CINXE.COM
Search results for: thin film composite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thin film composite</title> <meta name="description" content="Search results for: thin film composite"> <meta name="keywords" content="thin film composite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thin film composite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thin film composite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3824</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thin film composite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20M.%20Mohd%20Saleh">S. J. M. Mohd Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Guo"> S. Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title="aircraft design">aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20structures" title=" aircraft structures"> aircraft structures</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20lamination%20theory" title=" classical lamination theory"> classical lamination theory</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title=" composite structures"> composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=laminate%20theory" title=" laminate theory"> laminate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20beam%20theory" title=" thin-walled beam theory"> thin-walled beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20box%20design" title=" wing box design "> wing box design </a> </p> <a href="https://publications.waset.org/abstracts/80552/composite-laminate-and-thin-walled-beam-correlations-for-aircraft-wing-box-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Improvement of Heat Dissipation Ability of Polyimide Composite Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Kim">Jinyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinuk%20Kwon"> Jinuk Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Haksoo%20Han"> Haksoo Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20device" title=" electric device"> electric device</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a> </p> <a href="https://publications.waset.org/abstracts/23358/improvement-of-heat-dissipation-ability-of-polyimide-composite-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Alghamdi">Ahmed A. Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title="single-walled carbon nanotubes">single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite" title=" thin film composite"> thin film composite</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20aligned%20swcnt" title=" axially aligned swcnt"> axially aligned swcnt</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20induced%20phase%20separation%20technique" title=" temperature induced phase separation technique"> temperature induced phase separation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a> </p> <a href="https://publications.waset.org/abstracts/180409/thin-film-nanocomposite-membrane-with-single-walled-carbon-nanotubes-axial-positioning-in-support-layer-for-desalination-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Protein Crystallization Induced by Surface Plasmon Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuo%20Okutsu">Tetsuo Okutsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lysozyme" title="lysozyme">lysozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=RNaseA" title=" RNaseA"> RNaseA</a> </p> <a href="https://publications.waset.org/abstracts/85433/protein-crystallization-induced-by-surface-plasmon-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zellagui%20Rahima">Zellagui Rahima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaumont%20Denis"> Chaumont Denis</a>, <a href="https://publications.waset.org/abstracts/search?q=Boughelout%20Abderrahman"> Boughelout Abderrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Mohamed"> Adnane Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title="thin film">thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transmition" title=" transmition"> transmition</a>, <a href="https://publications.waset.org/abstracts/search?q=cdzns" title=" cdzns"> cdzns</a> </p> <a href="https://publications.waset.org/abstracts/60104/elaboration-and-characterization-of-cdxzn1-xs-thin-films-deposed-by-chemical-bath-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> A Compilation of Nanotechnology in Thin Film Solar Cell Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Amziah%20Md%20Yunus">Nurul Amziah Md Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Izhal%20Abdul%20Halin"> Izhal Abdul Halin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasri%20Sulaiman"> Nasri Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Faezah%20Ismail"> Noor Faezah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Hasniza%20Nik%20Aman"> Nik Hasniza Nik Aman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as cadmium telluride (CdTe), copper-indium-gallium-diSelenide (CIGS), copper-zinc-tin-sulphide (CZTS), and dye-sensitized solar cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20solar%20cells" title=" thin film solar cells"> thin film solar cells</a> </p> <a href="https://publications.waset.org/abstracts/27188/a-compilation-of-nanotechnology-in-thin-film-solar-cell-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Corrosion Behavior of Different Electroplated Systems Coated With Physical Vapor Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Santos">Jorge Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20V.%20Gir%C3%A3o"> Ana V. Girão</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Oliveira"> F. J. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20C.