {z}}^{c}.\,}"></span></dd></dl> <p>Dimensional homogeneity will now correctly yield <span class="texhtml"><i>a</i> = −1</span> and <span class="texhtml"><i>b</i> = 2</span>, and orientational homogeneity requires that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{x}/(1_{y}^{a}1_{z}^{c})=1_{z}^{c+1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msubsup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <msubsup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{x}/(1_{y}^{a}1_{z}^{c})=1_{z}^{c+1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530572b120d22c1c8e417c3823bb16a24e6beb0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.302ex; height:3.509ex;" alt="{\displaystyle 1_{x}/(1_{y}^{a}1_{z}^{c})=1_{z}^{c+1}=1}"></span>⁠</span>. In other words, that <span class="texhtml mvar" style="font-style:italic;">c</span> must be an odd integer. In fact, the required function of theta will be <span class="texhtml">sin(<i>θ</i>)cos(<i>θ</i>)</span> which is a series consisting of odd powers of <span class="texhtml mvar" style="font-style:italic;">θ</span>. </p><p>It is seen that the Taylor series of <span class="texhtml">sin(<i>θ</i>)</span> and <span class="texhtml">cos(<i>θ</i>)</span> are orientationally homogeneous using the above multiplication table, while expressions like <span class="texhtml">cos(<i>θ</i>) + sin(<i>θ</i>)</span> and <span class="texhtml">exp(<i>θ</i>)</span> are not, and are (correctly) deemed unphysical. </p><p>Siano's orientational analysis is compatible with the conventional conception of angular quantities as being dimensionless, and within orientational analysis, the <a href="/wiki/Radian" title="Radian">radian</a> may still be considered a dimensionless unit. The orientational analysis of a quantity equation is carried out separately from the ordinary dimensional analysis, yielding information that supplements the dimensional analysis. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=37" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">Buckingham π theorem</a></li> <li><a href="/wiki/Dimensionless_numbers_in_fluid_mechanics" title="Dimensionless numbers in fluid mechanics">Dimensionless numbers in fluid mechanics</a></li> <li><a href="/wiki/Fermi_problem" title="Fermi problem">Fermi estimate</a> – used to teach dimensional analysis</li> <li><a href="/wiki/Numerical-value_equation" class="mw-redirect" title="Numerical-value equation">Numerical-value equation</a></li> <li><a href="/wiki/Rayleigh%27s_method_of_dimensional_analysis" class="mw-redirect" title="Rayleigh's method of dimensional analysis">Rayleigh's method of dimensional analysis</a></li> <li><a href="/wiki/Similitude" title="Similitude">Similitude</a> – an application of dimensional analysis</li> <li><a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">System of measurement</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Related_areas_of_mathematics">Related areas of mathematics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=38" title="Edit section: Related areas of mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Quantity_calculus" title="Quantity calculus">Quantity calculus</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=39" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Bolster-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bolster_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bolster_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBolsterHershbergerDonnelly2011" class="citation journal cs1">Bolster, Diogo; Hershberger, Robert E.; Donnelly, Russell E. (September 2011). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://pubs.aip.org/physicstoday/article-abstract/64/9/42/413713/Dynamic-similarity-the-dimensionless">"Dynamic similarity, the dimensionless science"</a></span>. <i>Physics Today</i>. <b>64</b> (9): 42–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2FPT.3.1258">10.1063/PT.3.1258</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=Dynamic+similarity%2C+the+dimensionless+science&rft.volume=64&rft.issue=9&rft.pages=42-47&rft.date=2011-09&rft_id=info%3Adoi%2F10.1063%2FPT.3.1258&rft.aulast=Bolster&rft.aufirst=Diogo&rft.au=Hershberger%2C+Robert+E.&rft.au=Donnelly%2C+Russell+E.&rft_id=https%3A%2F%2Fpubs.aip.org%2Fphysicstoday%2Farticle-abstract%2F64%2F9%2F42%2F413713%2FDynamic-similarity-the-dimensionless&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-SIBrochure9th-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-SIBrochure9th_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SIBrochure9th_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBIPM2019" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/BIPM" class="mw-redirect" title="BIPM">BIPM</a> (2019). "2.3.3 Dimensions of quantities". <a rel="nofollow" class="external text" href="https://www.bipm.org/en/publications/si-brochure"><i>SI Brochure: The International System of Units (SI)</i></a> <span class="cs1-format">(PDF)</span> (in English and French) (v. 1.08, 9th ed.). pp. 136–137. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-92-822-2272-0" title="Special:BookSources/978-92-822-2272-0"><bdi>978-92-822-2272-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">1 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=2.3.3+Dimensions+of+quantities&rft.btitle=SI+Brochure%3A+The+International+System+of+Units+%28SI%29&rft.pages=136-137&rft.edition=v.+1.08%2C+9th&rft.date=2019&rft.isbn=978-92-822-2272-0&rft.au=BIPM&rft_id=https%3A%2F%2Fwww.bipm.org%2Fen%2Fpublications%2Fsi-brochure&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYalin1971" class="citation book cs1">Yalin, M. Selim (1971). <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1007/978-1-349-00245-0_1">"Principles of the Theory of Dimensions"</a>. <i>Theory of Hydraulic Models</i>. pp. 1–34. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-349-00245-0_1">10.1007/978-1-349-00245-0_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-349-00247-4" title="Special:BookSources/978-1-349-00247-4"><bdi>978-1-349-00247-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Principles+of+the+Theory+of+Dimensions&rft.btitle=Theory+of+Hydraulic+Models&rft.pages=1-34&rft.date=1971&rft_id=info%3Adoi%2F10.1007%2F978-1-349-00245-0_1&rft.isbn=978-1-349-00247-4&rft.aulast=Yalin&rft.aufirst=M.+Selim&rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-1-349-00245-0_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-duff-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-duff_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-duff_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuffOkunVeneziano2002" class="citation cs2">Duff, M.J.; Okun, L.B.; Veneziano, G. (September 2002), "Trialogue on the number of fundamental constants", <i>Journal of High Energy Physics</i>, <b>2002</b> (3): 023, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/0110060">physics/0110060</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JHEP...03..023D">2002JHEP...03..023D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2002%2F03%2F023">10.1088/1126-6708/2002/03/023</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15806354">15806354</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Trialogue+on+the+number+of+fundamental+constants&rft.volume=2002&rft.issue=3&rft.pages=023&rft.date=2002-09&rft_id=info%3Aarxiv%2Fphysics%2F0110060&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15806354%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2002%2F03%2F023&rft_id=info%3Abibcode%2F2002JHEP...03..023D&rft.aulast=Duff&rft.aufirst=M.J.&rft.au=Okun%2C+L.B.&rft.au=Veneziano%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJCGM2012" class="citation cs2"><a href="/wiki/Joint_Committee_for_Guides_in_Metrology" title="Joint Committee for Guides in Metrology">JCGM</a> (2012), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150923224356/http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf"><i>JCGM 200:2012 – International vocabulary of metrology – Basic and general concepts and associated terms (VIM)</i></a> <span class="cs1-format">(PDF)</span> (3rd ed.), archived from <a rel="nofollow" class="external text" href="https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 23 September 2015<span class="reference-accessdate">, retrieved <span class="nowrap">2 June</span> 2015</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=JCGM+200%3A2012+%E2%80%93+International+vocabulary+of+metrology+%E2%80%93+Basic+and+general+concepts+and+associated+terms+%28VIM%29&rft.edition=3rd&rft.date=2012&rft.au=JCGM&rft_id=https%3A%2F%2Fwww.bipm.org%2Futils%2Fcommon%2Fdocuments%2Fjcgm%2FJCGM_200_2012.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCimbalaÇengel2006" class="citation book cs1">Cimbala, John; Çengel, Yunus (2006). <a rel="nofollow" class="external text" href="http://highered.mcgraw-hill.com/sites/0073138355/student_view0/chapter7/">"§7-2 Dimensional homogeneity"</a>. <i>Essential of Fluid Mechanics: Fundamentals and Applications</i>. McGraw-Hill. p. 203–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780073138350" title="Special:BookSources/9780073138350"><bdi>9780073138350</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%C2%A77-2+Dimensional+homogeneity&rft.btitle=Essential+of+Fluid+Mechanics%3A+Fundamentals+and+Applications&rft.pages=203-&rft.pub=McGraw-Hill&rft.date=2006&rft.isbn=9780073138350&rft.aulast=Cimbala&rft.aufirst=John&rft.au=%C3%87engel%2C+Yunus&rft_id=http%3A%2F%2Fhighered.mcgraw-hill.com%2Fsites%2F0073138355%2Fstudent_view0%2Fchapter7%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_JongQuade1967" class="citation book cs1">de Jong, Frits J.; Quade, Wilhelm (1967). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/dimensionalanaly0000jong"><i>Dimensional analysis for economists</i></a></span>. North Holland. p. <a rel="nofollow" class="external text" href="https://archive.org/details/dimensionalanaly0000jong/page/28">28</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+analysis+for+economists&rft.pages=28&rft.pub=North+Holland&rft.date=1967&rft.aulast=de+Jong&rft.aufirst=Frits+J.&rft.au=Quade%2C+Wilhelm&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdimensionalanaly0000jong&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaiteFine2007" class="citation book cs1">Waite, Lee; Fine, Jerry (2007). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/appliedbiofluidm00wait"><i>Applied Biofluid Mechanics</i></a></span>. New York: McGraw-Hill. p. <a rel="nofollow" class="external text" href="https://archive.org/details/appliedbiofluidm00wait/page/n278">260</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-147217-3" title="Special:BookSources/978-0-07-147217-3"><bdi>978-0-07-147217-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applied+Biofluid+Mechanics&rft.place=New+York&rft.pages=260&rft.pub=McGraw-Hill&rft.date=2007&rft.isbn=978-0-07-147217-3&rft.aulast=Waite&rft.aufirst=Lee&rft.au=Fine%2C+Jerry&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fappliedbiofluidm00wait&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacagno1971" class="citation journal cs1">Macagno, Enzo O. (1971). "Historico-critical review of dimensional analysis". <i>Journal of the Franklin Institute</i>. <b>292</b> (6): 391–340. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-0032%2871%2990160-8">10.1016/0016-0032(71)90160-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=Historico-critical+review+of+dimensional+analysis&rft.volume=292&rft.issue=6&rft.pages=391-340&rft.date=1971&rft_id=info%3Adoi%2F10.1016%2F0016-0032%2871%2990160-8&rft.aulast=Macagno&rft.aufirst=Enzo+O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Martins_1981-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Martins_1981_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Martins_1981_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartins1981" class="citation journal cs1">Martins, Roberto De A. (1981). "The origin of dimensional analysis". <i>Journal of the Franklin Institute</i>. <b>311</b> (5): 331–337. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-0032%2881%2990475-0">10.1016/0016-0032(81)90475-0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=The+origin+of+dimensional+analysis&rft.volume=311&rft.issue=5&rft.pages=331-337&rft.date=1981&rft_id=info%3Adoi%2F10.1016%2F0016-0032%2881%2990475-0&rft.aulast=Martins&rft.aufirst=Roberto+De+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Martins, p. 403 in the Proceedings book containing his article</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMason1962" class="citation cs2">Mason, Stephen Finney (1962), <i>A history of the sciences</i>, New York: Collier Books, p. 169, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-02-093400-4" title="Special:BookSources/978-0-02-093400-4"><bdi>978-0-02-093400-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+history+of+the+sciences&rft.place=New+York&rft.pages=169&rft.pub=Collier+Books&rft.date=1962&rft.isbn=978-0-02-093400-4&rft.aulast=Mason&rft.aufirst=Stephen+Finney&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-maxwell-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-maxwell_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoche1998" class="citation cs2">Roche, John J (1998), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eiQOqS-Q6EkC&pg=PA203"><i>The Mathematics of Measurement: A Critical History</i></a>, Springer, p. 203, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-91581-4" title="Special:BookSources/978-0-387-91581-4"><bdi>978-0-387-91581-4</bdi></a>, <q>Beginning apparently with Maxwell, mass, length and time began to be interpreted as having a privileged fundamental character and all other quantities as derivative, not merely with respect to measurement, but with respect to their physical status as well.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+of+Measurement%3A+A+Critical+History&rft.pages=203&rft.pub=Springer&rft.date=1998&rft.isbn=978-0-387-91581-4&rft.aulast=Roche&rft.aufirst=John+J&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeiQOqS-Q6EkC%26pg%3DPA203&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-maxwell2-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-maxwell2_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaxwell1873" class="citation cs2">Maxwell, James Clerk (1873), <i>A Treatise on Electricity and Magnetism</i>, p. 4</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+on+Electricity+and+Magnetism&rft.pages=4&rft.date=1873&rft.aulast=Maxwell&rft.aufirst=James+Clerk&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-maxwell3-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-maxwell3_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaxwell1873" class="citation cs2">Maxwell, James Clerk (1873), <i>A Treatise on Electricity and Magnetism</i>, Clarendon Press series, Oxford, p. 45, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fuc1.l0065867749">2027/uc1.l0065867749</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+on+Electricity+and+Magnetism&rft.series=Clarendon+Press+series&rft.pages=45&rft.pub=Oxford&rft.date=1873&rft_id=info%3Ahdl%2F2027%2Fuc1.l0065867749&rft.aulast=Maxwell&rft.aufirst=James+Clerk&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">(<a href="#CITEREFPesic2005">Pesic 2005</a>)</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRayleigh1877" class="citation cs2">Rayleigh, Baron John William Strutt (1877), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kvxYAAAAYAAJ"><i>The Theory of Sound</i></a>, Macmillan</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+Sound&rft.pub=Macmillan&rft.date=1877&rft.aulast=Rayleigh&rft.aufirst=Baron+John+William+Strutt&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkvxYAAAAYAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEFourier1822[httpsbooksgooglecombooksidTDQJAAAAIAAJpgPA156_156]-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFourier1822[httpsbooksgooglecombooksidTDQJAAAAIAAJpgPA156_156]_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFourier1822">Fourier (1822)</a>, p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TDQJAAAAIAAJ&pg=PA156">156</a>.</span> </li> <li id="cite_note-maxwell4-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-maxwell4_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaxwell1873" class="citation cs2">Maxwell, James Clerk (1873), <a rel="nofollow" class="external text" href="https://archive.org/stream/electricandmagne01maxwrich#page/n41/mode/2up"><i>A Treatise on Electricity and Magnetism, volume 1</i></a>, p. 5</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+on+Electricity+and+Magnetism%2C+volume+1&rft.pages=5&rft.date=1873&rft.aulast=Maxwell&rft.aufirst=James+Clerk&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Felectricandmagne01maxwrich%23page%2Fn41%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamsay" class="citation web cs1">Ramsay, Angus. <a rel="nofollow" class="external text" href="http://www.ramsay-maunder.co.uk/knowledge-base/technical-notes/dimensional-analysis--numerical-experiments-for-a-rotating-disc/">"Dimensional Analysis and Numerical Experiments for a Rotating Disc"</a>. <i>Ramsay Maunder Associates</i><span class="reference-accessdate">. Retrieved <span class="nowrap">15 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Ramsay+Maunder+Associates&rft.atitle=Dimensional+Analysis+and+Numerical+Experiments+for+a+Rotating+Disc&rft.aulast=Ramsay&rft.aufirst=Angus&rft_id=http%3A%2F%2Fwww.ramsay-maunder.co.uk%2Fknowledge-base%2Ftechnical-notes%2Fdimensional-analysis--numerical-experiments-for-a-rotating-disc%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTETao2012"With_a_bit_of_additional_effort_(and_taking_full_advantage_of_the_one-dimensionality_of_the_vector_spaces),_one_can_also_define_spaces_with_fractional_exponents&nbsp;..."-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETao2012"With_a_bit_of_additional_effort_(and_taking_full_advantage_of_the_one-dimensionality_of_the_vector_spaces),_one_can_also_define_spaces_with_fractional_exponents&nbsp;..."_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTao2012">Tao 2012</a>, "With a bit of additional effort (and taking full advantage of the one-dimensionality of the vector spaces), one can also define spaces with fractional exponents ...".</span> </li> <li id="cite_note-FOOTNOTETao2012"However,_when_working_with_vector-valued_quantities_in_two_and_higher_dimensions,_there_are_representation-theoretic_obstructions_to_taking_arbitrary_fractional_powers_of_units&nbsp;..."-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETao2012"However,_when_working_with_vector-valued_quantities_in_two_and_higher_dimensions,_there_are_representation-theoretic_obstructions_to_taking_arbitrary_fractional_powers_of_units&nbsp;..."_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTao2012">Tao 2012</a>, "However, when working with vector-valued quantities in two and higher dimensions, there are representation-theoretic obstructions to taking arbitrary fractional powers of units ...".</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><a href="#CITEREFTao2012">Tao 2012</a> "Similarly, one can define <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>T</i><span style="padding-left:0.12em;"><sup>−1</sup></span></sup></span></span> as the dual space to <span class="texhtml"><i>V</i><span style="padding-left:0.12em;"><sup><i>T</i></sup></span></span> ..."</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFBridgman1922">Bridgman 1922</a>, 2. Dimensional Formulas pp. 17–27</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerberan-SantosPogliani1999" class="citation journal cs1">Berberan-Santos, Mário N.; Pogliani, Lionello (1999). <a rel="nofollow" class="external text" href="https://core.ac.uk/download/pdf/22873054.pdf">"Two alternative derivations of Bridgman's theorem"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Mathematical Chemistry</i>. <b>26</b>: 255–261, See §5 General Results p. 259. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1019102415633">10.1023/A:1019102415633</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14833238">14833238</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Chemistry&rft.atitle=Two+alternative+derivations+of+Bridgman%27s+theorem&rft.volume=26&rft.pages=255-261%2C+See+%C2%A75+General+Results+p.+259&rft.date=1999&rft_id=info%3Adoi%2F10.1023%2FA%3A1019102415633&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14833238%23id-name%3DS2CID&rft.aulast=Berberan-Santos&rft.aufirst=M%C3%A1rio+N.&rft.au=Pogliani%2C+Lionello&rft_id=https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F22873054.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFBerberan-SantosPogliani1999">Berberan-Santos & Pogliani 1999</a>, p. 256</span> </li> <li id="cite_note-Pisanty13-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pisanty13_27-0">^</a></b></span> <span class="reference-text">For a review of the different conventions in use see: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPisanty2013" class="citation web cs1">Pisanty, E (17 September 2013). <a rel="nofollow" class="external text" href="http://physics.stackexchange.com/q/77690">"Square bracket notation for dimensions and units: usage and conventions"</a>. <i>Physics Stack Exchange</i><span class="reference-accessdate">. Retrieved <span class="nowrap">15 July</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+Stack+Exchange&rft.atitle=Square+bracket+notation+for+dimensions+and+units%3A+usage+and+conventions&rft.date=2013-09-17&rft.aulast=Pisanty&rft.aufirst=E&rft_id=http%3A%2F%2Fphysics.stackexchange.com%2Fq%2F77690&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-nist-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-nist_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-nist_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson2009" class="citation book cs1">Thompson, Ambler (November 2009). <a rel="nofollow" class="external text" href="https://physics.nist.gov/cuu/pdf/sp811.pdf"><i>Guide for the Use of the International System of Units (SI): The Metric System</i></a> <span class="cs1-format">(PDF)</span>. DIANE Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781437915594" title="Special:BookSources/9781437915594"><bdi>9781437915594</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Guide+for+the+Use+of+the+International+System+of+Units+%28SI%29%3A+The+Metric+System&rft.pub=DIANE+Publishing&rft.date=2009-11&rft.isbn=9781437915594&rft.aulast=Thompson&rft.aufirst=Ambler&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcuu%2Fpdf%2Fsp811.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuff2004" class="citation arxiv cs1">Duff, Michael James (July 2004). "Comment on time-variation of fundamental constants". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0208093v3">hep-th/0208093v3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Comment+on+time-variation+of+fundamental+constants&rft.date=2004-07&rft_id=info%3Aarxiv%2Fhep-th%2F0208093v3&rft.aulast=Duff&rft.aufirst=Michael+James&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoan2010" class="citation cs2">Woan, G. (2010), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/cambridgehandboo0000woan"><i>The Cambridge Handbook of Physics Formulas</i></a></span>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-57507-2" title="Special:BookSources/978-0-521-57507-2"><bdi>978-0-521-57507-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Cambridge+Handbook+of+Physics+Formulas&rft.pub=Cambridge+University+Press&rft.date=2010&rft.isbn=978-0-521-57507-2&rft.aulast=Woan&rft.aufirst=G.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcambridgehandboo0000woan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoscaTipler2007" class="citation cs2">Mosca, Gene; Tipler, Paul Allen (2007), <i>Physics for Scientists and Engineers – with Modern Physics</i> (6th ed.), San Francisco: W. H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-8964-2" title="Special:BookSources/978-0-7167-8964-2"><bdi>978-0-7167-8964-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics+for+Scientists+and+Engineers+%E2%80%93+with+Modern+Physics&rft.place=San+Francisco&rft.edition=6th&rft.pub=W.+H.+Freeman&rft.date=2007&rft.isbn=978-0-7167-8964-2&rft.aulast=Mosca&rft.aufirst=Gene&rft.au=Tipler%2C+Paul+Allen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-Martin08-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Martin08_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinShawManchester_Physics2008" class="citation cs2">Martin, B.R.; Shaw, G.; Manchester Physics (2008), <i>Particle Physics</i> (2nd ed.), Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-03294-7" title="Special:BookSources/978-0-470-03294-7"><bdi>978-0-470-03294-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Particle+Physics&rft.edition=2nd&rft.pub=Wiley&rft.date=2008&rft.isbn=978-0-470-03294-7&rft.aulast=Martin&rft.aufirst=B.R.&rft.au=Shaw%2C+G.&rft.au=Manchester+Physics&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGehani1977" class="citation journal cs1">Gehani, N. (1977). "Units of measure as a data attribute". <i>Comput. Lang</i>. <b>2</b> (3): 93–111. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0096-0551%2877%2990010-8">10.1016/0096-0551(77)90010-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comput.+Lang.&rft.atitle=Units+of+measure+as+a+data+attribute&rft.volume=2&rft.issue=3&rft.pages=93-111&rft.date=1977&rft_id=info%3Adoi%2F10.1016%2F0096-0551%2877%2990010-8&rft.aulast=Gehani&rft.aufirst=N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGehani1985" class="citation journal cs1">Gehani, N. (June 1985). "Ada's derived types and units of measure". <i>Software: Practice and Experience</i>. <b>15</b> (6): 555–569. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fspe.4380150604">10.1002/spe.4380150604</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:40558757">40558757</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Software%3A+Practice+and+Experience&rft.atitle=Ada%27s+derived+types+and+units+of+measure&rft.volume=15&rft.issue=6&rft.pages=555-569&rft.date=1985-06&rft_id=info%3Adoi%2F10.1002%2Fspe.4380150604&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A40558757%23id-name%3DS2CID&rft.aulast=Gehani&rft.aufirst=N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCmelikGehani1988" class="citation journal cs1">Cmelik, R. F.; Gehani, N. H. (May 1988). "Dimensional analysis with C++". <i>IEEE Software</i>. <b>5</b> (3): 21–27. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F52.2021">10.1109/52.2021</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22450087">22450087</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Software&rft.atitle=Dimensional+analysis+with+C%2B%2B&rft.volume=5&rft.issue=3&rft.pages=21-27&rft.date=1988-05&rft_id=info%3Adoi%2F10.1109%2F52.2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22450087%23id-name%3DS2CID&rft.aulast=Cmelik&rft.aufirst=R.+F.&rft.au=Gehani%2C+N.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKennedy1996" class="citation thesis cs1">Kennedy, Andrew J. (April 1996). <a rel="nofollow" class="external text" href="http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.html"><i>Programming languages and dimensions</i></a> (Phd). Vol. 391. University of Cambridge. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-2986">1476-2986</a>. UCAM-CL-TR-391.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=Programming+languages+and+dimensions&rft.inst=University+of+Cambridge&rft.date=1996-04&rft.issn=1476-2986&rft.aulast=Kennedy&rft.aufirst=Andrew+J.&rft_id=http%3A%2F%2Fwww.cl.cam.ac.uk%2Ftechreports%2FUCAM-CL-TR-391.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKennedy2010" class="citation book cs1">Kennedy, A. (2010). "Types for Units-of-Measure: Theory and Practice". In Horváth, Z.; Plasmeijer, R.; Zsók, V. (eds.). <i>Central European Functional Programming School. CEFP 2009</i>. Lecture Notes in Computer Science. Vol. 6299. Springer. pp. 268–305. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.6901">10.1.1.174.6901</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-17685-2_8">10.1007/978-3-642-17685-2_8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-17684-5" title="Special:BookSources/978-3-642-17684-5"><bdi>978-3-642-17684-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Types+for+Units-of-Measure%3A+Theory+and+Practice&rft.btitle=Central+European+Functional+Programming+School.+CEFP+2009&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=268-305&rft.pub=Springer&rft.date=2010&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.174.6901%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1007%2F978-3-642-17685-2_8&rft.isbn=978-3-642-17684-5&rft.aulast=Kennedy&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGundry2015" class="citation journal cs1">Gundry, Adam (December 2015). <a rel="nofollow" class="external text" href="http://adam.gundry.co.uk/pub/typechecker-plugins/typechecker-plugins-2015-07-17.pdf">"A typechecker plugin for units of measure: domain-specific constraint solving in GHC Haskell"</a> <span class="cs1-format">(PDF)</span>. <i>SIGPLAN Notices</i>. <b>50</b> (12): 11–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2887747.2804305">10.1145/2887747.2804305</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170810000458/http://adam.gundry.co.uk/pub/typechecker-plugins/typechecker-plugins-2015-07-17.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 10 August 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIGPLAN+Notices&rft.atitle=A+typechecker+plugin+for+units+of+measure%3A+domain-specific+constraint+solving+in+GHC+Haskell&rft.volume=50&rft.issue=12&rft.pages=11-22&rft.date=2015-12&rft_id=info%3Adoi%2F10.1145%2F2887747.2804305&rft.aulast=Gundry&rft.aufirst=Adam&rft_id=http%3A%2F%2Fadam.gundry.co.uk%2Fpub%2Ftypechecker-plugins%2Ftypechecker-plugins-2015-07-17.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarrigueLy2017" class="citation book cs1 cs1-prop-foreign-lang-source">Garrigue, J.; Ly, D. (2017). <a rel="nofollow" class="external text" href="https://www.math.nagoya-u.ac.jp/~garrigue/papers/ocamldim.pdf">"Des unités dans le typeur"</a> <span class="cs1-format">(PDF)</span>. <i>28ièmes Journées Francophones des Langaeges Applicatifs, Jan 2017, Gourette, France</i> (in French). hal-01503084. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201110105231/https://www.math.nagoya-u.ac.jp/~garrigue/papers/ocamldim.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 10 November 2020.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Des+unit%C3%A9s+dans+le+typeur&rft.btitle=28i%C3%A8mes+Journ%C3%A9es+Francophones+des+Langaeges+Applicatifs%2C+Jan+2017%2C+Gourette%2C+France&rft.date=2017&rft.aulast=Garrigue&rft.aufirst=J.&rft.au=Ly%2C+D.&rft_id=https%3A%2F%2Fwww.math.nagoya-u.ac.jp%2F~garrigue%2Fpapers%2Focamldim.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeller2020" class="citation web cs1">Teller, David (January 2020). <a rel="nofollow" class="external text" href="https://yoric.github.io/post/uom.rs/">"Units of Measure in Rust with Refinement Types"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Units+of+Measure+in+Rust+with+Refinement+Types&rft.date=2020-01&rft.aulast=Teller&rft.aufirst=David&rft_id=https%3A%2F%2Fyoric.github.io%2Fpost%2Fuom.rs%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrecco2022" class="citation web cs1">Grecco, Hernan E. (2022). <a rel="nofollow" class="external text" href="https://pint.readthedocs.io/en/stable/">"Pint: makes units easy"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Pint%3A+makes+units+easy&rft.date=2022&rft.aulast=Grecco&rft.aufirst=Hernan+E.&rft_id=https%3A%2F%2Fpint.readthedocs.io%2Fen%2Fstable%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://camfort.github.io/">"CamFort: Specify, verify, and refactor Fortran code"</a>. University of Cambridge; University of Kent. 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CamFort%3A+Specify%2C+verify%2C+and+refactor+Fortran+code&rft.pub=University+of+Cambridge%3B+University+of+Kent&rft.date=2018&rft_id=https%3A%2F%2Fcamfort.github.io%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBennich-BjörkmanMcKeever2018" class="citation book cs1">Bennich-Björkman, O.; McKeever, S. (2018). "The next 700 unit of measurement checkers". <i>Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering</i>. pp. 121–132. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3276604.3276613">10.1145/3276604.3276613</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4503-6029-6" title="Special:BookSources/978-1-4503-6029-6"><bdi>978-1-4503-6029-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53089559">53089559</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+next+700+unit+of+measurement+checkers&rft.btitle=Proceedings+of+the+11th+ACM+SIGPLAN+International+Conference+on+Software+Language+Engineering&rft.pages=121-132&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53089559%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1145%2F3276604.3276613&rft.isbn=978-1-4503-6029-6&rft.aulast=Bennich-Bj%C3%B6rkman&rft.aufirst=O.&rft.au=McKeever%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><a href="#CITEREFHart1995">Hart 1995</a></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffioen2019" class="citation thesis cs1">Griffioen, P. (2019). <a rel="nofollow" class="external text" href="https://pure.uva.nl/ws/files/42206706/Thesis.pdf"><i>A unit-aware matrix language and its application in control and auditing</i></a> <span class="cs1-format">(PDF)</span> (Thesis). University of Amsterdam. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11245.1%2Ffd7be191-700f-4468-a329-4c8ecd9007ba">11245.1/fd7be191-700f-4468-a329-4c8ecd9007ba</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200221072448/https://pure.uva.nl/ws/files/42206706/Thesis.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 21 February 2020.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=A+unit-aware+matrix+language+and+its+application+in+control+and+auditing&rft.inst=University+of+Amsterdam&rft.date=2019&rft_id=info%3Ahdl%2F11245.1%2Ffd7be191-700f-4468-a329-4c8ecd9007ba&rft.aulast=Griffioen&rft.aufirst=P.&rft_id=https%3A%2F%2Fpure.uva.nl%2Fws%2Ffiles%2F42206706%2FThesis.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcBrideNordvall-Forsberg2022" class="citation book cs1"><a href="/wiki/Conor_McBride" title="Conor McBride">McBride, Conor</a>; Nordvall-Forsberg, Fredrik (2022). <a rel="nofollow" class="external text" href="https://strathprints.strath.ac.uk/76626/1/McBride_etal_amctmtxii2021_type_systems_for_programs_respecting_dimensions.pdf">"Type systems for programs respecting dimensions"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Mathematical and Computational Tools in Metrology and Testing XII</i>. Advances in Mathematics for Applied Sciences. World Scientific. pp. 331–345. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789811242380_0020">10.1142/9789811242380_0020</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9789811242380" title="Special:BookSources/9789811242380"><bdi>9789811242380</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:243831207">243831207</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220517115417/https://strathprints.strath.ac.uk/76626/1/McBride_etal_amctmtxii2021_type_systems_for_programs_respecting_dimensions.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 17 May 2022.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Type+systems+for+programs+respecting+dimensions&rft.btitle=Advanced+Mathematical+and+Computational+Tools+in+Metrology+and+Testing+XII&rft.series=Advances+in+Mathematics+for+Applied+Sciences&rft.pages=331-345&rft.pub=World+Scientific&rft.date=2022&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A243831207%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2F9789811242380_0020&rft.isbn=9789811242380&rft.aulast=McBride&rft.aufirst=Conor&rft.au=Nordvall-Forsberg%2C+Fredrik&rft_id=https%3A%2F%2Fstrathprints.strath.ac.uk%2F76626%2F1%2FMcBride_etal_amctmtxii2021_type_systems_for_programs_respecting_dimensions.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/NondimensionalizationTransform.html.en">"NondimensionalizationTransform—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=NondimensionalizationTransform%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FNondimensionalizationTransform.html.en&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/UnitDimensions.html.en">"UnitDimensions—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=UnitDimensions%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FUnitDimensions.html.en&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/DimensionalCombinations.html.en">"DimensionalCombinations—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=DimensionalCombinations%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FDimensionalCombinations.html.en&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-:0-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/UnityDimensions.html.en">"UnityDimensions—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=UnityDimensions%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FUnityDimensions.html.en&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://reference.wolfram.com/language/ref/QuantityVariableDimensions.html.en">"QuantityVariableDimensions—Wolfram Language Documentation"</a>. <i>reference.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=reference.wolfram.com&rft.atitle=QuantityVariableDimensions%E2%80%94Wolfram+Language+Documentation&rft_id=https%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FQuantityVariableDimensions.html.en&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHuntley1967">Huntley 1967</a>)</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuincey2021" class="citation journal cs1">Quincey, Paul (2021). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088/1681-7575/ac023f">"Angles in the SI: a detailed proposal for solving the problem"</a>. <i>Metrologia</i>. <b>58</b> (5): 053002. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.05704">2108.05704</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1681-7575%2Fac023f">10.1088/1681-7575/ac023f</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metrologia&rft.atitle=Angles+in+the+SI%3A+a+detailed+proposal+for+solving+the+problem&rft.volume=58&rft.issue=5&rft.pages=053002&rft.date=2021&rft_id=info%3Aarxiv%2F2108.05704&rft_id=info%3Adoi%2F10.1088%2F1681-7575%2Fac023f&rft.aulast=Quincey&rft.aufirst=Paul&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1088%2F1681-7575%2Fac023f&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">Siano (<a href="#CITEREFSiano1985-I">1985-I</a>, <a href="#CITEREFSiano1985-II">1985-II</a>)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=40" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarenblatt1996" class="citation cs2"><a href="/wiki/Grigory_Barenblatt" title="Grigory Barenblatt">Barenblatt, G. I.</a> (1996), <i>Scaling, Self-Similarity, and Intermediate Asymptotics</i>, Cambridge, UK: Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-43522-2" title="Special:BookSources/978-0-521-43522-2"><bdi>978-0-521-43522-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Scaling%2C+Self-Similarity%2C+and+Intermediate+Asymptotics&rft.place=Cambridge%2C+UK&rft.pub=Cambridge+University+Press&rft.date=1996&rft.isbn=978-0-521-43522-2&rft.aulast=Barenblatt&rft.aufirst=G.+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhaskarNigam1990" class="citation cs2">Bhaskar, R.; Nigam, Anil (1990), "Qualitative Physics Using Dimensional Analysis", <i>Artificial Intelligence</i>, <b>45</b> (1–2): 73–111, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0004-3702%2890%2990038-2">10.1016/0004-3702(90)90038-2</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Artificial+Intelligence&rft.atitle=Qualitative+Physics+Using+Dimensional+Analysis&rft.volume=45&rft.issue=1%E2%80%932&rft.pages=73-111&rft.date=1990&rft_id=info%3Adoi%2F10.1016%2F0004-3702%2890%2990038-2&rft.aulast=Bhaskar&rft.aufirst=R.&rft.au=Nigam%2C+Anil&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhaskarNigam1991" class="citation cs2">Bhaskar, R.; Nigam, Anil (1991), "Qualitative Explanations of Red Giant Formation", <i>The Astrophysical Journal</i>, <b>372</b>: 592–6, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991ApJ...372..592B">1991ApJ...372..592B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F170003">10.1086/170003</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Astrophysical+Journal&rft.atitle=Qualitative+Explanations+of+Red+Giant+Formation&rft.volume=372&rft.pages=592-6&rft.date=1991&rft_id=info%3Adoi%2F10.1086%2F170003&rft_id=info%3Abibcode%2F1991ApJ...372..592B&rft.aulast=Bhaskar&rft.aufirst=R.&rft.au=Nigam%2C+Anil&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoucherAlves1960" class="citation cs2">Boucher; Alves (1960), "Dimensionless Numbers", <i>Chemical Engineering Progress</i>, <b>55</b>: 55–64</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemical+Engineering+Progress&rft.atitle=Dimensionless+Numbers&rft.volume=55&rft.pages=55-64&rft.date=1960&rft.au=Boucher&rft.au=Alves&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBridgman1922" class="citation cs2"><a href="/wiki/Percy_Williams_Bridgman" title="Percy Williams Bridgman">Bridgman, P. W.</a> (1922), <i>Dimensional Analysis</i>, Yale University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-548-91029-0" title="Special:BookSources/978-0-548-91029-0"><bdi>978-0-548-91029-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+Analysis&rft.pub=Yale+University+Press&rft.date=1922&rft.isbn=978-0-548-91029-0&rft.aulast=Bridgman&rft.aufirst=P.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuckingham1914" class="citation cs2"><a href="/wiki/Edgar_Buckingham" title="Edgar Buckingham">Buckingham, Edgar</a> (1914), <a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=uc1.31210014450082&view=1up&seq=905">"On Physically Similar Systems: Illustrations of the Use of Dimensional Analysis"</a>, <i>Physical Review</i>, <b>4</b> (4): 345–376, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1914PhRv....4..345B">1914PhRv....4..345B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.4.345">10.1103/PhysRev.4.345</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10338.dmlcz%2F101743">10338.dmlcz/101743</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=On+Physically+Similar+Systems%3A+Illustrations+of+the+Use+of+Dimensional+Analysis&rft.volume=4&rft.issue=4&rft.pages=345-376&rft.date=1914&rft_id=info%3Ahdl%2F10338.dmlcz%2F101743&rft_id=info%3Adoi%2F10.1103%2FPhysRev.4.345&rft_id=info%3Abibcode%2F1914PhRv....4..345B&rft.aulast=Buckingham&rft.aufirst=Edgar&rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Duc1.31210014450082%26view%3D1up%26seq%3D905&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDrobot1953–1954" class="citation cs2">Drobot, S. (1953–1954), <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/sm/sm14/sm1418.pdf">"On the foundations of dimensional analysis"</a> <span class="cs1-format">(PDF)</span>, <i>Studia Mathematica</i>, <b>14</b>: 84–99, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Fsm-14-1-84-99">10.4064/sm-14-1-84-99</a></span>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20040116160647/http://matwbn.icm.edu.pl/ksiazki/sm/sm14/sm1418.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 16 January 2004</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Studia+Mathematica&rft.atitle=On+the+foundations+of+dimensional+analysis&rft.volume=14&rft.pages=84-99&rft.date=1953%2F1954&rft_id=info%3Adoi%2F10.4064%2Fsm-14-1-84-99&rft.aulast=Drobot&rft.aufirst=S.&rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Fsm%2Fsm14%2Fsm1418.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFourier1822" class="citation cs2 cs1-prop-foreign-lang-source">Fourier, Joseph (1822), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TDQJAAAAIAAJ&pg=PR3"><i>Theorie analytique de la chaleur</i></a> (in French), Paris: Firmin Didot</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theorie+analytique+de+la+chaleur&rft.place=Paris&rft.pub=Firmin+Didot&rft.date=1822&rft.aulast=Fourier&rft.aufirst=Joseph&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTDQJAAAAIAAJ%26pg%3DPR3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibbings2011" class="citation cs2">Gibbings, J.C. (2011), <i>Dimensional Analysis</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84996-316-9" title="Special:BookSources/978-1-84996-316-9"><bdi>978-1-84996-316-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+Analysis&rft.pub=Springer&rft.date=2011&rft.isbn=978-1-84996-316-9&rft.aulast=Gibbings&rft.aufirst=J.C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHart1994" class="citation cs2"><a href="/wiki/George_W._Hart" title="George W. Hart">Hart, George W.</a> (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NeWVeylbeiQC&pg=PA186">"The theory of dimensioned matrices"</a>, in Lewis, John G. (ed.), <i>Proceedings of the Fifth SIAM Conference on Applied Linear Algebra</i>, SIAM, pp. 186–190, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-336-7" title="Special:BookSources/978-0-89871-336-7"><bdi>978-0-89871-336-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+theory+of+dimensioned+matrices&rft.btitle=Proceedings+of+the+Fifth+SIAM+Conference+on+Applied+Linear+Algebra&rft.pages=186-190&rft.pub=SIAM&rft.date=1994&rft.isbn=978-0-89871-336-7&rft.aulast=Hart&rft.aufirst=George+W.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNeWVeylbeiQC%26pg%3DPA186&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span> As <a rel="nofollow" class="external text" href="http://www.georgehart.com/research/tdm.ps">postscript</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHart1995" class="citation cs2">Hart, George W. (1995), <a rel="nofollow" class="external text" href="http://www.georgehart.com/research/multanal.html"><i>Multidimensional Analysis: Algebras and Systems for Science and Engineering</i></a>, Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-94417-3" title="Special:BookSources/978-0-387-94417-3"><bdi>978-0-387-94417-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Multidimensional+Analysis%3A+Algebras+and+Systems+for+Science+and+Engineering&rft.pub=Springer-Verlag&rft.date=1995&rft.isbn=978-0-387-94417-3&rft.aulast=Hart&rft.aufirst=George+W.