%20Bastos"> Alexandre C. Bastos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protective or decorative coatings containing hexavalent chromium compounds are still used on metal and plastic parts. These hexavalent chromium compounds represent a risk to living beings and the environment, and, for this reason, there is a great need to investigate alternatives. Physical Vapor Deposition (PVD) is an environmentally friendly process that allows the deposition of wear and corrosion resistant thin films with excellent optical properties. However, PVD thin films are porous and if deposited onto low corrosion resistant substrates, lead to a degradation risk. The corrosion behavior of chromium-free electroplated coating systems finished with magnetron sputtered PVD thin films was investigated in this work. The electroplated systems consisted of distinct nickel layers deposited on top of a copper interlayer on acrylonitrile butadiene styrene (ABS) plates. Electrochemical and corrosion evaluation was conducted by electrochemical impedance spectroscopy and polarization curves on the different electroplated coating systems, with and without PVD thin film on top. The results show that the corrosion resistance is lower for the electroplated coating systems finished with PVD thin film for extended exposure periods when compared to those without the PVD overlay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVD" title="PVD">PVD</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/153146/corrosion-behavior-of-different-electroplated-systems-coated-with-physical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saziye%20Ugur">Saziye Ugur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20film" title="composite film">composite film</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20formation" title=" film formation"> film formation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ps%20latex" title=" ps latex"> ps latex</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/65185/investigation-of-optical-film-formation-and-magnetic-properties-of-ps-latesmnps-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sinnarasa">I. Sinnarasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Thimont"> Y. Thimont</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Presmanes"> L. Presmanes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Barnab%C3%A9"> A. Barnabé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title="thermoelectric">thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=delafossite" title=" delafossite"> delafossite</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a>, <a href="https://publications.waset.org/abstracts/search?q=degenerated%20semiconductor" title=" degenerated semiconductor"> degenerated semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20mode" title=" hopping mode"> hopping mode</a> </p> <a href="https://publications.waset.org/abstracts/77467/mg-doped-cucro2-thin-oxides-films-for-thermoelectric-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Deposition of Cr-doped ZnO Thin Films and Their Ferromagnetic Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namhyun%20An">Namhyun An</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Lee"> Byungho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwauk%20Lee"> Hwauk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngmin%20Lee"> Youngmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Deuk%20Young%20Kim"> Deuk Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sejoon%20Lee"> Sejoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Cr-doped ZnO thin films have been deposited by reactive magnetron sputtering method with different Cr-contents (1.0at.%, 2.5at.% and 12.5at.%) and their ferromagnetic properties have been characterized. All films revealed clear ferromagnetism above room temperature. However, the spontaneous magnetization of the films was observed to depend on the Cr contents in the films. Namely, the magnitude of effective magnetic moment (per each Cr ion) was exponentially decreased with increasing the Cr contents. We attributed the decreased spontaneous magnetization to the degraded crystal magnetic anisotropy. In other words, we found out that the high concentration of magnetic ions causes the lattice distortion in the magnetic ion-doped thin film, and it consequently degrades ferromagnetic channeling in the solid-state material system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cr-doped%20ZnO" title="Cr-doped ZnO">Cr-doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20properties" title=" ferromagnetic properties"> ferromagnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film "> thin film </a> </p> <a href="https://publications.waset.org/abstracts/45499/deposition-of-cr-doped-zno-thin-films-and-their-ferromagnetic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Microstructural and Transport Properties of La0.7Sr0.3CoO3 Thin Films Obtained by Metal-Organic Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Daoudi">K. Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Othmen"> Z. Othmen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20El%20Helali"> S. El Helali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Oueslati"> M.Oueslati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oumezzine"> M. Oumezzine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> La0.7Sr0.3CoO3 thin films have been epitaxially grown on LaAlO3 and SrTiO3 (001) single-crystal substrates by metal organic deposition process. The structural and micro structural properties of the obtained films have been investigated by means of high resolution X-ray diffraction, Raman spectroscopy and transmission microscopy observations on cross-sections techniques. We noted a close dependence of the crystallinity on the used substrate and the film thickness. By increasing the annealing temperature to 1000ºC and the film thickness to 100 nm, the electrical resistivity was decreased by several orders of magnitude. The film resistivity reaches approximately 3~4 x10-4 Ω.cm in a wide interval of temperature 77-320 K, making this material a promising candidate for a variety of applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobaltite" title="cobaltite">cobaltite</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=epitaxial%20growth" title=" epitaxial growth"> epitaxial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=MOD" title=" MOD"> MOD</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/17368/microstructural-and-transport-properties-of-la07sr03coo3-thin-films-obtained-by-metal-organic-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhemi%20Xu">Zhemi Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewei%20Chu"> Dewei Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20Li"> Sean Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title="metal oxides">metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly%20nanoparticles" title=" self-assembly nanoparticles"> self-assembly nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20resistive%20switching" title=" multi-level resistive switching"> multi-level resistive switching</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20thin%20film" title=" multi-layer thin film"> multi-layer thin film</a> </p> <a href="https://publications.waset.org/abstracts/60140/multi-layer-mn-doped-sno2-thin-film-for-multi-state-resistive-switching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Deposition Rates and Annealing Effects on the Growth of Nb Thin Film on Cu Substrate: Molecular Dynamic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lablali%20Mohammed">Lablali Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mes-Adi%20Hassan"> Mes-Adi Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazroui%20M%E2%80%99Hammed"> Mazroui M’Hammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To tackle the complexity of grasping atomic-scale structures and unraveling the factors affecting the development of thin films. In our work, we perform the deposition of Nb atoms on Cu substrates using the molecular dynamics simulation combined with the embedded atom method to describe the interaction between different atoms. We investigated the impact of varying deposition rates and thermal annealing processes on the microstructural, morphological, and mechanical characteristics of the deposited Nb film. Our findings reveal that Nb atom growth on the Cu substrate occurs in island mode, accompanied by the presence of nucleation phenomena during growth. On the other hand, mixing behavior was observed at the interface between the film and the substrate, where Nb penetration is initially limited to the first Cu layer, whereas Cu atoms diffuse until reaching the third layer in the Nb film. Furthermore, Nb exhibits a BCC structure, with a significant concentration observed at a rate of 5 atoms/ps, and annealing further amplifies these percentages. Deposition at different rates leads to distinct levels of compressive normal and biaxial stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title="molecular dynamics">molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Nb%20thin%20film" title=" Nb thin film"> Nb thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20and%20morphology" title=" structure and morphology"> structure and morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20penetration" title=" atomic penetration"> atomic penetration</a> </p> <a href="https://publications.waset.org/abstracts/188652/deposition-rates-and-annealing-effects-on-the-growth-of-nb-thin-film-on-cu-substrate-molecular-dynamic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameni%20Mahmoudi">Ameni Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Troudi"> Manel Troudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Bondavalli"> Paolo Bondavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Sghaier"> Nabil Sghaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20storage" title="charge storage">charge storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20SWCNT%20based%20transistors" title=" thin-film SWCNT based transistors"> thin-film SWCNT based transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V%20hysteresis" title=" C-V hysteresis"> C-V hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20and%20detrapping%20charges" title=" trapping and detrapping charges"> trapping and detrapping charges</a>, <a href="https://publications.waset.org/abstracts/search?q=stored%20charge%20density" title=" stored charge density"> stored charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20carrier%20retention%20time" title=" the carrier retention time"> the carrier retention time</a> </p> <a href="https://publications.waset.org/abstracts/159141/charge-trapping-on-a-single-wall-carbon-nanotube-thin-film-transistor-with-several-electrode-metals-for-memory-function-mimicking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> Enhancement of Hydrophobicity of Thermally Evaporated Bi Thin Films by Oblique Angle Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravish%20K.%20Jain">Ravish K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kaur"> Jatinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaira%20Arora"> Shaira Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Chawla"> Amit K. Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Khanna"> Atul Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface-dependent properties such as hydrophobicity can be modified significantly by oblique angle deposition technique. Bi thin films were studied for their hydrophobic nature. The effects of oblique angle deposition on structural, surface morphology, electrical and wettability properties of Bi thin films have been studied and a comparison of these physical properties of normally deposited and obliquely deposited Bi films has been carried out in this study. X-ray diffraction studies found that films have highly oriented hexagonal crystal structure and crystallite size is smaller for obliquely deposited (70 nm) film as compared to that of the normally deposited film (111 nm). Raman spectra of the films consist of peaks corresponding to E_g and A_1g first-order Raman modes of bismuth. The atomic force and scanning electron microscopy studies show that the surface roughness of obliquely deposited film is higher as compared to that of normally deposited film. Contact angle measurements revealed that both films are strongly hydrophobic in nature with the contact angles of 105ᵒ and 119ᵒ for normally and obliquely deposited films respectively. Oblique angle deposition enhances the hydrophobicity of the film. The electrical conductivity of the film is significantly reduced by oblique angle deposition. The activation energies for electrical conduction were determined by four-probe measurements and are 0.016 eV and 0.018 eV for normally and obliquely deposited films respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi%20thin%20films" title="bi thin films">bi thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle%20deposition" title=" oblique angle deposition"> oblique angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a> </p> <a href="https://publications.waset.org/abstracts/97326/enhancement-of-hydrophobicity-of-thermally-evaporated-bi-thin-films-by-oblique-angle-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3779</span> Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaicha">Mohamed Benaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Allam"> Mahdi Allam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20alloys" title=" copper alloys"> copper alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/31570/electrodeposition-and-selenization-of-cuin-alloys-for-the-synthesis-of-photoactive-cu2in1-x-gax-se2-cigs-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3778</span> Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SERS" title="SERS">SERS</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hg2%2B" title=" Hg2+"> Hg2+</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20detection" title=" water detection"> water detection</a>, <a href="https://publications.waset.org/abstracts/search?q=polythiophene" title=" polythiophene"> polythiophene</a> </p> <a href="https://publications.waset.org/abstracts/178851/microstructural-and-optical-characterization-of-heterostructures-of-znscds-and-cdszns-synthesized-by-chemical-bath-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3777</span> Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Bartashevich">M. V. Bartashevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20Flux" title="Heat Flux">Heat Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Blowing" title=" External Blowing"> External Blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thin%20Liquid%20Film" title=" Thin Liquid Film"> Thin Liquid Film</a> </p> <a href="https://publications.waset.org/abstracts/121069/numerical-modeling-of-film-cooling-of-the-surface-at-non-uniform-heat-flux-distributions-on-the-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3776</span> Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Balaji">G. Balaji</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Balasundaraprabhu"> R. Balasundaraprabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Prasanna"> S. Prasanna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Kannan"> M. D. Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sivakumaran"> K. Sivakumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mcilroy"> David Mcilroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth-abundant" title="earth-abundant">earth-abundant</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesterite" title=" Kesterite"> Kesterite</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20sputtering" title=" RF sputtering"> RF sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20solar%20cells" title=" thin film solar cells"> thin film solar cells</a> </p> <a href="https://publications.waset.org/abstracts/71511/studies-on-radio-frequency-sputtered-copper-zinc-tin-sulphide-absorber-layers-for-thin-film-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3775</span> Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Teimouri">Razieh Teimouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CIGS%20solar%20cells" title="CIGS solar cells">CIGS solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=SCAPS" title=" SCAPS"> SCAPS</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20layer" title=" buffer layer"> buffer layer</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20band%20offset" title=" conduction band offset"> conduction band offset</a> </p> <a href="https://publications.waset.org/abstracts/82360/optimization-of-cu-in-gase2-based-thin-film-solar-cells-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3774</span> Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20S.%20Sultan%20Aljibori">Hakim S. Sultan Aljibori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title="stress distribution">stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20pressure" title=" internal pressure"> internal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fiber" title=" hybrid fiber"> hybrid fiber</a> </p> <a href="https://publications.waset.org/abstracts/109374/experimental-and-comparative-study-of-composite-thin-cylinder-subjected-to-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3773</span> Unsteady Similarity Solution for a Slender Dry Patch in a Thin Newtonian Fluid Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Abas">S. S. Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Yatim"> Y. M. Yatim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the unsteady, slender, symmetric dry patch in an infinitely wide and thin liquid film of Newtonian fluid draining under gravity down an inclined plane in the presence of strong surface-tension effect is considered. A similarity transformation, named a travelling-wave similarity solution is used to reduce the governing partial differential equation into the ordinary differential equation which is then solved numerically using a shooting method. The introduction of surface-tension effect on the flow leads to a fourth-order ordinary differential equation. The solution obtained predicts that the dry patch has a quartic shape and the free surface has a capillary ridge near the contact line which decays in an oscillatory manner far from it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20patch" title="dry patch">dry patch</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid" title=" Newtonian fluid"> Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20solution" title=" similarity solution"> similarity solution</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-tension%20effect" title=" surface-tension effect"> surface-tension effect</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling-wave" title=" travelling-wave"> travelling-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20thin-film%20flow" title=" unsteady thin-film flow"> unsteady thin-film flow</a> </p> <a href="https://publications.waset.org/abstracts/10714/unsteady-similarity-solution-for-a-slender-dry-patch-in-a-thin-newtonian-fluid-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3772</span> Heat Transfer of an Impinging Jet on a Plane Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux" title="flux">flux</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20impinging%20jet" title=" free impinging jet"> free impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-surface" title=" solid-surface"> solid-surface</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20wall%20temperature" title=" uniform wall temperature"> uniform wall temperature</a> </p> <a