&rft_id=http%3A%2F%2Fwww.georgehart.com%2Fresearch%2Fmultanal.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuntley1967" class="citation cs2">Huntley, H. E. (1967), <a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL6128830M"><i>Dimensional Analysis</i></a>, Dover, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/682090763">682090763</a>, <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a> <a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL6128830M">6128830M</a>, LOC 67-17978</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+Analysis&rft.pub=Dover&rft.date=1967&rft_id=info%3Aoclcnum%2F682090763&rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL6128830M%23id-name%3DOL&rft.aulast=Huntley&rft.aufirst=H.+E.&rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL6128830M&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlinkenberg1955" class="citation cs2">Klinkenberg, A. (1955), "Dimensional systems and systems of units in physics with special reference to chemical engineering: Part I. The principles according to which dimensional systems and systems of units are constructed", <i>Chemical Engineering Science</i>, <b>4</b> (3): 130–140, 167–177, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1955ChEnS...4..130K">1955ChEnS...4..130K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0009-2509%2855%2980004-8">10.1016/0009-2509(55)80004-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemical+Engineering+Science&rft.atitle=Dimensional+systems+and+systems+of+units+in+physics+with+special+reference+to+chemical+engineering%3A+Part+I.+The+principles+according+to+which+dimensional+systems+and+systems+of+units+are+constructed&rft.volume=4&rft.issue=3&rft.pages=130-140%2C+167-177&rft.date=1955&rft_id=info%3Adoi%2F10.1016%2F0009-2509%2855%2980004-8&rft_id=info%3Abibcode%2F1955ChEnS...4..130K&rft.aulast=Klinkenberg&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanghaar1951" class="citation cs2"><a href="/wiki/Henry_L._Langhaar" title="Henry L. Langhaar">Langhaar, Henry L.</a> (1951), <i>Dimensional Analysis and Theory of Models</i>, Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88275-682-0" title="Special:BookSources/978-0-88275-682-0"><bdi>978-0-88275-682-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+Analysis+and+Theory+of+Models&rft.pub=Wiley&rft.date=1951&rft.isbn=978-0-88275-682-0&rft.aulast=Langhaar&rft.aufirst=Henry+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMendezOrdóñez2005" class="citation cs2">Mendez, P.F.; Ordóñez, F. (September 2005), "Scaling Laws From Statistical Data and Dimensional Analysis", <i>Journal of Applied Mechanics</i>, <b>72</b> (5): 648–657, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JAM....72..648M">2005JAM....72..648M</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.610">10.1.1.422.610</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1115%2F1.1943434">10.1115/1.1943434</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Mechanics&rft.atitle=Scaling+Laws+From+Statistical+Data+and+Dimensional+Analysis&rft.volume=72&rft.issue=5&rft.pages=648-657&rft.date=2005-09&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.422.610%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1115%2F1.1943434&rft_id=info%3Abibcode%2F2005JAM....72..648M&rft.aulast=Mendez&rft.aufirst=P.F.&rft.au=Ord%C3%B3%C3%B1ez%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoody1944" class="citation cs2">Moody, L. F. (1944), "Friction Factors for Pipe Flow", <i>Transactions of the American Society of Mechanical Engineers</i>, <b>66</b> (671): 671–678, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1115%2F1.4018140">10.1115/1.4018140</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions+of+the+American+Society+of+Mechanical+Engineers&rft.atitle=Friction+Factors+for+Pipe+Flow&rft.volume=66&rft.issue=671&rft.pages=671-678&rft.date=1944&rft_id=info%3Adoi%2F10.1115%2F1.4018140&rft.aulast=Moody&rft.aufirst=L.+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurphy1949" class="citation cs2">Murphy, N. F. (1949), "Dimensional Analysis", <i>Bulletin of the Virginia Polytechnic Institute</i>, <b>42</b> (6)</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+Virginia+Polytechnic+Institute&rft.atitle=Dimensional+Analysis&rft.volume=42&rft.issue=6&rft.date=1949&rft.aulast=Murphy&rft.aufirst=N.+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerry1944" class="citation cs2">Perry, J. H.; et al. (1944), "Standard System of Nomenclature for Chemical Engineering Unit Operations", <i>Transactions of the American Institute of Chemical Engineers</i>, <b>40</b> (251)</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions+of+the+American+Institute+of+Chemical+Engineers&rft.atitle=Standard+System+of+Nomenclature+for+Chemical+Engineering+Unit+Operations&rft.volume=40&rft.issue=251&rft.date=1944&rft.aulast=Perry&rft.aufirst=J.+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPesic2005" class="citation cs2">Pesic, Peter (2005), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/skyinbottle00pesi/page/227"><i>Sky in a Bottle</i></a></span>, MIT Press, pp. <a rel="nofollow" class="external text" href="https://archive.org/details/skyinbottle00pesi/page/227">227–8</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-16234-0" title="Special:BookSources/978-0-262-16234-0"><bdi>978-0-262-16234-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sky+in+a+Bottle&rft.pages=227-8&rft.pub=MIT+Press&rft.date=2005&rft.isbn=978-0-262-16234-0&rft.aulast=Pesic&rft.aufirst=Peter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fskyinbottle00pesi%2Fpage%2F227&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetty2001" class="citation cs2">Petty, G. W. (2001), "Automated computation and consistency checking of physical dimensions and units in scientific programs", <i>Software: Practice and Experience</i>, <b>31</b> (11): 1067–76, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fspe.401">10.1002/spe.401</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206506776">206506776</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Software%3A+Practice+and+Experience&rft.atitle=Automated+computation+and+consistency+checking+of+physical+dimensions+and+units+in+scientific+programs&rft.volume=31&rft.issue=11&rft.pages=1067-76&rft.date=2001&rft_id=info%3Adoi%2F10.1002%2Fspe.401&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206506776%23id-name%3DS2CID&rft.aulast=Petty&rft.aufirst=G.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPorter1933" class="citation cs2">Porter, Alfred W. (1933), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SxguAQAAIAAJ"><i>The Method of Dimensions</i></a> (3rd ed.), Methuen</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Method+of+Dimensions&rft.edition=3rd&rft.pub=Methuen&rft.date=1933&rft.aulast=Porter&rft.aufirst=Alfred+W.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSxguAQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._W._Strutt_(3rd_Baron_Rayleigh)1915" class="citation cs2"><a href="/wiki/John_William_Strutt,_3rd_Baron_Rayleigh" title="John William Strutt, 3rd Baron Rayleigh">J. W. Strutt (3rd Baron Rayleigh)</a> (1915), "The Principle of Similitude", <i>Nature</i>, <b>95</b> (2368): 66–8, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1915Natur..95...66R">1915Natur..95...66R</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F095066c0">10.1038/095066c0</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+Principle+of+Similitude&rft.volume=95&rft.issue=2368&rft.pages=66-8&rft.date=1915&rft_id=info%3Adoi%2F10.1038%2F095066c0&rft_id=info%3Abibcode%2F1915Natur..95...66R&rft.au=J.+W.+Strutt+%283rd+Baron+Rayleigh%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiano1985-I" class="citation cs2">Siano, Donald (1985), "Orientational Analysis – A Supplement to Dimensional Analysis – I", <i>Journal of the Franklin Institute</i>, <b>320</b> (6): 267–283, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-0032%2885%2990031-6">10.1016/0016-0032(85)90031-6</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=Orientational+Analysis+%E2%80%93+A+Supplement+to+Dimensional+Analysis+%E2%80%93+I&rft.volume=320&rft.issue=6&rft.pages=267-283&rft.date=1985&rft_id=info%3Adoi%2F10.1016%2F0016-0032%2885%2990031-6&rft.aulast=Siano&rft.aufirst=Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSiano1985-II" class="citation cs2">Siano, Donald (1985), "Orientational Analysis, Tensor Analysis and The Group Properties of the SI Supplementary Units – II", <i>Journal of the Franklin Institute</i>, <b>320</b> (6): 285–302, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-0032%2885%2990032-8">10.1016/0016-0032(85)90032-8</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=Orientational+Analysis%2C+Tensor+Analysis+and+The+Group+Properties+of+the+SI+Supplementary+Units+%E2%80%93+II&rft.volume=320&rft.issue=6&rft.pages=285-302&rft.date=1985&rft_id=info%3Adoi%2F10.1016%2F0016-0032%2885%2990032-8&rft.aulast=Siano&rft.aufirst=Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilberbergMcKetta1953" class="citation cs2">Silberberg, I. H.; McKetta, J. J. Jr. (1953), "Learning How to Use Dimensional Analysis", <i>Petroleum Refiner</i>, <b>32</b> (4): 5</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Petroleum+Refiner&rft.atitle=Learning+How+to+Use+Dimensional+Analysis&rft.volume=32&rft.issue=4&rft.pages=5&rft.date=1953&rft.aulast=Silberberg&rft.aufirst=I.+H.&rft.au=McKetta%2C+J.+J.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span>, (5): 147, (6): 101, (7): 129</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2012" class="citation web cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2012). <a rel="nofollow" class="external text" href="https://terrytao.wordpress.com/2012/12/29/a-mathematical-formalisation-of-dimensional-analysis/">"A mathematical formalisation of dimensional analysis"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+mathematical+formalisation+of+dimensional+analysis&rft.date=2012&rft.aulast=Tao&rft.aufirst=Terence&rft_id=https%3A%2F%2Fterrytao.wordpress.com%2F2012%2F12%2F29%2Fa-mathematical-formalisation-of-dimensional-analysis%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Driest1946" class="citation cs2">Van Driest, E. R. (March 1946), "On Dimensional Analysis and the Presentation of Data in Fluid Flow Problems", <i>Journal of Applied Mechanics</i>, <b>68</b> (A–34)</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Mechanics&rft.atitle=On+Dimensional+Analysis+and+the+Presentation+of+Data+in+Fluid+Flow+Problems&rft.volume=68&rft.issue=A%E2%80%9334&rft.date=1946-03&rft.aulast=Van+Driest&rft.aufirst=E.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhitney1968" class="citation cs2">Whitney, H. (1968), "The Mathematics of Physical Quantities, Parts I and II", <i>American Mathematical Monthly</i>, <b>75</b> (2): 115–138, 227–256, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2315883">10.2307/2315883</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2315883">2315883</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=The+Mathematics+of+Physical+Quantities%2C+Parts+I+and+II&rft.volume=75&rft.issue=2&rft.pages=115-138%2C+227-256&rft.date=1968&rft_id=info%3Adoi%2F10.2307%2F2315883&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2315883%23id-name%3DJSTOR&rft.aulast=Whitney&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><a href="/wiki/Edwin_Bidwell_Wilson" title="Edwin Bidwell Wilson">Wilson, Edwin B.</a> (1920) <a rel="nofollow" class="external text" href="https://archive.org/details/aeronautics00wilsgoog/page/n197/mode/2up">"Theory of Dimensions"</a>, chapter XI of <i>Aeronautics</i>, via <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVignaux1992" class="citation cs2">Vignaux, GA (1992), "Dimensional Analysis in Data Modelling", in Erickson, Gary J.; Neudorfer, Paul O. (eds.), <i>Maximum entropy and Bayesian methods: proceedings of the Eleventh International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, Seattle, 1991</i>, Kluwer Academic, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7923-2031-9" title="Special:BookSources/978-0-7923-2031-9"><bdi>978-0-7923-2031-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Dimensional+Analysis+in+Data+Modelling&rft.btitle=Maximum+entropy+and+Bayesian+methods%3A+proceedings+of+the+Eleventh+International+Workshop+on+Maximum+Entropy+and+Bayesian+Methods+of+Statistical+Analysis%2C+Seattle%2C+1991&rft.pub=Kluwer+Academic&rft.date=1992&rft.isbn=978-0-7923-2031-9&rft.aulast=Vignaux&rft.aufirst=GA&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKasprzakLysikRybaczuk1990" class="citation cs2">Kasprzak, Wacław; Lysik, Bertold; Rybaczuk, Marek (1990), <i>Dimensional Analysis in the Identification of Mathematical Models</i>, World Scientific, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-0304-7" title="Special:BookSources/978-981-02-0304-7"><bdi>978-981-02-0304-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dimensional+Analysis+in+the+Identification+of+Mathematical+Models&rft.pub=World+Scientific&rft.date=1990&rft.isbn=978-981-02-0304-7&rft.aulast=Kasprzak&rft.aufirst=Wac%C5%82aw&rft.au=Lysik%2C+Bertold&rft.au=Rybaczuk%2C+Marek&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=41" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiancoli2014" class="citation book cs1">Giancoli, Douglas C. (2014). "1. Introduction, Measurement, Estimating §1.8 Dimensions and Dimensional Analysis". <i>Physics: Principles with Applications</i> (7th ed.). Pearson. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-62592-2" title="Special:BookSources/978-0-321-62592-2"><bdi>978-0-321-62592-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/853154197">853154197</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.+Introduction%2C+Measurement%2C+Estimating+%C2%A71.8+Dimensions+and+Dimensional+Analysis&rft.btitle=Physics%3A+Principles+with+Applications&rft.edition=7th&rft.pub=Pearson&rft.date=2014&rft_id=info%3Aoclcnum%2F853154197&rft.isbn=978-0-321-62592-2&rft.aulast=Giancoli&rft.aufirst=Douglas+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dimensional_analysis&action=edit&section=42" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Fluid_Mechanics" class="extiw" title="wikibooks:Fluid Mechanics">Fluid Mechanics</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Fluid_Mechanics/Ch4" class="extiw" title="wikibooks:Fluid Mechanics/Ch4">Dimensional analysis</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Dimensional_analysis" class="extiw" title="commons:Category:Dimensional analysis">Dimensional analysis</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100410142839/http://www.roymech.co.uk/Related/Fluids/Dimension_Analysis.html">List of dimensions for variety of physical quantities</a></li> <li><a rel="nofollow" class="external text" href="http://www.calchemy.com/uclive.htm">Unicalc Live web calculator doing units conversion by dimensional analysis</a></li> <li><a rel="nofollow" class="external text" href="http://www.boost.org/doc/libs/1_66_0/doc/html/boost_units.html">A C++ implementation of compile-time dimensional analysis in the Boost open-source libraries</a></li> <li><a rel="nofollow" class="external text" href="http://www.math.ntnu.no/~hanche/notes/buckingham/buckingham-a4.pdf">Buckingham's pi-theorem</a></li> <li><a rel="nofollow" class="external text" href="http://QuantitySystem.CodePlex.com">Quantity System calculator for units conversion based on dimensional approach</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171224025732/http://quantitysystem.codeplex.com/">Archived</a> 24 December 2017 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://www.outlawmapofphysics.com">Units, quantities, and fundamental constants project dimensional analysis maps</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBowley2009" class="citation web cs1">Bowley, Roger (2009). <a rel="nofollow" class="external text" href="http://www.sixtysymbols.com/videos/dimensional.htm">"Dimensional Analysis"</a>. <i>Sixty Symbols</i>. <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a> for the <a href="/wiki/University_of_Nottingham" title="University of Nottingham">University of Nottingham</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Sixty+Symbols&rft.atitle=Dimensional+Analysis&rft.date=2009&rft.aulast=Bowley&rft.aufirst=Roger&rft_id=http%3A%2F%2Fwww.sixtysymbols.com%2Fvideos%2Fdimensional.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDureisseix2019" class="citation thesis cs1">Dureisseix, David (2019). <a rel="nofollow" class="external text" href="https://cel.archives-ouvertes.fr/cel-01380149"><i>An introduction to dimensional analysis</i></a> (lecture). INSA Lyon.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=An+introduction+to+dimensional+analysis&rft.inst=INSA+Lyon&rft.date=2019&rft.aulast=Dureisseix&rft.aufirst=David&rft_id=https%3A%2F%2Fcel.archives-ouvertes.fr%2Fcel-01380149&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADimensional+analysis" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Systems_of_measurement" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Systems_of_measurement" title="Template:Systems of measurement"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Systems_of_measurement" title="Template talk:Systems of measurement"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Systems_of_measurement" title="Special:EditPage/Template:Systems of measurement"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Systems_of_measurement" style="font-size:114%;margin:0 4em"><a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">Systems of measurement</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Current</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units (SI)</a></li> <li><a href="/wiki/Imperial_units" title="Imperial units">UK imperial system</a></li> <li><a href="/wiki/United_States_customary_units" title="United States customary units">US customary units (USCS/USC)</a></li> <li><a href="/wiki/Chinese_units_of_measurement" title="Chinese units of measurement">Chinese</a> <ul><li><a href="/wiki/Hong_Kong_units_of_measurement" title="Hong Kong units of measurement">Hong Kong</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Specific</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Apothecaries%27_system" title="Apothecaries' system">Apothecaries'</a></li> <li><a href="/wiki/Avoirdupois_system" class="mw-redirect" title="Avoirdupois system">Avoirdupois</a></li> <li><a href="/wiki/Troy_weight" title="Troy weight">Troy</a></li> <li><a href="/wiki/Astronomical_system_of_units" title="Astronomical system of units">Astronomical</a></li> <li><a href="/wiki/Conventional_electrical_unit" title="Conventional electrical unit">Electrical</a></li> <li><a href="/wiki/English_Engineering_Units" title="English Engineering Units">English Engineering Units</a> (US)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Natural_units" title="Natural units">Natural</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_units" title="Atomic units">Atomic</a></li> <li><a href="/wiki/Geometrized_unit_system" title="Geometrized unit system">Geometrised</a></li> <li><a href="/wiki/Heaviside%E2%80%93Lorentz_units" title="Heaviside–Lorentz units">Heaviside–Lorentz</a></li> <li><a href="/wiki/Planck_units" title="Planck units">Planck</a></li> <li><a href="/wiki/Natural_units#Quantum_chromodynamics_units" title="Natural units">Quantum chromodynamical</a></li> <li><a href="/wiki/Stoney_units" title="Stoney units">Stoney</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em">Metric</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Metric_system" title="Metric system">Overview</a></li> <li><a href="/wiki/Outline_of_the_metric_system" title="Outline of the metric system">Outline</a></li> <li><a href="/wiki/History_of_the_metric_system" title="History of the metric system">History</a></li> <li><a href="/wiki/Metrication" title="Metrication">Metrication</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">UK/US</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Imperial_and_US_customary_measurement_systems" title="Imperial and US customary measurement systems">Overview</a></li> <li><a href="/wiki/Comparison_of_the_imperial_and_US_customary_measurement_systems" title="Comparison of the imperial and US customary measurement systems">Comparison</a></li> <li><a href="/wiki/Foot%E2%80%93pound%E2%80%93second_system" class="mw-redirect" title="Foot–pound–second system">Foot–pound–second</a> (FPS)</li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Historic</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em">Metric</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/MKS_system_of_units" class="mw-redirect" title="MKS system of units">metre–kilogram–second</a> (MKS)</li> <li><a href="/wiki/Metre%E2%80%93tonne%E2%80%93second_system_of_units" title="Metre–tonne–second system of units">metre–tonne–second</a> (MTS)</li> <li><a href="/wiki/Centimetre%E2%80%93gram%E2%80%93second_system_of_units" title="Centimetre–gram–second system of units">centimetre–gram–second</a> (CGS)</li> <li><a href="/wiki/Gravitational_metric_system" title="Gravitational metric system">gravitational</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Europe</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Old_Cornish_units_of_measurement" title="Old Cornish units of measurement">Cornish</a></li> <li><a href="/wiki/Cypriot_units_of_measurement" title="Cypriot units of measurement">Cypriot</a></li> <li><a href="/wiki/Czech_units_of_measurement" title="Czech units of measurement">Czech</a></li> <li><a href="/wiki/Danish_units_of_measurement" title="Danish units of measurement">Danish</a></li> <li><a href="/wiki/Dutch_units_of_measurement" title="Dutch units of measurement">Dutch</a></li> <li><a href="/wiki/English_units" title="English units">English</a> <ul><li><a href="/wiki/Winchester_measure" title="Winchester measure">Winchester</a></li> <li><a href="/wiki/Exchequer_Standards" title="Exchequer Standards">Exchequer</a></li></ul></li> <li><a href="/wiki/Estonian_units_of_measurement" title="Estonian units of measurement">Estonian</a></li> <li><a href="/wiki/Obsolete_Finnish_units_of_measurement" title="Obsolete Finnish units of measurement">Finnish</a></li> <li><a href="/wiki/French_units_of_measurement" title="French units of measurement">French</a> <ul><li><a href="/wiki/Traditional_French_units_of_measurement" title="Traditional French units of measurement">Traditional</a></li> <li><a href="/wiki/Mesures_usuelles" title="Mesures usuelles">Mesures usuelles</a></li></ul></li> <li><a href="/wiki/Obsolete_German_units_of_measurement" class="mw-redirect" title="Obsolete German units of measurement">German</a></li> <li><a href="/wiki/Greek_units_of_measurement" title="Greek units of measurement">Greek</a> <ul><li><a href="/wiki/Byzantine_units_of_measurement" title="Byzantine units of measurement">Byzantine</a></li></ul></li> <li><a