href="https://publications.waset.org/abstracts/20862/heat-transfer-of-an-impinging-jet-on-a-plane-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3771</span> Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Ranjan%20Kumar">Shyam Ranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Rajpal"> Shashikant Rajpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnTe" title=" ZnTe"> ZnTe</a> </p> <a href="https://publications.waset.org/abstracts/72525/effect-of-annealing-on-electrodeposited-znte-thin-films-in-non-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3770</span> The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevil%20Kaynar%20Turkoglu">Sevil Kaynar Turkoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinde%20Zhang"> Jinde Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%20Ann%20Ratto"> Jo Ann Ratto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Dodiuk"> Hanna Dodiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Kenig"> Samuel Kenig</a>, <a href="https://publications.waset.org/abstracts/search?q=Joey%20Mead"> Joey Mead</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20%28acrylic%20acid%29" title="poly (acrylic acid)">poly (acrylic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title=" silica nanoparticles"> silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophilic%20coatings" title=" superhydrophilic coatings"> superhydrophilic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wetting" title=" surface wetting"> surface wetting</a> </p> <a href="https://publications.waset.org/abstracts/114795/the-study-of-wetting-properties-of-silica-poly-acrylic-acid-thin-film-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3769</span> Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsien%20Lin">Yu-Hsien Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ru%20Lin"> Yu-Ru Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chun%20Wu"> Yung-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-Si" title="poly-Si">poly-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=junctionless" title=" junctionless"> junctionless</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20transistors" title=" thin-film transistors"> thin-film transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20silicide" title=" nickel silicide"> nickel silicide</a> </p> <a href="https://publications.waset.org/abstracts/93016/low-temperature-poly-si-nanowire-junctionless-thin-film-transistors-with-nickel-silicide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3768</span> Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Tiwari">Alok Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Show%20Wong"> Ming Show Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO%20film" title=" TCO film"> TCO film</a> </p> <a href="https://publications.waset.org/abstracts/95715/effect-of-substrate-temperature-on-structure-and-properties-of-sputtered-transparent-conducting-film-of-la-doped-basno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3767</span> Uniform Porous Multilayer-Junction Thin Film for Enhanced Gas-Sensing Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping-Ping%20Zhang">Ping-Ping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Zhang"> Hui-Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu-Hui%20Sun"> Xu-Hui Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using self-assembled soft template and simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at the lower working temperature, compared to single layer counterpart sensors. The response of In2O3/CuO bilayer sensors exhibits nearly 3 and 5 times higher than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on p-n hetero-junction, which contributed to the enhanced sensing performance was also experimentally confirmed by a control experiment which the SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title="gas sensor">gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20porous%20thin%20films" title=" multilayer porous thin films"> multilayer porous thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=In2O3%2FCuO" title=" In2O3/CuO"> In2O3/CuO</a>, <a href="https://publications.waset.org/abstracts/search?q=p-n%20junction" title=" p-n junction"> p-n junction</a> </p> <a href="https://publications.waset.org/abstracts/43275/uniform-porous-multilayer-junction-thin-film-for-enhanced-gas-sensing-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3766</span> Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20Anjum">Ghazala Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Farooq%20Hussain%20Bhat"> Farooq Hussain Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar"> Ravi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic" title="magnetic">magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic" title=" multiferroic"> multiferroic</a>, <a href="https://publications.waset.org/abstracts/search?q=NEXAFS" title=" NEXAFS"> NEXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20absorption%20fine%20structure" title=" x-ray absorption fine structure"> x-ray absorption fine structure</a>, <a href="https://publications.waset.org/abstracts/search?q=XMCD" title=" XMCD"> XMCD</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20magnetic%20circular%20dichroism" title=" x-ray magnetic circular dichroism"> x-ray magnetic circular dichroism</a> </p> <a href="https://publications.waset.org/abstracts/101654/electronic-structure-studies-of-mn-doped-la08bi02feo3-multiferroic-thin-film-using-near-edge-x-ray-absorption-fine-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3765</span> Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Chavez%20Portillo">Melissa Chavez Portillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Pacio%20Castillo"> Mauricio Pacio Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Juarez%20Santiesteban"> Hector Juarez Santiesteban</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Portillo%20Moreno"> Oscar Portillo Moreno </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20doping" title="Bi doping">Bi doping</a>, <a href="https://publications.waset.org/abstracts/search?q=PbS" title=" PbS"> PbS</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/27244/solar-cell-using-chemical-bath-deposited-pbsbi3-films-as-electron-collecting-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thin%20film%20composite&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>