href="/wiki/Hungarian_units_of_measurement" title="Hungarian units of measurement">Hungarian</a></li> <li><a href="/wiki/Icelandic_units_of_measurement" title="Icelandic units of measurement">Icelandic</a></li> <li><a href="/wiki/Old_Irish_units_of_measurement" class="mw-redirect" title="Old Irish units of measurement">Irish</a></li> <li><a href="/wiki/Italian_units_of_measurement" title="Italian units of measurement">Italian</a></li> <li><a href="/wiki/Latvian_units_of_measurement" title="Latvian units of measurement">Latvian</a></li> <li><a href="/wiki/Luxembourgian_units_of_measurement" class="mw-redirect" title="Luxembourgian units of measurement">Luxembourgian</a></li> <li><a href="/wiki/Maltese_units_of_measurement" title="Maltese units of measurement">Maltese</a></li> <li><a href="/wiki/Norwegian_units_of_measurement" title="Norwegian units of measurement">Norwegian</a></li> <li><a href="/wiki/Ottoman_units_of_measurement" title="Ottoman units of measurement">Ottoman</a></li> <li><a href="/wiki/Polish_units_of_measurement" title="Polish units of measurement">Polish</a></li> <li><a href="/wiki/Portuguese_units_of_measurement" title="Portuguese units of measurement">Portuguese</a></li> <li><a href="/wiki/Romanian_units_of_measurement" title="Romanian units of measurement">Romanian</a></li> <li><a href="/wiki/Obsolete_Russian_units_of_measurement" class="mw-redirect" title="Obsolete Russian units of measurement">Russian</a></li> <li><a href="/wiki/Scottish_units" title="Scottish units">Scottish</a></li> <li><a href="/wiki/Obsolete_Serbian_units_of_measurement" title="Obsolete Serbian units of measurement">Serbian</a></li> <li><a href="/wiki/Slovak_units_of_measurement" title="Slovak units of measurement">Slovak</a></li> <li><a href="/wiki/Spanish_units_of_measurement" title="Spanish units of measurement">Spanish</a></li> <li><a href="/wiki/Swedish_units_of_measurement" title="Swedish units of measurement">Swedish</a></li> <li><a href="/wiki/Swiss_units_of_measurement" title="Swiss units of measurement">Swiss</a></li> <li><a href="/wiki/Welsh_units" title="Welsh units">Welsh</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Asia</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Afghan_units_of_measurement" title="Afghan units of measurement">Afghan</a></li> <li><a href="/wiki/Cambodian_units_of_measurement" title="Cambodian units of measurement">Cambodian</a></li> <li><a href="/wiki/Indian_units_of_measurement" title="Indian units of measurement">Indian</a></li> <li><a href="/wiki/Indonesian_units_of_measurement" title="Indonesian units of measurement">Indonesian</a></li> <li><a href="/wiki/Japanese_units_of_measurement" title="Japanese units of measurement">Japanese</a></li> <li><a href="/wiki/Korean_units_of_measurement" title="Korean units of measurement">Korean</a></li> <li><a href="/wiki/Mongolian_units" title="Mongolian units">Mongolian</a></li> <li><a href="/wiki/Myanmar_units_of_measurement" title="Myanmar units of measurement">Myanmar</a></li> <li><a href="/wiki/Nepalese_customary_units_of_measurement" title="Nepalese customary units of measurement">Nepalese</a></li> <li><a href="/wiki/Omani_units_of_measurement" title="Omani units of measurement">Omani</a></li> <li><a href="/wiki/History_of_measurement_systems_in_Pakistan" title="History of measurement systems in Pakistan">Pakistani</a></li> <li><a href="/wiki/Philippine_units_of_measurement" title="Philippine units of measurement">Philippine</a></li> <li><a href="/wiki/Abucco" title="Abucco">Pegu</a></li> <li><a href="/wiki/Singaporean_units_of_measurement" title="Singaporean units of measurement">Singaporean</a></li> <li><a href="/wiki/Sri_Lankan_units_of_measurement" title="Sri Lankan units of measurement">Sri Lankan</a></li> <li><a href="/wiki/Syrian_units_of_measurement" title="Syrian units of measurement">Syrian</a></li> <li><a href="/wiki/Taiwanese_units_of_measurement" title="Taiwanese units of measurement">Taiwanese</a></li> <li><a href="/wiki/Obsolete_Tatar_units_of_measurement" class="mw-redirect" title="Obsolete Tatar units of measurement">Tatar</a></li> <li><a href="/wiki/Thai_units_of_measurement" title="Thai units of measurement">Thai</a></li> <li><a href="/wiki/Vietnamese_units_of_measurement" title="Vietnamese units of measurement">Vietnamese</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Africa</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algerian_units_of_measurement" title="Algerian units of measurement">Algerian</a></li> <li><a href="/wiki/Ethiopian_units_of_measurement" title="Ethiopian units of measurement">Ethiopian</a></li> <li><a href="/wiki/Egyptian_units_of_measurement" title="Egyptian units of measurement">Egyptian</a></li> <li><a href="/wiki/Eritrean_units_of_measurement" title="Eritrean units of measurement">Eritrean</a></li> <li><a href="/wiki/Guinean_units_of_measurement" title="Guinean units of measurement">Guinean</a></li> <li><a href="/wiki/Libyan_units_of_measurement" title="Libyan units of measurement">Libyan</a></li> <li><a href="/wiki/Malagasy_units_of_measurement" title="Malagasy units of measurement">Malagasy</a></li> <li><a href="/wiki/Mauritian_units_of_measurement" title="Mauritian units of measurement">Mauritian</a></li> <li><a href="/wiki/Moroccan_units_of_measurement" title="Moroccan units of measurement">Moroccan</a></li> <li><a href="/wiki/Seychellois_units_of_measurement" title="Seychellois units of measurement">Seychellois</a></li> <li><a href="/wiki/Somali_units_of_measurement" title="Somali units of measurement">Somali</a></li> <li><a href="/wiki/South_African_units_of_measurement" title="South African units of measurement">South African</a></li> <li><a href="/wiki/Tunisian_units_of_measurement" title="Tunisian units of measurement">Tunisian</a></li> <li><a href="/wiki/Tanzanian_units_of_measurement" title="Tanzanian units of measurement">Tanzanian</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">North America</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Costa_Rican_units_of_measurement" title="Costa Rican units of measurement">Costa Rican</a></li> <li><a href="/wiki/Cuban_units_of_measurement" title="Cuban units of measurement">Cuban</a></li> <li><a href="/wiki/Haitian_units_of_measurement" title="Haitian units of measurement">Haitian</a></li> <li><a href="/wiki/Honduran_units_of_measurement" title="Honduran units of measurement">Honduran</a></li> <li><a href="/wiki/Mexican_units_of_measurement" title="Mexican units of measurement">Mexican</a></li> <li><a href="/wiki/Nicaraguan_units_of_measurement" title="Nicaraguan units of measurement">Nicaraguan</a></li> <li><a href="/wiki/Puerto_Rican_units_of_measurement" title="Puerto Rican units of measurement">Puerto Rican</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">South America</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Argentine_units_of_measurement" title="Argentine units of measurement">Argentine</a></li> <li><a href="/wiki/Bolivian_units_of_measurement" title="Bolivian units of measurement">Bolivian</a></li> <li><a href="/wiki/Brazilian_units_of_measurement" title="Brazilian units of measurement">Brazilian</a></li> <li><a href="/wiki/Chilean_units_of_measurement" title="Chilean units of measurement">Chilean</a></li> <li><a href="/wiki/Colombian_units_of_measurement" title="Colombian units of measurement">Colombian</a></li> <li><a href="/wiki/Paraguayan_units_of_measurement" title="Paraguayan units of measurement">Paraguayan</a></li> <li><a href="/wiki/Peruvian_units_of_measurement" title="Peruvian units of measurement">Peruvian</a></li> <li><a href="/wiki/Uruguayan_units_of_measurement" title="Uruguayan units of measurement">Uruguayan</a></li> <li><a href="/wiki/Venezuelan_units_of_measurement" title="Venezuelan units of measurement">Venezuelan</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Ancient</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ancient_Arabic_units_of_measurement" title="Ancient Arabic units of measurement">Arabic</a></li> <li><a href="/wiki/Biblical_and_Talmudic_units_of_measurement" title="Biblical and Talmudic units of measurement">Biblical and Talmudic</a></li> <li><a href="/wiki/Ancient_Egyptian_units_of_measurement" title="Ancient Egyptian units of measurement">Egyptian</a></li> <li><a href="/wiki/Ancient_Greek_units_of_measurement" title="Ancient Greek units of measurement">Greek</a></li> <li><a href="/wiki/Hindu_units_of_time" title="Hindu units of time">Hindu</a></li> <li><a href="/wiki/History_of_measurement_systems_in_India" title="History of measurement systems in India">Indian</a></li> <li><a href="/wiki/Ancient_Mesopotamian_units_of_measurement" title="Ancient Mesopotamian units of measurement">Mesopotamian</a></li> <li><a href="/wiki/Persian_units_of_measurement" title="Persian units of measurement">Persian</a></li> <li><a href="/wiki/Ancient_Roman_units_of_measurement" title="Ancient Roman units of measurement">Roman</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">List articles</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_humorous_units_of_measurement" title="List of humorous units of measurement">Humorous</a></li> <li><a href="/wiki/List_of_obsolete_units_of_measurement" title="List of obsolete units of measurement">Obsolete</a></li> <li><a href="/wiki/List_of_unusual_units_of_measurement" title="List of unusual units of measurement">Unusual</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_scale" title="Absolute scale">Absolute scale</a></li> <li><a href="/wiki/N-body_units" title="N-body units">N-body</a></li> <li><a href="/wiki/Modulor" title="Modulor">Modulor</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="SI_base_quantities" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:SI_base_quantities" title="Template:SI base quantities"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:SI_base_quantities" title="Template talk:SI base quantities"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:SI_base_quantities" title="Special:EditPage/Template:SI base quantities"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="SI_base_quantities" style="font-size:114%;margin:0 4em"><a href="/wiki/SI_base_unit" title="SI base unit">SI base quantities</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Base quantities</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <table class="wikitable sortable" style="text-align:center; margin:0;"> <tbody><tr> <th colspan="3">Quantity </th> <th> </th> <th colspan="2"><a href="/wiki/SI_unit" class="mw-redirect" title="SI unit">SI unit</a> </th></tr> <tr> <th style="text-align:center;">Name </th> <th style="text-align:center;">Symbol </th> <th style="text-align:center;"><a class="mw-selflink selflink">Dimension<br />symbol</a> </th> <th class="unsortable"> </th> <th style="text-align:center;">Unit<br />name </th> <th style="text-align:center;">Unit<br />symbol </th></tr> <tr> <td style="text-align:left;"><a href="/wiki/Time" title="Time">time, duration</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">t</span> </td> <td style="font-family:sans-serif;font-style:normal;">T </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Second" title="Second">second</a> </td> <td style="text-align:left;">s </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Length" title="Length">length</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">l</span>, <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">r</span>, etc. </td> <td style="font-family:sans-serif;font-style:normal;">L </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Metre" title="Metre">metre</a> </td> <td style="text-align:left;">m </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Mass" title="Mass">mass</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">m</span> </td> <td style="font-family:sans-serif;font-style:normal;">M </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Kilogram" title="Kilogram">kilogram</a> </td> <td style="text-align:left;">kg </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Electric_current" title="Electric current">electric current</a> </td> <td><abbr title="Uppercase italic letter 'i'"> <span class="texhtml mvar" style="font-style:italic;">I</span> </abbr>, <span class="texhtml mvar" style="font-style:italic;">i</span> </td> <td style="font-family:sans-serif;font-style:normal;"><abbr title="Uppercase sans-serif roman letter 'i'"> I </abbr> </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Ampere" title="Ampere">ampere</a> </td> <td style="text-align:left;">A </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">thermodynamic temperature</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">T</span> </td> <td style="font-family:sans-serif;font-style:normal;"><abbr title="Greek capital letter theta">Θ</abbr> </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Kelvin" title="Kelvin">kelvin</a> </td> <td style="text-align:left;">K </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">n</span> </td> <td style="font-family:sans-serif;font-style:normal;">N </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a> </td> <td style="text-align:left;">mol </td></tr> <tr> <td style="text-align:left;"><a href="/wiki/Luminous_intensity" title="Luminous intensity">luminous intensity</a> </td> <td><span class="texhtml"><i>I</i><sub>v</sub></span> </td> <td style="font-family:sans-serif;font-style:normal;">J </td> <td> </td> <td style="text-align:left;"><a href="/wiki/Candela" title="Candela">candela</a> </td> <td style="text-align:left;">cd </td></tr></tbody></table> </div></td><td class="noviewer navbox-image" rowspan="2" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Unit_relations_in_the_new_SI.svg/200px-Unit_relations_in_the_new_SI.svg.png" decoding="async" width="200" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Unit_relations_in_the_new_SI.svg/300px-Unit_relations_in_the_new_SI.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Unit_relations_in_the_new_SI.svg/400px-Unit_relations_in_the_new_SI.svg.png 2x" data-file-width="625" data-file-height="600" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_the_metric_system" title="History of the metric system">History of the metric system</a></li> <li><a href="/wiki/International_System_of_Quantities" title="International System of Quantities">International System of Quantities</a></li> <li><a href="/wiki/2019_revision_of_the_SI" title="2019 revision of the SI">2019 revision</a></li> <li><a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">Systems of measurement</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><b><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:SI_base_units" title="Category:SI base units">Category</a></b></li> <li><b><a href="/wiki/Outline_of_the_metric_system" title="Outline of the metric system">Outline</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q217113#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q217113#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q217113#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/893849/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4133116-3">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85038036">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Analyse dimensionnelle"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11978037k">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Analyse dimensionnelle"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11978037k">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007555402605171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐2x7bg Cached time: 20241125133902 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.390 seconds Real time usage: 1.729 seconds Preprocessor visited node count: 20347/1000000 Post‐expand include size: 280607/2097152 bytes Template argument size: 25626/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 16/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 266922/5000000 bytes Lua time usage: 0.751/10.000 seconds Lua memory usage: 11612141/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1304.473 1 -total 25.09% 327.251 1 Template:Reflist 18.64% 243.144 268 Template:Math 14.03% 183.072 40 Template:Citation 8.44% 110.135 5 Template:Navbox 8.27% 107.879 9 Template:Cite_journal 6.47% 84.376 1 Template:Systems_of_measurement 5.94% 77.482 1 Template:Short_description 4.51% 58.790 1 Template:Sfnp 4.40% 57.365 2 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:idhash:8267-0!canonical and timestamp 20241125133902 and revision id 1254137729. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Dimensional_analysis&oldid=1254137729">https://en.wikipedia.org/w/index.php?title=Dimensional_analysis&oldid=1254137729</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Dimensional_analysis" title="Category:Dimensional analysis">Dimensional analysis</a></li><li><a href="/wiki/Category:Measurement" title="Category:Measurement">Measurement</a></li><li><a href="/wiki/Category:Conversion_of_units_of_measurement" title="Category:Conversion of units of measurement">Conversion of units of measurement</a></li><li><a href="/wiki/Category:Chemical_engineering" title="Category:Chemical engineering">Chemical engineering</a></li><li><a href="/wiki/Category:Mechanical_engineering" title="Category:Mechanical engineering">Mechanical engineering</a></li><li><a href="/wiki/Category:Environmental_engineering" title="Category:Environmental engineering">Environmental engineering</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2021" title="Category:Use dmy dates from April 2021">Use dmy dates from April 2021</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2021" title="Category:Articles with unsourced statements from May 2021">Articles with unsourced statements from May 2021</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2013" title="Category:Articles with unsourced statements from September 2013">Articles with unsourced statements from September 2013</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 29 October 2024, at 16:04<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Dimensional_analysis&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-688fc9465-wgzmv","wgBackendResponseTime":165,"wgPageParseReport":{"limitreport":{"cputime":"1.390","walltime":"1.729","ppvisitednodes":{"value":20347,"limit":1000000},"postexpandincludesize":{"value":280607,"limit":2097152},"templateargumentsize":{"value":25626,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":16,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":266922,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1304.473 1 -total"," 25.09% 327.251 1 Template:Reflist"," 18.64% 243.144 268 Template:Math"," 14.03% 183.072 40 Template:Citation"," 8.44% 110.135 5 Template:Navbox"," 8.27% 107.879 9 Template:Cite_journal"," 6.47% 84.376 1 Template:Systems_of_measurement"," 5.94% 77.482 1 Template:Short_description"," 4.51% 58.790 1 Template:Sfnp"," 4.40% 57.365 2 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.751","limit":"10.000"},"limitreport-memusage":{"value":11612141,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBIPM2019\"] = 1,\n [\"CITEREFBarenblatt1996\"] = 1,\n [\"CITEREFBennich-BjörkmanMcKeever2018\"] = 1,\n [\"CITEREFBerberan-SantosPogliani1999\"] = 1,\n [\"CITEREFBhaskarNigam1990\"] = 1,\n [\"CITEREFBhaskarNigam1991\"] = 1,\n [\"CITEREFBolsterHershbergerDonnelly2011\"] = 1,\n [\"CITEREFBoucherAlves1960\"] = 1,\n [\"CITEREFBowley2009\"] = 1,\n [\"CITEREFBridgman1922\"] = 1,\n [\"CITEREFBuckingham1914\"] = 1,\n [\"CITEREFCimbalaÇengel2006\"] = 1,\n [\"CITEREFCmelikGehani1988\"] = 1,\n [\"CITEREFDrobot1953–1954\"] = 1,\n [\"CITEREFDuff2004\"] = 1,\n [\"CITEREFDuffOkunVeneziano2002\"] = 1,\n [\"CITEREFDureisseix2019\"] = 1,\n [\"CITEREFFourier1822\"] = 1,\n [\"CITEREFGarrigueLy2017\"] = 1,\n [\"CITEREFGehani1977\"] = 1,\n [\"CITEREFGehani1985\"] = 1,\n [\"CITEREFGiancoli2014\"] = 1,\n [\"CITEREFGibbings2011\"] = 1,\n [\"CITEREFGrecco2022\"] = 1,\n [\"CITEREFGriffioen2019\"] = 1,\n [\"CITEREFGundry2015\"] = 1,\n [\"CITEREFHart1994\"] = 1,\n [\"CITEREFHart1995\"] = 1,\n [\"CITEREFHuntley1967\"] = 1,\n [\"CITEREFJ._W._Strutt_(3rd_Baron_Rayleigh)1915\"] = 1,\n [\"CITEREFJCGM2012\"] = 1,\n [\"CITEREFKasprzakLysikRybaczuk1990\"] = 1,\n [\"CITEREFKennedy1996\"] = 1,\n [\"CITEREFKennedy2010\"] = 1,\n [\"CITEREFKlinkenberg1955\"] = 1,\n [\"CITEREFLanghaar1951\"] = 1,\n [\"CITEREFMacagno1971\"] = 1,\n [\"CITEREFMartinShawManchester_Physics2008\"] = 1,\n [\"CITEREFMartins1981\"] = 1,\n [\"CITEREFMason1962\"] = 1,\n [\"CITEREFMaxwell1873\"] = 3,\n [\"CITEREFMcBrideNordvall-Forsberg2022\"] = 1,\n [\"CITEREFMendezOrdóñez2005\"] = 1,\n [\"CITEREFMoody1944\"] = 1,\n [\"CITEREFMoscaTipler2007\"] = 1,\n [\"CITEREFMurphy1949\"] = 1,\n [\"CITEREFPerry1944\"] = 1,\n [\"CITEREFPesic2005\"] = 1,\n [\"CITEREFPetty2001\"] = 1,\n [\"CITEREFPisanty2013\"] = 1,\n [\"CITEREFPorter1933\"] = 1,\n [\"CITEREFQuincey2021\"] = 1,\n [\"CITEREFRamsay\"] = 1,\n [\"CITEREFRayleigh1877\"] = 1,\n [\"CITEREFRoche1998\"] = 1,\n [\"CITEREFSiano1985-I\"] = 1,\n [\"CITEREFSiano1985-II\"] = 1,\n [\"CITEREFSilberbergMcKetta1953\"] = 1,\n [\"CITEREFTao2012\"] = 1,\n [\"CITEREFTeller2020\"] = 1,\n [\"CITEREFThompson2009\"] = 1,\n [\"CITEREFVan_Driest1946\"] = 1,\n [\"CITEREFVignaux1992\"] = 1,\n [\"CITEREFWaiteFine2007\"] = 1,\n [\"CITEREFWhitney1968\"] = 1,\n [\"CITEREFWoan2010\"] = 1,\n [\"CITEREFYalin1971\"] = 1,\n [\"CITEREFde_JongQuade1967\"] = 1,\n [\"Commensurability\"] = 1,\n [\"Dimension_symbol\"] = 1,\n [\"Dimensional_homogeneity\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Anchor\"] = 2,\n [\"Authority control\"] = 1,\n [\"Block indent\"] = 2,\n [\"Citation\"] = 40,\n [\"Citation needed\"] = 2,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 11,\n [\"Cite journal\"] = 9,\n [\"Cite thesis\"] = 3,\n [\"Cite web\"] = 12,\n [\"Commons category\"] = 1,\n [\"Dimanalysis\"] = 4,\n [\"Distinguish\"] = 1,\n [\"Em\"] = 1,\n [\"Further\"] = 3,\n [\"Gaps\"] = 1,\n [\"Harnvb\"] = 1,\n [\"Harv\"] = 2,\n [\"Harvid\"] = 2,\n [\"Harvnb\"] = 3,\n [\"Harvs\"] = 1,\n [\"I sup\"] = 4,\n [\"Isup\"] = 11,\n [\"Main\"] = 4,\n [\"Math\"] = 267,\n [\"Mset\"] = 1,\n [\"Mvar\"] = 26,\n [\"Nowrap\"] = 25,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 2,\n [\"SI base quantities\"] = 1,\n [\"See also\"] = 2,\n [\"Sfn\"] = 2,\n [\"Sfnp\"] = 1,\n [\"Short description\"] = 1,\n [\"Sub\"] = 4,\n [\"Sup\"] = 4,\n [\"Systems of measurement\"] = 1,\n [\"Tmath\"] = 9,\n [\"Use dmy dates\"] = 1,\n [\"Val\"] = 1,\n [\"Webarchive\"] = 1,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-2x7bg","timestamp":"20241125133902","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Dimensional analysis","url":"https:\/\/en.wikipedia.org\/wiki\/Dimensional_analysis","sameAs":"http:\/\/www.wikidata.org\/entity\/Q217113","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q217113","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-04T03:00:52Z","dateModified":"2024-10-29T16:04:58Z","headline":"analysis of the relationships between different physical quantities by identifying their base quantities and units of measure"}</script> </body> </html>